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Spectral measure at zero for self-similar tilings

Jordan Emme
∗

Abstract

The goal of this paper is to study the action of the group of translations over self-similar
tilings in the euclidian space R

d. It investigates the behaviour near zero of spectral measures
for such dynamical systems. Namely, the paper gives a Hölder asymptotic expansion near
zero for these spectral measures. It is a generalization to higher dimension of a result by
Bufetov and Solomyak who studied self similar-suspension flows for substitutions in [4].
The study of such asymptotics mostly involves the understanding of the deviations of some
ergodic averages.
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1 Introduction

Spectral analysis plays an important role in dynamical systems and ergodic theory. Some prop-
erties of the spectrum of the Koopman operator, or of a group of operators acting on a space,
translate into dynamical properties (in our case, the group Rd acts on the space of tilings and
this defines a group of operators acting on the functions of the tiling space). In this light, spectral
measures hold some amount of information concerning dynamical systems. Spectral analysis of
some dynamical systems via spectral measures was done in [8] for instance.

In this paper we are interested in a particular family of dynamical systems which is extensively
studied: those who arise from substitutions or self-similar tilings. Substitutions are essentially
combinatorial objects and have no geometry a priori. However it is possible to interpret infinite
words as tilings of the real line (or real semiline depending in which context we are working) and
thus have some (limited) geometry. Self-similar tilings are objects that arise when looking for a
natural generalization of this in higher dimension.

Bufetov and Solomyak have studied the deviation of ergodic averages for the action of Rd by
translation over self-similar tilings in [3]. Such results generalize famous works by Bufetov for
d = 1 in [1] or [2].
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The precise study of the deviation of ergodic averages allows the understanding of the modulus
of continuity for suspension flows over substitution dynamical systems in [4]. One of the results
is that there is a Hölder asymptotic expansion on balls centered at zero for the spectral measure
of self-similar suspension flows (which we could see as self similar tilings of the real line). The
Hölder exponent is explicitly computed.

The aim of this paper is to give a generalization of this result for spectral measures of self-
similar tilings for d ≥ 1. We prove that there is always a Hölder asymptotic expansion regardless
of the choice of d, and give an explicit computation of the Hölder exponent.

Section 2 is dedicated to defining self-similar tilings and their associated dynamical systems
along with some basic properties.

Section 3 exposes some of the results that were obtained in [3, 4] which are crucial to the
proof of our main theorem. We also give the principal definition of the paper in this section:
that of spectral measures.

In Section 4 we state the main result and give its proof based on the study of the finitely-
additive measures from [3] and the asymptotics of the ergodic integrals.

1.1 Result

In this article we study a particular class of tilings of the euclidian space Rd obtained by the
following process. We fix a finite amount of tiles called prototiles. We endow the set of tilings
of Rd by the prototiles with a topology detailed in Section 2. We choose a real constant λ and
consider the images of these prototiles by the homothety of factor λ. If we can tile these images
with translates of the prototiles, then doing so defines a substitution rule ζ. If this rule ζ satisfies
certain conditions, then iterating it over a prototile spans bigger and bigger patches (i.e. union
of tiles) which eventually tile the whole space. Taking the closure of the orbit of this tiling via
the action of Rd by translation defines a space Xζ . Some other conditions on ζ ensure that
the dynamical system (Xζ ,R

d) is uniquely ergodic and we denote its unique ergodic probability
measure by µ. Then to any real valued function f from Xζ to R in L1(Xζ , µ), one can associate
a spectral measure σf . The following theorem states that, after renormalisation, this measure is
a Radon measure on balls centered at zero. This can be seen as a Hölder regularity property.
The definitions of the technical conditions of this theorem – such as cylindrical functions and the
quantity mΦ−

v
(f) – are given respectively in Definitions 3.4 and 3.5.

Theorem 1.1. Let A = {T1, ..., Tm} be a set of polyhedral prototiles in Rd and ζ a primitive
non-periodic tile-substitution over those prototiles defining a self-similar tiling with finite local
complexity. Let λ be the real expansion constant of ζ, and S be its incidence matrix with eigen-
values

θ1 > θ2 > |θ3| ≥ ... ≥ |θm|

satisfying θ2 > θ
d−1

d

1 . Let f be a cylindrical function with zero mean
∫
fdµ = 0 and mΦ−

v
(f) 6= 0

(with v being in the eigenspace associated to θ2). Let σf be its associated spectral measure on
Rd. Then there exists a non-trivial positive σ-finite Radon measure η on R+ such that:

lim
N→∞

σf (B(0, aλ−N ))

λ−N(2d−2α)
= η([0, a]), for all a > 0 such that η({a}) = 0,

where

α =
d log(θ2)

log(θ1)
∈ (d− 1, d).
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This theorem is a natural generalization of [4, Theorem 6.2] which gives the same behaviour
for d = 1.

Remark that in this theorem, we have:

θ1 = λd.

1.2 Outline of the paper

Section 2 is devoted to defining the framework. More precisely, we give the definition of self-
similar tilings. We recall some famous results. In particular, that a primitive tile substitution ζ
with finite local complexity defines a uniquely ergodic dynamical system (Xζ ,R

d), where Xζ is
the set of tilings of the euclidian space Rd obtained with the substitution rules. We also recall
how to subdivide a certain tiling using the implicit substitution rules of ζ.

With these subdivisions in mind, we recall in Section 3 the construction of finitely-additive
measures. For a thorough and detailed construction of such objects, we refer the reader to [1].
These are capital for the understanding of ergodic deviations. Namely, we state the main theorem
of [3] which gives a precise behaviour of Birkhoff sums depending on a decomposition of Rd in
stable subspaces for the transpose of the incidence matrix of the tile-substitution ζ.

Section 4 is devoted to proving Theorem 1.1. We start by stating the spectral theorem which
allows us to define the spectral measures. The proof of the main theorem is then divided into
5 steps. In the first step we integrate a test function (which approximates the characteristic
function of an interval) with respect to the spectral measure. The spectral isomorphism allows
to express our integral in terms of ergodic sums on balls of radius R. The second step uses
Theorem 3.6 on ergodic deviations in order to estimate the rest of our ergodic sum as R goes to
infinity. Step 3 is just a change of variables in the main term, using the ’self-similarity’ properties
of the finitely-additive measures. We can then compute the limit as R goes to infinity. Step 4 is
devoted to the regularity of this limit and how to extend it to a bilinear form, right continuous
on continuous compactly-supported functions. Step 5 introduces a technical lemma which allows
us to make the link between our limit and distribution and then with Radon measures.

1.3 Acknowledgements

I would like to thank Alexander Bufetov and Boris Solomyak for asking me the question
that this paper answers and for their very helpful advice and the enlightening discussions we had
about this problem.

2 Self-similar tilings

In all that follows, we are working in the euclidian space Rd. We are interested in tiling the
euclidian space Rd (which comes with its origin) with tiles which are compact, and the closure
of their interior. In particular, we are interested in a class of aperiodic tilings called self-similar
tilings. They can be obtained by iteration of a substitution rule over tiles. A famous class of
such tilings is found in [7]. We give an example of such a tiling in Figure 1 before properly
defining this notion. We almost always use the case of Figure 1 to illustrate the numerous formal
definitions in this section.

Let us now give all the necessary formalisms.

Definition 2.1. Fix a set of types (sometimes called colours) {1, ...,m} ⊂ N. A tile T in Rd is
a pair (A, i) where A =: supp(T ) (the support of T ) is a closed compact subset of Rd such that

A = Å and i ∈ {1, ...,m} is the type of the tile.
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Figure 1: Part of a self-similar tiling: the table tiling.

We denote the type of the tile T by l(T ).

Definition 2.2. Define the translate of a tile T by a vector x ∈ Rd:

T + x := (supp(T ) + x, l(T )) .

Usually, we fix an ‘alphabet’: a finite set of tiles A = {T1, ..., Tm}. It is implied that the tile
Ti has type i (but two distinct tiles in this alphabet do not necessarily have different support).
The tiles Ti are called prototiles.

After having fixed a finite set of prototiles we are interested in tilings of the euclidian space
only with translates of these prototiles. To be formal, a tiling T of Rd by tiles in A = {T1, ..., Tm}
is given by a covering of Rd in the following way:

R
d =

⋃

v∈V
[supp(Tiv ) + v]

and
Å

˚̋ �supp(Tiv ) + v

ã
∩

Å
˚̨ �supp(Tiw ) + w

ã
= ∅ whenever v 6= w.

Here V denotes a countable set of vectors in Rd and iv is in {1, ...,m} for any v in V .
In other words, a tiling of the space with tiles in A is a covering of this space with translates

of the prototiles in A in such a way that only the boundaries of the support of the tiles intersect.
In the case of Figure 1, a possible choice of prototiles is:

ßÅ
[−

1

2
,
1

2
]× [−1, 1], 1

ã
,

Å
[−1, 1]× [−

1

2
,
1

2
], 2

ã™
.

For visual purposes, the tiles of type 1 are coloured in grey and the tiles of type 2 are coloured
in white.

We now define patches.

Definition 2.3. A patch P is a finite union of tiles of disjoint interiors. The support of a

patch P is the set supp(P ) =
⋃

T∈P
supp(T ). A patch P has diameter at most R if its support is
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contained in a ball of diameter R. Denote by PA the set of patches whose tiles are translates of
prototiles in A.

Let us define tile substitutions.

Definition 2.4. Let φ : Rd → Rd be an homothety with expansion constant λ > 1. A map
ζ : A → PA, where PA denotes the set of patches with tiles in A, is called a tile substitution with
expansion φ if supp(ζ(Ti)) = φ(supp(Ti)).

Example 2.5. An example of tile substitutions using tiles from Figure 1 is:

ζ ζ

Notice that this substitution rule has expansion constant λ = 2.

Definition 2.6. For any tile substitution ζ, define a substitution matrix S such that Si,j is the
number of tiles Ti appearing in the patch ζ(Tj).

In the example given previously, the substitution matrix is S =

Å
2 2
2 2

ã
.

Remark 2.7. If θ1 denotes the Perron-Frobenius eigenvalue of S, we have θ1 = λd. We refer
the reader to [9] for more details.

Remark that the Perron Frobenius eigenvalue of
Å
2 2
2 2

ã
is indeed θ = 4 = λ2.

Remark 2.8. In all that follows, we only study primitive tile substitutions, i.e. tile-substitutions
whose matrix S satisfies the property that there exists a positive integer k such that Sk has only
positive entries.

We extend the definition of ζ to PA and to the set of tilings of Rd by tiles in A.
In order to extend the definition to the set of patches PA, we first define the application ζ

with real expansion constant λ on the set of tiles which are translates of prototiles in A. Let T
be a translate of prototile Ti for a certain i by a vector x ∈ Rd, i.e. T = Ti + x. Then we define
ζ(T ) = ζ(Ti) + λx. Now in order to define ζ on the set of patches we proceed as follows.

Let P be a patch in PA. There exists a finite set of vectors {v1, ..., vn} in Rd and a finite set
of integers {i1, ..., in} in {1, ...,m} such that

P =
m⋃

j=1

Tij + vj .

Then define the patch ζ(P ) in the following manner

ζ(P ) =
m⋃

j=1

ζ(Tij ) + φ(vj).

We extend the definition of ζ to a whole tiling of Rd in the same way.
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ζ ζ

Figure 2: Substitution rule on some patches

Example 2.9. For instance, expanding the definition of the substitution given in Example 2.5
to patches is illustrated in Figure 2.

Definition 2.10. A tiling T of Rd is self similar if ζ(T ) = T for a primitive tile substitution ζ.

Definition 2.11. Given a tile-substitution ζ, we define the tiling space Xζ:
A tiling T of Rd is in Xζ if every finite patch of T is a sub-patch of ζk(Ti) for some k ∈ N and
some i ∈ J1,mK.

We endow this set with a topology by defining the metric d:
let T1 and T2 be two tilings in Xζ. We define d(T1, T2) = min

Ä
1√
2
, ǫ0
ä

where ǫ0 is the infimum

of the set of ǫ > 0 which satisfy the following condition: there exists a vector v in Rd such that
‖v‖ < ǫ (where ‖v‖ is the euclidian norm) and the biggest patches of T1 and T2 + v inside the
ball B(0, 1/ǫ) are the same.

In other words, two tilings are close if, up to a small translation, one can see the same pattern
in a large ball centered at the origin. For more details on this distance and topology the reader
can refer to [9].

Definition 2.12. Let A = {T1, ..., Tm} be an alphabet. Let ζ be a tile substitution with expansion
map φ. A tile T is said to be a tile of order k ∈ Z if there exist i ∈ J1,mK and y ∈ Rd such that
supp(T )− y = φk(supp(Ti))

Example 2.13. We draw in thick black lines the boundary of tiles of order 3 in the example of
tiling given in Figure 1.

Definition 2.14. We extend the definition of the tile-substitution ζ to tiles of order k ∈ Z and
denote it φkζ:

φkA := {(φksupp(Ti), i)}i∈J1,mK,

∀i ∈ J1,mK, (φkζ)((φk(supp(Ti)), i)) := φk(supp(ζ(Ti))).

This allows to define the subdivision map:

Υk : Xφkζ 7→ Xφk−1ζ .

This divides every tile of order k into sub-tiles according to the substitution rule. Note that is
well defined if and only if the substitution is non-periodic (that is, if Rd acts freely over Xζ) as
justified by the following theorem.

Theorem 2.15 ([10]). The map ζ : Xζ → Xζ is injective if and only if ζ is a non-periodic
substitution.
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With this division, we define inductively, for any tiling T ∈ Xζ and for any integer k, the
subdivided tiling T (k) in the following way:

T (0) := T ,

T (k) =

ß
Υ−1
k ...Υ−1

1 (T ), if k > 0,
Υk+1...Υ0(T ), if k < 0,

T (k) ∈ Xφkζ .

The space of tilings i ∈ J1,mK by tiles of order k is essential for the introduction of finitely
additive measures in the next section.

Let ζ be a primitive tile substitution in R
d over the finite set of tiles A = {T1, ..., Tm} and S

its incidence matrix. We denote by θ1 > |θ2| ≥ ... ≥ |θm| the eigenvalues of the matrix St (θ1
being real, greater than one, and of multiplicity one by Perron-Frobenius Theorem). Remark
that Rd acts on Xζ by translation. For any vector x ∈ Rd let hx be the map from Xζ to itself
that sends a tiling T to its translate by vector −x i.e. T − x. This defines a continuous action
of Rd on Xζ by translation.

This defines a dynamical system (Xζ ,R
d). Remark also that iterating ζ over a certain tile

may converge towards a tiling of the space Rd. This tiling is of course in the tiling space Xζ .
As already stated in Remark 2.8, it is usual to only consider the case of primitive tile sub-

stitutions, which is what is done in this article, but we also add the classical property of finite
local complexity.

Definition 2.16. A tiling T has finite local complexity (FLC) if, for any positive real number r,
there is only a finite number of different patches of diameter at most r in T up to translations.

A tile substitution ζ is FLC if every tiling in the tiling space Xζ has finite local complexity.

Remark 2.17. For the most part, classical self-similar tilings defined by tile substitutions are
FLC. For an example of non-FLC tile substitution we refer the reader to [6] for instance.

Theorem 2.18. [9] If ζ is a primitive substitution with finite local complexity then (Xζ ,R
d) is

uniquely ergodic. We denote by µ the unique ergodic probability measure of the dynamical system
(Xζ ,R

d).

This theorem has as an immediate consequence the following lemma.
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Lemma 2.19. [9] If ζ is a primitive substitution with finite local complexity, then µ is invariant
under the substitution action, i.e. ζ∗µ := µ ◦ ζ−1 = µ.

Proof. It is an easy check that the measure ζ∗µ is invariant under the action of Rd since ζ acts
on vectors as an homothety of ratio λ and µ is invariant under the action of Rd by translation.
Hence, by unique ergodicity, ζ∗µ = µ.

3 Finitely-additive measures and Ergodic deviation

We now define finitely-additive measures as done in [3].

Definition 3.1. The rapidly expanding subspace E++ is the linear span of Jordan cells of St

whose eigenvalues θ satisfy

|θ| > θ
d−1

d

1 = λd−1.

In a similar way, denote by E+ the linear span of Jordan cells of St whose eigenvalues are
greater than 1. Equivalently, denote ‹E++ the rapidly expanding subspace of S.

We define, for any vector v ∈ E+ and any tiling T ∈ Xζ on tiles of order k ∈ Z, a finitely-
additive Φ+

v,T measure as follows:

Φ+
v,T (supp(T )) = ((St)kv)j , if ∃k ∈ Z, y ∈ R

d T = φk(Tj)− y ∈ T (k).

The definition of such finitely additive measures can be extended to Lipschitz domains (that
is to say open sets of Rd whose boundaries are locally graphs of continuous Lipschitz functions).
This is done in [3].

The following lemma gives a “self-similarity” property for finitely-additive measures after their
extension to any Lipschitz domains.

Lemma 3.2. [3, Lemma 3.2] For any v ∈ E++, there exists finitely-additive measures Φ+
v,T

defined on the ring of sets generated by Lipschitz domain in Rd. Moreover, if Stv = θv, they
satisfy, for any Lipschitz domain Ω, the following:

Φ+
v,ζ(T )(φ(Ω)) = Φ+

θv,T (Ω) = θΦ+
v,T (Ω).

Lemma 3.3. [3, Lemma 3.3] Suppose that v ∈ E++ belongs to the St invariant subspace corre-
sponding to a Jordan block of size s ≥ 1 with eigenvalue θ and such that ‖v‖ = 1. Then for a
Lipschitz domain Ω, there exists a positive constant C1 such that, for any positive real number
R (writing ΩR = RΩ),

∣∣∣Φ+
v,T (ΩR)

∣∣∣ ≤ C1(logR)
s−1Rα, where α =

d log |θ|

log θ1
.

Before stating the main theorem on the estimates of deviation in ergodic sums, let us remark
that it only gives estimates for cylindrical functions which we define as follows.

Definition 3.4. A function f : Xζ → R in L1(Xζ , µ) is cylindrical if it depends only on
the tile containing the origin. More precisely, there is a family of functions (Ψi)i∈J1,mK where

Ψi : supp(Ti) → R and Ψi ∈ L1(supp(Ti),Lebd), where Lebd is the Lebesgue measure on Rd, such
that

f(T ) = Ψi(x) if 0 ∈ supp(Ti)− x, Ti − x ∈ T .

8



Definition 3.5. For any cylindrical function f and for any vector v = (v1, ..., vm) ∈ Cm we set

mΦ−

v
(f) =

m∑

i=1

vi

∫

supp(Ti)

Ψi(x)dx.

Now denote by l the dimension of E++ (and ‹E++) and choose bases (ui)i≤l and (ũi)i≤l of
E++ and ‹E++ respectively. We write Φ+

i,T = Φ+
ui,T and mΦ−

i
= mΦ−

ũi

.

We can state the theorem describing the deviation of ergodic averages for the dynamical
system (Xζ ,R

d, µ) on Lipschitz domains like thus.

Theorem 3.6. [3, Theorem 4.3] Let ζ be a primitive substitution with finite local complexity such
that the dynamical system (Xζ ,R

d) is not periodic, and let Ω be a bounded Lipschitz domain in
R
d. Then there exists a positive constant C depending on ζ and Ω such that, for any cylindrical

function f , any tiling T ∈ Xζ and any R > 0,
∣∣∣∣∣

∫

ΩR

f ◦ hx(T )dx− Lebd(ΩR)

∫

Xζ

fdµ−
l∑

n=2

Φ+
n,T (ΩR) ·mΦ−

n
(f)

∣∣∣∣∣ ≤ CRd−1(logR)s
∫

Xζ

|f |dµ

where s is the maximal size of the Jordan block corresponding to eigenvalues satisfying |θ| = θ
d−1

d

1 .
If there are no such eigenvalues, then s = 0.

4 Spectral measures at zero

Recall that for a measure m on a space Rd, the Fourier transform “m of m is a function from Rd

to C defined by

∀x ∈ R
d, “m(x) =

∫

ω∈Rd

e2iπ〈ω,x〉dm(ω).

We start by stating the spectral theorem:

Theorem 4.1. Let f ∈ L2(Xζ , µ). There exists a positive measure σf on Rd called the spectral
measure defined by σ̂f (x) := 〈f ◦hx, f〉 for all x ∈ Rd such that the function mapping the function
(T 7→ f ◦ hx(T )) in L2(Xζ , µ) to the function

(
ω 7→ e2iπ〈ω,x〉

)
extends to an isometry J between

a closed subspace of L2(Xζ , µ) and L2(Rd, σf ).

We refer the reader to [5] for details on this theorem, but in particular it states that

∀x ∈ R
d,

∫

ω∈Rd

e2iπ〈ω,x〉dσf (ω) = 〈f ◦ hx, f〉,

where

〈f ◦ hx, f〉 =

∫

T ∈Xζ

f(T )f ◦ hx(T )dµ(T ).

This theorem introduces the spectral measures on which Theorem 1.1 gives results. In order to
prove Theorem 1.1 we also need the set

SF (R+) = {f ∈ C∞(R+,R) | ∀α, β ∈ N, sup
x∈R+

|xαf (β)(x)| <∞ and ∀k > 0, f (k)(0) = 0}

and the continuous function Rad : SF (R+) → S(Rd) (where S(Rd) is the Schwartz space of
rapidly decreasing functions on Rd) defined by

∀ψ ∈ SF (R+), ∀x ∈ R
d, Rad(ψ)(x) = ψ(‖x‖).
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4.1 Proof of Theorem 1.1

4.1.1 Step 1: using the spectral isomorphism

Recall that Theorem 4.1 states that

∀x ∈ R
d,

∫

ω∈Rd

e2iπ〈ω,x〉dσf (ω) = 〈f ◦ hx, f〉.

Moreover, the spectral isomorphism J satisfies J−1
(
ω 7→ e2iπ〈ω,x〉

)
= (T 7→ f ◦ hx(T )) for

all x in Rd.
Let us analyse the behaviour of σf near zero. In order to do this, we fix a function ψ ∈ SF (R+)

and study the integral
∫
|Rad(ψ)(Rω)|2dσf (ω) for all R > 0.

Applying the Inverse Fourier Transform, which preserves S(Rd) and the radial property of
Rad(ψ), we obtain

Rad(ψ)(Rω) = R−d
∫

x∈Rd

e2iπ〈ω,x〉◊�Rad(ψ)(x/R)dx.

By the spectral isomorphism, this function (of ω) maps, by J−1, to

R−d
∫

x∈Rd

f ◦ hx(T ) ·◊�Rad(ψ)(x/R)dx

which is a function of T in L2(Xζ , µ). Since the spectral isomorphism preserves the L2 norm, we
obtain

∫

ω∈Rd

|Rad(ψ)(Rω)|2dσf (ω) = R−2d

∫

T ∈Xζ

∣∣∣∣
∫

x∈Rd

f ◦ hx(T ) ·◊�Rad(ψ)(x/R)dx

∣∣∣∣
2

dµ(T ).

Now let us change coordinates of the right-hand side and use spherical coordinates. Let u be
the mapping from spherical coordinates to euclidian coordinates on Rd. Since Fourier transform

preserves radial functions, ◊�Rad(ψ)(ρ, 0, ...0) = ◊�Rad(ψ)(u(ρ, φ1, ...φd−1)). For simplicity, in all

that follows, let us write ◊�Rad(ψ)(ρ) instead of ◊�Rad(ψ)(ρ, 0, ...0). Then the integral
∫

x∈Rd

f ◦ hx(T ) ·◊�Rad(ψ)(x/R)dx

can be written as

∫ +∞

ρ=0

∫

[0,π]d−1

∫ 2π

φd−1=0

f ◦ hu(ρ,φ1,...φd−1)(T ) ·◊�Rad(ψ)(ρ/R) · ρd−1
d−2∏

j=1

(sind−1−j(φj))dφd−1...dφ1dρ

or

∫ +∞

ρ=0

◊�Rad(ψ)(ρ/R)
∫

[0,π]d−1

∫ 2π

φd−1=0

f ◦ hu(ρ,φ1,...φd−1)(T )ρd−1
d−2∏

j=1

(sind−1−j(φj))dφd−1...dφ1dρ

Now, an integration by parts with regards to the variable ρ, differentiating ◊�Rad(ψ)(ρ/R) and
integrating

∫
[0,π]d−1

∫ 2π

φd−1=0
f ◦ hu(ρ,φ1,...φd−1)(T )ρd−1 ∏d−2

j=1 (sin
d−1−j(φj))dφd−1...dφ1, yields

10



∫

x∈Rd

f ◦ hx(T ) ·◊�Rad(ψ)(x/R)dx = 2iπR−1

∫ +∞

ρ=0

S(f, T , ρ)F(x1Rad(ψ)(x))(ρ/R)dρ, (1)

where

S(f, T , ρ) =

∫

x∈B(0,ρ)

f ◦ hx(T )dx.

4.1.2 Step 2: estimating the rest

From Theorem 3.6 and Lemma 3.3, and since
∫
fdµ = 0, we have

S(f, T , ρ) = Φ+
2,T (ρ) ·mΦ−

2

(f) +R(ρ),

where
|R(ρ)| ≤ C1 max(1, ρα−ε)

with α = d log(θ2)
log(θ1)

and some ε > 0 small enough.

Since F(x1Rad(ψ)(x)) is in S(Rd), we have

|F(x1Rad(ψ)(x))(ρ)| ≤ Cψ,αmin(1, ρ−α−1).

Finally,

2πR−1

∣∣∣∣∣

∫ +∞

ρ=0

R(ρ)F(x1Rad(ψ)(x))(ρ)dρ

∣∣∣∣∣ ≤ C1Cψ,α2πR
−1

Ç
1 +

∫ R

1

ρα−εdρ+

∫ +∞

R

ρα−ε(ρ/R)−α−1dρ

å

hence, since α is in (d− 1, d),

2πR−1

∣∣∣∣∣

∫ +∞

ρ=0

R(ρ)F(x1Rad(ψ)(x))(ρ)dρ

∣∣∣∣∣ = O(Rα−ε). (2)

4.1.3 Step 3: change of variables in the main term

Now that the error term in
∫ +∞
ρ=0

S(f, T , ρ)F(x1Rad(ψ)(x))(ρ/R)dρ is estimated, let us study the
main term in Equation (1). To that end, we will assume that

R = λN = θ
N
d

1 , N ≥ 1.

Let ρ = λNr = Rr, and let us use Lemma 3.2 to do the following renormalisation:

Φ+
2,T (ρ) = Φ+

2,T (λ
N r) = θN2 Φ+

2,ζ−N (T )(r) = RαΦ+
2,ζ−N (T )(r).

After this change of variables we have

2iπR−1

∫ +∞

ρ=0

(Φ+
2,T (ρ) ·mΦ−

2

(f) +R(ρ))F(x1Rad(ψ)(x))(ρ/R)dρ

= 2iπRαmΦ−

2

(f)

∫ +∞

r=0

Φ+
2,ζ−N (T )

(r)F(x1Rad(ψ)(x))(r)dr.
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The estimation of the rest in Equation 2 and this last equality can be used to get that

∫

ω∈Rd

|Rad(ψ)(Rω)|2dσf (ω)

= 4π2R2α−2d(mΦ−

2

(f))2
∫

T ∈Xζ

∣∣∣∣∣

∫ +∞

r=0

Φ+
2,T (r)F(x1Rad(ψ)(x))(r)dr

∣∣∣∣∣

2

dµ(T ) +O(R2α−2d−2ε)

as R→ +∞, since µ is ζ invariant by Lemma 2.19. Finally, with R = λN

lim
N→+∞

∫
ω∈Rd |Rad(ψ)(λNω)|2dσf (ω)

λN(2α−2d)

= (2πmΦ−

2

(f))2
∫

T ∈Xζ

∣∣∣∣∣

∫ +∞

r=0

Φ+
2,T (r)F(x1Rad(ψ)(x))(r)dr

∣∣∣∣∣

2

dµ(T ).

We can remark that the right-hand side is non zero by the hypothesis on mΦ−

2

(f) and because

Φ+
2,T is not almost everywhere zero, since our substitution is defined on polyhedral prototiles (see

Lemma 3.5 and section 6.2 of [3] for more details), and because this is true for all choice of ψ.

4.1.4 Step 4: regularity of the limit

This limit is a quadratic form on SF (R+). Let us write the associated bilinear form on the space
SF (R+)× SF (R+):

Q(ψ1, ψ2) := lim
N→+∞

∫
ω∈Rd Rad(ψ1)(λ

Nω)Rad(ψ2)(λ
Nω)dσf (ω)

λN(2α−2d)

= (2πmΦ−

2

(f))2
∫

T ∈Xζ

Ç∫ +∞

r=0

Φ+
2,T (r)F(x1Rad(ψ1)(x))(r)dr

∫ +∞

r=0

Φ+
2,T (r)F(x1Rad(ψ2)(x))(r)dr

å
dµ(T ).

Let us remark that this bilinear form (which depends solely on the product ψ1ψ2) is contin-
uous, non-negative on non-negative functions, and not identically zero.

Let us also prove the following.

Lemma 4.2. Every function in C∞
0 (R+,R) is the uniform limit of a sequence of functions in

SF (R+).

Proof. To see this, it suffices to take a function f in C∞
0 (R) and a sequence of functions (fn)n∈N∗

in C(R) such that

• ∀n ∈ N∗, ∀x ∈ [−1
n
, 1
n
], fn(x) = f(0);

• (fn)n∈N∗ converges uniformly towards f ;

• ∀n ∈ N∗, fn is compactly supported.

Then we take a regularizing sequence (ρm)m∈N
and remark that for all n ∈ N∗ and m > n,

the convolution ρm ∗ fn is in C∞
0 (R) and is flat in 0. Thus there exists a strictly increasing

sequence (mn)n∈N∗ ∈ N∗ such that the sequence (ρmn
∗ fn)n∈N∗ (consisting of C∞

0 functions flat
in 0) uniformly converges to f , thus proving the lemma.
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Let us also remark that

∀ψ1, ψ2 ∈ SF (R+), Q(ψ2
1 , ψ2) < Q(ψ1, ψ1)‖ψ2‖∞.

As a consequence, for all ψ1 in SF (R+), ψ2 7→ Q(ψ2
1 , ψ2) has a continuous extension with

domain the whole of C∞
0 (R+,R). Thus it is a distribution that is non-negative on non-negative

functions.

4.1.5 Step 5: a technical lemma

Let us prove the following lemma.

Lemma 4.3. There exists a σ-finite positive Radon measure η on R+ such that for any ψ1, ψ2

in C∞
0 (R+,R) we have

Q(ψ1, ψ2) =

∫

R+

ψ1ψ2dη.

Proof. In order to prove this lemma, we need to use a classical result from the theory of distribu-
tion stating that if a distribution D supported on R+ is non-negative on non-negative functions
in C∞

0 (R+,R) then there exists a σ-finite positive Radon measure η supported on R+ such that

D(ϕ) =

∫

R+

ϕdη.

First we observe that for any non-negative ψ1 ∈ SF (R+), the functional ϕ 7→ Q(ψ2
1 , ϕ) is a

distribution on R+ that is non-negative on ϕ ≥ 0. Thus there exists a measure ηψ1
such that

∀ϕ ∈ C∞
0 (R+,R), Q(ψ2

1 , ϕ) =

∫

R+

ϕdηψ1
.

Remark that Q((ψ1ψ2)
2, ϕ) = Q(ψ2

1 , ψ
2
2ϕ), hence

dηψ1ψ2
= ψ2

2dηψ1
for ψ1, ψ2 ∈ SF (R+).

Thus, taking any ψ > 0, dη = 1
ψ2 dηψ does not depend on the choice of ψ.

Now let ψ1, ψ2 be two functions in C∞
0 (R+,R) and remark

Q(ψ1, ψ2) := Q(ψ2,
ψ1ψ2

ψ2
) =

∫

R+

ψ1ψ2dη,

which proves the lemma.

Let us now conclude that the following formula

lim
N→+∞

∫
ω∈Rd Rad(ψ1)(λ

Nω)Rad(ψ2)(λ
Nω)dσf (ω)

λN(2α−2d)
=

∫

R+

ψ1ψ2dη

also holds for characteristic functions of intervals [0, a] where a is a point of continuity of the
measure η.

Indeed, let us choose a ∈ R+ such that η({a}) = 0, let ψ = ψ1 = ψ2 = χ[0,a] and choose
sequences of functions ψ+

n , ψ
−
n in C∞

0 (R+,R), flat in 0, approximating ψ respectively from above
and below, converging pointwise to ψ and uniformly on the complement of (a− δ, a+ δ) for any
δ > 0.
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By continuity of η over non-atomic a we have

∀ε > 0, ∃δ > 0, η((a − δ, a+ δ)) < ε.

As a consequence,

lim
N→+∞

∫

R+

(
ψ+
n ψ

+
n − ψ−

n ψ
−
n

)
dη = 0,

and so the formula is still true for the characteristic function χ[0,a] whenever η({a}) = 0.
This proves Theorem 1.1.
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