Abdul Malik Khan

Sophie Chabridon

Antoine Beugnard

Synchronization Medium : A Consistency Maintenance Component for Mobile Multiplayer Games

Keywords: H.4 [Mobile Multiplayer Games]: Data Consistency Maintenance; D.2.8 [Software Engineering]: [Separation of concerns, reusibility] Design, Algorithms Multiplayer Mobile Games, Latency Hiding, Data Synchronization, Communication Abstraction, Medium

In multiplayer games, where many players take part in a game while communicating through a network, the players may have an inconsistent view of the game world because of the communication delays across the network. This problem of inconsistency is even more crucial when playing on a mobile phone via a 3G network where the communication delays can be of several seconds. Consistency maintenance algorithms must be used to have a uniform view of the game world. These algorithms are very complex and hard to program. In this paper, we discuss different consistency maintenance algorithms from the point of view of mobile devices and present an approach where the consistency concern is handled separately by a distributed component called synchronization medium, which is responsible for communication as well as consistency maintenance. The game logic components interact with the medium to communicate between them and synchronize their data. We argue that this separation of concerns reduces the burden on the game developer. Moreover, a medium offers a generic interface and is designed to be easily reused for different game applications. Finally, using a medium, different consistency maintenance approaches can be tested and compared easily for experimentation.

INTRODUCTION

Consistency maintenance is a complex issue in network games. It becomes even more difficult to solve when playing on mobile phone because of the high latency in mobile networks which can be of several seconds in 3G networks. [START_REF] Chen | How sensitive are online gamers to network quality?[END_REF] discusses the effect of high latency on players and observes that a high communication delay can cause the player quit the game. A player normally tolerates a maximum of 250 ms reaction time from a system [START_REF] Pantel | On the impact of delay on real-time multiplayer games[END_REF]. In Multiplayer online games, where many players take part in a game at the same time, it is very difficult to maintain consistency in a high latency network. To hide latency and maintain consistency, algorithms such as Dead-Reckoning and Trailing State Synchronizations may be used. These algorithms are very complex and are, therefore, hard to program. It is thus desirable to separate the code of these algorithms from the game logic. The concept of Medium, which is a communication component, has been proposed recently [START_REF] Cariou | An architecture and a process for implementing distributed collaborations[END_REF] to deal with interaction and distribution non-functional aspects. In this paper, we extend this concept by inserting prediction and synchronization algorithms into a medium that we call a synchronization medium. This way a game programmer can concentrate on the game logic, and is relieved of synchronization and communication concerns. We also consider that synchronization is an off-shoot of communication delays and that it is better dealt with as a communication concern rather than as a game concern. Apart from handling synchronization, another advantage of a synchronization medium is its reusibility. It offers a generic interface that does not change when replacing a synchronization algorithm by another one inside the medium. A same medium can thus be used by different game applications; the application code is not impacted even if a different synchronization algorithm that best suits the applications needs has to be plugged. This is an important property of mediums that can be used for dynamicly adapting applications. With mechanisms for dynamic adaptability inserted into the medium, it can adapt itself by using different algorithms according to the context of the game.

In this paper we discuss different synchronization algorithms from the point of view of a mobile terminal and then we discuss the separation of these algorithms from the game logic and their insertion into a distributed communication component responsible for non-functional, non-game issues. We present the design of such a communication component using different synchronization algorithms. The paper is structured as follows. First we discuss different synchronization algorithms and their relevance for high latency mobile networks. Then we discuss the medium approach which represents the communication as a distributed component. Then we present our approach, called synchronization medium, and show its design with UML diagrams. In the final part, we conclude and discuss our future work.

DATA SYNCHRONIZATION IN MOBILE GAMES

In this section we discuss some synchronization algorithms used in distributed systems such as military simulation and games. Dead-Reckoning [START_REF]Application protocols[END_REF] is used to reduce bandwidth consumption and hide network latencies by sending update messages less frequently and estimating the state information between the updates using the already received information such as position, velocity and/or acceleration of the object. The predicted value can be different from the actual value which is received through the update message. In this case some convergence method can be used to arrive at the actual value. The importance of dead-reckoning in mobile games is that it permits a mobile terminal not to be blocked and to continue if it is not receiving the data in case of a disconnection for instance. The convergence method must fuse the actual value and the predicted value in a smooth way, so that there is no abrupt effect on the game user. [START_REF] Singhal | Using a position history-based protocol for distributed object visualization[END_REF] proposes a dead-reckoning protocol based on the position history of the object being dead-reckoned. It makes sense to use the simple dead-reckoning algorithm when the path is smooth and straight such as in car race games, and to use the position-based history protocol when the path is more a zig-zag type, and hardly predictable. Time Warp (TWS) [START_REF] Mauve | Local-lag and Timewarp: Providing Consistency for Replicated Continuous Applications[END_REF] is a synchronization mechanism for parallel/distributed simulation. It allows logical processes to execute events without the guarantee of a causally consistent execution. TWS takes a snapshot of the state at the reception of a command and issues a rollback to an earlier state if a command earlier than the last executed command is received. On a rollback, the state is first restored to the previous snapshot and then all the commands that occurred between the snapshot and the execution time are reexecuted. Two problems arise with this method when used for mobile games. First it needs to store previous states, for which memory is required. Secondly, rollback requires processing power which can be limited in case of mobile devices.

Trailing State Synchronization (TSS) [START_REF] Cronin | An efficient synchronization mechanism for mirrored game architectures[END_REF] also executes rollback when inconsistency is detected. However, it implements rollback intelligently to avoid high memory and processor overheads demanded by Time Warp Synchronization. Instead of keeping snapshots of every command, TSS keeps two copies of the same game world, each at a different local simulation time separated by some synchronization delay. The latest one in the time domain is called the leading state. The other one is called the trailing state. When an inconsistency is detected in the leading state and rollback is required, instead of copying the state from a snapshot as TWS does, TSS just simply copies the game status from the trailing state to the leading state, and then performs all commands between the inconsistency point and the present point again. The difference between a trailing state and a snapshot is that a trailing state is a complete state with all the received commands but executing at a delay d, while a snapshot is a stored state of the system after the reception of a command. A new snapshot is taken for a command received after a snapshot has been taken. TSS does not actually solve the rollback problem originated in TWS. It will have better performance when the following two situations are present. First, the game state is large and it is expensive to store the snapshot. Second, the gap between states' date is small. In order to rollback, we need to have copies of the past checkpoint. It is still a challenge to do it with less memory and processing power. Perceptive Consistency (PC) [START_REF] Bouillot | Fast event ordering and perceptive consistency in time sensitive distribued multiplayer games[END_REF] provides an ordering of updates and avoids potential conflicts. Before discussing Perceptive Consistency, two terms need to be defined. The property of legality requires that the latency for a given media instance between two media instances must be kept constant. For example in the case of a car racing game, the legality property is respected if the time between two successive positions of a given car is the same for the two users, and hence the speed is also respected. The simultaneity property states that the physical time between the playouts of two updates is the same for all users. In the case of a car racing game, the simultaneity property is hold if in the case of a collision between two cars, the two cars are considered at the same place at a given time for all the users. For a system to be perceptive consistent [START_REF] Bouillot | Fast event ordering and perceptive consistency in time sensitive distribued multiplayer games[END_REF], it must satisfy both properties of simultaneity and legality. The algorithm implementing PC has three phases. In the first phase, the algorithm calculates, for a given player, the maximum communication delay between this local player and all the remote players. Then, in the second phase, the algorithm calculates the local lag to be introduced locally to order the events before the playout of a media instance. In the third phase, the message is played out. In case of mobile games, as network delays can be quite longer, the local lag introduced by PC can have bad effects on the players. Hence, dead-reckoning can be combined with PC to hide the effect of local lag by adding predicted intermediate states.

MEDIUM : A COMMUNICATION COM-PONENT

Presented in [START_REF] Cariou | An architecture and a process for implementing distributed collaborations[END_REF], the concept of communication component or medium is to separate interactional details from the functional details of a component. These interactional details can be handled separately by the medium. Hence a medium is the reification of an interaction, communication or coordination system, protocol or service in a software component. This architecture has the advantage that the medium can be reused for different types of application. At the specification level, a medium is specified using a UML collaboration diagram. Then a refinement process transforms this specification into a low-level implementation design. This refinement process is carried out in three phases. In the first phase, for each component interacting with the medium a class called Role Manager is produced. This class is responsible for all the interactions with its corresponding component. A medium is an aggregate of these role managers. In the second phase, the class representing the medium is removed, and only the role managers are left interacting with their corresponding components and with each other. Depending on the non-functional constraints, this phase can lead to many design choices. The third and final phase defines, for each design specification in the pre-

SYNCHRONIZATION MEDIUM

We consider that synchronization is a non-functional issue which arises due to communication delays, and hence it would be better to deal with it separately from the game logic. We present in this section the design of the medium which handles the synchronization. We call this medium a synchronization medium. It allows to hide from the game clients latency compensation and synchronization mechanisms. Thus a synchronization medium is an abstraction of the communication across a network. This has the advantage to offer game developers a synchronization tool that can be picked up and used directly. This idea is shown in Figure 1 in the case of a deployment of heterogeneous devices.

The synchronization medium is a distributed component spread across the network which offers services required by the components interacting with it and requires services offered by the interacting components. A two-way interaction actually takes place between the synchronization medium and application components.

An abstract specification of a Synchronization Medium is given in Figure 2. Two components with the "player" and "administrator" roles interact with the medium. The "player" role corresponds to the game client residing on the mobile terminal and uses the "IplayerMediumServices" services offered by the medium. The interface "IPlayerMedi-umServices" offers services like joining or quiting a game and session maintenance. The role "administrator" is the game server which uses the "IAdminMediumServices" services offered by the medium. These services may include administrative services such as control cheating and charging fees from the users. The medium may need some services to interact with the player. These services are offered by the in- terface "IplayerComponentServices" of the role player. The class canvas represents the overall game data, while the class LocalView corresponds to the part of the game data which the player is supposed to receive. A player may indeed not be interested in all the game data and interested only in a subset of the canvas. As discussed in section 3, in the second phase of the reification process, the medium is represented as an aggregate of role managers. This is shown in Figure 3. There are two role managers namely "Player Manager" and "Game Manager". The "Player Manager" is the representative of the medium on each game client and offers/requires services offered/required by the game client. In the case of a client-server game, the two role managers may communicate through a middleware. Synchronization algorithms are then integrated in the medium as internal services which will be invoked by the medium transparently to the player. We now discuss the design of a synchronization medium with different choices of synchronization algorithms. Figure 4 shows a class diagram for a medium using deadreckoning algorithms. The medium receives a Protocol Data Unit (PDU) concerning a remote object from a remote player. The PDU contains information that uniquely identifies an entity, such as its position and velocity. PDU may contain an identifier telling which dead-reckoning algorithm to use. The Player Manager passes this PDU to a dead-reckoning service. This service predicts the new position of the entity using its predict function and passes it back to the Player Manager. This updated position is then passed to the player. A PDU from the local player is first passed to the local Player Manager which in turn, passes it to the remote Player Manager. Note that a PDU passed by a player is received by a remote Player Manager and not the player itself. Hence the process is hidden from the player component in the game logic. A collaboration diagram showing the dynamic view of how the messages are passed during the dead-reckoning process between a player and the medium is shown in Figure 5. The interface connecting a role manager and a player is an external interface represented by a small black rectangle, while the interface between the local and the remote role managers is an internal interface of the medium represented by a small white rectangle.

Another choice could be to use the Perceptive Consistency algorithm within the medium for maintaining the consistency between different players. A diagram showing the synchronization medium using the PC algorithm is shown in Figure 6. A player passes an artificial message (u, t(u)), u being a process issued at time t. The Player Manager receives such an artificial message from the remote players and passes it to the "calculate-local-vector" services of the medium. As discussed in section 2, this process calculates the latency between the local player and all remote players. This service returns a vector containing these delays. The player manager then passes this vector to the "calculatelocal-lag" service, which calculates the local lag to be introduced locally, and returns it to the player via the player manager.

Note that it is possible for a medium to use a combination of synchronization algorithms for the same game. For example, Perceptive Consistency can be combined with deadreckoning to compensate for high latencies in mobile networks. Dead-reckoning can help to provide predicted intermediate states during the local lag period introduced in PC. Also variations of the same algorithm can be used for the same application depending on the context. For example, dead-reckoning algorithm using position-based history can be used when the motion of an object is unpredictable, and a single update based dead-reckoning can be used when the motion of the object being predicted is smooth. A deployment diagram showing the deployment of our synchronization medium is shown in Figure 7. The playerManager resides on the mobile device while gameManager resides on the server.

DISCUSSION

The primary advantage of this approach is reusability. A given synchronization medium with a specific synchronization algorithm can be reused many times by different applications. Also we believe that separating the synchronization concern from the game logic, and putting it in a communication component will facilitate the game developer by letting them concentrate on the game logic only. Programmers will not be concerned by synchronization issues. They can use an off-the-shelf medium with a given synchronization technique by looking at its specification. Hence, the evolution of the game program will be quite easy during the course of time. Furthermore, the synchronization medium will facilitate the experimentation on different synchronization algorithms. Having different synchronization mediums with different algorithms available, we can use them in the same game and compare and analyze the results. Also during the design process of the medium one can have different variations of the medium and select the one according to the needs of the application.

RELATED WORK

[6] proposes a Concurrency Control and Consistency Maintenance (CCCM) component to handle consistency issues separately from the game logic. The CCCM component implementing the consistency management algorithms resides between the game logic and the game data. We take a step further by decoupling the synchronization issues completely from the game logic and data and injecting it into a communication component which handles the consistency management and returns the results to the players. Another important difference with our approach is that CCCM component is for client server architectures, while the synchronization medium is not limited to a centralized architecture. From the same abstract specification we can implement a synchronization medium for Peer-to-peer or PP-CA (Peer-to-Peer with central arbiter) [START_REF] Pellegrino | Bandwidth requirement and state consistency in three multiplayer game architectures[END_REF] architecture during the design process.

CONCLUSIONS AND PERSPECTIVES

In this paper we discussed different synchronization algorithms used in multiplayer mobile games and discussed their pertinence for the case of mobile phone terminals. We then discussed the separation of these algorithms from the game logic by inserting them into a communication component which we call synchronization medium. We showed different diagrams for the specification of a synchronization medium during the process of its reification. In the future, we intend to implement synchronization media using different algorithms on the top of the GASP [START_REF] Pellerin | Gasp: A middleware for multiplayer games in mobile phone networks[END_REF] framework, a middleware dedicated to the development of multiplayer games on mobile phones. Other issues, such as the Adaptive Focus Control [START_REF] Hsu | The design of multiplayer online video game systems[END_REF] method of interest management and dynamic adaptability can be included in the medium thus further separating the game logic from non-game issues and offering more flexibility to game developers.

Figure 1 :

 1 Figure 1: Synchronization Medium

Figure 2 :

 2 Figure 2: Abstract specification of Synchronization Medium

Figure 3 :Figure 4 :Figure 5 :

 345 Figure 3: Introduction of role managers

Figure 6 :

 6 Figure 6: Synchronization Medium using PC

Figure 7 :

 7 Figure 7: Deployment of synchronization medium

ACKNOWLEDGMENTS

This work is a part of the JEMTU project which aims to design solutions for the technological and psychosociological issues that slow down the development of multiplayer games on mobile phone (http://proget.int-evry.fr/projects/JEMTU/).