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COMPETITION IN PERIODIC MEDIA: I – EXISTENCE OF

PULSATING FRONTS

LÉO GIRARDIN1

Abstract. This paper is concerned with the existence of pulsating front solu-
tions in space-periodic media for a bistable two-species competition–diffusion
Lotka–Volterra system. Considering highly competitive systems, a simple
“high frequency or small amplitudes” algebraic sufficient condition for the ex-
istence of pulsating fronts is stated. This condition is in fact sufficient to
guarantee that all periodic coexistence states vanish and become unstable as
the competition becomes large enough.
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Introduction

This is the first part of a sequel to our previous article with Grégoire Nadin [18].
In this prequel, we studied the sign of the speed of bistable traveling wave solutions
of the following competition–diffusion problem:

{

∂tu1 − ∂xxu1 = u1 (1− u1)− ku1u2 in (0,+∞)× R

∂tu2 − d∂xxu2 = ru2 (1− u2)− αku1u2 in (0,+∞)× R.

We proved that, as k → +∞, the speed of the traveling wave connecting (1, 0)
to (0, 1) converges to a limit which has exactly the sign of α2r − d. In particular,
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if α = r = 1 and if k is large enough, the more motile species is the invader: this is
what we called the “unity is not strength” result.

In view of this result, it would seem natural to try to generalize it in heteroge-
neous spaces, that is to systems with non-constant coefficients. Is the more motile
species still the invading one?

The first obstacle toward this generalization is that of the existence of traveling
fronts –or of some suitable generalization of these– for such a problem. Indeed, while
past work had already established the existence of competitive bistable traveling
waves in the case of homogeneous spaces (recall for instance Gardner [17] and Kan-
On [22]), to the best of our knowledge, there is at this time no such pre-established
result in the case of fully heterogeneous spaces (see the recent review of Guo and
Wu [20]).

One of the main difficulties in this existence problem is of course the combination
of unboundedness and heterogeneity. This yields additional difficulties (for instance,
there are multiple non-equivalent definitions of the principal eigenvalue [4] and
convenient integration-wise boundary conditions are lacking). Therefore, it is likely
easier to first treat a simple case. With this in mind, we focus in this article on a
simple, yet relevant application-wise heterogeneity: the periodic one. We hope to
pave the way for a possible future generalization.

Periodic spaces are likely the type of unbounded heterogeneous spaces we know
best how to handle mathematically and thus a literature about scalar equations
in periodic spaces has been developed during the past few years. Concerning
scalar reaction–diffusion in periodic spaces and with “KPP”-type non-linearities,
important results have been established recently by Berestycki and his collabora-
tors [1, 2, 3, 24]. We will rely a lot on these scalar results.

For the sake of simplicity, we will assume that diffusion and interspecific compe-
tition rates are constant. We expect our main ideas to be generalizable to systems
with periodic diffusion and interspecific competition rates, but we also expect a lot
of technical details to get messy and there might very well be some major issues. As
a counterpart to this loss in generality, we will be able to treat a much larger class
of growth–saturation terms since the explicit form of these will not be prescribed a
priori. We will only require some reasonable “KPP non-linearities” assumptions.

Since our final goal is to study the limits of these pulsating fronts as the com-
petition becomes infinite, we will only consider systems in which competition is
the main underlying mechanism, that is for large values of the interspecific com-
petition rate. A first consequence of this approach is that our system will always
be bistable. A second consequence is that segregation phenomena will be involved
quite frequently. Competition-induced segregation in homogeneous spaces have
been a main center of interest of Dancer, Terracini and others since the nineties
([5, 6, 7, 8, 9, 10, 11, 12] among others). They basically confirmed the intuitive
idea that competitors tend to live in different ecological niches.

To investigate the existence of bistable pulsating fronts solving such a problem,
we have at our disposal recent abstract results about monotone semiflows stated by
Weinberger [26] (monostable case) and Fang and Zhao [15] (bistable case). Even
though both articles were mostly concerned by scalar equations, they were careful
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enough to include monotone systems, such as two-species competitive ones, in their
framework1.

The core idea of Fang and Zhao’s theorem is as follows: provided a bistable
monotone problem, if all intermediate stationary states are unstable and if they
are invaded by the stable states, then bistable traveling waves do exist. While
these hypotheses might be easily verified for some problems (say, scalar or space-
homogeneous), in the case exposed here, real issues arise from the segregation
phenomenon. Indeed, stable segregated periodic coexistence states might a priori
exist. Therefore it is natural to wonder whether periodicity might induce some
simple, yet relevant, sufficient condition to enforce the non-existence of segregated
periodic coexistence states. We will indeed state one such condition and will show
that this condition is moreover sufficient to guarantee that all remaining periodic
stationary states are unstable and invaded by the stable ones.

The following pages will be organized as follows: in the first section, the core
hypotheses and framework will be precisely formulated and the main results stated.
The second section will be dedicated to the proof of the existence of pulsating front
solutions; in particular, we will perform a quite thorough study of the stability of
periodic coexistence states.

The study of the limit as k → +∞ of these pulsating fronts will be the object of
the second part [19].

1. Preliminaries and main results

Let d, k, α, L > 0, C = (0, L) ⊂ R and (f1, f2) : [0,+∞) × R → R
2 L-periodic

with respect to its second variable. For any u : R2 → [0,+∞) and i ∈ {1, 2}, we
refer to (t, x) 7→ fi (u (t, x) , x) as fi [u]. Our interest lies in the following competi-
tion–diffusion problem:

{

∂tu1 = ∂xxu1 + u1f1 [u1]− ku1u2

∂tu2 = d∂xxu2 + u2f2 [u2]− αku1u2
(Pk)

1.1. Preliminaries.

1.1.1. Redaction conventions.

• Mirroring the definition of f1 [u] and f2 [u], for any function of two real
variables f and any real-valued function u of two real variables, f [u] will
refer to (t, x) 7→ f (u (t, x) , x). For any real-valued function u of one real
variable, f [u] will refer to x 7→ f (u (x) , x). For any function f of one real
variable and any real-valued function u of one or two real variables, f [u]
will simply refer to f ◦ u.

• For the sake of brevity, although we could index everything ((P), u1, u2. . . )
on k and d, the dependencies on k or d will mostly be implicit and will only
be made explicit when it definitely facilitates the reading.

• Since we consider the limit of this system when k → +∞, many (but finitely
many) results will only be true when “k is large enough”. Hence, we define
by induction the positive number k⋆, whose value is initially 1 and is up-
dated each time a statement is only true when “k is large enough” in the

1We are especially grateful to Jian Fang who explained to us some technicalities with great
patience and clarity.
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following way: if the statement is true for any k ≥ k⋆, the value of k⋆ is un-
changed; if, conversely, there exists K > k⋆ such that the statement is true
for any k ≥ K but false for any k ∈ [k⋆,K), the value of k⋆ becomes that of
K. In the text, we will indifferently write “for k large enough” or “provided
k⋆ is large enough”. Moreover, when k indexes appear, they a priori indicate
that we are considering families indexed on (equivalently, functions defined
on) [k⋆,+∞), but for the sake of brevity, when sequential arguments imply
extractions of sequences and subsequences indexed themselves on increas-
ing elements of [k⋆,+∞)N, we will not explicitly define these sequences of
indexes and will simply stick with the indexes k, reindexing along the course
of the proof the considered objects. In such a situation, the statement “as
k → +∞” should be understood unambiguously.

• Periodicity will always implicitly mean L-periodicity (unless explicitly stated
otherwise). For any functional space X on R, Xper denotes the subset of
L-periodic elements of X .

• We will use the classical partial order on the space of functions from any
Ω ⊂ R

N to R: g ≤ h if and only if, for any x ∈ Ω, g (x) ≤ h (x), and g < h

if and only if g ≤ h and g 6= h. We recall that when g < h, there might
still exists x ∈ Ω such that g (x) = h (x). If, for any x ∈ Ω, g (x) < h (x),
we use the notation g ≪ h. In particular, if g ≥ 0, we say that g is non-
negative, if g > 0, we say that g is non-negative non-zero, and if g ≫ 0,
we say that g is positive (and we define similarly non-positive, non-positive
non-zero and negative functions). Eventually, if g1 ≤ h ≤ g2, we write
h ∈ [g1, g2], if g1 < h < g2, we write h ∈ (g1, g2), and if g1 ≪ h ≪ g2, we
write h ∈ 〈g1, g2〉.

• We will also use the partial order on the space of vector functions Ω → R
N ′

naturally derived from the preceding partial order. It will involve similar
notations.

• The periodic principal eigenvalue of an elliptic operator L with periodic co-
efficients will be generically referred to as λ1,per (−L). Recall (from Beresty-
cki–Hamel–Roques [2] for instance) that the periodic principal eigenvalue
of L is the unique real number λ such that there exists a periodic function
ϕ ≫ 0 satisfying:

{

−Lϕ = λϕ in R

‖ϕ‖L∞(C) = 1

The Dirichlet principal eigenvalue of an elliptic operator L in a sufficiently
smooth domain Ω will be referred to as λ1,Dir (−L,Ω). Since our framework
is spatially one-dimensional, such elliptic operators will involve first and
second derivatives with respect to the spatial variable x.

1.1.2. Hypotheses on the reaction. For any i ∈ {1, 2}, we have in mind functions fi
such that the reaction term ufi [u] is of logistic type (also known as KPP type). At
least, we want to cover the largest possible class of (u, x) 7→ µ (x)− ν (x) u. This is
made precise by the following assumptions.

(H1) fi is C1 with respect to its first variable up to 0 and Hölder-continuous with
respect to its second variable with a Hölder exponent larger than or equal
to 1

2 .
(H2) There exists a constant mi > 0 such that fi [0] ≥ mi.
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(H3) fi is decreasing with respect to its first variable and there exists ai > 0
such that, if u > ai, then for any x ∈ R fi (u, x) < 0.

Remark. If fi is in the class of all (u, x) 7→ µ (x) − ν (x) u, then µ, ν ∈ C
0,1/2
per (R),

µ ≫ 0, ν ≫ 0. More generally, from (H1), (H2) and the periodicity of fi [0], it
follows immediately that there exists a constant Mi > mi such that fi [0] ≤ Mi.
Without loss of generality, we assume that mi and Mi are optimal, that is mi =
minC fi [0] and Mi = maxC fi [0].

We refer to max (M1,M2) (resp. min (m1,m2)) as M (resp. m).
Furthermore, we need a coupled hypothesis on the pair (f1, f2).

(Hfreq) The constants d, M1 and M2 satisfy L < π
(

1√
M1

+
√

d
M2

)

.

Remark. Even if this might not be clear right now, this is the key hypothesis.
(Hfreq) means that, given a fixed amplitude, we consider high frequencies, or
equivalently, given a fixed frequency, we consider low amplitudes. This condi-
tion is “almost” sharp: pulsating fronts might exist for slightly larger L ((Hfreq)
is mostly used in the proof of proposition 2.4 and going through it carefully shows
that (Hfreq) might be a bit relaxed, but we prefer to stick here with a simpler alge-
braic condition), but anyway we strongly expect that pulsating fronts do not exist
in the general framework. This conjecture will be made precise in the following
subsection.

1.2. Two main results and a conjecture. Using known results about scalar
equations and periodic eigenvalues [2], the following lemma is quite straightforward
(as will show subsection 1.3.3).

Lemma 1.1. Assume that f1 and f2 satisfy (H1), (H2) and (H3).
The set of all periodic stationary states of the problem (P) contains (0, 0), which

is unstable, and a pair {(ũ1, 0) , (0, ũ2)} with (ũ1, ũ2) ∈ C2
per

(

R, (0,+∞)
2
)

.

As usual in the literature concerning competitive systems, hereafter, the sta-
tionary states with exactly one null component are referred to as extinction states
whereas the stationary states with no null component are referred to as coexistence
states. The extinction states of (P) are periodic and some of its coexistence states
may be periodic as well.

Our contribution to the study of the stationary states is the following theorem.

Theorem 1.2. Assume that f1 and f2 satisfy (H1), (H2) and (H3) and that (f1, f2)
satisfy (Hfreq).

Then there exists k⋆ > 0 such that, for any k > k⋆, each extinction state is
locally asymptotically stable and any periodic coexistence state is unstable.

Furthermore, let (u1,k, u2,k)k>k⋆ be a family of C2
per

(

R,R2
)

such that, for any
k > k⋆, (u1,k, u2,k) is an unstable periodic stationary state of (Pk). Then (u1,k, u2,k)
converges in Cper

(

R,R2
)

to (0, 0) as k → +∞.

Remark. We stress that we did not investigate the existence nor the countability
of the subset of periodic coexistence states. We stress as well that we did not
investigate at all aperiodic coexistence states. We believe that a sharper description
of the set of stationary states of (P) could follow from bifurcation arguments (see
Hutson–Lou–Mischaikow [21] or Furter–López-Gómez [16]). Since it was not our
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point at all (instability of periodic coexistence states was only a required step toward
existence of pulsating fronts), we chose to leave this subject as an open question.

Thanks to the previous theorem, it is then possible to prove the following exis-
tence theorem.

Theorem 1.3. Assume that f1 and f2 satisfy (H1), (H2) and (H3) and that (f1, f2)
satisfy (Hfreq).

Then there exists k⋆ > 0 such that, for any k > k⋆, the problem (P) admits a
pulsating front solution connecting both extinction states.

To end this subsection, let us present an important conjecture about the existence
problem and about the sharpness of (Hfreq). We did not address this question but
hopefully others will.

Conjecture. There exist two sets of parameters (Li, di, αi, f1,i, f2,i, ki), i ∈ {1, 2},
satisfying all hypotheses apart from (Hfreq) and such that:

• for any i ∈ {1, 2}, a “close to segregation” stable periodic coexistence state
of the problem (Pki

) exists;
• (Pk1) admits a pulsating front solution;
• (Pk2) does not admit such a pulsating front solution.

“Close to segregation” will be rigorously defined later on. Roughly speaking,
“close to segregation” periodic coexistence states converge as k → +∞ to a non-
trivial periodic coexistence state satisfying u1u2 = 0.

1.3. A few more preliminaries.

1.3.1. Compact embeddings of Hölder spaces. We recall a well-known result of func-
tional analysis.

Proposition 1.4. Let (a, a′) ∈ (0,+∞)2 and n, n′, β, β′ such that (a, a′) = (n+ β, n′ + β′),
n and n′ are non-negative integers and β and β′ are in (0, 1].

If a ≤ a′, then the canonical embedding i : Cn′,β′

(C) →֒ Cn,β (C) is continuous
and compact.

It will be clear later on that this problem naturally involves uniform bounds
in C0,1/2 and in C2,1/2. Therefore, we fix once and for all β ∈

(

0, 12
)

and we will

use systematically the compact embeddings Cn,1/2 →֒ Cn,β, meaning that uniform
bounds in Cn,1/2 yield relative compactness in Cn,β.

1.3.2. Existence and uniqueness for the evolution system.

Proposition 1.5. Let k > 0. Equipped with an initial non-negative condition
(u1,0, u2,0) ∈ C0,1/2

(

R,R2
)

, the problem (P) is well-posed: there exists a unique

non-negative entire solution (u1, u2) ∈ C1,1/4
(

[0,+∞), C2,1/2
(

R,R2
))

.

Furthermore, if (u1,0, u2,0) > 0, then (u1, u2) ≫ 0, and if (u1,0, u2,0) ∈ Cper
(

R,R2
)

,

then (u1, u2) ∈ C1
(

[0,+∞), C2
per

(

R,R2
))

.

Remark. We do not give a fully detailed proof of this statement. Ideas similar to
those given in Berestycki–Hamel–Roques [2] (remark 2.7) suffice. The existence of
solutions for the truncated system in (−n, n) with Dirichlet boundary conditions
can be proved with Pao’s super- and sub-solutions theorem for competitive systems
[25].
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1.3.3. Extinction states.

Lemma 1.6. The periodic principal eigenvalues of − d2

dx2
−f1 [0] and −d d2

dx2
−f2 [0]

are negative.

Proof. This follows from (H2) and the monotonicity of the periodic principal eigen-
value with respect to the zeroth order term of the elliptic operator. Indeed, for
instance:

λ1,per

(

−
d2

dx2
− f1 [0]

)

≤ λ1,per

(

−
d2

dx2
−m1

)

= −m1 < 0.

�

From this lemma and hypotheses (H1) and (H3), a fundamental result from
Berestycki–Hamel–Roques [2] can be applied.

Theorem 1.7. For any δ > 0 and any i ∈ {1, 2}, the equation:

−δz′′ = zfi [z]

admits a unique positive solution in C2
per (R).

Hereafter, ũ1 and ũ2 are the respective unique positive periodic solutions of:

−z′′ = zf1 [z] ,

−dz′′ = zf2 [z] .

(ũ1, 0) and (0, ũ2) are indeed the extinction states of any (Pk).

1.3.4. Monotone evolution system. One of the most important specificity of two-
species competitive systems is that, up to a slight transformation, they are mono-
tone systems. It is the key behind the results of Fang–Zhao [15] and Weinberger
[26]. Let us recall this transformation.

Lemma 1.8. Let J : z 7→ ũ2−z, for any z ∈ C
2,1/2
per (R) or z ∈ C1,1/4

(

[0,+∞), C
2,1/2
per (R)

)

(with a slight abuse of notation). Let k > k⋆ and let (u1, u2) be a solution of (P)
and v2 = J (u2).

Then (u1, v2) satisfies the following cooperative problem with periodicity condi-
tions:
{

∂tu1 − ∂xxu1 = u1f1 [u1] + ku1 (−ũ2 + v2)
∂tv2 − d∂xxv2 = ũ2f2 [ũ2]− (ũ2 − v2) f2 [ũ2 − v2] + αku1 (ũ2 − v2) .

(M)

Corollary 1.9. Any solution (u1, u2) of (P) with initial condition (0, 0) < (u1,0, u2,0) <
(ũ1, ũ2) satisfies (0, 0) ≪ (u1, u2) ≪ (ũ1, ũ2).

1.3.5. Segregated reaction terms. As k → +∞, the following functions will naturally
appear:

η : (z, x) 7→ f1

( z

α
, x
)

z+ −
1

d
f2

(

−
z

d
, x
)

z−,

γ : (z, x) 7→ f1 (0, x) z
+ −

1

d
f2 (0, x) z

−,

where z+ = max (z, 0) and z− = −min (z, 0) so that z = z+ − z−.
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2. Existence of pulsating fronts

2.1. Aim: Fang–Zhao’s theorem. We recall firstly that, for any k > k⋆ and any
t > 0, the Poincaré’s map Qt associated with (M) is defined as the operator:

Qt : C
(

R,R2
)

∩ [(0, 0) , (ũ1, ũ2)] → C
(

R,R2
)

∩ [(0, 0) , (ũ1, ũ2)]

which associates with some initial condition (u1,0, v2,0) the solution of (M) (u1, v2)
evaluated at time t > 0.

From Fang and Zhao [15], we know that (M) admits a pulsating front solution
connecting (ũ1, ũ2) to (0, 0) if:

(1) (0, 0) and (ũ1, ũ2) ≫ (0, 0) are locally asymptotically stable periodic sta-
tionary states of (M) and all intermediate periodic stationary states of (M)
are unstable;

(2) for any intermediate periodic stationary state (u1, v2), the spreading speeds
associated with front-like initial data connecting (ũ1, ũ2) to (u1, v2) and
(u1, v2) to (0, 0) are both positive (notice that these sub-problems are of
monostable type);

(3) and if, for any t > 0, Qt satisfies the following hypotheses:
(a) Qt is spatially periodic;
(b) Qt is continuous with respect to the topology of the locally uniform

convergence;
(c) Qt is strongly monotone, in the sense that if (u1, v2) >

(

u1, v2
)

, then:

Qt ((u1, v2)) ≫ Qt

((

u1, v2
))

;

(d) Qt is compact with respect to the topology of the locally uniform
convergence;

It is quite standard to check that the last four hypotheses are indeed satisfied. The
first two, on the contrary, require some work.

2.2. Stability of all extinction states.

Proposition 2.1. Provided k⋆ is large enough, (ũ1, 0) and (0, ũ2) are locally asymp-
totically stable.

Remark. For the case k = 1, the proof of the local asymptotic stability of the
extinction states was done by Dockery and his coauthors [14] with the help of
Mora’s theorem [23]. It works here too with a very slight adaptation; we give the
proof for the sake of completeness.

Proof. Thanks to Mora’s theorem [23], we know that (ũ1, 0) is asymptotically stable
if the periodic principal eigenvalue of the elliptic part of the monotone problem (M)
linearized at (ũ1, ũ2) = (u, J (0)) is non-negative. Therefore we have to study the
eigenvalues of the differential operator A(ũ1,0) : C

2
per (R) → C2

per (R) defined as:

A(ũ1,0) =

(

d2

dx2
+ g1 [ũ1] kũ1

0 d d2

dx2
+ f2 [0]− αkũ1

)

From the special “triangular” form of A(ũ1,0), it is clear that:

min
{

sp
(

−A(ũ1,0)

)}

= min

(

λ1,per

(

−
d2

dx2
− g1 [ũ1]

)

, λ1,per

(

−d
d2

dx2
− (f2 [0]− αkũ1)

))

.
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By monotonicity of the periodic principal eigenvalue and (H3), we obtain:

λ1,per

(

−
d2

dx2
− g1 [ũ1]

)

> λ1,per

(

−
d2

dx2
− f1 [ũ1]

)

.

For any k large enough, f2 [0]− αkũ1 < f2 [ũ2] holds, so that:

λ1,per

(

−d
d2

dx2
− (f2 [0]− αkũ1)

)

> λ1,per

(

−d
d2

dx2
− f2 [ũ2]

)

.

Moreover, from the equation solved by ũ1, ũ1 is actually an eigenfunction for the
following eigenvalue:

λ1,per

(

−
d2

dx2
− f1 [ũ1]

)

= 0.

Similarly,

λ1,per

(

−d
d2

dx2
− f2 [ũ2]

)

= 0.

Thus:
λ1,per

(

−A(ũ1,0)

)

≥ 0.

The same proof holds for (0, ũ2). �

2.3. Instability of all periodic coexistence states. In this subsection, we prove
that (M) admits no stable periodic stationary states in 〈(0, 0) , (ũ1, ũ2)〉.

For any k > k⋆, let:
S ⊂ C2

per

(

R,R2
)

be the set of periodic solutions of the following problem:














−u′′
1 = u1f1 [u1]− ku1u2

−du′′
2 = u2f2 [u2]− αku1u2

u1 ∈ 〈0, ũ1〉
u2 ∈ 〈0, ũ2〉 .

Any (u1, u2) ∈ S is a periodic coexistence state.

2.3.1. Basic properties of periodic coexistence states.

Lemma 2.2. Let k > k⋆. Any (u1, u2) ∈ S satisfies:














kminu2 ≤ max f1 [maxu1]
αkminu1 ≤ max f2 [maxu2]
min f1 [minu1] ≤ kmaxu2

min f2 [min u2] ≤ αkmax u1,

each extrema being implicitly over C.

Proof. We only prove the first inequality, the three others being proved similarly.
Let x ∈ C such that u1 (x) = max u1. Since u1 ∈ C2 (R), u′′

1 (x) ≤ 0, that is:

max u1f1 [max u1] ≥ max u1ku2 (x) .

Since u1 > 0, we can divide by maxu1. The claimed result easily follows. �

Remark. This lemma will be used together with m > 0 to prove that ku1 and ku2

stay non-zero as k → +∞. Thus, for the forthcoming study, it is not sufficient to

merely assume that λ1,per

(

− d2

dx2
− f1 [0]

)

and λ1,per

(

−d d2

dx2
− f2 [0]

)

are negative

(as was done for instance by Dockery and his collaborators [14]).
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Proposition 2.3. As k → +∞, the family (Sk)k>k⋆ is relatively compact in

C0,β
per

(

R,R2
)

. (0, 0) is one of its limit points. Any other limit point (u1,seg, u2,seg) ∈

C0,β
per

(

R,R2
)

is called a periodic segregated state and is such that αu1,seg − du2,seg

is a non-zero sign-changing solution in C2,β
per (R) of the following elliptic equation:

−z′′ = η [z] .

Proof. Let k > k⋆. Multiplying the equation defining u1 by α and subtracting from
it the equation defining u2 yields that:

−αu′′
1 + dv′′2 = αu1f1 [u1]− u2f2 [u2] .

Multiplying by u1 the first equation of the stationary system and integrating
over C yields easily:

‖u′
1‖L2(C) ≤ M1‖u1‖L2(C)

≤ M1‖ũ1‖L2(C).

Moreover, ‖u1‖L∞(C) ≤ ‖ũ1‖L∞(C).

Therefore, as k → +∞, (u1,k)k>k⋆ is uniformly bounded in C0,1/2 (C) and rela-

tively compact in C0,β (C). The same proof holds for (u2)k>k⋆ .

Let (u1,∞, u2,∞) ∈ C0,β
per

(

R,R2
)

be a limit point of (Sk)k>k⋆ . There exists a

sequence of periodic coexistence states ((u1,k, u2,k))k>k⋆ whose limit in C0,β
per

(

R,R2
)

is (u1,∞, u2,∞). By elliptic regularity and thanks to the following equation, which
holds for any k > k⋆:

−αu′′
1,k + dv′′2,k = αu1,kf1 [u1,k]− u2,kf2 [u2,k] ,

(αu1,k − du2,k) converge in C2,β
per (R) to v = αu1,∞ − du2,∞ ∈ C2,β

per (R).
Multiplying by a test function ϕ ∈ D (R) the equation defining u1,k, integrating

and dividing by k, we obtain easily that (u1,ku2,k) converges as k → +∞ in D′ (R)
to 0. Hence u1,∞u2,∞ = 0 and then αu1,∞ = v+ and du2,∞ = v−. In particular, v
satisfies as claimed:

−v′′ = η [v]

Let:

C1 = {x ∈ C | v (x) > 0} ,

C2 = {x ∈ C | v (x) < 0} ,

Γ = {x ∈ C | v (x) = 0} ,

so that:

C ⊂ C1 ∪ C2 ∪ Γ ⊂ C.

Exactly four cases are a priori possible:

(1) C1 = C: then by continuity v = αu1,∞ in C whereas u2,∞ = 0 in C, hence
u1,∞ ∈ C2,β

per (R) is a non-negative non-zero solution of

−u′′
1,∞ = u1,∞f1 [u1,∞]

in R, and eventually by the elliptic strong minimum principle u1,∞ ≫ 0,
meaning that u1,∞ = ũ1, and C2 = Γ = ∅;

(2) C2 = C: then similarly C1 = Γ = ∅, u1,∞ = 0 and u2,∞ = ũ2;
(3) C1 6= ∅ and C2 6= ∅.
(4) C1 = ∅ and C2 = ∅: Γ = C, u1,∞ and v2,∞ are uniformly 0;
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It is easily seen that lemma 2.2 excludes the cases 1 (use the second inequality) and
2 (use the first inequality). �

Proposition 2.4. The following set equalities hold:
{

z ∈ C2
per (R) | − z′′ = γ [z]

}

= {0} ,
{

z ∈ C2
per (R) | − z′′ = η [z]

}

= {−dũ2, 0, αũ1} .

Proof. In the γ case, solutions of constant sign are excluded by:

λ1,per

(

−
d2

dx2
− f1 [0]

)

< 0,

λ1,per

(

−d
d2

dx2
− f2 [0]

)

< 0.

In the η case, solutions of constant sign are unique (see Berestycki–Hamel–Roques
[2]) and are exactly αũ1 and −dũ2. It only remains to prove that non-zero sign-
changing solutions are excluded, and up to a shift of C it suffices to prove that
non-zero sign-changing solutions which are equal to 0 at 0 and L are excluded.

For any x ∈ R, any f ∈ C0
per (R, [m,M ]) and any δ ∈ {1, d}, let R (x, f, δ) > 0

such that:

λ1,Dir

(

−δ
d2

dx2
− f,B (x,R (x, f, δ))

)

= 0.

Since the following function:

R 7→ λ1,Dir

(

−δ
d2

dx2
− f,B (x,R)

)

is continuous, decreasing and has positive and negative values (its limits as R → 0

or R → +∞ are respectively +∞ and λ1,per

(

−δ d2

dx2
− f

)

< 0, as proved in [2]),

R (x, f, δ) is uniquely defined. Since λ1,Dir

(

−δ d2

dx2
− f,B (x,R)

)

is non-increasing

with respect to f and decreasing with respect to R, it is easy to check that f 7→
R (x, f, δ) is non-increasing.

Remark that R (x, f, δ) and λ1,Dir

(

−δ d2

dx2
− f,B (x,R (x, f, δ))

)

do not depend

on x if f does not depend on x. Remark that, in such a case, R (0, f, δ) can be

easily determined analytically and is equal to π
2

√

δ
f .

With these notations, (Hfreq) means:

L < 2 (R (0,M1, 1) +R (0,M2, d)) .

Let z be a solution of −z′′ = γ [z] or a solution of −z′′ = η [z]. Let:

C+ = z−1 ((0,+∞)) ∩ C,

C− = z−1 ((−∞, 0)) ∩C.

Assume by contradiction both are non-empty. Let n be the number of zeros of z in
C. Then:

• in virtue of Hopf’s lemma and the continuity of z, n is countable and odd,
say n = 2p + 1 with p ≥ 0, and C+ and C− both have precisely p + 1
connected components, each of them being a one-dimensional ball (that is
an interval); let

(

x+
i

)

1≤i≤p+1
(resp.

(

x−
i

)

1≤i≤p+1
) be the ordered centers

of the connected components of C+ (resp. C−);
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• in the γ case:

|C+| = 2

p+1
∑

i=1

R
(

x+
i , f1 [0] , 1

)

≥ 2

p+1
∑

i=1

R
(

x+
i ,M1, 1

)

≥ 2 (p+ 1)R (0,M1, 1)

≥ 2R (0,M1, 1) ,

and similarly:

|C−| = 2

p+1
∑

i=1

R
(

x−
i , f2 [0] , d

)

≥ 2R (0,M2, d) ,

whence we get the contradiction;
• in the η case:

|C+| > 2

p+1
∑

i=1

R
(

x+
i , f1

[ z

α

]

, 1
)

,

|C−| > 2

p+1
∑

i=1

R
(

x−
i , f2

[

−
z

d

]

, d
)

yield a similar contradiction.

�

Corollary 2.5. Any family (u1,k, u2,k)k>k⋆ of periodic coexistence states converges

in C0,β
per

(

R,R2
)

as k → +∞ to (0, 0).

Remark. This result has a very natural interpretation from an ecological point
of view: if the wavelength of the distribution of resources is small enough, or if
resources are rare enough even in the most favorable areas, the species are not able
to settle periodically in a favorable habitat smaller than the wavelength. Either
one of them is strong enough to overcome unfavorable areas while eliminating the
competitor and then it settles in the whole habitat, either both go extinct. Basically,
at a given average intrinsic growth rate, the more fragmented the habitat is, the
higher the chances of extinction are.

Lemma 2.6. There exists R1 ∈ (0,+∞) and R2 ∈ (R1,+∞) such that, provided
k⋆ is large enough, for any k > k⋆ and any (u1,k, u2,k) ∈ Sk:

R1 ≤
‖u2,k‖L∞(C)

α‖u1,k‖L∞(C)
≤ R2.

Remark. Proof inspired by Dancer–Du [8], lemma 2.1.

Proof. By contradiction, assume that there exists a sequence of periodic coexis-

tence states ((u1,k, u2,k))k>k⋆ such that
(

‖u2,k‖L∞(C)

α‖u1,k‖L∞(C)

)

k>k⋆
is neither bounded from

above nor from below by a positive constant. By symmetry, we can assume without
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loss of generality that it is not bounded from below by a positive constant. Up to

extraction,
‖u2,k‖L∞(C)

α‖u1,k‖L∞(C)
→ 0 as k → +∞.

Suppose first that
(

αk‖u1,k‖L∞(C)

)

k>k⋆ is bounded. Necessarily, k‖u2,k‖L∞(C) →
0 as k → +∞.

For any non-negative f ∈ C (R,R), the following problem:

−z′′ = zf1 [z]− zf

with periodicity conditions has a unique positive periodic solution zf if and only if:

λ1,per

(

−
d2

dx2
− (f1 − f)

)

< 0

(see Berestycki–Hamel–Roques [2]). Moreover, zf depends continuously on f as a
map from Cper (C) into itself (see Berestycki–Rossi [4]). Hence u1,k = zku2,k

→ z0
as k → +∞, where z0 solves:

−z′′0 = z0f1 [z0]

with periodicity conditions (that is u [0] = ũ1). Since k‖ũ1‖L∞(C) → +∞, we get a
contradiction.

Hence
(

αk‖u1,k‖L∞(C)

)

k>k⋆ is unbounded. Up to extraction, we can assume

that k‖u1,k‖L∞(C) → +∞.

For any k > k⋆, let û1,k =
u1,k

‖u1,k‖L∞(C)
, û2,k =

u2,k

‖u2,k‖L∞(C)
. Clearly, (û1,k, û2,k)

satisfies:
{

−û′′
1,k = û1,kf1

[

‖u1,k‖L∞(C)û1,k

]

− k‖u2,k‖L∞(C)û1,kû2,k

−dû′′
2,k = û2,kf2

[

‖u2,k‖L∞(C)û2,k

]

− αk‖u1,k‖L∞(C)û1,kû2,k.

From there, it follows with the same estimates as in the proof of proposition 2.3
that û1,k and û2,k converge up to extraction in C0,β

per (R). Let û1,∞ and û2,∞ be
their limits; for any i ∈ {1, 2} ‖ûi,∞‖L∞(C) = 1, hence ui,∞ 6= 0.

Then, we consider the system above in D′ (C). Let ϕ ∈ D (C) and use it as a
test function. On the second line, we see that, since:

ˆ

(

dû′′
2,k + û2,kf2

[

‖u2,k‖L∞(C)û2,k

])

ϕ

is k-uniformly bounded, the same is true of:
ˆ

αk‖u1,k‖L∞(C)û1,kû2,kϕ.

Thus:
ˆ

k‖u2,k‖L∞(C)û1,kû2,kϕ =
‖u2,k‖L∞(C)

α‖u1,k‖L∞(C)

ˆ

(

αk‖u1,k‖L∞(C)û1,kû2,kϕ
)

→ 0

Therefore, considering the first line, we see that, by dominated convergence, the
limit satisfies in the distributional sense:

−û′′
1,∞ = û1,∞f1

[

‖u1,∞‖L∞(C)û1,∞
]

.

Since û1,∞ is in C0,β
per (R), it is actually a solution in C2,β

per (R) by classical elliptic
regularity. In virtue of the elliptic strong minimum principle, û1,∞ ≫ 0. But it is
also true, using the same arguments as before, that û1,∞û2,∞ = 0, hence û2,∞ = 0,
which is indeed a contradiction. �
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Lemma 2.7. Let ((u1,k, u2,k))k>k⋆ be a sequence of periodic coexistence states.
Then ((ku1,k, ku2,k))k>k⋆ is k-uniformly bounded in L∞ (C).

Proof. From lemma 2.6, it suffices to assume that there exists a sequence ((u1, u2))k>k⋆

such that k‖u1,k‖L∞(C) → +∞ as k → +∞ and to get a contradiction.
With the same notations as in the proof of lemma 2.6, up to extraction we can

assume that û1,k → û1,∞ and û2,k → û2,∞ in C0,β
per (R). We have for any i ∈ {1, 2}

‖ûi,∞‖L∞(C) = 1, hence ui,∞ 6= 0. Considering the limit of the equation satisfied by
û2,k in D′ (C) shows that û1,∞û2,∞ = 0. Thanks to lemma 2.6, up to extraction,

we can assume that there exists l > 0 such that
α‖u1,k‖L∞(C)

‖u2,k‖L∞(C)
→ l. Moreover,

considering the equation satisfied by û1,k in D′ (C) shows that, for any ϕ ∈ D (C):
ˆ

k‖u2,k‖L∞(C)û1,kû2,kϕ

is k-uniformly bounded.
Multiplying the equation defining û1,k by l and subtracting from it the equation

defining û2,k yields that:

−lû′′
1,k + dû′′

2,k = lû1,kf1
[

‖u1,k‖L∞(C)û1,k

]

− û2,kf2
[

‖u2,k‖L∞(C)û2,k

]

+

(

α‖u1,k‖L∞(C)

‖u2,k‖L∞(C)
− l

)

k‖u2,k‖L∞(C)û1,kû2,k.

Considering it in D′ (C), passing to the limit (with, in virtue of corollary 2.5,
‖ui,k‖L∞(C) → 0) and defining v = lû1,∞ − dû2,∞, it becomes:

−v′′ = γ [v] .

By classical elliptic regularity, v is actually a solution in C2,β
per (R). Then proposi-

tion 2.4 implies lû1,∞ = dû2,∞, but together with û1,∞û2,∞ = 0 and the fact that
the pair (u1,∞, u2,∞) is non-zero, this is a contradiction.

The other implication is immediate. �

Lemma 2.8. Provided k⋆ is large enough, the following lower bound holds:

inf
k>k⋆

inf
(u1,u2)∈Sk

min

{

min
C

(ku1) ,min
C

(ku2)

}

> 0

Proof. Let ((u1,k, u2,k))k>k⋆ . For any i ∈ {1, 2} and any k > k⋆, let Ui,k = kui,k.
(U1,k, U2,k) satisfies the following system:







−U ′′
1,k = U1,kf1

[

U1,k

k

]

− U1,kU2,k

−dU ′′
2,k = U2,kf2

[

U2,k

k

]

− αU1,kU2,k.

Since U1,k and U2,k are k-uniformly bounded in L∞ (C) in virtue of lemma 2.7,
we can prove with the same arguments as before that, for any i ∈ {1, 2} and up to
extraction, Ui,k converges in C0,β

per (R) to some Ui,∞ ≥ 0, and by lemma 2.2 (third
and fourth inequalities), Ui,∞ 6= 0. The limits satisfy the remarkable following
system:

{

−U ′′
1,∞ = U1,∞f1 [0]− U1,∞U2,∞

−dU ′′
2,∞ = U2,∞f2 [0]− αU1,∞U2,∞.
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A priori this system is to be understood in the distributional sense, but once
more thanks to classical elliptic regularity U1,∞ and U2,∞ are actually in C2,β

per (R).
Thanks to the elliptic strong minimum principle, for any i ∈ {1, 2}, Ui,∞ ≫ 0.

In C, −
U ′′

1,∞

U1,∞
= f1 [0]− U2,∞ ≤ M1. Integration over C yields:

ˆ

C

f1 [0] = −

ˆ

C

∣

∣

∣

∣

U ′
1,∞

U1,∞

∣

∣

∣

∣

2

+

ˆ

C

U2,∞ ≤

ˆ

C

U2,∞.

Similarly,
ˆ

C

f2 [0] ≤

ˆ

C

U1,∞.

Then (H2) shows that (U1,∞, U2,∞) is at positive distance of the origin in L1 (C),
and then in L∞ (C) by classical embeddings. Harnack’s inequality yields eventually
that min (minC (U1,∞) ,minC (U2,∞)) is bounded from below by a real number ǫ >

0. By uniform convergence and provided k⋆ is large enough, the infimum of the
sequence (min {minC (ku1,k) ,minC (ku2,k)})k>k⋆ is greater than, say, 3ǫ

4 . This ǫ

depends on m, C, but neither on the limit point (U1,∞, U2,∞) nor on the choice
of a convergent subsequence of ((u1, u2))k>k⋆ , whence the bound holds for any
convergent subsequence of ((u1, u2))k>k⋆ . Furthermore, the bound does not depend
on the choice of the sequence ((u1, u2))k>k⋆ itself, whence it holds for any convergent
subsequence of any sequence.

The conclusion on the whole set is a standard compactness argument. �

2.3.2. Instability of periodic coexistence states close to (0, 0).

Lemma 2.9. Provided k⋆ is large enough, for any (u1, u2) ∈ S, the differential
operator Ak : C2

per (R) → C2
per (R) defined as:

Ak =

(

d2

dx2
+ g1 [u1]− ku2 ku1

αku2 d d2

dx2
+ g2 [u2]− αku1

)

is strongly positive.

Proof. It is well-known that A is strongly positive (i.e. satisfies the strong minimum
principle) if there exists a pair of positive functions whose image by −A is itself
non-negative (see for instance Figueiredo–Mitidieri [13]). From (H1), if k is large
enough, there exists a constant R > 0 which depends only on x 7→ ∂1f1 (0, x) and
x 7→ ∂1f2 (0, x) such that:

{

∂1f1 [u1] ∈ [−R, 0]
∂1f2 [u2] ∈ [−R, 0] .

From here, it is easy to check that, up to extraction and using the notations of
the proof of lemma 2.8,

−Ak

(

U1,∞
U2,∞

)

→

(

U1,∞U2,∞
αU1,∞U2,∞

)

uniformly in C as k → +∞.
This limit being positive, thanks to standard compactness arguments, we get

indeed the claimed statement. �

Proposition 2.10. For any k > k⋆, any (u1, u2) ∈ S is unstable.
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Proof. Thanks to Mora’s theorem [23], we know that (u1, u2) is unstable if the
principal eigenvalue of the elliptic part of the monotone problem (M) linearized at
(u1, J (v2)) is negative. It is easy to verify that the linearized operator is in fact:

Ak =

(

d2

dx2
+ g1 [u1]− ku2 ku1

αku2 d d2

dx2
+ g2 [u2]− αku1

)

Therefore we have to study the eigenvalues of Ak.
Ak being strongly positive (see lemma 2.9), it is injective and, up to a restriction

of its codomain, it is invertible. Krein–Rutman’s theorem and a well-known routine

involving the compact canonical embedding C2,β (C) →֒ C0,β
loc (C) prove the existence

of the periodic principal eigenvalue λ1,per (−Ak).
Now, we have to prove that λ1,per (−Ak) < 0. Recall the following characteriza-

tion from Krein–Rutman’s theorem:

λ1,per (−Ak) = inf
{

λ ∈ R | ∃ϕ ∈ C2
per

(

R, (0,+∞)
2
)

(−Ak − λ)ϕ ≤ 0 in R

}

.

Therefore, we only need to find some λ < 0 and some ϕ ∈ C2
per

(

R, (0,+∞)
2
)

satisfying:

(−Ak − λ)ϕ ≤ 0.

Using (H1), it is easy to check that there exists a constant R > 0 which depends
only on x 7→ ∂1f1 (0, x) and x 7→ ∂1f2 (0, x) such that:

(−Ak)

(

u1

u2

)

=

(

−u2
1∂1f1 [u1]− ku1u2

−u2
2∂1f2 [u2]− αku1u2

)

≤

(

(Ru1 − ku2)u1

(Ru2 − αku1) u2

)

≤ −min

{

min
C

(ku2 −Ru1) ,min
C

(αku1 −Ru2)

}(

u1

u2

)

.

In virtue of lemma 2.8, provided k⋆ is large enough, for any K > k⋆ and any
(u1,K , u2,K) ∈ SK :

min

{

min
C

(Ku2,K −Ru1,K) ,min
C

(αKu1,K −Ru2,K)

}

> 0.

A fortiori it holds for k and (u1, u2).
Now, if we define λ as −min {minC (ku2 −Ru1) ,minC (αku1 −Ru2)} and ϕ as

(u1, u2), it is obvious that (−Ak − λ)ϕ ≤ 0. Therefore, (u1, u2) is unstable. �

2.4. Counter-propagation. In this subsection, we prove that all monotone monos-
table sub-problems have a positive spreading speed. Let us recall from Fang–Zhao
[15] that, since every intermediate periodic stationary state is unstable (proposition
2.10), their set is totally unordered.

2.4.1. First monostable sub-problem.

Proposition 2.11. Provided k⋆ is large enough, for any k > k⋆ and any (u1, u2) ∈
S, the spreading speed c⋆sub1 associated with front-like initial data connecting (ũ1, ũ2)
to (u1, ũ2 − u2) is positive.
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Proof. Let ((u1,k, u2,k))k>k⋆ be a sequence of periodic coexistence states. Let k >

k⋆. We intend to apply the theory of Weinberger [26]. To this end, let t > 0 and

Q
u,k
t be the semi-flow which associates with some initial data (v1, v2) the following

function:

x 7→ (z1, z2) (t, x) − (u1,k, ũ2 − u2,k) (x) ,

where (z1, z2) is the solution of (Mk) with initial data (v1 + u1,k, v2 + ũ2 − u2,k).
In other words, if Qk

t is the semi-flow associated with M, then:

Q
u,k
t : (v1, v2) 7→ Qk

t [(v1, v2) + (u1,k, ũ2 − u2,k)]− (u1,k, ũ2 − u2,k) .

Remark immediately that Q
u,k
t [(0, 0)] = (0, 0), so that 0 is a steady state of

Q
u,k
t . From proposition 2.10, 0 is unstable. Similarly, π1,k = (ũ1 − u1,k, u2,k) is a

stable steady state of Qu,k
t . Most importantly, there is no steady state of Qu,k

t in

(0, π1,k). Moreover, Qu,k
t is spatially periodic, strongly monotone, continuous and

compact with respect to the topology of the locally uniform convergence, whence
in virtue of theorems 2.1 and 2.6 of Weinberger[26],

(1) the spreading speed c⋆sub1,k exists;

(2) for any speed larger than or equal to c⋆sub1,k, there exists a pulsating front
connecting π1,k to 0 at this aforementioned speed;

(3) for any speed smaller than c⋆sub1,k, there is no pulsating front connecting
π1,k to 0.

In other words, the minimal speed of these pulsating fronts is exactly the spreading
speed of interest.

Thus for any k > k⋆, we consider the pulsating front Wk connecting π1,k to 0
at the minimal speed c⋆sub1,k. Since Wk (−∞, •) = π1,k → (ũ1, 0) as k → +∞, we

may guess that
(

c⋆sub1,k

)

k>k⋆
converges, as k → +∞, to the minimal speed of the

pulsating fronts connecting (ũ1, 0) to (0, 0) for the following operator:

Q0
t : v 7→ Qt [v + (0, ũ2)]− (0, ũ2) ,

that is to the minimal speed of the pulsating fronts connecting (ũ1, 0) to (0, 0) for
the operator Qt. Actually, since this latter speed will be the minimal speed of a
well-known Fisher–KPP type problem, it will be sufficient to prove that every limit

point of
(

c⋆sub1,k

)

k>k⋆
is larger than or equal to this speed.

By monotonicity and uniform convergence, it is clear that, as k → +∞, the
second component of Wk converges uniformly to 0. Let

(z1,k, z2,k) : (t, x) 7→ Wk

(

x− c⋆sub1,kt, x
)

and consider the system (Mk) satisfied by (z1,k, z2,k). Multiplying the first equation
of (Mk) by α and adding to it the second equation, it follows that:

(∂t − ∂xx) z1,k−z1,kf1 [z1,k] =
1

α
[− (∂t − d∂xx) z2,k + ũ2f2 [ũ2]− (ũ2 − z2,k) f2 [ũ2 − z2,k]] .

Via classical parabolic estimates (not detailed here deliberately for the sake of
brevity, see Dancer et al. [10] or our article with G. Nadin [19] if necessary),
(z1,k)k>k⋆ and (z2,k)k>k⋆ are k-uniformly bounded in L2

loc

(

R, H1
loc (R)

)

, and a for-
tiori (z2,k)k>k⋆ converges to 0 in this space. Up to extraction, (z1,k)k>k⋆ converges
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to some limit z weakly in L2
loc

(

R, H1
loc (R)

)

and a.e.. This limit is furthermore a
weak solution of:

∂tz − ∂xxz = zf1 [z] .

Then classical parabolic regularity shows that z is in fact a classical solution of
the aforementioned equation.

Now, assuming that
(

c⋆sub1,k

)

k>k⋆
is not k-uniformly bounded from below, it

follows that up to extraction c⋆sub1,k → −∞. Then we deduce from the equality:

−
∂tz1,k (t, x)

c⋆sub1,k
= ∂ξW1,k

(

x− c⋆sub1,kt, x
)

≤ 0

integrated between two arbitrary times such that z1,k (t, x) → z∞ (t, x) as k → +∞
that the limit of (W1,k)k>k⋆ (which is defined as well at least a.e. by similar
estimates) does not depend on its first variable. Let W∞ : R → R be this limit (up
to an obvious isomorphism). In the distributional sense, W∞ is a solution of:

−z′′ = zf1 [z] .

By classical elliptic regularity, W∞ is in fact a classical solution of this equation.
Since it is continuous and an a.e. limit of periodic and non-negative functions, it
is itself periodic and non-negative. Thus, by uniqueness, it is either 0, either ũ1.
Now, remarking that we can fix, for any k > k⋆,

0 = inf

{

ξ ∈ R | ∃x ∈ [0, L] W1,k (ξ, x) <
minC ũ1

2

}

.

without loss of generality (again, we explain this idea at length with G. Nadin in
[19] and skip the details here), this is easily contradicted.

Thus
(

c⋆sub1,k

)

k>k⋆
is bounded from below. Assume that, up to extraction, it is

bounded from above by 0. Up to an additional extraction, its limit exists and is
non-positive.

Since (W1,k)k>k⋆ converges a.e., it is then straightforward to check that W∞ is
the profile of a scalar pulsating front connecting ũ1 to 0 at a limit speed which is

exactly the limit of
(

c⋆sub1,k

)

k>k⋆
. This contradicts the positivity of the minimal

speed associated with the scalar pulsating front problem for the equation:

∂tz − ∂xxz = zf1 [z] .

(see once more Berestycki–Hamel–Roques [3]).

Hence no subsequence of
(

c⋆sub1,k

)

k>k⋆
is bounded from above by 0 and therefore

c⋆sub1,k is positive provided k⋆ is large enough.
From this, the claimed result follows from standard compactness arguments. �

2.4.2. Second monostable sub-problem. Obviously, by symmetry of (P), this situ-
ation is mostly similar to the previous one. The pulsating front will converge as
k → +∞ to the pair formed by 0 and by the scalar pulsating front connecting ũ2

to 0 for the equation:
∂tz − d∂xxz = zf2 [z] .

Applying therefore the same sketch of proof with the following operator:

Q
u,k
t : (v1, v2) 7→ −Qt [− (v1, v2) + (u1,k, ũ2 − u2,k)] + (u1,k, ũ2 − u2,k) ,

we obtain the following result.
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Proposition 2.12. Provided k⋆ is large enough, for any k > k⋆ and any (u1, u2) ∈
S, the spreading speed c⋆sub2 associated with front-like initial data connecting (u1, ũ2 − u2)
to (0, 0) is positive.

2.5. Existence of pulsating fronts connecting both extinction states. We
are now able to state rigorously the existence of pulsating fronts thanks to Fang–Zhao
[15].

Theorem 2.13. For any k > k⋆, there exists c ∈ R and (ϕ1, ϕ2) ∈ C
(

R
2,R2

)

such
that the following properties hold.

(1) ϕ1 and ϕ2 are respectively non-increasing and non-decreasing with respect
to their first variable, generically noted ξ.

(2) ϕ1 and ϕ2 are periodic with respect to their second variable, generically
noted x.

(3) As ξ → +∞,

max
x∈[0,L]

|(ϕ1, ϕ2) (−ξ, x)− (ũ1, 0) (x)|+ max
x∈[0,L]

|(ϕ1, ϕ2) (ξ, x)− (0, ũ2) (x)| → 0.

(4) (u1, u2) : (t, x) 7→ (ϕ1, ϕ2) (x− ct, x) is a classical solution of (P).

Remark. For any ξ0 ∈ R, (ξ, x) 7→ (ϕ1, ϕ2) (ξ + ξ0, x) is a pulsating front solution
of (P) as well.

About the regularity of (ϕ1, ϕ2), let us recall that, even if Fang–Zhao [15] (as well
as Weinberger [26]) worked in the framework of continuous functions, by classical
parabolic regularity, a continuous solution of (P) is in C1

loc

(

R, C2
loc

(

R,R2
))

. Hence

(ϕ1, ϕ2) is a fortiori in C1
loc

(

R
2,R2

)

. This can be improved provided f1 and f2 are C1

with respect to x. Indeed, differentiating (P) with respect to t and x shows similarly
that ∂t (u1, u2) ∈ C1

loc

(

R, C2
loc

(

R,R2
))

and ∂x (u1, u2) ∈ C1
loc

(

R, C2
loc

(

R,R2
))

. In

such a case, (ϕ1, ϕ2) is at least in C2
(

R
2,R2

)

.
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