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1Laboratoire J.A. Dieudonné, University of Nice Sophia Antipolis, Parc Valrose, 06108 Nice Cedex
02, France. E-mail: marcella.bonazzoli@unice.fr, victorita.dolean@unice.fr,

francesca.rapetti@unice.fr
2Department of Mathematics and Statistics, University of Strathclyde, Glasgow, UK. E-mail:

victorita.dolean@strath.ac.uk
3INRIA Paris, Alpines, and UPMC - Univ Paris 6, CNRS UMR 7598, Laboratoire Jacques-Louis

Lions, France. E-mail: pierre-henri.tournier@inria.fr

Abstract

This paper combines the use of high order finite element methods with parallel precon-
ditioners of domain decomposition type for solving electromagnetic problems arising
from brain microwave imaging. The numerical algorithms involved in such complex
imaging systems are computationally expensive since they require solving the direct
problem of Maxwell’s equations several times. Moreover, wave propagation problems
in the high frequency regime are challenging because a sufficiently high number of un-
knowns is required to accurately represent the solution. In order to use these algorithms
in practice for brain stroke diagnosis, running time should be reasonable. The method
presented in this paper, coupling high order finite elements and parallel precondition-
ers, makes it possible to reduce the overall computational cost and simulation time
while maintaining accuracy.

Keywords: Schwarz preconditioners; high order finite elements; edge elements; time-
harmonic Maxwell’s equations; microwave imaging.

1 Introduction

The context of this work is the solution of an inverse problem associated with the time-
harmonic Maxwell’s equations, with the aim of estimating the dielectric properties of the
brain tissues of a patient affected by a brain stroke. Strokes can be cast in two major
categories, ischemic (80% of strokes) and hemorrhagic (20% of strokes), which result in
opposite variations of these dielectric properties. In the following, we briefly describe this
particular medical context as well as the application motivating the numerical model.

During an ischemic stroke the blood supply to a part of the brain is interrupted by the
formation of a blood clot inside a vessel, while a hemorrhagic stroke occurs when a blood
vessel bursts inside the brain. It is essential to determine the type of stroke in the shortest
possible time in order to start the correct treatment, which is opposite in the two situations:
in the first case the blood flow should be restored, while in the second one we need to lower
the blood pressure. Note that it is vital to make a clear distinction between the two types
of stroke before treating the patient: the treatment that suits an ischemic stroke would be
fatal if applied to a hemorrhagic stroke and vice versa. Moreover, it is desirable to be able
to monitor continuously the effect of the treatment on the evolution of the stroke during the
hospitalization.

Usually stroke diagnosis relies mainly on two types of imaging techniques: MRI (magnetic
resonance imaging) or CT scan (computerized tomography scan). These are very precise
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Figure 1: Imaging chamber of EMTensor (no copyright infringement intended).

techniques, especially the MRI with a spatial resolution of 1 mm. However, a MRI machine
is too big to be carried in ambulance vehicles and it is too expensive; a CT scan, which
consists in measuring the absorption of X-rays by the brain, is harmful and cannot be used
to monitor continuously the patient in hospital.

A novel competitive technique with these traditional imaging modalities is microwave
tomography. With microwave imaging in a range of frequencies between 100 MHz and several
GHz, the tissues are well differentiated and they can be imaged on the basis of their dielectric
properties. The electromagnetic emissions are lower than the ones from mobile phones and
the spatial resolution is good (5−7 mm). The first works on microwave imaging date back to
1989 when Lin and Clarke tested experimentally the detection of cerebral edema (excessive
accumulation of water in the brain) using a frequency signal of 2.4 GHz in a head phantom.
Other works followed, but almost always on phantoms or synthetic simplified models [1].
Despite these encouraging results, there is still no microwave device for medical diagnosis.
The techniques designed by the University of Chalmers (Gothenburg, Sweden) [2] and by
EMTensor GmbH (Vienna, Austria) [3] rely on technologies and softwares developed only in
recent years. In both cases the improvement in terms of reliability, price and miniaturization
of electromagnetic sensors is a key factor. In this approach, it is necessary to transfer the
data to a remote HPC machine. The rapid telephony standards such as 4G and 5G allow to
send the acquired measurements of the patient’s brain to a supercomputer that will compute
the 3D images. Then these images can be quickly transmitted from the computer to the
hospital by ADSL or fiber network.

Figure 1 shows the initial microwave imaging system prototype of EMTensor: it is com-
posed of 5 rings of 32 ceramic-loaded rectangular waveguides around a metallic cylindrical
chamber of diameter 28.5 cm and total height 28 cm, into which the patient head is inserted.
Each of the 160 antennas alternately transmits a signal at a fixed frequency, typically 1 GHz.
The electromagnetic wave propagates inside the chamber and in the object to be imaged
according to its electromagnetic properties. The retrieved data then consist in the reflection
and transmission coefficients measured by the 160 receiving antennas, which are used as in-
put for the inverse problem. Since the inversion loop requires to solve repeatedly the direct
problem of the time-harmonic Maxwell’s equations in high frequency regime, an accurate
and fast solver of the direct problem is needed. In this paper accuracy is provided by a high
order edge finite element discretization, and the resulting linear system is solved efficiently
with the iterative method GMRES preconditioned with a parallel preconditioner based on
domain decomposition methods.

The paper is organized as follows. In Section 2 the mathematical model of time-harmonic
Maxwell’s equations in curl-curl form is presented, together with the associated boundary
value problem to solve. In Section 3 the discretization method using high order edge finite
elements is briefly described and in Section 4 the parallel preconditioner based on domain
decomposition is introduced. Section 5 contains in the first part a comparison with exper-
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imental measurements; in the second part we assess the efficiency of high order edge finite
elements compared to the standard lowest order edge elements in terms of accuracy and
computing time.

2 Mathematical model

To work in the frequency domain, we assume that the electric field E(x, t) = Re(E(x)eiωt)
has harmonic dependence on time of angular frequency ω, where E is its complex amplitude
depending only on the space variable x. Thus, considering a non magnetic medium with
magnetic permeability µ equal to the free space magnetic permeability µ0, we can get the
following second order time-harmonic Maxwell’s equation:

∇× (∇×E)− γ2E = 0, γ = ω
√
µεσ, εσ = ε− i

σ

ω
. (1)

Here εσ is the complex valued electric permittivity, related to the dissipation-free electric
permittivity ε and to the electrical conductivity σ of the medium. Notice that if σ = 0, we
have γ = ω̃, ω̃ = ω

√
µε being the wavenumber. Equation (1) is solved in the computational

domain Ω ⊂ R3 shown in Figure 1 (right), with metallic boundary conditions

E× n = 0 on Γw, (2)

on the cylinder and waveguides walls Γw, and with impedance boundary conditions on the
port Γj of the j-th waveguide, which transmits the signal, and on the ports Γi of the receiving
waveguides, i = 1, . . . , 160, i 6= j:

(∇×E)× n + iβn× (E× n) = gj on Γj , (3)

(∇×E)× n + iβn× (E× n) = 0 on Γi , i 6= j. (4)

Here n is the unit outward normal to ∂Ω and β ∈ R>0 is the propagation wavenumber along
the waveguides. Equation (3) imposes an incident wave which corresponds to the excitation
of the TE10 fundamental mode E0

j of the j-th waveguide, with gj = (∇×E0
j )× n + iβn×

(E0
j × n). Equation (4) is an absorbing boundary condition of Silver-Müller giving a first

order approximation of a transparent boundary condition on the outer port of the receiving
waveguides i = 1, . . . , 160, with i 6= j. The bottom of the chamber is considered metallic,
and we impose an impedance boundary condition on the top of the chamber.

The variational formulation corresponding to equation (1) together with boundary con-
ditions (2), (3), (4) is: find E ∈ V such that∫

Ω

[
(∇× E) · (∇× v) − γ2E · v

]
+

∫
⋃160

i=1 Γi

iβ(E × n) · (v × n) =

∫
Γj

gj · v ∀v ∈ V,

with V = {v ∈ H(curl,Ω),v × n = 0 on Γw}, where H(curl,Ω) is the space of square
integrable functions whose curl is also square integrable. Note that gj depends on which
waveguide transmits the signal and this corresponds to a different right-hand side of the
linear system resulting from the finite element discretization. On the other hand, the matrix
of the linear system is the same for every transmitting waveguide.

3 High order edge finite elements

To write a finite element discretization of the variational problem we introduce a tetrahedral
mesh Th of the domain Ω and a finite dimensional subspace Vh ⊂ H(curl,Ω). The simplest
possible conformal discretization for the space H(curl,Ω) is given by the low order Nédélec
edge finite elements (of polynomial degree r = 1) [4]: for a tetrahedron T ∈ Th, the local
basis functions are associated with the oriented edges e = {ni, nj} of T as follows

we = λi∇λj − λj∇λi,
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where the λ` are the barycentric coordinates of a point with respect to the node n`. It can
be shown that edge finite elements guarantee the continuity of the tangential component
across faces shared by adjacent tetrahedra, they thus fit the continuity properties of the
electric field.

The finite element discretization is obtained by writing the discretized field over each
tetrahedron T as Eh =

∑
e∈T cew

e, a linear combination with coefficients ce of the basis
functions associated with the edges e of T , and the coefficients ce will be the unknowns of
the resulting linear system. For edge finite elements of degree 1 these coefficients can be
interpreted as the circulations of Eh along the edges of the tetrahedra:

ce =
1

|e|

∫
e

Eh · te,

where te is the tangent vector to the edge e of length |e|, the length of e. This is a consequence
of the fact that the basis functions are in duality with the degrees of freedom given by the
circulations, that is:

1

|e|

∫
e

we′ · te =

{
1 if e = e′,

0 if e 6= e′.

In order to have a higher numerical accuracy with the same total number of unknowns,
we consider a high order edge element discretization, choosing the high order extension of
Nédélec elements presented in [5] and [6]. The definition of the basis functions is rather
simple since it only involves the barycentric coordinates of the tetrahedron. Given a multi-
index k = (k1, k2, k3, k4) of weight k = k1 + k2 + k3 + k4 (where the ki, i = 1, 2, 3, 4, are
non negative integers), we denote by λk the product λk11 λ

k2
2 λ

k3
3 λ

k4
4 . The local generators of

polynomial degree r = k + 1 (k ≥ 0) over the tetrahedron T are defined as

w{k,e} = λkwe,

for all edges e of the tetrahedron T , and for all multi-indices k of weight k. Note that
these high order elements still yield a conformal discretization of H(curl,Ω): indeed, they
are products between the degree 1 Nédélec elements we, which are curl-conforming, and
the continuous functions λk. However, some of these high order generators (r > 1) are
linearly dependent: the selection of a linearly independent subset to constitute an actual
basis is described in [7], which provides further details about the implementation of these
finite elements. Moreover, the duality property, which is practical for the implementation,
is not satisfied for high order generators, but it can be easily restored as explained in [8].

Duality is needed for instance in FreeFem++, an open source domain specific language
(DSL) specialized for solving boundary value problems by using variational discretizations
(finite elements, discontinuous Galerkin, hybrid methods, . . . ) [9]. Several finite element
spaces are available in FreeFem++, and the user can also add new finite elements, provided
that the duality property is satisfied. For instance we implemented the edge elements in 3d of
degree 2 and 3, which can be used by loading the plugin "Element Mixte3d" and declaring
the finite element space fespace using the keywords Edge13d, Edge23d respectively (the
standard edge elements of degree 1 were already present in FreeFem++ and thery are called
Edge03d).

4 Domain decomposition preconditioning

The discretization of the problem presented in Section 2 using the high order edge finite
elements described in Section 3 produces a linear system Auj = bj for each transmitting
antenna j. Direct solvers are not suited for such large linear systems arising from complex
three dimensional models because of their high memory cost. On the other hand, matrices
resulting from high order discretizations are ill conditioned as shown numerically in [5] for
similar problems, and preconditioning becomes necessary when using iterative solvers.
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Figure 2: The decomposition of the computational domain into 128 subdomains.

Domain decomposition preconditioners are naturally suited to parallel computing and
make it possible to deal with smaller subproblems [10]. The domain decomposition precon-
ditioner we employ is called Optimized Restricted Additive Schwarz (ORAS):

M−1
ORAS =

Nsub∑
s=1

RTs DsA
−1
s Rs,

where Nsub is the number of overlapping subdomains Ωs into which the domain Ω is decom-
posed (see Figure 2). Here, the matrices As are the local matrices of the subproblems with
impedance boundary conditions (∇×E)×n+ iω̃n× (E×n) as transmission conditions at
the interfaces between subdomains. This preconditioner is an extension of the restricted ad-
ditive Schwarz method proposed by Cai and Sarkis [11], but with more efficient transmission
conditions between subdomains than Dirichlet conditions (see for example [12]).

In order to describe the matrices Rs, Ds, let N be an ordered set of the unknowns of the
whole domain and let N =

⋃Nsub

s=1 Ns be its decomposition into the (non disjoint) ordered
subsets corresponding to the different (overlapping) subdomains Ωs. The matrix Rs is the
restriction matrix from Ω to the subdomain Ωs: it is a #Ns ×#N Boolean matrix and its
(i, j) entry is equal to 1 if the i-th unknown inNs is the j-th one inN . Notice that RTs is then
the extension matrix from the subdomain Ωs to Ω. The matrix Ds is a #Ns×#Ns diagonal
matrix that gives a discrete partition of unity, i.e.

∑Nsub

s=1 RTs DsRs = I; in particular the
matrices Ds deal with the unknowns that belong to the overlap between subdomains.

The preconditioner without the partition of unity matricesDs, M
−1
OAS =

∑Nsub

s=1 RTs A
−1
s Rs,

which is called Optimized Additive Schwarz (OAS), would be symmetric for symmetric prob-
lems, but in practice it gives a slower convergence with respect to M−1

ORAS, as shown for
instance in [7].

These domain decomposition preconditioners are implemented in the library HPDDM
[13], an open source high-performance unified framework for domain decomposition methods.
HPDDM can be interfaced with various programming languages and open source finite
element libraries such as FreeFem++, which we use in the simulations.

5 Numerical results

In this section, all linear systems resulting from the edge finite elements discretizations
are solved by GMRES preconditioned with the ORAS preconditioner as implemented in
HPDDM. Each linear system to solve has several right-hand sides (one per transmitter),
and we use a pseudo-block method implemented inside GMRES which consists in fusing
the multiple arithmetic operations corresponding to each right-hand side (matrix-vector
products, dot products) in order to achieve higher arithmetic intensity.
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All the simulations are performed in FreeFem++ interfaced with HPDDM. Results were
obtained on the Curie supercomputer (GENCI-CEA).

In the following subsections, we first validate our numerical modeling of the imaging
chamber by comparing the results of the simulation with experimental measurements ob-
tained by EMTensor. Then, we illustrate the efficiency of the high order finite elements
presented in Section 3 over the classical lowest order ones in terms of running time and
accuracy.

5.1 Comparison with experimental measurements

The physical quantity that can be acquired by the measurement system of the imaging
chamber shown in Figure 1 is the scattering matrix (S matrix), which gathers the complex
reflection and transmission coefficients measured by the 160 receiving antennas for a signal
transmitted by one of these 160 antennas successively. A set of measurements then consists in
a complex matrix of size 160×160. In order to compute the numerical counterparts of these
reflection and transmission coefficients, we use the following formula, which is appropriate
in the case of open waveguides:

Sij =

∫
Γi

Ej ·E0
i∫

Γi
|E0
i |2

, i, j = 1, . . . , 160, (5)

where Ej is the solution of the problem where the j-th waveguide transmits the signal, and
E0
i is the TE10 fundamental mode of the i-th receiving waveguide (Ej denotes the complex

conjugate of Ej). The Sij with i 6= j are the transmission coefficients, and the Sjj are the
reflection coefficients.

For this comparison of the computed coefficients with the measured ones, the imaging
chamber is filled with a homogenous matching solution. The electric permittivity ε of the
matching solution is chosen by EMTensor in order to minimize contrasts with the ceramic-
loaded waveguides and with the different brain tissues. The choice of the conductivity σ
of the matching solution is a compromise between the minimization of reflection artifacts
from metallic boundaries and the desire to have best possible signal-to-noise ratio. Here
the relative complex permittivity of the matching solution at frequency f = 1 GHz is εgel

r =
44− 20i. The relative complex permittivity inside the ceramic-loaded waveguides is εcer

r =
59 − 0i. Here with εr we mean the ratio between the complex permittivity εσ and the
permittivity of free space ε0.

For this test case, the set of experimental data given by EMTensor consists in trans-
mission coefficients for transmitting antennas in the second ring from the top. Figure 3
shows the normalized magnitude (dB) and phase (degree) of the complex coefficients Sij
corresponding to a transmitting antenna in the second ring from the top and to the 31 re-
ceiving antennas in the middle ring (notice that measured coefficients are available only for
17 receiving antennas). The magnitude in dB is calculated as 20 log10(|Sij |). The computed
coefficients are obtained by solving the direct problem with edge finite elements of polyno-
mial degree r = 2. We can see that the computed transmission coefficients are in very good
agreement with the measurements.

5.2 Efficiency of high order finite elements

The goal of the following numerical experiments is to assess the efficiency of the high order
finite elements described in Section 3 compared to the classical lowest order edge elements in
terms of accuracy and computing time, which are of great importance for such an application
in brain imaging. For this test case, a non-dissipative plastic-filled cylinder of diameter 6 cm
and relative permittivity εcyl

r = 3 is inserted in the imaging chamber and surrounded by
matching solution of relative complex permittivity εgel

r = 44−20i (see Figure 4). We consider
the 32 antennas of the second ring from the top as transmitting antennas at frequency
f = 1 GHz, and all 160 antennas are receiving. We evaluate the relative error on the
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Figure 3: The normalized magnitude (top) and phase (bottom) of the transmission coeffi-
cients computed with the simulation and measured experimentally.

Figure 4: Slice of the imaging chamber, showing the non-dissipative plastic-filled cylinder
and some isolines of the norm of the real part of the total field E.
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Figure 5: Slices showing the norm of the real part of the total field E in the imaging chamber
with the plastic-filled cylinder inside, for a transmitting antenna in the second ring from the
top.

Degree 1

# unknowns time (s) error

2 373 214 22 0.384
8 513 191 53 0.184

21 146 710 130 0.117
42 538 268 268 0.083
73 889 953 519 0.068

Degree 2

# unknowns time (s) error

1 508 916 39 0.243
5 181 678 62 0.099

12 693 924 122 0.057
26 896 130 236 0.036
45 781 986 396 0.019

Table 1: Total number of unknowns, time to solution (seconds) and relative error on the
computed Sij with respect to the reference solution for edge finite elements of degree 1 and
2 on different meshes.

reflection and transmission coefficients Sij with respect to the coefficients Sref
ij computed

from a reference solution. The relative error is calculated with the following formula:

E =

√∑
j,i |Sij − Sref

ij |2√∑
j,i |Sref

ij |2
. (6)

The reference solution is computed on a fine mesh of approximately 18 million tetrahedra
using edge finite elements of degree r = 2, resulting in 114 million unknowns. Slices in
Figures 4 and 5 show the computational domain and the solution E for one transmitting
antenna in the second ring from the top.

We compare the computing time and the relative error (6) for different numbers of
unknowns corresponding to several mesh sizes, for approximation degrees r = 1 and r = 2.
All these simulations are done using 512 subdomains with one MPI process and two OpenMP
threads per subdomain, for a total of 1024 cores on the Curie supercomputer.

We report the results in Table 1 and in Figure 6. As we can see, the high order ap-
proximation (r = 2) allows to attain a given accuracy with much fewer unknowns and much
less computing time than the lowest order approximation (r = 1). For example, at a given
accuracy of E ≈ 0.1, the finite element discretization of degree r = 1 requires 21 million
unknowns and a computing time of 130 seconds, while the high order finite element dis-
cretization (r = 2) only needs 5 million unknowns, with a corresponding computing time of
62 seconds.
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Figure 6: Time to solution (seconds) and relative error on the computed Sij with respect to
the reference solution, using edge finite elements of degree 1 and degree 2 for different mesh
sizes. The total number of unknowns in millions is also reported for each simulation.

6 Conclusion

This work shows the benefits of using a discretization of the time-harmonic Maxwell’s equa-
tions based on high order edge finite elements coupled with a parallel domain decomposition
preconditioner for the simulation of a microwave imaging system. In such complex systems,
accuracy and computing speed are of paramount importance, especially for the application
considered here of brain stroke monitoring.

Ongoing work consists in incorporating high order methods in the inversion tool that we
are developing in the context of this application in brain imaging, for which promising results
have already been obtained with edge finite elements of lowest order for the reconstruction
from synthetic data of a numerical brain model.

We are also now in a position to test our inversion algorithm on various data sets acquired
by the measurement system prototype of EMTensor.

From the numerical point of view, promising techniques are available that will allow us
to speed up the solution of the inverse problem. First, recycling and block methods can
be very helpful in such a context. The inverse problem is solved by a local optimization
algorithm which consists in solving a sequence of slowly-varying linear systems, and a re-
cycling algorithm such as GCRO-DR (Generalized Conjugate Residual method with inner
Orthogonalization and Deflated Restarting) [14] can significantly reduce the total number of
iterations over all linear systems, by recycling the Krylov subspace from one linear system
solve to the next. Moreover, each iteration in the inversion loop corresponds to solving a
linear system with multiple right-hand sides available simultaneously, with one right-hand
side per transmitting antenna. Each direct problem with multiple right-hand sides can thus
be solved efficiently by block methods such as Block GMRES, or by combining block and re-
cycling strategies in a Block GCRO-DR algorithm. Block methods provide higher arithmetic
intensity and better convergence.

Finally, choosing a suitable coarse space for the design of a scalable two-level precon-
ditioner for Maxwell’s equations is still an open problem. Indeed, enriching the one-level
preconditioner presented here with an efficient two-level preconditioner would lead to better
convergence when using many subdomains, resulting in a highly scalable parallel solver.

Acknowledgement This work was financed by the French National Research Agency
(ANR) in the framework of the project MEDIMAX, ANR-13-MONU-0012.
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