
Synchronization Medium : A Consistency Maintenance
Component for Mobile Multiplayer Games

Abdul Malik Khan and Sophie Chabridon
GET INT, CNRS UMR SAMOVAR

9 rue Charles Fourier
91011 «Evry cedex, France

Antoine Beugnard
ENST Bretagne, Computer Science Department

CS83818
F-29238 Brest cedex 3, France

ABSTRACT

In multiplayer games, where many players take part in a
game while communicating through a network, the players
may have an inconsistent view of the game world because of
the communication delays across the network. This prob-
lem of inconsistency is even more crucial when playing on
a mobile phone via a 3G network where the communica-
tion delays can be of several seconds. Consistency mainte-
nance algorithms must be used to have a uniform view of
the game world. These algorithms are very complex and
hard to program. In this paper, we discuss different con-
sistency maintenance algorithms from the point of view of
mobile devices and present an approach where the consis-
tency concern is handled separately by a distributed com-
ponent called synchronization medium, which is responsible
for communication as well as consistency maintenance. The
game logic components interact with the medium to commu-
nicate between them and synchronize their data. We argue
that this separation of concerns reduces the burden on the
game developer. Moreover, a medium offers a generic inter-
face and is designed to be easily reused for different game
applications. Finally, using a medium, different consistency
maintenance approaches can be tested and compared easily
for experimentation.

Categories and Subject Descriptors

H.4 [Mobile Multiplayer Games]: Data Consistency Main-
tenance; D.2.8 [Software Engineering]: [Separation of
concerns, reusibility]

General Terms

Design, Algorithms

Keywords

Multiplayer Mobile Games, Latency Hiding, Data Synchro-
nization, Communication Abstraction, Medium

.

1. INTRODUCTION

Consistency maintenance is a complex issue in network
games. It becomes even more difficult to solve when playing
on mobile phone because of the high latency in mobile net-
works which can be of several seconds in 3G networks. [4]
discusses the effect of high latency on players and observes
that a high communication delay can cause the player quit
the game. A player normally tolerates a maximum of 250
ms reaction time from a system [9]. In Multiplayer online
games, where many players take part in a game at the same
time, it is very difficult to maintain consistency in a high
latency network. To hide latency and maintain consistency,
algorithms such as Dead-Reckoning and Trailing State Syn-
chronizations may be used. These algorithms are very com-
plex and are, therefore, hard to program. It is thus desirable
to separate the code of these algorithms from the game logic.
The concept of Medium, which is a communication compo-
nent, has been proposed recently [3] to deal with interaction
and distribution non-functional aspects. In this paper, we
extend this concept by inserting prediction and synchroniza-
tion algorithms into a medium that we call a synchronization
medium. This way a game programmer can concentrate on
the game logic, and is relieved of synchronization and com-
munication concerns. We also consider that synchronization
is an off-shoot of communication delays and that it is bet-
ter dealt with as a communication concern rather than as
a game concern. Apart from handling synchronization, an-
other advantage of a synchronization medium is its reusibil-
ity. It offers a generic interface that does not change when
replacing a synchronization algorithm by another one inside
the medium. A same medium can thus be used by differ-
ent game applications; the application code is not impacted
even if a different synchronization algorithm that best suits
the applications needs has to be plugged. This is an im-
portant property of mediums that can be used for dynam-
icly adapting applications. With mechanisms for dynamic
adaptability inserted into the medium, it can adapt itself by
using different algorithms according to the context of the
game.
In this paper we discuss different synchronization algorithms
from the point of view of a mobile terminal and then we dis-
cuss the separation of these algorithms from the game logic
and their insertion into a distributed communication com-
ponent responsible for non-functional, non-game issues. We
present the design of such a communication component us-
ing different synchronization algorithms.
The paper is structured as follows. First we discuss differ-
ent synchronization algorithms and their relevance for high

latency mobile networks. Then we discuss the medium ap-
proach which represents the communication as a distributed
component. Then we present our approach, called synchro-
nization medium, and show its design with UML diagrams.
In the final part, we conclude and discuss our future work.

2. DATA SYNCHRONIZATION IN MOBILE

GAMES

In this section we discuss some synchronization algorithms
used in distributed systems such as military simulation and
games. Dead-Reckoning [1] is used to reduce bandwidth
consumption and hide network latencies by sending update
messages less frequently and estimating the state informa-
tion between the updates using the already received infor-
mation such as position, velocity and/or acceleration of the
object. The predicted value can be different from the actual
value which is received through the update message. In this
case some convergence method can be used to arrive at the
actual value. The importance of dead-reckoning in mobile
games is that it permits a mobile terminal not to be blocked
and to continue even if it is not receiving the data in case of
a disconnection for instance. The convergence method must
fuse the actual value and the predicted value in a smooth
way, so that there is no abrupt effect on the game user. [12]
proposes a dead-reckoning protocol based on the position
history of the object being dead-reckoned. It makes sense
to use the simple dead-reckoning algorithm when the path
is smooth and straight such as in car race games, and to use
the position-based history protocol when the path is more a
zig-zag type, and hardly predictable.
Time Warp (TWS) [8] is a synchronization mechanism for
parallel/distributed simulation. It allows logical processes
to execute events without the guarantee of a causally con-
sistent execution. TWS takes a snapshot of the state at
the reception of a command and issues a rollback to an ear-
lier state if a command earlier than the last executed com-
mand is received. On a rollback, the state is first restored to
the previous snapshot and then all the commands that oc-
curred between the snapshot and the execution time are re-
executed. Two problems arise with this method when used
for mobile games. First it needs to store previous states,
for which memory is required. Secondly, rollback requires
processing power which can be limited in case of mobile de-
vices.
Trailing State Synchronization (TSS) [5] also executes roll-
back when inconsistency is detected. However, it imple-
ments rollback intelligently to avoid high memory and pro-
cessor overheads demanded by Time Warp Synchronization.
Instead of keeping snapshots of every command, TSS keeps
two copies of the same game world, each at a different lo-
cal simulation time separated by some synchronization de-
lay. The latest one in the time domain is called the leading
state. The other one is called the trailing state. When an
inconsistency is detected in the leading state and rollback
is required, instead of copying the state from a snapshot as
TWS does, TSS just simply copies the game status from
the trailing state to the leading state, and then performs all
commands between the inconsistency point and the present
point again. The difference between a trailing state and a
snapshot is that a trailing state is a complete state with all
the received commands but executing at a delay d, while a
snapshot is a stored state of the system after the reception

of a command. A new snapshot is taken for a command
received after a snapshot has been taken. TSS does not ac-
tually solve the rollback problem originated in TWS. It will
have better performance when the following two situations
are present. First, the game state is large and it is expen-
sive to store the snapshot. Second, the gap between states’
date is small. In order to rollback, we need to have copies
of the past checkpoint. It is still a challenge to do it with
less memory and processing power.
Perceptive Consistency (PC) [2] provides an ordering of up-
dates and avoids potential conflicts. Before discussing Per-
ceptive Consistency, two terms need to be defined. The
property of legality requires that the latency for a given
media instance between two media instances must be kept
constant. For example in the case of a car racing game,
the legality property is respected if the time between two
successive positions of a given car is the same for the two
users, and hence the speed is also respected. The simul-
taneity property states that the physical time between the
playouts of two updates is the same for all users. In the
case of a car racing game, the simultaneity property is hold
if in the case of a collision between two cars, the two cars
are considered at the same place at a given time for all the
users. For a system to be perceptive consistent [2], it must
satisfy both properties of simultaneity and legality. The
algorithm implementing PC has three phases. In the first
phase, the algorithm calculates, for a given player, the max-
imum communication delay between this local player and
all the remote players. Then, in the second phase, the al-
gorithm calculates the local lag to be introduced locally to
order the events before the playout of a media instance. In
the third phase, the message is played out. In case of mo-
bile games, as network delays can be quite longer, the local
lag introduced by PC can have bad effects on the players.
Hence, dead-reckoning can be combined with PC to hide the
effect of local lag by adding predicted intermediate states.

3. MEDIUM : A COMMUNICATION COM-

PONENT

Presented in [3], the concept of communication compo-
nent or medium is to separate interactional details from the
functional details of a component. These interactional de-
tails can be handled separately by the medium. Hence a
medium is the reification of an interaction, communication
or coordination system, protocol or service in a software
component. This architecture has the advantage that the
medium can be reused for different types of application. At
the specification level, a medium is specified using a UML
collaboration diagram. Then a refinement process trans-
forms this specification into a low-level implementation de-
sign. This refinement process is carried out in three phases.
In the first phase, for each component interacting with the
medium a class called Role Manager is produced. This class
is responsible for all the interactions with its correspond-
ing component. A medium is an aggregate of these role
managers. In the second phase, the class representing the
medium is removed, and only the role managers are left
interacting with their corresponding components and with
each other. Depending on the non-functional constraints,
this phase can lead to many design choices. The third and
final phase defines, for each design specification in the pre-

Figure 1: Synchronization Medium

ceding phase, one or more deployment diagrams, describing
how different role managers and components are distributed
and grouped at the time of the deployment of a medium. In
the next section, we discuss the insertion of synchronization
algorithms in the medium.

4. SYNCHRONIZATION MEDIUM

We consider that synchronization is a non-functional is-
sue which arises due to communication delays, and hence it
would be better to deal with it separately from the game
logic. We present in this section the design of the medium
which handles the synchronization. We call this medium a
synchronization medium. It allows to hide from the game
clients latency compensation and synchronization mecha-
nisms. Thus a synchronization medium is an abstraction of
the communication across a network. This has the advan-
tage to offer game developers a synchronization tool that can
be picked up and used directly. This idea is shown in Figure
1 in the case of a deployment of heterogeneous devices.

The synchronization medium is a distributed component
spread across the network which offers services required by
the components interacting with it and requires services of-
fered by the interacting components. A two-way interaction
actually takes place between the synchronization medium
and application components.

An abstract specification of a Synchronization Medium
is given in Figure 2. Two components with the “player”
and “administrator” roles interact with the medium. The
”player” role corresponds to the game client residing on the
mobile terminal and uses the “IplayerMediumServices” ser-
vices offered by the medium. The interface ”IPlayerMedi-
umServices” offers services like joining or quiting a game
and session maintenance. The role “administrator” is the
game server which uses the ”IAdminMediumServices” ser-
vices offered by the medium. These services may include ad-
ministrative services such as control cheating and charging
fees from the users. The medium may need some services to
interact with the player. These services are offered by the in-

<<interface>>

IPlayerMediumServices

<<interface>>

IAdminMediumServices

<<interface>>

IPlayerCompServices

<<Medium>>

SynchronizationMedium<<role>>

Administrator

Canvas

<<role>>

Player

LocalView

1..*
1

Interested

*
1

1

Figure 2: Abstract specification of Synchronization

Medium

terface “IplayerComponentServices” of the role player. The
class canvas represents the overall game data, while the class
LocalView corresponds to the part of the game data which
the player is supposed to receive. A player may indeed not
be interested in all the game data and interested only in a
subset of the canvas. As discussed in section 3, in the second
phase of the reification process, the medium is represented
as an aggregate of role managers. This is shown in Figure 3.
There are two role managers namely ”Player Manager” and
”Game Manager”. The ”Player Manager” is the representa-
tive of the medium on each game client and offers/requires
services offered/required by the game client. In the case of a
client-server game, the two role managers may communicate
through a middleware. Synchronization algorithms are then
integrated in the medium as internal services which will be
invoked by the medium transparently to the player.
We now discuss the design of a synchronization medium with
different choices of synchronization algorithms.
Figure 4 shows a class diagram for a medium using dead-
reckoning algorithms. The medium receives a Protocol Data
Unit (PDU) concerning a remote object from a remote player.
The PDU contains information that uniquely identifies an
entity, such as its position and velocity. PDU may contain
an identifier telling which dead-reckoning algorithm to use.
The Player Manager passes this PDU to a dead-reckoning
service. This service predicts the new position of the en-
tity using its predict function and passes it back to the
Player Manager. This updated position is then passed to
the player. A PDU from the local player is first passed to
the local Player Manager which in turn, passes it to the re-
mote Player Manager. Note that a PDU passed by a player
is received by a remote Player Manager and not the player
itself. Hence the process is hidden from the player com-
ponent in the game logic. A collaboration diagram showing
the dynamic view of how the messages are passed during the
dead-reckoning process between a player and the medium is
shown in Figure 5. The interface connecting a role man-
ager and a player is an external interface represented by a

<<interface>>

IPlayerMediumServices

GameManager

<<interface>>

IAdminMediumServices

PlayerManager

<<interface>>

IPlayerCompServices

<<role>>

player
<<role>>

Administrator

Canvas LocalView

*

1
Interested

1

1

1

1

Figure 3: Introduction of role managers

<<interface>>

IAdminMediumServices

<<internal−services>>

IdearReckoningservices

+getPDU()
+Predict()

<<interface>>

IPlayerMediumServices

PlayerManager

+update()

<<interface>>

IPlayerCompServices

GameManager<<role>>

Administrator

Canvas LocalView

<<role>>

player* pass PDU

1Interested

1

1

1

Figure 4: Synchronization Medium using dead-

reckoning algorithm

Figure 5: Dynamic view of message passing in case

of Dead-reckoning algorithm

small black rectangle, while the interface between the local
and the remote role managers is an internal interface of the
medium represented by a small white rectangle.

Another choice could be to use the Perceptive Consistency
algorithm within the medium for maintaining the consis-
tency between different players. A diagram showing the
synchronization medium using the PC algorithm is shown
in Figure 6. A player passes an artificial message (u, t(u)),
u being a process issued at time t. The Player Manager
receives such an artificial message from the remote players
and passes it to the “calculate-local-vector” services of the
medium. As discussed in section 2, this process calculates
the latency between the local player and all remote players.
This service returns a vector containing these delays. The
player manager then passes this vector to the “calculate-
local-lag” service, which calculates the local lag to be in-
troduced locally, and returns it to the player via the player
manager.

Note that it is possible for a medium to use a combination
of synchronization algorithms for the same game. For ex-
ample, Perceptive Consistency can be combined with dead-
reckoning to compensate for high latencies in mobile net-
works. Dead-reckoning can help to provide predicted inter-
mediate states during the local lag period introduced in PC.
Also variations of the same algorithm can be used for the
same application depending on the context. For example,
dead-reckoning algorithm using position-based history can
be used when the motion of an object is unpredictable, and
a single update based dead-reckoning can be used when the
motion of the object being predicted is smooth.
A deployment diagram showing the deployment of our syn-
chronization medium is shown in Figure 7. The playerMan-
ager resides on the mobile device while gameManager re-
sides on the server.

<<internal−service>>

calculate_local_lag

+calculate−local−lag(vector)
+adjust : return_adjust()

<<internal−service>>

Calculate_Local−Vector

+calculate_vector(u, t)
+vector :return_vector()

<<interface>>

IAdminMediumServices

<<interface>>

IPlayerMediumServices

PlayerManager

+update()

<<interface>>

IPlayerCompServices

GameManager
<<role>>

Administrator

Canvas

<<role>>

player

LocalView

*

vector (u, ti(u))

pass (u, t(u))

+adjust

1Interested

1

1

1

Figure 6: Synchronization Medium using PC

Figure 7: Deployment of synchronization medium

5. DISCUSSION

The primary advantage of this approach is reusability. A
given synchronization medium with a specific synchroniza-
tion algorithm can be reused many times by different appli-
cations. Also we believe that separating the synchronization
concern from the game logic, and putting it in a communica-
tion component will facilitate the game developer by letting
them concentrate on the game logic only. Programmers will
not be concerned by synchronization issues. They can use
an off-the-shelf medium with a given synchronization tech-
nique by looking at its specification. Hence, the evolution
of the game program will be quite easy during the course
of time. Furthermore, the synchronization medium will fa-
cilitate the experimentation on different synchronization al-
gorithms. Having different synchronization mediums with
different algorithms available, we can use them in the same
game and compare and analyze the results. Also during the
design process of the medium one can have different vari-
ations of the medium and select the one according to the
needs of the application.

6. RELATED WORK

[6] proposes a Concurrency Control and Consistency Main-
tenance (CCCM) component to handle consistency issues
separately from the game logic. The CCCM component im-
plementing the consistency management algorithms resides
between the game logic and the game data. We take a step
further by decoupling the synchronization issues completely
from the game logic and data and injecting it into a commu-
nication component which handles the consistency manage-
ment and returns the results to the players. Another impor-
tant difference with our approach is that CCCM component
is for client server architectures, while the synchronization
medium is not limited to a centralized architecture. From
the same abstract specification we can implement a synchro-
nization medium for Peer-to-peer or PP-CA (Peer-to-Peer
with central arbiter)[10] architecture during the design pro-
cess.

7. CONCLUSIONS AND PERSPECTIVES

In this paper we discussed different synchronization al-
gorithms used in multiplayer mobile games and discussed
their pertinence for the case of mobile phone terminals. We
then discussed the separation of these algorithms from the
game logic by inserting them into a communication com-
ponent which we call synchronization medium. We showed
different diagrams for the specification of a synchronization
medium during the process of its reification. In the future,
we intend to implement synchronization media using dif-
ferent algorithms on the top of the GASP [11] framework,
a middleware dedicated to the development of multiplayer
games on mobile phones. Other issues, such as the Adap-
tive Focus Control [7] method of interest management and
dynamic adaptability can be included in the medium thus
further separating the game logic from non-game issues and
offering more flexibility to game developers.

8. ACKNOWLEDGMENTS

This work is a part of the JEMTU project which aims to
design solutions for the technological and psychosociological

issues that slow down the development of multiplayer games
on mobile phone (http://proget.int-evry.fr/projects/JEMTU/).

9. REFERENCES[1] Application protocols. In IEEE Standard for
Distributed interactive Simulation. IEEE Std
1278.1-1995, 1995.

[2] N. Bouillot. Fast event ordering and perceptive
consistency in time sensitive distribued multiplayer
games. In 7th International Conference on Computer
Games (CGAMES’2005), pages 146–152, 2005.

[3] E. Cariou, A. Beugnard, and J.-M. Jézéquel. An
architecture and a process for implementing
distributed collaborations. In EDOC ’02: Proceedings
of the 6th International Enterprise Distributed Object
Computing Conference, pages 132–143, Washington,
DC, USA, 2002. IEEE Computer Society.

[4] K.-T. Chen, P. Huang, and C.-L. Lei. How sensitive
are online gamers to network quality? Commun.
ACM, 49(11):34–38, 2006.

[5] E. Cronin, B. Filstrup, A. R. Kurc, and S. Jamin. An
efficient synchronization mechanism for mirrored game
architectures. In NetGames ’02: Proceedings of the 1st
workshop on Network and system support for games,
pages 67–73, New York, NY, USA, 2002. ACM Press.

[6] R. D. S. Fletcher, T. C. N. Graham, and C. Wolfe.
Plug-replaceable consistency maintenance for
multiplayer games. In NetGames ’06: Proceedings of
5th ACM SIGCOMM workshop on Network and
system support for games, page 34, New York, NY,
USA, 2006. ACM Press.

[7] C.-c. A. Hsu, J. Ling, Q. Li, and C.-C. J. Kuo. The
design of multiplayer online video game systems. In
A. G. Tescher, B. Vasudev, V. M. J. Bove, and
A. Divakaran, editors, Multimedia Systems and
Applications VI. Edited by Tescher, Andrew G.;
Vasudev, Bhaskaran; Bove, V. Michael, Jr.;
Divakaran, Ajay. Proceedings of the SPIE, Volume
5241, pp. 180-191 (2003)., volume 5241 of Presented
at the Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference, pages 180–191, Nov.
2003.

[8] M. Mauve, J. Vogel, V. Hilt, and W. Effelsberg.
Local-lag and Timewarp: Providing Consistency for
Replicated Continuous Applications. IEEE
Transactions on Multimedia, 6(1):47–57, Feb. 2004.

[9] L. Pantel and L. C. Wolf. On the impact of delay on
real-time multiplayer games. In NOSSDAV ’02:
Proceedings of the 12th international workshop on
Network and operating systems support for digital
audio and video, pages 23–29, New York, NY, USA,
2002. ACM Press.

[10] J. D. Pellegrino and C. Dovrolis. Bandwidth
requirement and state consistency in three multiplayer
game architectures. In NetGames ’03: Proceedings of
the 2nd workshop on Network and system support for
games, pages 52–59, New York, NY, USA, 2003. ACM
Press.

[11] R. Pellerin, F. Delpiano, E. Gressier-Soudan, and
M. Simatic. Gasp: A middleware for multiplayer

games in mobile phone networks (in french). In
UbiMob ’05: Proceedings of the 2nd French-speaking
conference on Mobility and uibquity computing, pages
61–64, New York, NY, USA, 2005. ACM Press.

[12] S. K. Singhal and D. R. Cheriton. Using a position
history-based protocol for distributed object
visualization. Technical Report CS-TR-94-1505,
Stanford University, Stanford, CA, USA, 1994.

