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Abstract 

A recent series of papers by Charles T. Perretti and collaborators have shown that nonparametric 

forecasting methods can outperform parametric methods in noisy nonlinear systems. Such a 

situation can arise because of two main reasons: the instability of parametric inference 

procedures in chaotic systems which can lead to biased parameter estimates, and the discrepancy 

between the real system dynamics and the modeled one, a problem that Perretti and collaborators 

call “the true model myth”. Should ecologists go on using the demanding parametric machinery 

when trying to forecast the dynamics of complex ecosystems? Or should they rely on the elegant 

nonparametric approach that appears so promising? It will be here argued that ecological 

forecasting based on parametric models presents two key comparative advantages over 

nonparametric approaches. First, the likelihood of parametric forecasting failure can be 

diagnosed thanks to simple Bayesian model checking procedures. Second, when parametric 

forecasting is diagnosed to be reliable, forecasting uncertainty can be estimated on virtual data 

generated with the fitted to data parametric model. In contrast, nonparametric techniques provide 

forecasts with unknown reliability. This argumentation is illustrated with the simple theta-

logistic model that was previously used by Perretti and collaborators to make their point. It 

should convince ecologists to stick to standard parametric approaches, until methods have been 

developed to assess the reliability of nonparametric forecasting. 
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Introduction 

The societal demand for predictions in ecology poses a major challenge to the scientific 

community. It triggers the need to design efficient methodologies that can tackle the inherent 

complexity of ecosystems. Most predictive exercises in ecology so far have relied on parametric 

approaches, that is on the design of a model, on the estimation of model parameters that best fit 

available data, and on the use of the calibrated model to make predictions. Parametric methods 

encompass widely different approaches to predictions, from correlative approaches, in which the 

model is a statistical one (e.g., Austin 2002), to detailed individual-based modeling approaches 

(Grimm and Railsback 2005, Hartig et al. 2011, Jabot et al. 2013). In this general methodology, 

the generally accepted view is that by refining our understanding of the processes at stake in the 

dynamics of a system, we will improve our ability to make reliable predictions. This is one of the 

arguments advanced in favor of complex mechanistic modeling in ecology (Evans et al. 2013).  

 

In contrast with this general approach, Perretti and colleagues have argued in a series of recent 

papers that model-free nonparametric approaches may be a better way to tackle ecosystem 

complexity (Perretti et al. 2013a,b,c). These nonparametric approaches rely on the idea that one 

should be able to forecast future dynamics by analogy with past dynamics. More precisely, a 

phase space representation of past dynamics is used, in which variables of interest are plotted as 

a function of each other, possibly with time delays (Kantz and Schreiber 2004). Forecasts are 

then built using the collection of previously observed dynamics, weighted by their proximity in 

the phase space (see Materials and Methods and Perretti et al. 2013a,b for additional details). 

 

Perretti et al. (2013a,b) showed that such a nonparametric approach to forecasting could 

outperform parametric forecasts in some stochastic dynamical systems in chaotic regimes, even 

in situations in which the parametric forecast was based on the same model that was used to 

generate the data. This poor performance of parametric forecasting was due to two main reasons. 

The first reason is the well known instability of parametric inference in chaotic systems (Berliner 
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1991, Wood 2010). Hartig and Dormann (2013) recalled an alternative method to calibrate the 

model which is based on a segmentation of the time series to circumvent the sensibility to initial 

conditions encountered in chaotic regimes (Pisarenko and Sornette 2004). Armed with this trick, 

Hartig and Dormann (2013) have shown that the parametric forecast is more accurate than the 

nonparametric one in the case where the same model was used to generate the data and to ground 

the forecast. 

 

The second reason for parametric forecasting failure was called by Peretti et al. (2013c) the “true 

model myth”, and comes down to the very meaning of what a model is (Box 1976). Indeed, there 

is a necessary mismatch between reality and its simplified modeled representation. Perretti et al. 

(2013c) therefore repeated their analysis, using the theta-logistic model (see Methods) to 

generate a virtual dataset, and basing the parametric forecast on the simpler logistic model. In 

this setting, and using the inference method proposed by Hartig and Dormann (2013), they found 

that their nonparametric forecast was more accurate than the logistic based forecast. 

 

As already argued by Hartig and Dormann (2013), parametric approaches offer the advantages of 

transferability and theoretical understanding which are lacking in nonparametric methods. They 

further enable to mobilize previous knowledge on the system studied through prior distributions 

in Bayesian analyses. The aim of this contribution is to demonstrate that parametric approaches 

are currently also preferable in a forecasting perspective, using the theta-logistic example of 

Perretti et al. (2013c). Two key comparative advantages of parametric approaches over 

nonparametric ones will be detailed. First, the likelihood of parametric forecasting failure can be 

diagnosed thanks to simple Bayesian model checking procedures. Indeed, the convergence of a 

parametric inference method does not ensure that the fitted model is a satisfactory representation 

of the data. Simple methods are available to check, with minor computing costs, the ability of the 

fitted model to recover major data characteristics (Rubin 1984, Gelman et al. 1996). In cases 

where the fitted model fails at such model checking tests, modifications of the model should be 

sought, before any reliable predictions can be made. Second, when parametric forecasting is 



 4 

diagnosed to be reliable, forecasting uncertainty can be estimated thanks to virtual data generated 

with the fitted to data parametric model. This second advantage enables to complement a 

forecast with a detailed understanding of its inherent limitations. These two key advantages 

enable scientists to enrich their forecasts with a description of their reliability.  

 

Methods 

The theta-logistic model 

In the following, the theta-logistic model with observation error is used to generate time series of 

population abundances. These time series represent the observed “reality” that we are trying to 

forecast. The deterministic theta-logistic model is defined by the following difference equation: 

X(t+1) = X(t) × r × [ 1 – ( X(t) / K )θ ]    (1) 

where X(t) is the true population abundance at time t, r is the population growth rate, K is the 

carrying capacity and θ is a model parameter. When θ equals 1, the model is the well known 

logistic model of population dynamics, which can generate deterministic chaos (May 1974). 

 

Equation (1) describes the true dynamics of the population, while observers only have access to 

noised estimations of population size N(t). Following Perretti et al. (2013b), the observation error 

is modeled here using: 

N(t) = X(t) × exp[ ε(t) ]     (2) 

where ε(t) are independent normal random variables with mean 0 and standard deviation sobs, 

leading to lognormal observation error.  
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Equations (1) and (2) are used to generate artificial data. Six values of θ were used {1; 1.1; 1.2; 

1.5; 2; 4} with corresponding r values {3.7; 3.7; 3.5; 3; 2.5; 1.8} to ensure a chaotic regime and 

population survival. Three levels of noise sobs were used: 0.05, 0.1 and 0.2 (represented in 

Figure S1), leading to an increase of the temporal variance in observed population sizes N(t) of 

3, 12 and 52% respectively, compared to the temporal variance of real population sizes X(t). This 

range of observation noise level is in line with previous theoretical studies (de Valpine and 

Hastings 2002) and with reported values estimated on the global population dynamics database 

(Knape and de Valpine 2012). For each triplet of values (θ; r; sobs), 50 time series of 100 time 

steps were generated, starting from an initial population size X(1) equal to 0.5, so that 900 time 

series were generated in total. 

 

Parametric model fit 

Each of these 900 time series was fit with the logistic model, which is the special case when θ 

equals 1 in equation 1. Only the 50 first steps of the time series were used for calibration, and the 

50 remaining steps were used to assess the quality of the forecasts. Following Hartig and 

Dormann (2013), the time series were split into 10 subsets of 5 time steps each, and the X(t) 

values at the beginning of each subset were considered unknown. The rationale of this splitting 

procedure is to focus on short subset of the time-series so as to decrease the impact of the 

sensitivity to initial conditions which is specific to chaotic dynamics. The length of the splitting 

procedure was guided by Hartig and Dormann (2013) who have already shown that it was 

efficient for this parametric model. For other case studies, alternative splitting length might be 

more efficient. They could be compared by trial and error. Three MCMC chains were used with 

dispersed initial r values, 500,000 adaptation steps, 500,000 burn-in iterations and 1,000,000 

posterior samples, of which 10,000 (1 every 100 steps) were retained to perform model checks 

and compute predictions. Prior distributions were uniforms on [2;4.5],  [0.01;10] and [0.1;40] 

respectively for r, K and the observation precision equal to 2/1 obss . This last prior distribution 

was changed to uniform on [10;600] for cases of low and middle observation noise (sobs equal to 

0.05 or 0.1 in the simulations). Convergence of the chains was checked with the multivariate 

potential scale reduction factor, that was required to be smaller than 1.2. Bayesian analysis was 
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performed with R version 3.0.1 and JAGS 3.4 (Plummer 2003). R and JAGS scripts are provided 

in the Appendix.  

 

Model checking 

The 10,000 parameter sets sampled in the MCMC were used to simulate 10,000 posterior 

predictive datasets with observation error of 50 time steps (for each of the 900 fitted time series). 

Note that this implies to have additionally recorded during the MCMC the fitted initial 

population size X(1). Five summary statistics were computed on each posterior predictive dataset 

and on the “real” fitted time series: the average observed population size N , the standard 

deviation of observed population sizes through time Nσ̂ , and the autocorrelation coefficients 

R(t) of observed population sizes with time lag t equal to 1, 2 and 3 (
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= ). For each summary statistic, a p-value was 

computed as the percentage of posterior predictive statistics below the value computed on the 

real dataset. The minimum pmin of these 5 p-values (or of 1 – p-value in cases it is lower than the 

p-value) is reported in the result section.  

 

Posterior predictive p-values are not uniformly distributed between 0 and 1, but instead tend to 

be peaked around 0.5 (Robins et al. 2000, Gelman 2013). Interpreting them as standard p-values 

would thus lead to too liberal model checking procedures. A second difficulty arises here since 

five p-values are combined in pmin. Therefore, model checking statistics are not directly 

interpreted. Instead, each posterior predictive p-value is compared to the ones obtained on data 

sets generated with the model used for the fit. If the posterior predictive p-value obtained with 

the real data is lower than those obtained on data sets generated with the model, this will indicate 

a poor model fit quality of the real data. 
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We also tested the method proposed by Crespi and Boscardin (2009) to perform model checking 

on multivariate outputs. It was however found to be less efficient at discarding poor model fits 

than the above approach, in the present case study. Note also that Peretti et al. (2013c) mentioned 

that they performed some model-fit diagnostics when applying parametric approaches, but 

without further explanation. The fact that they were not able to detect model misfit is likely due 

to the use of too liberal model checking tests. Such too liberal tests are likely to stem from a 

direct interpretation of posterior predictive p-values or to the use of a set of summary statistics 

that is not sufficient to properly assess model fit quality. This should serve as a reminder that the 

power of model diagnostic procedures should be tested with simulated datasets. 

 

Parametric Forecast error 

Following Hartig and Dormann (2013), point estimates of the various parameters (the medians of 

the parameters sampled during the MCMC) were used to compute predicted future population 

sizes for up to the next 50 time steps. Concretely, for each parameter point estimates, 50 time 

series were computed starting at time step t (with t in [50;99]), and lasting during 100 – t steps. 

These time series were using as initial X(t) values, a maximum-likelihood estimator based on the 

last five observed population sizes N(t-4)…N(t), and using the model parameter point estimates. 

The mean square error between the simulated X(t) values and the reference X(t) values were then 

computed, and divided by the standard deviation of the reference time series to obtain 

standardized root mean square errors (SRMSE, see Hartig and Dormann 2013 for details, and the 

Appendix for the R scripts used). Constant forecasts equal to the population temporal mean 

would lead to a SRMSE equal to one. Therefore, forecasts with a SRMSE larger than one can be 

considered to have failed. Note that, contrary to what Perretti et al. (2013b,c) and Hartig and 

Dormann (2013) did, predictive time series were not launched from the true population sizes 

X(t), but from a maximum-likelihood estimator of the current population size. This choice 

ensures a more realistic setting where only past observed population sizes N(t) are known. Also 

note that it would have been possible to use as starting values for the validation time series the 

sampled MCMC values for the true population sizes X(t), but it would have implied to repeat the 
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parametric fitting for each starting value of the validation time series, which would have been 

here prohibitively costly computationally. 

 

Overall forecasting efficiency was summarized in the statistics AreaSRMSE defined as the overall 

improvement of the forecast compared to a forecast equal to the average population size (having 

a SRMSE equal to 1). AreaSRMSE was computed as: ( )∑ =
−=

8

1
0),(1max

iSRMSE iSRMSEArea  

where SRMSE(i) is the SRMSE of a forecast i time steps in the future. Negative values for 1-

SRMSE(i) were not considered in this formula to focus on the short-term forecast efficiency of 

the parametric and nonparametric methods, since both will fail for long-term predictions in 

chaotic systems (Perretti et al. 2013b).  

 

Nonparametric forecasting 

Nonparametric forecasting was also implemented on these 900 time series using the S-Map 

model as in Perretti et al. (2013a,b). This consists in first, transforming the univariate time series 

N(t) into a time series of time-delayed vectors (N(t),N(t-1),...,N(t-E+1)), with E the embedding 

dimension. If n temporal points are available in the time-series, this produces n-E+1 vectors of 

dimension E. Each vector (N(t),N(t-1),...,N(t-E+1)) is associated to the following trajectory 

((N(t+1),...,N(t+k)), observed in the k following time steps. The nonparametric forecast of the k 

next step consists in a weighted average of these following trajectories over the n-E+1-k vectors 

that have k following time steps available in the time series. The weight of a vector is given by 

( ) ( )dddw /exp θ−=  where θ is a parameter of the S-Map model, d is the Euclidean distance 

between the current data and the focal vector whose weight is computed, and where d  is the 

average of d over the various vectors. Embedding dimensions E equal to 2, 3 and 4, and θ values 

between 0.5 and 25 (with an increment of 0.5) were tested. The combination (E,θ) leading to the 

smallest mean square error on a forecasting interval of length 1 was determined by cross-

validation as in Perretti et al. (2013b). Note again that, contrary to what Perretti et al. (2013a) 

did, observed population sizes N(t) in the past were used to ground the forecasts, instead of true 
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population sizes X(t), since this is the only piece of information available in real settings. R 

scripts are provided in the Appendix. 

 

We repeated all the previous analyses including lognormal process errors in the model (with 

sproc equal to 0.005, and using 10 instead of 50 repetitions per parameter set). Results were 

qualitatively similar, although MCMC convergence was slower. These results are therefore not 

reported further in the following. 

 

Results 

The model checking procedure allowed to detect, in the majority of cases, the failure of the 

logistic model (θ=1) to satisfactorily fit the data in cases of low (sobs=0.05) and middle 

(sobs=0.1) noise level (Figure 1A,B). Indeed, 94% of the pmin values obtained on data generated 

with the theta-logistic (θ =4) were lower than the 5 percentile of pmin values obtained on data 

generated with the logistic model (θ =1), in the low noise case (Figure 1A). This number was 

still equal to 64% in the middle noise case (Figure 1B). In contrast, this model checking 

procedure failed in the large noise case (Figure 1C). 

 

 



 10 

Figure 1. Histograms of model checking pmin values when the parametric fit is based on the 

“true” model in white (data and model fitted based on θ=1), or on a “wrong” model in grey (data 

generated with θ=4 while the model fitted uses θ=1). Panels A, B and C correspond respectively 

to cases of low, middle and large observation noise sobs. 

 

The ability of the model checking procedure to detect model misfit was also influenced by the 

discrepancy between the model and the simulated data, as measured by the θ value used to 

simulate the data (Figure 2). In the low and middle noise cases (Figure 2A,B), model misfit 

could be detected for values of θ larger than or equal to 1.5, since pmin values were sharply 

smaller than those obtained with the reference model (with θ equal to 1). Model misfit could not 

be detected in the large noise case, irrespective of the value of θ (Figure 2C). 

 

 

Figure 2. Quantile values of the model checking statistics pmin as a function of the discrepancy 

between the model fitted (θ=1) and data (simulated with θ). The boxes and middle lines 

correspond to the 25, 50 and 75 percentiles of the pmin distributions. Panels A, B and C 

correspond respectively to cases of low, middle and large observation noise sobs. 
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As the discrepancy between the model and the simulated data (measured by the θ value used to 

simulate the data) rose, forecast errors progressively increased for parametric forecasts, 

especially in the low noise scenario (Figure 3A, B and C). In contrast, nonparametric forecasts 

were only marginally affected by the value of θ used in the simulated datasets and were found to 

outperform parametric forecasts for large value of θ (Figure 3C and F), while the contrary was 

observed for smaller θ values (Figure 3A, D and E). SRMSE reached larger than one values for 

both approaches, indicating that they both performed worse than a simple average forecast in the 

long term. This result is not surprising given the notorious sensitivity to initial conditions 

inherent to chaotic systems, which prevents any reliable long-term forecast. No reliable 

predictions could be achieved for more than 5 time steps in the future in all cases. Parametric and 

nonparametric approaches were comparable, in all but one case (Figure 3C). For this low-noise 

case with strong model misfit, the nonparametric approach strongly outcompeted the parametric 

one. Notably, and contrary to what Perretti et al. (2013b,c) argued, in large noise cases, forecast 

efficiencies were poor for both parametric and nonparametric approaches (Figure 3D, E and F).  
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Figure 3. Forecast errors measured by the standardized root mean squared error (SRMSE) as a 

function of the number of time steps between current data and the predictions, using either the 

parametric (solid lines) or the nonparametric approach (dotted lines). Vertical bars stand for the 

95% confidence interval of the SRMSE. Panels A, B, C (D, E, F) correspond to the low (large) 

noise cases. Panels A and D (respectively B and E, C and F) correspond to data generated with 

θ equal to 1, 1.2 and 4. 

 

Finally, overall forecast efficiencies of the parametric approach were found to decrease with the 

level of observation noise and to be linked with model checking statistics (Figure 4). In both the 

low and middle noise cases, when model diagnostics would suggest that the model fit quality is 

acceptable (large pmin in Figure 2A, B obtained for θ values lower than 1.5), reasonably good 

parametric forecast accuracies were reached that were comparable to nonparametric ones (Figure 

4A, B). For larger θ values, parametric forecasts were less efficient than nonparametric ones 

(Figure 4A, B). In the large noise case, forecasting accuracies were poor for both parametric and 
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nonparametric approaches (Figure 4C), and model checking procedures failed at detecting model 

misfit (Figure 2C). Importantly though, in this last case with large observation noise, forecasting 

quality was poor even when data were simulated with the model fitted (Figure 4C for a θ value 

equal to 1). This means that ecologists could in this case detect the lack of parametric forecast 

reliability, using simulated data with the fitted level of observation noise. In contrast, when 

forecasts performed with the nonparametric approach fail (Figure 4F), ecologists have currently 

no way to detect this failure. 

 

 

Figure 4. Forecasting efficiency measured by AreaSRMSE (see methods) as a function of the 

discrepancy between the model fitted (θ=1) and data (simulated with θ). Panels A, B and C 

correspond respectively to cases of low, middle and large observation noise sobs. Crosses and 

plain lines stand for parametric forecasts. Circles and dashed lines stand for nonparametric 

forecasts. 

 

Discussion 

Why using parametric forecasting?  

This study aimed at highlighting two key advantages of parametric approaches to forecasting. 

First, Bayesian model checking procedures are powerful tools to asses the misfit of a model 
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calibrated on real data. These tools enable to identify cases in which our modeled understanding 

of an ecological system is too crude to make reliable predictions. In such cases, modifications of 

the model should be sought, before any reliable predictions can be made. By re-examining the 

toy example of the theta-logistic model proposed by Perretti et al. (2013c), it was shown that a 

simple model checking procedure was sufficient, provided that observation noise was not too 

large, to distinguish cases in which model misfit was large and parametric forecasting poor from 

cases in which model misfit was not evidenced and parametric forecasting was reasonably good 

(Figure 2 and 4). For real case studies, it is difficult to advise the use of a particular threshold 

below which a model should be considered to fail at fitting the data. Such procedures enable to 

detect model misfit, when a posterior predictive p-value is clearly lower than the distribution of 

posterior predictive p-values obtained on data generated with the parametric model (e.g., Figure 

2A and B, for θ values equal or larger than 1.5). In such cases, they will indicate particular 

patterns in the data that the model may not reproduce accurately, and therefore guide model 

improvements. Model checking procedures also confirm a good model fit to data, when the 

posterior predictive p-value is within the central range of the reference distribution. In less clear-

cut cases, model checking still provides ecologists with a quantification of the model fit quality.  

 

A second key advantage of parametric approaches is to provide ways to assess the uncertainty of 

the forecasts in cases in which no model misfit is evidenced. This can be performed using 

simulated datasets generated with the parametric model, as was done here: in cases in which 

observation noise was large, forecasting accuracy was found to be poor (irrespective of the 

approach used, Figure 4C). This last result differs from the ones of Perretti et al. (2013c). The 

discrepancy between their and the present results is due to the fact that forecasts were here 

grounded on observed population sizes (including observation noise) rather than true population 

sizes as they did. This choice of using observed population sizes is justified by the fact that only 

this piece of information is available in real settings.  
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The level of observation noise was found to be a key determinant of forecasting accuracy (Figure 

4), recalling the common sense that good forecasts require good data with minimized observation 

error. In real case studies, one cannot know a priori whether the level of observation noise is 

sufficiently low to ground a reliable forecast. The benefit of parametric approaches is that they 

enable to assess the data quality with respect to a forecast objective. Indeed, such an assessment 

can be performed by looking at the forecast accuracy in simulated datasets based on the 

parametric model with fitted-to-data observation noises (Figure 4 for a θ value equal to 1). Still, 

users of parametric approaches will gain at collecting independent data on observation error, 

since this helps increase the reliability and accuracy of parametric inferences (Ives et al. 2003). 

 

 Proponents of the nonparametric approach argued that it provides better forecasts than 

parametric approaches in an array of noised and chaotic case studies (Perretti et al. 2013a,b). 

They further argued that their approach was easier to apply than computationally demanding 

parametric approaches. The results of this study do not contradict these two arguments. 

Nonparametric forecasts were indeed found to outperform parametric ones in a number of – but 

not all – cases with strongly reduced computational costs (Figure 4). However, no methods are 

yet available to assess the reliability of nonparametric forecasts which is likely to vary greatly 

(Figure 4). Not knowing when a forecast is likely to significantly fail is a major problem that 

should not be disregarded (May et al. 2008). 

 

Circumventing the drawbacks of parametric forecasting 

Parametric approaches do have real limitations. In particular, parametric inference can be 

challenging for complex models. A particular ad-hoc solution to this problem has been used in 

this study (Pisarenko and Sornette 2004). But many other ways to tackle parametric inference for 

complex models have been developed in recent years, notably methods based on computer-

intensive simulations like approximate Bayesian computation (Beaumont 2010, Jabot and Chave 

2011) or synthetic likelihoods (Wood 2010). These methodological innovations are further eased 

with dedicated statistical packages (e.g., Csilléry et al. 2012, Jabot et al. 2013) and should 
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drastically reduce limitations to parametric inference. Besides inference, model development has 

been eased in recent years with progress in techniques of sensitivity analysis (Lamboni et al. 

2009) and more generally by the synthesis of good modeling practices (Grimm et al. 2014). 

 

Valuing the advantages of nonparametric methods  

The demonstration by Perretti et al. (2013a,b,c) of the great potential of nonparametric 

approaches suggests that a fruitful avenue for future research might be to combine the respective 

strengths of both parametric and nonparametric approaches. For instance, one could jointly use 

parametric and nonparametric approaches, using the first to assess forecast reliability, and the 

second to obtain more efficient forecasts in cases they are outcompeting parametric ones. 

Nonparametric embedding methodologies may also be useful for model development, by helping 

choosing the appropriate time-delays to use in process-based approaches. Another line of 

research might be to include an observation process in the nonparametric S-map methodology. 

This may enable to refine the recovery of the chaotic attractor in the embedded time series, and 

may enable to assess the forecast accuracy of the nonparametric approach. This last perspective 

should be seen as the key priority for proponents of the nonparametric approach, since the lack 

of methods for forecast reliability assessment is currently the Achilles' eel of the approach.  
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