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Abstract.  

We have investigated the magnetoelectric (ME) effect in layered composite rings subjected to 

circumferential AC magnetic fields and DC magnetic fields in radial, axial or circumferential 

directions. Bilayer samples were obtained combining different grades of commercial Mn-Zn 

ferrites or Ni-Zn ferrites with commercial lead zirconate titanate (PZT). Mn-Zn ferrites with 

low magnetostriction saturation (       ) and low magneto-crystalline anisotropy 

constants show high ME capabilities when associated with PZT in ring structures. In certain 

conditions, these ME effects are higher than those obtained with Terfenol-D/PZT composites 

in the same layered ring structure. Magnetostrictive and mechanical characterizations have 

given results that explain these high ME performances. Nevertheless, Mn-Zn ferrite/PZT 

composites exhibit voltages responses with low linearity especially at high signal level. Based 

on the particular structure of the ME device, a method to decrease the nonlinear harmonic 

distortion of the ME voltages is proposed. Harmonic distortion analysis of ME voltages 

measured in different configurations allows us to explain the phenomenon.  

I. INTRODUCTION 

In the field of magnetoelectric (ME) materials, ME composites consisting in piezoelectric and 

magnetostrictive phases mechanically coupled to each other have shown a great interest. The 

wide range of piezoelectric and magnetostrictive materials permits to obtain a large variety of 

ME composites with different properties and application areas. Field and current sensors
1, 2, 3, 4 

(direct ME effect), ME memories
5, 6

, and electrostatically tunable inductances
7, 8 

(converse 

ME effect), are promising fields for ME composites. Concerning the current sensors, ME 

composites are well suited for manufacturing devices with low power consumption and 

simplified electronic.  Among the different possible connectivities between the two phases, 

only two have shown great interests: 3-3 (bulk composites
9, 10, 11

), and 2-2 (laminated 

composites
12, 13, 14

). When fabricated, ME composites are characterized using a standardized 

set-up
15

: in case of direct ME effect measurements, ME samples are subjected to 

unidirectional AC and DC magnetic fields and the induced electric field across the 

piezoelectric layer is sensed. Obviously, ME samples optimized with respect to this method of 

measurement have high sensing capabilities when a AC field with a radial direction is 

produced by an external coil carrying AC currents. However, for current sensors there is a 

need to measure currents flowing in a straight wire, producing circumferential magnetic 
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fields. In this case, the ME sample best geometry is the ring configuration. In the literature, 

there are few works reported on the subject of ME composites in such a structure. Dong et al. 

(see Ref. 1 and 2) have proposed ME rings in laminate configurations consisting in a PZT or 

PZN-PT ring sandwiched between two Terfenol-D rings. This configuration was named C-C 

coupling mode because the Terfenol-D layers was magnetized in the circumferential direction 

and the piezoelectric layer was polarized in this same direction. Magnetic bias was produced 

by external permanent magnets. More recently, Leung et al. (see Ref. 3) have tailored a smart 

ME ring. The structure is based on two concentric layers. The external one is a bulk PZT ring 

bonded to an inner ring consisting in a Terfenol-D/Epoxy-matrix composite. Small NdFeB 

permanent magnets are included in the magnetostrictive phase for magnetic biasing. The PZT 

ring was polarized in the radial direction, whereas the magnetic field is circumferential.  

In a recent study
4
, we reported that optimized compositions of Co-substituted Ni-Zn ferrites 

made by SPS (Spark Plasma Sintering) produce high ME effect in transversal mode when 

associated with PZT in layered composites. The ME performances are comparable to those 

obtained with Terfenol-D/PZT composites in the same structure. We demonstrated that the 

low piezomagnetic coefficients of the ferrite material (in comparison with Terfenol-D) are 

counter balanced by a high stiffness that permits to produce high mechanical stress. Secondly, 

we have shown that the permeability of the magnetic layers, associated with the 

demagnetizing factor, influences the ME responses. Using a new method of ME 

characterization, based on ME samples in a ring structure submitted to a circumferential AC 

field, the demagnetizing effect was overcame, and the intrinsic ME behavior was measured. It 

was established that low susceptibilities (     )  (so high field penetrations) are needed to 

obtain high ME effects when the AC magnetic field is produced by an external means 

(Helmholtz coils for example). In this case, Terfenol-D and nano-size grains Ni-Zn ferrites 

produce the best ME effect. But when a circumferential AC field is forced in a ring structure, 

it was shown that the ME response is not weakened by a high susceptibility, because the 

demagnetizing effect does not exist.  

Starting from the previous considerations, we have shown, in the present paper, the potential 

interest of ordinary high permeability Mn-Zn ferrites and Ni-Zn ferrites in ME layered 

composite ring structures subjected to circumferential AC magnetic field. In this work, we 

have investigated ME effects in bilayered ME rings consisting in PZT rings pasted on 

commercial high permeability Mn-Zn ferrites and Ni-Zn ferrites rings. Those commercial 

ferrites are commonly used to make inductors, transformers, and filters. To our best 

knowledge, those kinds of magnetic materials were never used in ME applications. The ME 

characterization set-up involves the use of circumferential AC field and radial, axial or 

circumferential DC magnetic fields. Since the AC magnetic field is not subjected to 

demagnetizing effect, the theory predict that the ME response is not weakened even for 

magnetic materials exhibiting high permeability such as Mn-Zn ferrites. For comparison, 

bilayered ME rings of the same structure made with high performance Terfenol-D or Ni-Co-

Zn ferrite (with nano-size grains) were characterized. Then, the different ME samples were 

tested in current sensor configurations and their potential uses were discussed. We have 

focused our work on a study of the ME voltage harmonic distortion.  The level of 
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fundamental, second and third harmonics of ME voltages were analyzed for AC magnetic 

fields increasing from 10 A/m up to 2000 A/m. A special configuration of electrodes and 

electric field measurement set-up across the piezoelectric layer have permitted to develop an 

original method to decrease the harmonic distortion of the ME voltage in ring structures. 

Lastly, exploiting the low magneto-crystalline anisotropies of Mn-Zn ferrites, we proposed a 

special configuration of ME current sensors. The bias magnetic field was produced without 

external permanent magnets or external electromagnets. This is a promising way to reduce the 

size of ME sensors.   

The paper is organized in the following way. In Sec. II, a theoretical analysis of the ME 

effects, and the influence of the demagnetizing field in two different configurations of ME 

measurement is discussed. In Sec. III, the fabrication method of the ME samples is presented, 

and the ME characterization set-up is described. Characterization results are given in Sec IV. 

Firstly, ME measurements for small AC signal show that all samples produce ME voltages in 

the same range.  Magnetostrictive and mechanical characterizations were conducted on a Mn-

Zn ferrite ring. The measured parameters were used in a theoretical model of the ME 

coefficient that fit well the experimental. In section V, a study at higher levels of AC signal 

demonstrates that Mn-Zn ferrites have piezomagnetic effects exhibiting low linearity in 

comparison with Terfenol-D or Ni-Co-Zn ferrite. In order to overcome this problem, we have 

proposed a differential voltage measurement method that increase the linearity of the ME 

response. A harmonic analysis of the distortion shows that this method permits to weaken the 

second harmonic components and it leads to a decrease of the global distortion of the ME 

signal. Lastly, we have studied a current sensor structure where the DC bias field was 

produced without permanent magnets. 

II. THEORETICAL ANALYSIS 

Usually, ME composites are characterized by applying a small external AC magnetic field (by 

means of Helmholtz coils) superimposed to a DC field
15

 in the same direction. The external 

AC field is measured by means of a hall probe or a search coil. When a DC bias field and a 

AC field   
  are applied in direction (1), producing an electric field    in the direction (3), the 

transversal coupling ME coefficient     (in quasi-static mode) is theoretically given by
4
: 

    
  

  
   

   
 

   
      

     
       

     
         

  
   

    
     

  

     
                                                        (1)                                          

where    
  and    

 ,    
 , and    

 , are zero field compliances, piezoelectric coefficient, and zero 

stress permittivity,  respectively, for the piezoelectric material;    
  and     

 ,    
  and    

 , and 

  are zero field compliances, intrinsic piezomagnetic coefficients, and zero stress dynamic 

susceptibility, respectively, for the magnetic material;   and    are the volume ratio of the 

materials and the radial demagnetizing factor respectively. Note that for most of 

polycrystalline materials,     
     

      
   . Furthermore, it must be noted that a perfect 

(but not realistic) mechanical coupling between the piezoelectric and piezomagnetic layers is 

considered here (without any flexural strain). Due to the demagnetizing effect, the level of the 

internal AC field is divided by         with respect to the level of the external AC field. 

The left hand term of Eq. 1, depending on the piezoelectric properties and the mechanical 
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properties of the magnetic and piezoelectric materials, can be regarded as constants. The right 

hand term depends strongly on the bias field because the values of    
 ,    

 , and   are 

dependent on the field. As a consequence, the ME curve is shaped by the right hand term.  

A second method was recently proposed
4 

to characterized ME samples. The aim was to 

overcome the demagnetizing effect and reach the intrinsic ME behavior.  A circumferential 

AC magnetic field is forced within the magnetic material by means of a coil wounded on the 

ME ring (see Fig. 1(a)). In this configuration, the value of the internal AC field      is 

deduced from the measurement of the current flowing into the coil. Obviously, in this case, 

the demagnetizing factor    in Eq. 1 is equal to zero. This leads to the transversal coupling 

ME coefficient       related to the circumferential AC field       in the (1,2) plane: 

      
  

    
  

   
 

   
      

     
       

     
         

  
     

                                                             (2) 

As seen in Eq. 2, the dynamic susceptibility   has no influence on the amplitude of the ME 

coefficient      . Nevertheless, the piezomagnetic coefficient,    
 , depends strongly on the 

internal bias field    . In general, an applied bias field    
  is produced by an electromagnet 

and is measured by means of a Hall probe. Then, the ME coefficient       is plotted as a 

function of the applied bias    
 . However, this bias field is subjected to the demagnetizing 

effect and the link between internal and applied fields is given by: 

    
 

        
   

                                                                                                                   (3)         

where     is the static susceptibility. Thus, the demagnetizing effect has influence on the 

shape of the ME coefficient curve, shifting it along the HDC axis.  

When a AC field is applied by external sources (Helmholtz coils, for example), the 

demagnetizing effect reduces the field penetration within the magnetic material. Eq. 1 clearly 

demonstrates that, in this condition of measurement, magnetostrictive materials with low 

susceptibilities   produce high ME effects when associated with PZT. For example, in Ref. 

12, the transversal ME coefficient was 0.8V/A for Ni-Zn ferrite/PZT multilayers with 

optimized compositions. In Ref. 16, similar compositions of ME composites gave     

          (trilayer sample) and               (bilayer sample). The differences in ME 

coefficients seem to be due to demagnetizing effects: the ferrite layers have thicknesses with 

different values. Usually,          for polycrystalline Ni-Zn ferrites with nano-sized 

grains, and         for Terfenol-D (at optimal bias). It is obvious that in this case, 

materials with high susceptibilities such as Mn-Zn ferrites or Ni-Zn ferrites (with grain size 

over 5µm) cannot show exploitable ME effects. By opposition, when a circumferential field 

     is forced within the ferrite, these materials are not limited by their high susceptibilities 

(see Eq. 2). As a consequence, the only condition that requires a high ME effect is a high 

intrinsic piezomagnetic coefficient    
              

 (where    is the magnetostriction 

measured is direction (1) for an internal field   ). Knowing the saturation magnetostriction    

and the internal field    at this saturated state, this coefficient can be estimated roughly by 

applying the formula:    
       . In a simple model

17
,    is directly linked to   , the 
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magneto-crystalline anisotropy constant of the second order, and we can conclude that the 

intrinsic piezomagnetic coefficient    
  is proportional to the ratio      . The 

magnetostriction and the magnetic anisotropy have the same origin, namely the spin-orbit 

coupling. Ferrite properties can be tailored by the chemical composition, so     and    can 

vary on a large span. But, in general, magnetostriction and magneto-crystalline anisotropy 

change in the same manner (i.e. low magnetostriction is coupled with low anisotropy, whereas 

high magnetostriction is coupled with high anisotropy). We can expect that almost all ferrite 

compositions (Mn-Zn ferrites, Ni-Zn ferrites, Co-Zn ferrites and substituted compositions) 

exhibit       ratios (and so, intrinsic piezomagnetic coefficients    
 ) within the same order 

of magnitude. Optimized compositions of Ni-Zn ferrites have much lower piezomagnetic 

coefficients in comparison with Terfenol-D. But it was demonstrated that this weakness is 

counter balanced by a low compliance, so high ME effects were obtained in layered ME 

composites
4
. Comparable phenomenon can be expected with Mn-Zn ferrites in layered ME 

structures, even for compositions exhibiting very low saturation  magnetostriction.  

III. SAMPLES FABRICATION AND MEASUREMENT SET-UP  

Commercial ferrite rings were purchased from Ferroxcube: two Mn-Zn ferrites exhibiting  

low magnetostriction, 3E6, and 3E8, and a Ni-Zn ferrite, 4A11. All of them were machined to 

reduce their thicknesses to 2 mm. To form ME bilayer samples, each ferrite ring was pasted 

with silver epoxy (Epotek E4110) on a PZT ring (PIC255, 10 mm outer diameter, 5 mm 

internal diameter, 1 mm thickness, polarized in direction (3)). For comparison, two ME 

bilayer samples were fabricated using the same technique with materials known to produce 

high ME effect: a Terfenol-D (TFD) ring purchased from Etrema, and a Ni-Zn ferrite (FNCZ) 

ring made by reactive Spark Plasma Sintering (SPS) in our laboratory with the initial 

composition (mixture of precursor oxides)  (Ni0.973Co0.027)0.75Zn0.25Fe2O4 (see Ref. 4 for 

information on the synthesis process). The final composition after the SPS stage was 

measured using EDX chemical analysis (Hitachi S-3400N SEM) and it is very close to the 

initial one. This is due to the very short time duration (25 minutes) of the SPS stage. This 

composition of ferrite was chosen because it produces high ME effects when a circumferential 

AC magnetic field is applied. The characteristics of all the magnetic material are summarized 

in Table 1. Lastly, five bilayered ME samples were fabricated: 3E6/PIC255, 3E8/PIC255, 

4A11/PIC255, FNCZ/PIC255, and TFD/PIC255. 

The ME characterization procedure is based on an 8 turns coil wounded on the ME ring that 

forces a circumferential AC magnetic field within the magnetic layer. The internal magnetic 

field      in the (1,2) plane is related to the AC current     flowing into the coil:       

       , where     is the number of turns and L is the mean length of the circular magnetic 

path. When the DC magnetic field is applied in the (radial) direction (1) by the means of an 

electromagnet (see Fig. 1(a)), the measurement configuration is named CRA (Circumferential 

AC field, Radial DC field, Axial electric field). In this case, two opposite voltages V and V’ 

are induced on each halves electrodes on the top of the PZT layer (the top electrode was split 

by two strokes of file in the same direction (1)). When the DC magnetic field is applied in the 

(axial) direction (3) (see Fig. 1(b)), the measurement configuration is named CAA 

(Circumferential AC field, Axial DC field, Axial electric field). Lastly, when the AC and DC 
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magnetic fields are forced in the circumferential direction (see Fig. 1(c)), the measurement 

configuration is named CCA (Circumferential AC field, Circumferential DC field, Axial 

electric field). It must be noted that the electric field is always in the (axial) direction (3). A 

lock-in amplifier measures the voltage V on a half electrode at each DC magnetic field. For all 

those working points, the ME coefficient is deduced from                , where   

     is the thickness of the PZT layer, and      is the internal AC field deduced from the 

measurement of the current     flowing into the coil. 

IV. ME CHARACTERIZATION.  

A. ME coefficient measurements in CRA configuration. 

The ME coefficients in CRA configuration were measured and plotted in Fig. 2 for the ME 

samples made with ferrites and in Fig. 3 for the ME sample made with Terfenol-D. The 

magnitude of the AC magnetic field is around 1.5 A/m at 80 Hz (to avoid any resonance 

phenomenon). Concerning the ferrite/PIC255 samples, the maximum ME effects occur at low 

bias magnetic fields between 8 kA/m and 25 kA/m. This fact confirms that the ferrite 

materials (due to high permeability) are easily magnetized in comparison to the Terfenol-D: 

the TFD/PIC255 sample exhibit a maximum ME effect at    
         .  On the other 

hand, it is clearly seen that all the ferrite/PIC255 samples have better ME effects (         

           ) than the ME sample fabricated with Terfenol-D (             ). Note that 

the ME curve of the 3E6/PIC255 sample exhibits two peaks: a small peak at low DC field 

(   
        ) and a bigger one at higher DC field (   

         ). The reason of this 

behavior will be explained later in the paper. The high ME effect obtained with Mn-Zn 

ferrites is not obvious and it can be explained by low compliances (two times lower than the 

PZT compliances, see Table 2) associated to relatively high intrinsic piezomagnetic 

coefficients, according Eq. 2.  

B. ME coefficient measurements in CAA configuration. 

A second configuration to measure a ME coupling is investigated: the DC magnetic field is  

applied in the direction (3) when the circumferential AC magnetic field is in the (1,2) plane of 

the ME sample. Results are plotted in Fig. 4 for 3E8/PIC255 and TFD/PIC255 ME samples. 

The two curves show ME effects roughly 10 times lower in comparison to the previous 

configuration measurement. Since the demagnetizing effect do not exist for the AC magnetic 

field, this discrepancy of the ME effects can be explained by a lowering of the piezomagnetic 

coefficients when the applied DC field is perpendicular to the AC field. In fact, when a bias 

field is applied in direction (3), the magnetization is roughly forced in this direction. So, the 

AC field, which is applied in a perpendicular direction, has difficulties to turn the 

magnetization, and consequently the piezomagnetic effect is low. Moreover, due to higher 

demagnetizing effects (which exist for the DC magnetic field) peaks of curves are shifted at 

higher bias fields. Note that for the TFD/ PIC255 sample there are two peaks at    
  

         and         . 

C. Correlation with magnetostriction measurement on 3E6 material. 
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High permeability Mn-Zn ferrites can produce ME effects (when associated with PZT) 

comparable to those obtained with Terfenol-D. This good performance should be explained 

by measuring the piezomagnetic and elastic properties. It is known that high susceptibility 

Mn-Zn ferrites exhibit low magnetostriction, in the range of      (in relative) at saturation. 

This value is too low to be measured by means of metal strain gauge, and piezoresistive 

gauges are very sensitive to thermal drift. So we have chosen an interferometry method that 

permits strain measurement under     . Magnetostriction measurement was conducted on a 

3E6 ring. Four turns of wire were wounded on the ring and a current (1.2 A peak) at 1kHz 

was applied. This current forces a 200A/m peak magnetic field within the ring, which is 

sufficient to reach the saturation of the magnetic material. The velocity, at the surface of the 

ring along a radial direction, was measured by means of a velocimeter (Polytec Laser Surface 

Velocimeter). The displacement, and then the strain, was deduced by an integration of the 

velocity. Magnetostriction curve versus internal magnetic field is plotted in Fig. 5. A well 

known butterfly shape is obtained. Note that the velocimeter was used at its lowest frequency 

limit (1kHz) and the curve may be a little bit distorted. The magnetostriction is very low, 

          , but it is obtained for a very low internal field:          . We can estimate 

an intrinsic piezomagnetic coefficient:    
            

           at the optimal bias 

          . Velocity wave measurement of ultrasonic pulses (20MHz center frequency) 

along the thickness of the ring permits us to deduce the     
  and     

  compliances of the 3E6 

material. The pulse-echo technique for longitudinal and shear waves leads to:            

(longitudinal) and            (transversal). This yields to:    
              and 

   
                . If we assume that the polycrystalline ferrite is not textured, we 

have:    
     

  and    
     

 . Using Eq. 2 and the data given in Table 2, we have calculated 

the magnetoelectric response of the sample # 3E6/PIC255. We obtain theoretically: 

              , and experimentally the value is               (at optimal bias), which is 

lower. Eq. 2 has been developed assuming that the strain in the magnetic layer,   
 , and the 

strain in the piezoelectric layers,   
 , are the same. That is definitely a rough approximation. 

To try to better describe the reel system we introduce a ratio of strain  , taking into account 

the differential strain between the two layers:      
     

    (in average).  So Eq. 2 

becomes
4
: 

      
  

    
  

     
 

   
      

     
        

     
         

  
     

                                                           (4) 

The ratio   depends on the composite structure. The lower value is obtained for staked 

PZT/ferrite bilayer structures when the PZT layer is stressed on only one face. When the PZT 

layer is stressed on its both faces (in case of ferrite/PZT/ferrite trilayers or more) the value of 

  is increased
4
. Moreover,  in case of concentric PZT/ferrite discs

19
, the mechanical coupling 

is enhanced. In the present case of a staked bilayer ring, the hole can influence the mechanical 

coupling between the layers, and consequently, the value of   is affected. So the influence on 

the ME response of the composite ring structure (that affects the mechanical coupling) is 

included in  . It is difficult to measure or to calculate the value of the ratio of strain  . 

Nevertheless, using        in Eq. 4, the theoretical value of the ME coefficient,      , fits 

the experimental one. This value of   is in the range of a value already measured for a ME 
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bilayer of the same kind
4
.  Note that the magnetostriction curve given in Fig. 5 shows two 

local extrema at           (local maximum) and          (local minimum). It may be 

due to a special shape of the domain structure near the demagnetized state. This local 

behavior at low field can explain the first small peak of the ME curve (see Fig. 2) for the 

3E6/PIC255 sample. The previous magnetostriction loop measurement method developed for 

the 3E6 ring cannot be applied to Ni-Zn ferrites (4A11 and FNCZ) or Terfenol-D rings. In 

fact, due to their high magneto-crystalline anisotropies, very high level currents (     ) in 

the coils are needed to saturate the materials. Nevertheless, the intrinsic piezomagnetic 

coefficient can be roughly estimated using the approximated formula:    
       , where    

is the saturation magnetostriction, and    is the internal field needed to saturate the material. 

The saturation magnetostriction values were measured on disc samples (see method in Ref. 4) 

using strain gauges and we obtained:           (FNCZ) and             (Terfenol-

D). The corresponding internal saturation fields were deduced from virgin magnetization 

curves (corrected in demagnetizing fields) measured by means of a Vibrating Sample 

Magnetometer (Lakeshore 7404). We obtained:                (FNCZ) and    

        (Terfenol-D). So, the estimated intrinsic piezomagnetic coefficients are:    
      

         (FNCZ), and    
              (Terfenol-D). Using the same rough 

calculation method for the 3E6 material, we obtained:    
                      (see 

Fig. 5 for    and    values). The approximated piezomagnetic coefficients of 3E6 and FNCZ 

materials are in the same range. This fact is confirmed by results in Fig. 2: the two materials 

produce ME responses with the same level. Although the Terfenol-D material have a 

piezomagnetic coefficient roughly ten times higher in comparison to the previous materials, 

the ME responses is in the same range (          . In the case of Terfenol-D,  the high 

piezomagnetic coefficient is counter balanced by its high compliance. (see Ref. 4). 

V. STUDY OF CURRENT SENSOR APPLICATIONS. 

A. ME samples used in CRA configuration.  

We have investigated the potential use of those ferrite/PZT bilayer ME samples in a current 

probe application. The set-up is described in Fig. 1(a), where the DC field was applied along 

the direction (1) and the AC field in the (1,2) plane was produced by a 8 turns coil wounded 

on the ME ring (CRA configuration). A 55 mA peak, triangle waveform current at 1kHz was 

applied to the coil. It correspond to a medium level AC field of about 18A/m. In each case, 

the DC field was set to obtain the highest ME voltage with good linearity. The time variation 

of the applied current was deduced from the voltage produced by a 1Ω resistor connected in 

series with the coil. The ME voltage was sensed directly by a passive      voltage probe 

(10 MΩ input impedance) and recorded by an oscilloscope (Lecroy Waverunner 44Xi). The 

results are given in Fig. 6. All the ME samples show good linearity, except the FNCZ sample. 

For this medium level AC field, the voltage levels produce by the ME samples are consistent 

with the ME coefficient measurements (Fig. 2 and Fig. 3), except for the 4A11/PIC255 

sample, for which the voltage at medium excitation is two times higher with respect to the 

ME coefficient measurement. Note that as expected, the TFD/PIC255 sample shows the 

lowest voltage response (but with the best linearity).  
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For AC field over 50 A/m, high distortions on ME voltages appear for 3E6/PIC255, 

3E8/PIC255, and 4A11/PIC255 samples. It means that these samples are suitable only for low 

AC magnetic field (or low AC current) detection. On the other hand, ME samples made with 

TFD or FNCZ materials show relevant ME coefficients in large bias field ranges (see Fig. 2 

and Fig. 3). In these cases, we can expect good linearity even when high AC magnetic fields 

are applied. Experiments were conducted on ME composites made with TFD and FNCZ 

materials under large excitation: a 3 A peak, triangle waveform current at 1kHz was applied 

in the 8 turns coils (the AC field is about 1200 A/m peak). The ME waveforms are given in 

Fig. 7. In each case, the bias field was tuned with the goal of getting a good linearity of the 

ME voltage. This is obtained when the bias field is over the DC field giving the maximum 

ME voltage. But, it conducts to a significant decrease of the ME response level. This is 

especially true concerning the  FNCZ/PIC255 sample for which the ME coefficient is reduced 

to                at    
          (three times lower than the low signal ME 

coefficient at optimal bias). This effect is less pronounced for the TFD/PIC255 sample for 

which the ME coefficient at high level signal,                at    
          , is 

closer to the value obtained at low AC level in Fig. 3.  

When a ferrite material is subjected at the same time to a circumferential AC magnetic field 

and an unidirectional bias field (see Fig. 1(a)), two opposite strains occur in each half part of 

the material because the radial components of the AC field are opposite for radially opposed 

points. This effect produces two opposite electric fields in the corresponding parts of the 

piezoelectric layer. Theoretically, the ME coefficient can be doubled when the voltage is 

measured between the two halves electrodes on the top of the piezoelectric layer. Figure 8 

shows an example of the two voltages V and V’ sensed on each part of the  FNCZ/PIC255 

sample. A 300 mA peak current (1kHz) with triangular waveform was applied to the coil. The 

two voltages waveforms (dotted and dashed lines), measured by two passive voltage probes, 

are almost symmetrical: they have opposite phases, but the voltage levels are slightly 

different. This difference can be explained if we suppose that the piezomagnetic and the 

piezoelectric properties are not perfectly homogeneous in the materials. The differential ME 

voltage measured with only one voltage probe connected between the two halves electrodes is 

given in Fig. 8 (thick solid line). As expected, the voltage is twice higher and it is seen that 

the linearity is enhanced. 

B. Harmonic distortion analysis in CRA configuration. 

Nonlinear effect is a recent subject of study in the field of ME devices, and some applications 

have been developped
20, 21, 22

. As seen before in the present paper, the linearity of the ME 

response is enhanced when the voltage is measured between the two halves electrodes.  To 

understand this effect, we have analyzed and compared the harmonic contents of the ME 

responses when the voltages are measured on a halves electrode (direct voltage) and between 

the two halves electrodes (differential voltage). Experiments were performed using sinusoidal 

AC magnetic field from 10 A/m up to 2000 A/m at 1kHz. The ME voltages were recorded by 

an oscilloscope (and a passive 1 10 voltage probe) and a Fast Fourrier Transform (FFT) was 

performed. In Fig. 9, fundamentals (1kHz), second harmonics (2kHz), and third harmonics 

(3kHz) are plotted as function of the AC field for the ME sample # 3E8/PIC255. It is worth 
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noting that the DC bias field was set to obtain (relatively) low distortion at high AC field. So, 

the ME sensitivity is lower than the best value for this sample. Fig. 9 shows that when a 

differential voltage measurement is done, the fundamental and the third harmonic amplitudes 

are roughly doubled (+6dB) with respect to the direct voltage measurement. In an opposite 

way, the second harmonic is highly weakened (-18dB at        A/m), leading to a 

decrease of the global distortion of the signal. The same experiment was conducted on the 

sample # FNCZ/PIC255 and results are displayed in Fig. 10: here again, the differential 

voltage measurement leads to a decrease of the second harmonic amplitude, and this effect 

occurs for all even harmonics. The second harmonic compensation indicates that the second 

harmonic voltages on each halves electrodes are in phase, whereas the third harmonic 

voltages are in opposition. The second harmonic generation is mainly due to the quadratic 

component of the magnetostriction λ versus H field  behavior,      . In this case, the two 

halves parts of the magnetic material are alternatively strained in phase with same amplitude. 

Assuming that the related voltages are well balanced, the second harmonic component can 

theoretically be cancelled. Lastly, the same harmonic distortion measurements were made for 

the sample # TFD/PIC255, and results are displayed in Fig. 11.  The bias field was chosen to 

produce the highest ME voltage and the lowest distortion. It can be seen that the fundamental 

component of the voltage increases linearly with Hac and the second harmonic is always 50dB 

lower. But for this sample, the effect of second harmonic compensation does not occur and 

the reason remains unclear. The third harmonic amplitude is roughly constant (~-60dBm) 

from      A/m up to 100A/m and,  consequently, at low AC field (      A/m) the ME 

voltage is highly distorted.  For this  sample, it is clearly seen that the best ME performance 

are obtained when     is over 100 A/m because in this region, the harmonic distortion is low 

(the ME coefficient is 1.4 V/A in the differential mode). Due to the second harmonic 

compensation effect, the sample # FNCZ/PIC255, displays low distortion for Hac between 40 

A/m and 200 A/m (in the differential mode). This range defines its best working region for 

which the ME coefficient is around 1.75 V/A. These findings demonstrate that, in a useful 

range of  Hac, nickel-cobalt-zinc ferrites can have performances comparable to those obtained 

with Terfenol-D.  

C. ME sample used in CCA configuration.  

In most of cases, ME devices need a DC magnetic bias field to reach the optimal working 

point (where the ME coefficient is maximum). Bias fields can be produced by permanent 

magnets
4
 (barium ferrite magnets for example) but this technique leads to some limitations: 

(i) permanent magnets increase the size of the ME devices; (ii) magnetic leakage can 

influence other devices in the surrounding environment,  (iii) the working point is not tunable. 

But from Fig. 6, it is apparent that Mn-Zn ferrites reach optimal piezomagnetic coefficients at 

low internal magnetic field (in the range of 50 A/m). This low bias field can easily be 

produced by an additional coil wounded on the ME ring and carrying a DC current. So we 

have conducted the following experiment on the 3E8/PIC255 sample. An additional coil 

(     turns) was wounded on the ME sample, carrying a DC current provided by a tunable 

current source (with high input impedance) made using a LM317 integrated circuit. This 

configuration is sketched Fig. 1(c) (CCA configuration).  The IDC current can be set from 0 to 
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0.5A. The AC magnetic field was produced by a 50mVrms, 1kHz, sinus waveform current 

flowing inside a 8 turns coil wounded on the ME ring. The ME voltage was measured using 

an oscilloscope, and has been analyzed by FFT. In Fig. 12, fundamental and second-harmonic 

components have been plotted as function of the DC current×turns product. Seeing the curve 

of the fundamental component, we find that the maximum voltage is obtained for a DC 

current as low as          (          ).  At this working point, the ME coefficient 

reaches        . This high ME effect can be explained by an ideal configuration where both 

the AC and DC magnetic fields are circumferential, and so parallel to each other. Obviously, 

the second-harmonic component is maximum at zero bias field. It is attributed to the 

frequency doubling effect due to the quadratic behavior of the magnetostriction at low field. 

Increasing the DC field, the second-harmonic amplitude decreases and reaches a minimum 

near the optimal working point.  In conclusion, the feasibility of a highly sensitive tunable 

ME device, without permanent magnets, was demonstrated.  

 

VI. CONCLUSION 

We have demonstrated that commercial Mn-Zn ferrites exhibiting low magnetostriction have 

potential interest in ME applications. A layered ring configuration with a circumferential 

magnetic excitation is needed to meet high ME effects. The reason for this performance is a 

combination of three factors: (i) the forced AC magnetic field is free of demagnetizing effect; 

(ii) the intrinsic piezomagnetic coefficient of the Mn-Zn ferrites is relatively high; and (iii) the 

compliance of ferrites is low. The present study concerning Mn-Zn ferrites in ME composites 

is not exhaustive. Such ferrites are widely used in electronic devices and a large amount of 

grades are available with various properties. We expect that various compositions with high 

intrinsic piezomagnetic properties could produce ME effects of potential interest. The ME 

ring structure is suitable for current sensing in straight cables, and it was shown that Mn-Zn 

ferrites are the best candidates when we need to sense  low level signals. At high level signals, 

the non linear harmonic distortion limits the performances of the ME device. This problem is 

partially overcome when using the differential voltage measurement method proposed in the 

paper. Harmonic distortion analysis have shown that a second harmonic compensation occurs. 
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Material  # Outer diameter 

(mm) 

Internal diameter 

(mm) 

Initial permeability 

(in relative) 

Material type 

3E6 9.5 4.8 12000 Mn-Zn ferrite 

3E8 9.5 4.8 18000 Mn-Zn ferrite 

4A11 10 6 850 Ni-Zn ferrite 

FNCZ 10 4 400 Ni-Co-Zn ferrite 

TFD 10 4 40 Terfenol-D 

 

TABLE 1. Characteristics of the magnetic rings.  Characteristics of 3E6, 3E8, and 4A11 materials are 

cited from Ferroxcube.  All the magnetic rings have 2 mm thickness. 
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(pC/N) 

   
  

(nm/A) 

   
  or    

  
(m

2
/N) 

   
  or    

  
(m

2
/N) 

µ
T
 or    

  
(in relative) 

Pic255 -180                      2400 

3E6 ferrite  3                    12000 

 

TABLE 2 : Material properties for Pic255 (cited from Physik Intrumente
18

), and 3E6 ferrite. 
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FIGURE CAPTIONS 

FIG.1.  Sketches of three configurations of ME measurement. (a): the circumferential AC 

magnetic field is forced in the (1,2) plane (the coil is not represented) and the DC magnetic 

field is applied in the (radial) direction (1) (CRA). (b): the circumferential AC magnetic field 

is forced in the (1,2) plane and the DC magnetic field is applied in the (axial) direction (3) 

(CAA). (c): both AC and DC magnetic fields are forced in the circumferential direction 

(CCA). In all case, the electric field is measured in the (axial) direction (3).  

FIG. 2. Transversal magnetoelectric coefficients under radial DC field (CRA configuration). 

Dashed line: 3E8/PIC255 sample. Dotted line: 3E6/PIC255 sample. Solid line: 4A11/PIC255 

sample. Dashed-dotted line: FerriteNiCoZn/PIC255. 

FIG. 3. Transversal magnetoelectric coefficient under radial DC field (CRA configuration) for 

the TFD/Pic255 sample. 

FIG. 4. Magnetoelectric coefficients when the DC field is applied in (axial) direction (3) and 

the AC field is in the (1,2) plane (CAA configuration). Dashed line: 3E8/Pic255 sample. Solid 

line: TFD/Pic255 sample.  

FIG. 5. Longitudinal magnetostristion curve versus internal magnetic field measured on a 3E6 

ring excited at 1kHz. 

FIG. 6. ME voltages when a 55mA peak triangle current flows in the  8 turns coil (CRA 

configuration).  Red line: TFD/PIC255 sample. Black line: FNCZ/PIC255 sample. Green line: 

3E6/PIC255 sample. Blue line: 3E8/PIC255. Purple line: 4A11/PIC255. 

FIG. 7. ME voltages when a 3A peak triangle current (1kHz) flows in the 8 turns coil (CRA 

configuration). Dotted line: TFD/PIC255 sample. Dashed line: FNCZ/PIC255 sample. Solid 

line: voltage obtained with a commercial active current probe (sensitivity: 0.5 V/A). 

FIG. 8. ME voltages when a 300mA peak triangle waveform current (1kHz) flows in the 8 

turns coil wounded on the  FNCZ/PIC255 sample (CRA configuration). Thin solid line: 

voltage obtained with a commercial active current probe (sensitivity: 0.5 V/A). Dotted line : 

voltage V on a half electrode. Dashed line: voltage V’ on the other half electrode. Thick solid 

line: differential voltage between the two electrodes. 

FIG. 9. 3E8/PIC255 sample: fundamental (circles), second-harmonic (squares), and third-

harmonic (triangles) of ME voltages versus AC field (1kHz) amplitude (CRA configuration). 

The thin lines correspond to voltages measured on a half electrode. The thick lines correspond 

to voltages measured between the two halve electrodes (differential voltages). 

FIG. 10. FNCZ/PIC255 sample: fundamental (circles), second-harmonic (squares), and third-

harmonic (triangles) of ME voltages versus AC field (1kHz) amplitude (CRA configuration). 

The thin lines correspond to voltages measured on a half electrode. The thick lines correspond 

to voltages measured between the two halve electrodes (differential voltages). 
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FIG. 11. TFD/PIC255 sample: fundamental (circles), second-harmonic (squares), and third-

harmonic (triangles) of ME voltages versus AC field (1kHz) amplitude (CRA configuration). 

The thin lines correspond to voltages measured on a half electrode. The thick lines correspond 

to voltages measured between the two halve electrodes (differential voltages). 

FIG. 12.  3E8/PIC255 sample: fundamental (solid line) and second-harmonic (dotted line)  

ME voltages in CCA configuration. The ampere-turns are  produced by a 30 turns coil 

wounded on the ME ring and carrying a DC current.    
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FIG.1.  Sketches of three configurations of ME measurement. (a): the circumferential AC 

magnetic field is forced in the (1,2) plane (the coil is not represented) and the DC magnetic 

field is applied in the (radial) direction (1) (CRA). (b): the circumferential AC magnetic field 

is forced in the (1,2) plane and the DC magnetic field is applied in the (axial) direction (3) 

(CAA). (c): both AC and DC magnetic fields are forced in the circumferential direction 

(CCA). In all case, the electric field is measured in the (axial) direction (3).  
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FIG. 2. Transversal magnetoelectric coefficients under radial DC field (CRA configuration). 

Dashed line: 3E8/PIC255 sample. Dotted line: 3E6/PIC255 sample. Solid line: 4A11/PIC255 

sample. Dashed-dotted line: FerriteNiCoZn/PIC255. 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 3. Transversal magnetoelectric coefficient under radial DC field (CRA configuration) for 

the TFD/Pic255 sample. 
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FIG. 4. Magnetoelectric coefficients when the DC field is applied in (axial) direction (3) and 

the AC field is in the (1,2) plane (CAA configuration). Dashed line: 3E8/Pic255 sample. Solid 

line: TFD/Pic255 sample.  

 

 

 

 

 

 

 

 

 

 

 

FIG. 5. Longitudinal magnetostristion curve versus internal magnetic field measured on a 3E6 

ring excited at 1kHz. 
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FIG. 6. ME voltages when a 55mA peak triangle current flows in the  8 turns coil (CRA 

configuration).  Red line: TFD/PIC255 sample. Black line: FNCZ/PIC255 sample. Green line: 

3E6/PIC255 sample. Blue line: 3E8/PIC255. Purple line: 4A11/PIC255. 

 

 

 

 

 

 

 

 

 

 

 

FIG. 7. ME voltages when a 3A peak triangle current (1kHz) flows in the 8 turns coil (CRA 

configuration). Dotted line: TFD/PIC255 sample. Dashed line: FNCZ/PIC255 sample. Solid 

line: voltage obtained with a commercial active current probe (sensitivity: 0.5 V/A). 
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FIG. 8. ME voltages when a 300mA peak triangle waveform current (1kHz) flows in the 8 

turns coil wounded on the  FNCZ/PIC255 sample (CRA configuration). Thin solid line: 

voltage obtained with a commercial active current probe (sensitivity: 0.5 V/A). Dotted line : 

voltage V on a half electrode. Dashed line: voltage V’ on the other half electrode. Thick solid 

line: differential voltage between the two electrodes. 

 

 

 

 

 

 

 

 

 

 

FIG. 9. 3E8/PIC255 sample: fundamental (circles), second-harmonic (squares), and third-

harmonic (triangles) of ME voltages versus AC field (1kHz) amplitude (CRA configuration). 

The thin lines correspond to voltages measured on a half electrode. The thick lines correspond 

to voltages measured between the two halve electrodes (differential voltages). 
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FIG. 10. FNCZ/PIC255 sample: fundamental (circles), second-harmonic (squares), and third-

harmonic (triangles) of ME voltages versus AC field (1kHz) amplitude (CRA configuration). 

The thin lines correspond to voltages measured on a half electrode. The thick lines correspond 

to voltages measured between the two halve electrodes (differential voltages). 

 

 

 

 

 

 

 

 

 

 

FIG. 11. TFD/PIC255 sample: fundamental (circles), second-harmonic (squares), and third-

harmonic (triangles) of ME voltages versus AC field (1kHz) amplitude (CRA configuration). 

The thin lines correspond to voltages measured on a half electrode. The thick lines correspond 

to voltages measured between the two halve electrodes (differential voltages). 
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FIG.12.  3E8/PIC255 sample: fundamental (solid line) and second-harmonic (dotted line)  ME 

voltages in CCA configuration. The ampere-turns are  produced by a 30 turns coil wounded 

on the ME ring and carrying a DC current 

 

 

 

 

 

 

 


