
HAL Id: hal-01328143
https://hal.science/hal-01328143v1

Submitted on 7 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new resilient key management protocol for wireless
sensor networks

Chakib Bekara, Maryline Laurent

To cite this version:
Chakib Bekara, Maryline Laurent. A new resilient key management protocol for wireless sensor
networks. WISTP 2007: 1st IFIP TC6 / WG 8.8 / WG 11.2 International Workshop on Information
Security Theory and Practices : Smart Cards, Mobile and Ubiquitous Computing Systems, May 2007,
Heraklion, Greece. pp.14 - 26, �10.1007/978-3-540-72354-7_2�. �hal-01328143�

https://hal.science/hal-01328143v1
https://hal.archives-ouvertes.fr

A New Resilient Key Management Protocol for
Wireless Sensor Networks

Chakib Bekara and Maryline Laurent-Maknavicius

Institut National des Télécommunications d’Evry
Département Logiciel-Réseaux

9 rue Charles Fourier, 91000 Evry Cedex, France

Abstract. Wireless Sensor Networks (WSN) security is an important
issue which has been investigated by researchers for few years. The most
fundamental security problem in WSN is key management that covers the
establishment, distribution, renewing and revocation of cryptographic
keys. Several key management protocols were proposed in the literature.
Unfortunately, most of them are not resilient to nodes capture. This
means that an attacker compromising a node can reuse the node’s key
materials to populate any part of the network with cloned nodes and new
injected nodes. In this article, we present a simple polynomial-based key
management protocol using a group-based deployment model without
any necessary predictable deployment location of nodes. That solution
achieves high resilience to nodes compromising compared with other pro-
tocols.

Key Words: WSN Security, Key Management, Nodes Compromising,
Intrusion Detection

1 Introduction

Wireless sensor networks (WSN) are infrastructure-less and self-organizing net-
works, which can be deployed anywhere, and work without any assistance [1].
These characteristics motivated their deployment, but introduced critical secu-
rity issues like network control access, authentication, confidentiality and nodes
compromising. WSN are very sensitive to those issues since sensors are known
to be tamper-vulnerable devices [2], and deployment of them is mostly done in
open area that should be assimilated as hostile area for security consideration.

Current WSN security solutions rely on secret keys but today an efficient key
management protocol is still needed to generate, distribute, renew and revoke
cryptographic keys. In the last few years, several key management protocols for
WSN have been defined, but they do not satisfy the protocol efficiency require-
ments as follows:

1. Low storage, computation, and transmission overheads.
2. Resistance to nodes compromising, so keys established between non compro-

mised nodes remain confidential even in case of nodes compromising.

2

3. No on-line key management server, that would be the point of failure in case
of DoS attacks.

4. Resilience to nodes compromising that prevents attackers to populate the
network with clones of compromised nodes or injected false nodes, by reusing
their key materials.

Most of the key management protocols [2] [3] [4] [5], satisfy one or more of
the three first requirements. Unfortunately the last requirement is rarely or not
enough investigated. Most of the key management protocols are poorly resilient
to nodes compromising, and the few ones achieving an acceptable level of re-
silience, either rely on strong assumptions (i.e. nodes are tamper-resistant) [6] [4],
introduce heavy overheads (the use of public key cryptography) [6], or require
prior knowledge on nodes deployment [4].

In this article, we propose a simple key management protocol for static WSN,
based on the well-known polynomial-based key generation protocol of [7] for pair-
wise keys establishment, and our proposed group-based deployment model to
ensure resilience to nodes compromising. Our protocol requires no prior knowl-
edge on the locations of deployed nodes. It relies on realistic assumptions, and
introduces no significant overhead.

The remainder of the paper is organized as follows. In section 2, we introduce
the basic version of polynomial-based key generation protocol. In section 3, we
present our assumptions, network model, notations and we define our group-
based deployment model. In sections 4 and 5, we describe our proposed protocol,
and in section 7 we give its detailed security analysis. In section 8, we briefly
review related works on key management in WSN, and we compare the resiliency
of our protocol to the resiliency of the related works in section 9 , and we conclude
our work in section 10.

2 Polynomial-based key generation protocol

Blundo et al. [7] present a new pair-wise key establishment protocol, based on a
symmetric bivariate polynomial. A trusted key server in the network generates
a symmetric bivariate polynomial, as follows:

f(x, y) =
∑

i,j=0,...,t

aijx
iyj (mod Q) (1)

where Q is a sufficiently great prime number, 1 ≤ aij ≤ Q− 1, and t is the degree
of the polynomial and a security parameter. Initially, the key server configures
each node u with its unique secret polynomial share:

fu(y) = f(Idu, y) =
∑

i,j=0,...,t

aij(Idu)iyj (mod Q) (2)

where Idu is the unique identifier of node u in the network. Two nodes of the
network u and v, can easily establish a unique shared secret key by computing:

Kuv = f(Idu, Idv) = f(Idv, Idu) = Kvu (3)

3

As long as the number of compromised nodes in the network is less than t+1
nodes, the system is secure. The greater the t-value is, the more secure (resistant
to nodes compromising) the system is.

3 Assumptions, notations and network model

3.1 Assumptions

First, we suppose that the Base Station (BS) is a trusted and a powerful entity
in the network, that cannot be compromised.

Second, we suppose that sensors are static, so once they are deployed they
do not leave their locations. In many scenarios (i.e. perimeter monitoring), WSN
are considered as static, either because sensors are fixed or because sensors are
not asked to be mobile for achieving their tasks.

Third, we suppose that sensors are deployed progressively in successive gen-
erations (groups). This assumption is adopted in most group-based deployment
key management protocols like [3] and [8]. However, unlike the other group-based
key management protocols, we do not suppose that nodes of the same genera-
tion are deployed in the same neighborhood. In our protocol, nodes of the same
generation might be deployed anywhere in the network. Therefore, our protocol
is not based on any prior knowledge on deployment location of nodes, but if such
information was available, our protocol will achieve better resilience.

Fourth, we suppose that an attacker needs a minimum time Tcomp in order to
compromise a node after it is deployed. Tcomp is greater than the time Test, which
is the maximum time needed by a newly deployed node to establish pair-wise keys
with its one-hop neighbors. This assumption is present in several works like [9]
and [5], and is likely to be true, because an attacker must first have a physical
access to a sensor, and then use some programming tools in order to retrieve
sensor’s key materials. However, in [9] and [5], deployed nodes are initially loaded
with some common secrets that nodes use to establish different keys (pair-wise
keys, cluster keys) with their neighbors. In addition, [9] and [5] require that
each newly deployed node erases these common secrets after a time Test from
its deployment, to prevent that an attacker can get them if it is compromised.
In our protocol, no such assumption exists, because each node only needs its
unique secret polynomial share for pair-wise key establishment.

Fifth, we suppose that sensors are synchronized with the BS. This could
be done through an authenticated beacon periodically broadcasted by the BS,
to keep sensor’s clocks synchronized with the BS’s one. Authentication can be
guaranteed using the µTesla protocol [10].

Finally, we suppose that an attacker can only get a partial control over the
network. In case of full control on all deployed nodes, security solutions will be
inoperative to stop the attacker.

3.2 Notations

Table 1 summarizes the notations used in this paper.

4

Table 1. The used notations

Notation Significance

u, v Two nodes of the WSN
Idu 4 bytes unique identifier of node u in the network.
Nu An increasing nonce value generated by node u
fu The secret polynomial share of node u
Kuv = Kvu The secret pair-wise key established between u and v
MACK(M) The message authentication code of M using the secret key K
H A one way hash function
|x| The length on bytes of x
a||b a concatenated to b

3.3 Network model and security considerations

The BS deploys nodes in multiple generations numbered successively from 1 to
n, where n is the maximum number of deployed generations. If we suppose that
n < 216−1, each generation’s number is identified by exactly 2 bytes. The order
of deployment must be respected G1, . . . , Gi, Gi+1, . . . , Gn, where Gi is the ith

deployed generation. Each node belongs to a unique generation.
Because nodes are not mobile in our network, it is logical that only nodes of

the newly deployed generation ask for key establishment with their neighbors,
which may belong either to the same generation, or to former deployed gener-
ations. Nodes of former generations can not request for key establishment, and
even if they do request, their requests must be rejected. Based on this assump-
tion, we can state that any key establishment request originates from:

- either a node from the newly deployed generation,
- or a node deployed by an attacker, which is either a node having a false Id,

or a cloned node having the Id of a compromised node.

For security reasons, we suppose that any newly deployed node u sets a
timer to the value Test straight after deployment. Once the timer expires, node
u rejects any key establishment request originating from a node of the same
newly deployed generation.

4 Our proposed protocol

We propose a resilient key management protocol, based on the use of a symmetric
polynomial for secure key establishment, and based on our defined group-based
deployment model for achieving resilience to nodes compromising. Our protocol
involves three phases: initialization, pair-wise key establishment and key-path
establishment.

5

4.1 Initialization phase

Initially, the BS generates a random symmetric bivariate polynomial f(x, y) (see
(1)). The BS then selects a group of nodes to form the next deployed sensors
generation. The BS loads each node u with a unique secret polynomial share
(see (2)) as follows: suppose u ∈ Gi, then the BS loads the node with the secret
polynomial share fu(y) = f(i||Idu, y).

Note that it is impossible that two different nodes can have the same secret
polynomial share, so a node can never lie on its real identifier or the real gen-
eration number to which it belongs. Indeed, suppose that u ∈ Gi and v ∈ Gj ,
with i 6= j. fu(y) = fv(y) is possible, only and only if i||Idu = j||Idv. Each
generation’s number is exactly 2 bytes length, and each node identifier is exactly
4 bytes length, so | i||Idu |=| j||Idv | = exactly 6 bytes. With our well formatted
extended node identifier (2 bytes generation number, 4 bytes node ID), starting
from an extended node identifier i||Idu, it’s impossible to find another distinct
node identifier j||Idv where i 6= j or Idu 6= Idv.

4.2 Pair-wise key establishment phase

Suppose that the BS deployed some previous generations, say the i first gener-
ations (1, 2, . . . , i), and just deployed generation i + 1. In our protocol, nodes
know the highest deployed generation’s number i + 1 through a mechanism we
describe in section 5.

Let u ∈ Gj a newly deployed node. It is obvious that as a well-behaving
node, u ∈ Gi+1. Node u tries to establish secure links with its direct neighbors
by locally broadcasting a Hello message:

u → ∗ : Hello, j, Idu, Nu

where Nu is used to guarantee response freshness. Let v ∈ Gz, where z ≤ i + 1,
a neighbor node of u receiving its message. For node v to decide serving node u,
node v follows two steps:

1. v checks if j=i+1, to verify whether u belongs to the newly deployed gener-
ation. If the verification fails, it simply rejects the request of node u, because
u is normally already deployed.

2. If v verifies that j=i + 1 then:
- If v belongs to generation z ≤ i, then v computes Kvu = fv(i + 1||Idu)

and sends back to node u the following message:

v → u : z, Idv, Nv,MACKvu(z, Idv, Nv, Nu)

- If j=z=i+1 (u, v ∈ Gi+1), then:
• If the timer set by node v (to the value Test, see section 3.3), did not

expire, do the same treatment as the previous case.
• If the timer expired, reject the request, because node u is suspected

to be malicious.

6

Upon receiving node v′s message, node u computes Kuv = fu(z||Idv), and
checks the message authenticity. If the message is authenticated, node u sets
Kuv as the shared pair-wise key with v, and sends to v the following message to
conclude and mutually authenticate the key establishment process:

u → v : ok,MACKuv
(ok, Nv)

Upon receiving node u′s response, node v checks the message authenticity
using Kvu, and, if successfully done, node v sets Kvu as the shared pair-wise
key with u, otherwise (failed authentication, or non received response), it erases
Kvu.

At the end of this phase, either a pair-wise key is established between two
valid nodes, or the pair-wise key establishment fails in case one of the two nodes is
suspected of being a clone or a false node. The described protocol guarantees that
any served key establishment request, originates from a node belonging to the
newly deployed generation i+1. However, the current version of the protocol fails
to detect two particular attempts of false key establishment. The first attempt
is when an attacker compromises a newly deployed node of generation i + 1 and
deploys clones in the neighborhood of nodes of older generations, and the second
attempt is when an attacker compromises an older deployed node, and tries to
respond to the Hello messages of the newly deployed nodes. Solutions to these
two particular attempts are presented in section 7.

4.3 Key-path establishment phase

In our scheme, two non neighboring nodes might attempt to establish a secret
key. The two nodes might belong to the same generation, or to two different
generations. Moreover, the node initiating the establishment might be from a
higher generation, same generation, or lower generation than the target node.
This raises a problem because we supposed that only newly deployed nodes are
eligible for requesting key establishment. We rely on the previously established
pair-wise keys in order to overcome this problem, and to guarantee each node
that the other node is a valid node and not a cloned node or a false injected
node.

Let u ∈ Gi and v ∈ Gj be two distant nodes that need to establish a secret
key, and consider that u initiates the communication, and u knows Idv and
that v ∈ Gj . First, u must find a secure path to node v, formed by previously
established secure links. Once the path is found, node u sends to v the following
Key Establishment Request (KER) message:

u → v : i, Idu, Nu,MACKuv (i, Idu, Nu)

where Kuv = fu(j||Idv). The KER message is sent in a secure path, where each
node in the path, including u and v, authenticates the message with the key it
shares with the previous node in the path. Upon receiving the KER message,
node v computes Kvu = fv(i||Idu), and then checks the authenticity of the

7

message. If the KER message is authenticated, then v sends back to u the Key
Establishment Confirmation (KEC) message:

v → u : ok, MACKvu(ok, Nu)

to conclude the key-path establishment. Node u checks the authenticity of the
KEC message, and in case of unsuccessful authentication, it erases Kuv.

Note that thanks to the secure path, each node is ensured that the other node
is neither a cloned node nor an injected node. Indeed, suppose that the path is
going through nodes: u, w1, . . . , wi, wi+1, . . . , wr, v. According to section 4.2,
each pair-wise key (secure link) in the network is established between two valid
nodes, which are neither cloned nodes nor false injected nodes. As a consequence,
the fact that u found a secure path and received the KEC message means that
node v is a valid node, and the fact that node v received the KER message
through the path, means that node u is a valid node.

5 Determining the highest deployed generation

Now let describe how nodes know the number of the highest deployed generation,
as seen in section 4.2.

The BS initially defines a static scheduling for generations deployment. The
BS considers deploying the first generation G1 at instant T1 = 0, which serves
also as a reference within deployed nodes for synchronization and time count-
ing. If a period T is defined between each generation deployment, each node of
generation i needs only be loaded with its generation’s deployment time Ti, and
the period time T .

After nodes deployment, when a node u ∈ Gi asks for key establishment, a
neighbor node v of an older generation j verifies that u is a node of the newly
deployed generation Gi, by verifying that 0 < tcurrent − (i − 1) ∗ T < T , where
tcurrent is the current time in node v. If this inequality is not verified, v rejects
the request of u, because u is not a node from the highest deployed generation.

6 Computation and memory costs

Now, let consider the computation and memory costs of our protocol. For the
memory cost, each node stores its extended identifier (generation number, node
ID), its polynomial share and the established pair-wise keys. An extended iden-
tifier is 6 bytes length (see section 4.1). A polynomial share is represented by
t+1 coefficients, plus the modulo Q. If we choose a modulo Q of 8 bytes, as
in [11], and t=100, each node needs 816 bytes memory to store its polynomial
share. In addition, each established pair-wise key needs 8 bytes of memory.

For the computation cost, each node needs to evaluate its polynomial share
for each pair-wise key establishment. As described in [11], evaluating a polyno-
mial share requires t modular multiplications and t modular additions in a finite
field FQ. However, because a sensor’s CPU does not manipulate words of 64 bits

8

(8 bytes), and the more powerful of them, like MOTEIV [12], handles words of
16-bit only (2 bytes), more modular multiplications and modular additions are
needed. Consequently, in a 16-bit CPU processor, evaluating a t-degree polyno-
mial share fu(y) over a finite field FQ, where Q is a prime number of 64 bits,
and y is an extended identifier (see section 4.1) of 48 bits (6 bytes), requires 4× t
modular additions, and 12 + 28× (t− 1) modular multiplications.

7 Security analysis of our solution

The proposed security analysis of our protocol focuses on the resilience to nodes
compromising, and other features.

7.1 Resilience to nodes compromising

Now, let consider the resilience to nodes compromising, which refers to the capa-
bility of an attacker to inject cloned nodes and new nodes in the network, using
the key materials it gets from the compromised nodes.

Injecting nodes with false Ids. It is clear that as long as an attacker compro-
mises fewer than t+1 nodes, new nodes with non-existing Ids can not be injected
in the network. In our protocol, each node u possesses a unique polynomial share
bound to its identity fu = f(i||Idu, y), where u ∈ Gi. After compromising node
u, an attacker can not create node u′, with a new identity Idu′ and a new poly-
nomial share fu′(y) = f(i||Idu′ , y). In addition, an attacker can not use the
polynomial share fu, because node u′ will fail to establish secret keys with this
polynomial share using the new identity Idu′ .

As a conclusion, our protocol is resilient to the injection of false nodes with
non-existing identifiers in the network.

Injecting cloned nodes. In our protocol, and under our assumptions of sec-
tion 3, an attacker is highly unlikely to deploy cloned nodes, and convince his
neighbors of the validity of the clones.

Table 2 summarizes the different scenarios for key establishment. Four possi-
ble cases of key establishment can be differentiated according to the generations
to which the requesting node and the responding node belong. Next the behavior
of the attacker is analyzed according to the role of the attacker which is either
a requesting node, or a responding node.

First, let see how our protocol handles the two last cases Old − New, and
Old − Old, where a node u of an older deployed generation asks for key estab-
lishment with a node of a newer generation, or an older generation. Remember
that only nodes of the newly deployed generation are able to establish secure
links with their neighbors. As a consequence, an attacker compromising an older
deployed node u ∈ Gi, can not initiate key establishment with another deployed
node v ∈ Gj where j > i. In addition, the mechanism described in section 5

9

Table 2. Identified scenarios for key establishment according to the generation of
concerned nodes

Requesting node Responding node

New New
New Old
Old New
Old Old

guarantees that all nodes of the network have the same view of the number of
the highest deployed generation, so a node u ∈ Gi of an older generation can
not ask for key establishment with a node v ∈ Gj where j ≤ i.

Second, let see how our protocol handles the first case New−New, where an
attacker compromises a newly deployed node and asks for key establishment with
another newly deployed node of the same generation. By limiting the duration
of key establishment phase for newly deployed nodes to Test, even if an attacker
compromises a newly deployed node in a period of time Tcomp (Tcomp > Test),
he cannot establish secure links with other nodes of the same generation, simply
because the responding nodes will reject the request, as described in section 4.2.

Now let see how our protocol handles the second case, where a node of the
newly deployed generation asks for key establishment with a node of an older
generation. Again, two cases are distinguished:

- First, the newly deployed node (requesting node) is a cloned node of a com-
promised node that belongs to the newly deployed generation.

- Second, the responding node is a cloned node of a compromised node that
belongs to an older generation.

For the first case, unfortunately the algorithm in section 4.2 does not handle
this situation. This case is difficult to detect, because the cloned node looks
like a node belonging to the highest deployed generation. One solution could
be that an older deployed node accepts establishing secure links with nodes
of any newly deployed generation only during a period of time Tmax after the
deployment of any new generation, where Test < Tmax < Tcomp. According to
section 5, nodes know the static scheduling of generations deployment, so each
deployed node sets a timer to the value Tmax when the time of deployment of
a new generation is reached. Because an attacker needs at least a time Tcomp

in order to compromise a newly deployed node, we are practically ensured that
an attacker compromising a newly deployed node, can not establish secure links
with nodes of older generations, because these nodes will reject his request.

The second case is also difficult to detect, because the newly deployed node is
asked for key establishment, and it has no way to check whether the responding
node is a cloned node. The problem is even more difficult if the clone stays
inactive or silent until a newly node is deployed. At this time, the clone might
become active and establish a secure link with it by simply responding to its
request. In this scenario, because the cloned node does not ask its neighbors for

10

key establishment, it cannot be detected, so the newly deployed node cannot
be prevented. One solution to this problem is that deployed nodes which are
neighbors of both the newly deployed node and the cloned node, detect that a
neighbor node exists but they have no secure links with it, so they conclude that
the node is a malicious node. As a consequence, an informative message is sent
by them to the newly deployed node which erases any established key with the
cloned node.

7.2 Node revocation and Intrusion detection.

As described above, in the four possible cases of key establishment, an active
attack is always detected. Moreover, a silent attacker (intruder) is also detected
when he tries to respond to key establishment requests from newly deployed
nodes, and the newly nodes are then notified. As a consequence, the identity of
the compromised node is known, so the neighboring nodes of the cloned node can
either launch a distributed revocation against it, or notify the BS which broad-
casts a revocation message in the network for revoking both the compromised
node and its clones.

8 Related Works

Liu et al. [4] propose a distributed location-aware key establishment protocol,
based on bivariate symmetric polynomials. The protocol assumes that the net-
work is formed by simple nodes, and some sufficiently dedicated nodes called
the service nodes, which are elected amongst sensors after deployment. These
nodes play the role of trusted key servers in the network and are assumed to be
non-compromised. The protocol also assumes that once nodes are deployed, they
know their exact location coordinates (x, y). After deployment, each service node
creates a distinct t-degree bivariate polynomial, and then securely initializes each
neighbor node with its secret polynomial share, using the unique location coordi-
nates of the node. The protocol is resistant and resilient to node compromising,
as long as the service nodes are not compromised, and there are fewer than t+1
compromised nodes initialized by the same service node. However, if a service
node is compromised - which is a current threat because a service node is just a
non tamper resistant sensor node - an attacker can inject clones and new nodes
with new positions, deploy them in the neighborhood of the compromised service
node, and establish secure links with any nodes of the network.

Dutertre et al. [9] suppose that nodes are deployed in n successive genera-
tions, and can not be compromised in a period of time less than Tcomp > Test

(see section 3.1). Each generation is loaded with a unique two master keys,
used respectively for authentication and key generation between the nodes of
the generation. Once a deployed node successfully establishes secure links with
its neighbors of the same generation, it erases these two keys to prevent from
attacks. In order to establish secret keys between nodes of two different gen-
erations, each generation i is also loaded with a unique secret group key GKi

11

that enables nodes to establish secure links with previously deployed generations
j = 1, . . . , i− 1. In addition, each node u of generation i is loaded with a unique
random value Ru, and a secret key Suj = H(GKj , Ru) for each future genera-
tion j = i + 1, . . . , n, allowing it to establish secure links with nodes of newly
deployed generations. The group key GKi is also deleted at the end of the key
establishment phase. The protocol is poorly resilient to nodes compromising, as
an attacker compromising a node of generation i, can establish secure links with
nodes of the future deployed generations, using the compromised secret keys Suj .
Moreover, if an attacker compromises a node u of generation i in a time period
less than Test, he might retrieve the master keys of generation i, and the group
key GKi. As a consequence, he can deduce secure links established between
nodes of generation i, and can inject cloned nodes and false nodes anywhere in
the network.

Bhuse et al. propose a key distribution protocol based on the use of the
Hughes’s variant of the DH protocol with encrypted key exchange (HDH-EKE) [13],
and based on the assumption that nodes can not be compromised, and even if
they are, then they self destroy without revealing their secret cryptographic
materials. All nodes are initially loaded with a common password P used for
authentication, and after deployment, nodes self organize into clusters, and elect
one of them to act as a key server. The key server of each cluster generates
a cluster key, and securely distributes the key to each one-hop neighbor using
the HDH-EKE protocol, which in turn will pursue the distribution of the key
to its neighbors in the same manner, until all nodes of the cluster posses the
cluster key. The cluster key is used for encrypting messages and authenticating
them inside the cluster. In order to send packets between two different clusters,
boarding nodes, which posses the cluster keys of two or more clusters will act
as a gateway by decrypting/encrypting messages from the source cluster to the
target cluster. The key server periodically updates the cluster key, by sending
a random counter value used along with the secret password, and the current
cluster key to produce the new cluster key. The main problem of this proto-
col is its high computation overhead due to the use of modular exponentiations
(public key cryptography), its weak authentication mechanism. The protocol is
resilient against nodes compromising as long as an attacker cannot retrieve the
secret common password P. However, it’s unlikely that sensors can be tamper-
resistant [10] [14], where memory containing the secret cryptographic materials
is hardware-protected, because this will increase significantly the cost of sensors,
and sensor nodes are intended to be very inexpensive.

9 Comparison with previous work

As we have seen in the description of some previous works done in the litera-
ture, most of them lack to provide resilience to nodes compromising, and those
providing some degree of resilience rely on some assumptions, that can not be
met easily. For essence, [6] and [4] suppose that nodes are tamper-resistant
devices, so they can not be compromised or they self destroy when they detect

12

that they are under attacks, and [4] relies also in the assumption that nodes
know their locations coordinates, in-order to tie each node’s secret key mate-
rial (i.e. its secret polynomial share) to its location coordinates, so even if in
attacker succeeds into compromising a node and creates some cloned nodes, it
can not deploy them anywhere in the network. Someone can suppose that the
future generation of sensors will be tamper-resistant. However, tamper-resistant
devices are expensive, and constructors tendency may be to keep sensors at
lower prices, with an increase of memory and computation capacities, instead
of making them tamper-resistant. Localization in WSN is still under research,
and the actual solutions assume that either nodes are equipped with GPS re-
ceivers, or the existence of some trusted nodes (at least three) on the perimeter
of the network, that provide nodes with their locations coordinates. The first
solution is unlikely to be deployed in sensors, and is energy consuming, and the
second solution requires multiple trusted entities, and the resulting location co-
ordinates are prone to errors. In our protocol, we don’t assume that nodes are
tamper-resistant devices, and we don’t consider nodes locations.

Some other works like [5], [9] and [15], suppose that nodes share some common
secret key(s) they use for key establishment, which will be erased from their
memory straightforward after they finish key establishment when they are first
deployed. These protocols suppose, as we do, that nodes can not be compromised
in time less then Tcomp, and that any newly deployed node needs at most a time
Test < Tcomp to establish keys with its neighbors. However, in the previous
protocols, if an attacker succeeds to compromise a node in time less then Test,
it will have access to all its secret key materials, especially the common secret
key(s), consequently the entire network security can be compromised, because
established keys between non-compromised nodes can be retrieved, and future
established keys can also be computed, and evidently cloned nodes and new
nodes with non-existing identifiers can be easily injected. In our protocol, only
if an attacker compromises a newly deployed node (which belongs to the newly
deployed generation) in a time less than Test, it will be able to deploy cloned
nodes in the network and establish pair-wise keys with them, but the attacker
can not compute any pair-wise key established in the network between two non-
compromised nodes. If an attacker compromises an old deployed node (which
belongs to an old deployed generation), it can not deploy cloned nodes of it,
and even if the cloned nodes launch a silent attack (see section 7.2) they will be
detected.

10 Conclusion

Our proposed solution improves considerably resilience to nodes compromising
compared with other protocols, and does not require any prior knowledge relative
to nodes deployment, and any common secret key pre-establishment between
nodes. Moreover, the solution does not rely on non-realistic assumptions like
supposing that compromised nodes do not divulge their secret keys or that some
nodes in the network can not be compromised.

13

Our protocol uses t-degree polynomial-based key generation protocol for
achieving resistance to nodes compromising, and the proposed group-based de-
ployment scheme for resilience against nodes compromising, where only nodes of
the newly deployed generation ask for key establishment. In addition, the pro-
posed mechanism for determining the highest deployed generation, guarantee
that nodes will respond only to the newly deployed nodes’ requests, and lim-
iting the duration of key establishment makes it practically impossible for an
attacker to succeed in establishing keys in the network. Moreover, our protocol
supports detection of silent attackers (intruders) and can be enhanced to achieve
a distributed revocation. In a future work, we’ll implement our protocol to eval-
uate its real resiliency to nodes compromising, and extend it with a distributed
revocation mechanism.

References

1. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y.: Wireless sensor networks: a survey.
Computer Networks 38 (2002) 393–422

2. Chan, H., Perrig, A., Song, D.: Random Key Predistibution Schemes for Sensor
Networks. In IEEE Symposium on Security and Privacy. Okland California USA
(2003) 197–213

3. Liu, D., Ning, P., Du, W.: Group-Based Key Pre-Distribution in Wireless Sensor
Networks. In Proc. of the 4th ACM workshop on Wireless security. Cologne Germany
(2005) 11–20

4. Liu, F., Major Rivera, J. M. , Cheng, X.: Location-aware Key Establishment in
Wireless Sensor Networks. In Proc. of the International Conf. on Wireless Commu-
nications and Mobile Computing. Vancouver Canada (2006) 21–26.

5. Zhu, S., Setia, S., Jajodia, S.: LEAP: Efficient Security Mechanisms for Large Scale
Distributed Sensor Networks. In Proc. of the 10th ACM Conf. on Computer and
Communications Security. Washington DC USA (2003) 62–72

6. Bhuse V., Gupta A., Pidva R. (2003) A Distributed Approach to Security in Sensor-
nets. IEEE Vehicular Technology Conference: 3010-3014.

7. Blundo, R., Suntis, A. D., Herzbeg, A., Kutten, S., Vaccaro, U., Yung, M.: Perfectly
secure key distribution for dynamic conferences. In Proc. of the 12th Annual Interna-
tional Cryptology Conference on Advances in Cryptology. Springer-verlag, UK (1992)
471–486

8. Yu, Z., Guan, Y.: A Robust Group-based Key Management Scheme for Wireless
Sensor Networks. IEEE Wireless Communications and Networking Conference. New
Orleans USA (2005) 1915–1920

9. Dutertre, B., Cheung, S. , Levy, J.: Lightweight Key Management in Wireless Sensor
Networks by Leveraging Initial Trust. SDL Technical Report SRI-SDL-04-02, SRI
International (2004)

10. Perrig, A., Szewczyk, R., Wen, V., Cullar, D., Tygar, J. D.:”Spins: Security pro-
tocols for sensor networks”. In Proc. of the 7th Annual ACM/IEEE International
Conference on Mobile Computing and Networking. Rome Italy (2001) 189-199

11. Liu, D., Ning, P.: Establishing Pairwise Keys in Distributed Sensor Networks. In
the Proc. of the 10th ACM Conference on Computer and Communication Security.
Washington DC USA (2003) 52–61.

12. TmoteSky wireless sensor module. http://www.moteiv.com/products/docs/tmote-
sky-datasheet.pdf

14

13. DH Key-Excchange Protocols. https://www.cs.tcd.ie/courses/baict/bass/4ict11/Cou
sewo k/4ICT11MT6.2.pdf

14. Karlof, C., Wagner, D.: ”Secure routing in wireless sensors networks: attacks and
countermeasures”. Elsevier’s AdHoc Networks Journal, Special Issue on Sensor Net-
work Applications and Protocols (2003)

15. Dimitriou T., Krontiris I. (2005) A Localized, Distributed Protocol for Secure
Information Exchange in Sensor Networks. In Proc. of the 19th IEEE International
Parallel and Distributed Processing Symposium.

