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Erratum: Optimal stopping time problem in a general
framework

Magdalena Kobylanski ∗ Marie-Claire Quenez†

The proof of the second point of Proposition B11 given in the Appendix of Kobylanski and
Quenez (2012) ([1]) is only valid in the case where the reward process (φt) is right-continuous.
We thus give below the proof in the case where (φt) is only right-upper-semicontinuous.

Proof of the second point of Proposition B11 in the general case:
The proof of the second point is based on Proposition B7 in [1] and on some analytic arguments
similar to those used in the proof of Theorem D13 in Karatzas and Shreve (1998) ([2]). Without
loss of generality, we can suppose that for each ω, the map t 7→ v+

t (ω) is right-continuous, the
map t 7→ φt(ω) is right-upper-semicontinuous, and t 7→ Act(ω) is continuous.
Let us denote by J (ω) the set on which the nondecreasing function t 7→ Act(ω) is “flat”:

J (ω) := {t ∈]0, T [ , ∃ε > 0 with Act−ε(ω) = Act+ε(ω)}

The set J (ω) is clearly open and hence can be written as a countable union of disjoint intervals:
J (ω) = ∪i]αi(ω), βi(ω)[. We consider

Ĵ (ω) = ∪i[αi(ω), βi(ω)[= {t ∈ [0, T [ , ∃ε > 0 with Act(ω) = Act+ε(ω)}.

The nondecreasing function t 7→ Act(ω) is “flat” on Ĵ (ω), hence
∫ T

0 IĴ (ω)dA
c
t(ω) =

∑
i(Acβi(ω)(ω)−

Acαi(ω)(ω)) = 0.
We next show that for almost every ω, Hc(ω) ⊂ Ĵ (ω), which clearly provides the desired result.
Let us denote by Q the set of rationals. By Proposition B7 in [1] applied to constant stopping
times θ := t, where t ∈ Q ∩ [0, T [, it follows that for a.e. ω,

{t ∈ Q ∩ [0, T [ s.t. vt(ω) > φt(ω)} ⊂ Ĵ (ω). (1)

Let us now show that the desired inclusion

Hc(ω) = {t ∈ [0, T [ s.t. vt(ω) > φt(ω)} ⊂ Ĵ (ω)

holds for a.e. ω.

To this purpose, we note that for each ω, φt(ω) > lim sups→t+ φs(ω) for each t, and vt(ω) =
v+
t (ω) for each t ∈ Hc(ω), since vt = φt ∨ v+

t (cf. equation (B2) in [1]). Hence, for each ω,
Hc(ω) ⊂ K(ω), where K(ω) := {t ∈ [0, T [ s.t. v+

t (ω) > lim sups→t+ φs(ω)}. It is thus sufficient
to show that for a.e. ω,

K(ω) = {t ∈ [0, T [ s.t. v+
t (ω) > lim sup

s→t+
φs(ω)} ⊂ Ĵ (ω).
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Fix ω such that (1) holds and fix t ∈ K(ω). Since v+
t (ω) > lim sups→t+ φs(ω) and since the

map t 7→ v+
t (ω) is right continuous, there exists a non increasing sequence of rationals tn(ω) ∈

Q∩ [0, T [ such that t = lim
n→∞

↓ tn(ω) with v+
tn(ω)(ω) > φtn(ω)(ω) for each n. Since v.(ω) > v+

. (ω),
it follows that for each n,

tn(ω) ∈ {t ∈ Q ∩ [0, T [ s.t. vt(ω) > φt(ω)} ⊂ Ĵ (ω),

where the last inclusion corresponds to (1). Using the equality Ĵ (ω) = ∪i[αi(ω), βi(ω)[ and the
fact that t = lim

n→∞
↓ tn(ω), we derive that there exist i and n0 (which both depend on ω) such

that for each n > n0, tn(ω) ∈ [αi(ω), βi(ω)[. It follows that the limit t ∈ [αi(ω), βi(ω)[, which
gives that t ∈ Ĵ (ω). Hence, the inclusion Hc(ω) ⊂ Ĵ (ω) is proven, which ends the proof of the
second point. �
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