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Iterative Distributed Outlier Detection for Wireless Sensor Networks:
Equilibrium and Convergence Analysis

Wenjie Li1, Francesca Bassi1,2, Davide Dardari3, Michel Kieffer1,4, and Gianni Pasolini3

Abstract— This paper analyzes a distributed outlier detection
mechanism for wireless sensor networks. Outliers are data
produced by sensors which are corrupted in a way that cannot
simply be explained by the effects of the measurement noise.
The outlier detection mechanism assumes some generic test to
be available, which is only able to determine whether a set of
data contains outliers, without being able to determine which
data are outliers. The focus of this paper is on the equilibrium
and stability analysis of the proposed iterative distributed
outlier detection mechanism. Some sufficient conditions to be
satisfied by the generic outlier detection test are established.
Simulation results are then provided for an outlier model.

I. INTRODUCTION

Outliers are data produced by sensors and corrupted in
a way that cannot be explained simply by the effects of the
measurement noise. In classical centralized estimation, many
efforts have been made to design estimators robust to outliers,
see [1] and the references therein. In a distributed estimation
setting, e.g., via a Wireless Sensor Network (WSN), these
techniques are more difficult to put at work, due to commu-
nication constraints, which prevent the availability of a large
amount of data at the sensing nodes of the WSN.

The aim of this paper is to present a variant of the
iterative distributed outlier detection mechanism for WSN
recently proposed in [2] and to analyze its equilibrium and
convergence properties. This detection mechanism assumes
the availability of some generic test, only able to determine
whether a set of data coming from various sensors contains
outliers, without being able to determine which data are
outliers. This assumption is realistic, e.g., when a sensing
node has to decide whether it produces outliers considering
only the few data it has collected from its neighbors. The
main difference with [2] is in the decision rule of the
iterative mechanism, which improves its performance and
facilitates its analysis. Sufficient conditions to be satisfied by
the generic outlier detection test to ensure the existence of the
equilibrium and its local asymptotic stability are established.

The paper is organized as follows. Section II provides
some related work. Section III recalls some notations and
describes the system model. Section IV recalls the distributed
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outlier detection mechanism and describes the sufficient
conditions the generic test has to satisfy for uniqueness and
local asymptotic stability of the outlier detection mechanism.
Proofs of all results are given in Section V. Finally, some
simulation examples are considered in Section VI-A before
concluding the paper in Section VII.

II. RELATED WORK

Many distributed fault detection (DFD) algorithms have
already been proposed in the literature. In [3] a purely
localized algorithm is proposed to identify faulty sensors.
The local test is based on the comparison between the local
measurement and the median of the measurements of the
neighbors. The algorithm devised in [4] allows each node
to estimate its own functioning status by using a modified
majority voting. Then the status of neighbors are collected
and associated to their measurements to obtain a more
reliable estimation. Other DFD algorithms can be found in
[5], [6], [7], [8], where different detection strategies were
presented. For example, [5], [6] proposed weighted-median
and weighted average criteria, respectively. Intermittent faults
in sensing and in communication are considered in [7],
which proposes an adaptive DFD algorithm with a decision
threshold adjusted at each round.

Instead of focusing on the strategy of local outlier de-
tection test, the DFD algorithm proposed in [2] aims at
performing the fault detection in an economic way by
reducing the complexity of the decision rule and reducing the
communication overhead. The generic local outlier detection
test in this work has only to detect the presence of outliers
in a set of data. This setting is similar to that considered
in group testing (GT) [9], [10], which aims at identifying a
small number of defective items within a large population,
with a small amount of tests.

III. NOTATIONS AND SYSTEM MODEL

A. Network model

Consider a set of sensor nodes S deployed uniformly and
independently over an infinite plane, with spatial density ρ.
Assume that an arbitrary node i can only communicate with
the nodes in its neighborhood Ni = {j ∈ S | 0 < ri,j ≤ R0},
where ri,j is the distance between nodes i and j, and R0 is
the communication range. Let Ui = Ni ∪ {i}. The number
of elements |Ni| of Ni follows a Poisson distribution

P {|Ni| = n} =
µn

n!
exp (−µ) , (1)

with average µ = ρπR2
0, see [11].



Define D ⊆ S as the set of nodes with defective sensors,
which produce outliers, i.e., data whose characteristics differ
significantly from those produced by non-defective (good)
sensors. Similarly, define G = S \D as the set of nodes with
good sensors. Here, we assume that only the sensing capabil-
ities of nodes may be defective. Altered communication and
computation capabilities are not considered. Let θi ∈ {0, 1}
denote the status of the sensor of an arbitrary node i ∈ S .
One has θi = 1 if i ∈ D and θi = 0 if i ∈ G. Moreover, θi
and θj are assumed to be independent for any i, j ∈ S with
i 6= j. As a consequence,

P {|Ni ∩ G| = ng, |Ni ∩ D| = nd} =
µnd

d µ
ng
g

nd!ng!
exp (−µ) ,

(2)
where µd and µg denote the average values of |Ni ∩ D| and
|Ni ∩ G|, respectively.

B. Local outlier detection test

At a given time instant, let the random vector Mi ∈
Rn denote the data provided by node i. Consider MA =
[Mi]i∈A ∈ Rn|A|, the random vector of data provided by a
set of nodes A ⊆ S. For a given realization mA ∈ Rn|A|
of MA, denote T (mA) the outcome of some local outlier
detection test (LODT)

T (mA) =

{
0, if no outlier is detected in mA,

1, otherwise.
(3)

Even if A ∩ D 6= ∅, the noise characteristics of defective
sensors may produce some realizations mA that do not
allow the detection of the outliers. Thus, one introduces the
probability of outlier detection

qD (MA) = P
{
T (MA) = 1

∣∣A ∩D 6= ∅} , (4)

and the probability of false alarm

qFA (MA) = P
{
T (MA) = 1

∣∣A ∩D = ∅
}
. (5)

In this work we consider only tests satisfying the following
properties.

Property 1: Let ng = |A ∩ G| and nd = |A ∩ D|, then

qFA (MA) = qFA (ng) , qD (MA) = qD (ng, nd) . (6)
Property 2: Let k be an arbitrary node in A, then{
P
{
T
(
MA\{k}

)
= 1 | T (MA) = 0,A ∩D 6= ∅

}
= 0,

P
{
T
(
MA\{k}

)
= 1 | T (MA) = 0,A ∩D = ∅

}
= 0.

(7)
In Property 1, we consider only the class of LODTs T

acting on the data vector MA in a way that disregards the
knowledge of the identity of the node producing the data.
For this reason, (4) and (5) depend only on the number
and on the status (good or defective) of the sensors in A.
Moreover, we focus on tests allowing an easier identification
of an outlier as |A| increases. Property 2 implies that if an
outlier is not discovered testing the whole vector of data mA,
then it cannot be discovered testing any sub-vector of mA.

IV. PROBLEM STATEMENT AND MAIN RESULTS

A. Iterative Distributed Outlier Detection Algorithm

This section presents a variant of the iterative DFD algo-
rithm proposed in [2]. The aim of Algorithm 1 is to detect
nodes with defective sensors in the WSN and to reduce their
impact, while keeping the probability of false alarm small.
At each round ` of the iterative algorithm, each node i has
to provide an estimate θ̂(`)i of the status of its sensor. Then,
the estimates θ̂(`)i will affect the set of data considered by
node i at round `+ 1, i.e., Û (`+1)

i =
{
j ∈ Ui s.t. θ̂(`)j = 0

}
.

Estimates may thus be updated at the next round.

Algorithm 1 Iterative DFD

1) Set ` = 1; θ̂(0)i = 0 for all i ∈ S.
2) If θ̂(`−1)i = 0,

• Phase I: Node i broadcasts a packet containing its
local data m(`)

i , receives the data produced by the
sensors of nodes in Û (`)

i \{i} and performs the test
(3) with outcome

y
(`)
i = T

(
m

(`)

Û(`)
i

)
. (8)

• Phase II: Node i broadcasts y
(`)
i generated in

Phase I and receives y(`)j for all j ∈ Û (`)
i .

• Phase III: each Node i estimates its status θi,

θ̂
(`)
i =

1, if y(`)i = 1 and

∑
j∈Û(`)

i

y
(`)
j∣∣∣Û(`)

i

∣∣∣ > γ,

0, otherwise,
(9)

with 0 < γ ≤ 1.
3) If θ̂(`−1)i = 1, Node i is silent, i.e., it does not broadcast

any packet. However, it still receives data from nodes
in Û (`)

i \ {i} and makes a decision θ̂(`)i = y
(`)
i .

4) ` = `+ 1.
• If ` ≤ L and θ̂(`−1)i = 0, go to 2.
• If ` ≤ L and θ̂(`−1)i = 1, go to 3.

At iteration ` = 1, each node performs the operations
described in Step 2. After data collection from its own
sensor and the sensors of neighboring nodes, each node i

locally decides whether there exists an outlier in m
(`)

Û(`)
i

and

broadcasts its binary decision y
(`)
i to its neighbors. At the

end of Step 2, θ̂(`)i is obtained by applying (9). One has
θ̂
(`)
i = 1 if node i detects an outlier and if the proportion of

neighboring nodes detecting an outlier in their collected data
is larger than γ. Note that y(`)i depends only on the nodes in
Û (`)
i and is not affected by the presence of outliers outside.
When µd > 1, a large amount of non-defective sensors

may be diagnosed as defective. In Step 3, if θ̂(`−1)i = 1, node
i becomes silent and stops broadcasting its measurements in
round `. However, node i still performs the LODT: this gives
it a chance to become active again at iteration `+ 1 when it



erroneously considered its sensor as defective at iteration `.

B. Analysis of the DFD algorithm

Let the pair (θi, θ̂
(`)
i ) denote the state of Node i. Among

the four possible states, (0, 0) and (1, 1) are states resulting
from a correct decision, (0, 1) corresponds to a false alarm,
and (1, 0) corresponds to a non-detection. Let µ(`)

θi,θ̂
(`)
i

denote

the density of sensors in the state (θi, θ̂
(`)
i ). The aim of what

follows is to characterize the evolution of µ(`)

θi,θ̂i
to determine

whether Algorithm 1 converges to a unique equilibrium state.
Before the first round of the adaptive algorithm, one has

µ
(0)
00 = µg, µ(0)

10 = µd, and µ(0)
01 = µ

(0)
11 = 0. Definef1 (µg, µd) = P

{
Y

(1)
i = 1 | θi = 0

}
,

f2 (µg, µd) = P
{
Y

(1)
i = 1 | θi = 1

}
,

(10)

as the probability of having Y
(1)
i = 1. Note that f1 and

f2 are functions of µg and µd due to Property 1. Similarly,
define PFA (µg, µd) = P

{
θ̂
(1)
i = 1 | θi = 0

}
,

PD (µg, µd) = P
{
θ̂
(1)
i = 1 | θi = 1

}
,

(11)

as the probability of having θ̂(1)i = 1 in the first iteration, at
the end of Step 2. The properties of f1, f2, PFA, and PD are
discussed in Section V-A.

At any iteration `, µ(`)
00 + µ

(`)
01 = µg and µ(`)

10 + µ
(`)
11 = µd.

Since the actual status of a sensor is assumed constant during
the iterations of the DFD algorithm, the only possible transi-
tions are between states (0, 0) and (0, 1) and between states
(1, 0) and (1, 1). The evolution of the densities between
iterations ` and `+ 1 is given by
µ
(`+1)
00

µ
(`+1)
01

µ
(`+1)
10

µ
(`+1)
11

 =


P

(`)
0,00 P

(`)
0,10 0 0

P
(`)
0,01 P

(`)
0,11 0 0

0 0 P
(`)
1,00 P

(`)
1,10

0 0 P
(`)
1,01 P

(`)
1,11



µ
(`)
00

µ
(`)
01

µ
(`)
10

µ
(`)
11

 ,
(12)

with P
(`)
a,bc = P

{
θ̂
(`+1)
i = c | θ̂(`)i = b, θi = a

}
, for any

a, b, c ∈ {0, 1}. The sensors considered as defective in the
previous iteration are silent, so all the transition probabilities
are functions of µ(`)

00 and µ
(`)
10 . When θ̂

(`−1)
i = 0, Step 2 is

performed andP
(`)
0,01 = PFA

(
µ
(`)
00 , µ

(`)
10

)
, P

(`)
0,00 = 1− P (`)

0,01,

P
(`)
1,01 = PD

(
µ
(`)
00 , µ

(`)
10

)
, P

(`)
1,00 = 1− P (`)

1,01.
(13)

When θ̂(`−1)i = 1, Step 3 yields θ̂(`)i = y
(`)
i andP

(`)
0,11 = f1

(
µ
(`)
00 , µ

(`)
10

)
, P

(`)
0,10 = 1− P (`)

0,11,

P
(`)
1,11 = f2

(
µ
(`)
00 , µ

(`)
10

)
, P

(`)
1,10 = 1− P (`)

1,11.
(14)

One may rewrite (12) as followsµ
(`+1)
00 = F1

(
µ
(`)
00 , µ

(`)
10

)
,

µ
(`+1)
10 = F2

(
µ
(`)
00 , µ

(`)
10

)
,

(15)

withF1

(
µ
(`)
00 , µ

(`)
10

)
= µ

(`)
00 (f1 − PFA) + µg (1− f1) ,

F2

(
µ
(`)
00 , µ

(`)
10

)
= µ

(`)
10 (f2 − PD) + µd (1− f2) .

(16)
To lighten notations, the arguments µ(`)

00 and µ(`)
10 of PFA, PD,

f1, and f2 have been omitted in (16), and in what follows
when there is no confusion. Note that (15) describes a non-
linear system, as all the transition probabilities depend on
the densities µ(`)

00 and µ(`)
10 .

C. Equilibrium analysis

Let µ∗00 and µ∗10 be the values at equilibrium of µ(`)
00 and

µ
(`)
10 , respectively. From (15), one deduces that µ∗00 and µ∗10

should satisfy

µ∗00PFA (µ∗00, µ
∗
10)

µg − µ∗00
= 1− f1 (µ∗00, µ

∗
10) , (17)

µ∗10PD (µ∗00, µ
∗
10)

µd − µ∗10
= 1− f2 (µ∗00, µ

∗
10) . (18)

In what follows, one determines the properties (existence,
unicity, and local stability) of the equilibrium state, which
depend on the properties of the transition probabilities. First,
one states sufficient conditions on the LODT, to get a unique
equilibrium state in (15).

Proposition 1: Assume that the considered LODT satis-
fies Properties 1 and 2, and is such that

P {Yk = 1 | Yi = 1, θk = θi = 0, k ∈ Ni} > 1− 4

µg
, (19)

qD (0, 2) > 1− 4

µd
, (20)

then (17-18) admit a solution, and the equilibrium of (15)
exists.

If µg < 4 and µd < 4, one has 1 − 4/µg < 0 and
1 − 4/µd < 0, then (19) and (20) hold for any kind of
test satisfying Properties 1 and 2. In fact, µd has typically
small values, thus (20) could be easily satisfied. In the
situation where µg > 4, (19) constrains the test: consid-
ering two non-defective neighboring nodes i and k, the
conditional probability P {Yk = 1 | Yj = 1} should be larger
than 1 − 4/µg. Notice that Yi and Yk are dependent, thus
P {Yk = 1 | Yj = 1} is not small. However, if µg goes large,
(19) may be difficult to satisfy. The exact value of the lower
bound depends on the type of LODT, see Section VI-A.

D. Local asymptotic stability analysis

Consider a linearization of the first equation of (15) around
equilibrium with µ

(`)
00 = µ∗00 + δ

(`)
0 and µ

(`)
10 = µ∗10 + δ

(`)
1

around (µ∗00, µ
∗
10), one gets(

δ
(`+1)
0

δ
(`+1)
1

)
=

[
A11 A12

A21 A22

](
δ
(`)
0

δ
(`)
1

)
= A

(
δ
(`)
0

δ
(`)
1

)
,

(21)



where

A =

[
∂F1

∂µ00
(µ∗00, µ

∗
10) ∂F1

∂µ10
(µ∗00, µ

∗
10)

∂F2

∂µ00
(µ∗00, µ

∗
10) ∂F2

∂µ10
(µ∗00, µ

∗
10)

]
.

The linearized system (21) is locally asymptotically stable
if the eigenvalues of A are in the unit circle, which leads to
the following proposition.

Proposition 2: Consider a LODT that satisfies Proper-
ties 1 and 2, as well as (19-20), and is such that

A11A22 −A12A21 < 1,

(1−A11)(1−A22)−A12A21 > 0,

(1 +A11)(1 +A22)−A12A21 > 0,

(22)

then the equilibrium point (µ∗00, µ
∗
10) is locally stable.

Providing generic stability conditions for all possible LODT
is difficult. Nevertheless, for a given LODT, the local stability
of (21) may be verified numerically. This requires an evalu-
ation of the derivatives of f1, f2, PFA and PD with respect
to µ00 and µ10 at equilibrium, see Section VI-A.

V. PROOFS

In Section V-A we characterize analytically the transition
probabilities f1, f2, PFA and PD. Then the existence of the
equilibrium (Proposition 1) is proved in Section V-B.

A. Properties of transition probabilities

One begins with the evaluation of the probability of having
Yi = 1 for the LODT (3). This probability depends on the
random variables Ng = |Ui ∩ G| and Nd = |Ui ∩ D|. Define
the function h(ng, nd) as the probability of having Yi = 1 in
a local test knowing that Ng = ng and Nd = nd, i.e.,

h (ng, nd)
(a)
= P {Yi = 1 | Ng = ng, Nd = nd, θi = 0}
(b)
= P {Yi = 1 | Ng = ng, Nd = nd, θi = 1}

=

{
qFA (ng) , if nd = 0,

qD (ng, nd) , if nd 6= 0.
(23)

Note that (a) and (b) hold as this probability does not depend
on θi, according to Property 1.

Lemma 3: For any LODT T satisfying Properties 1 and 2,
one has

qFA (ng) ≤ qFA (ng + 1) , (24)

qD (ng, nd) ≤ qD (ng + 1, nd) , (25)

qD (ng, nd) ≤ qD (ng, nd + 1) . (26)
Proof: First, note that both qD and qFA represent the

probabilities of getting Y = 1. One has, for any k ∈ A

P
{
T
(
MA\{k}

)
= 1
∣∣A ∩D = ∅

}
(a)
= P

{
T
(
MA\{k}

)
= 1, T (MA) = 1

∣∣A ∩D = ∅
}

≤ P
{
T (MA) = 1

∣∣A ∩D = ∅
}

(27)

where (a) is obtained from (7). From (5) and (27), one gets

qFA
(
MA\{k}

)
≤ qFA (MA) . (28)

Suppose that |A| = ng + 1 with ng ≥ 1, then based on
Property 1, (28) is equivalent to qFA (ng) ≤ qFA (ng + 1),
which proves (24). One may prove (25) and (26) in a similar
way, by considering ϕ (A) = 1 in the derivations.
Now consider f1 and f2 defined in (10):

f1 (µg, µd) = P {Yi = 1 | θi = 0}

=

∞∑
ng=1

∞∑
nd=0

P {Yi = 1 | Ng = ng, Nd = nd, θi = 0}

· P {Ng = ng, Nd = nd | θi = 0}

=

∞∑
ng=1

∞∑
nd=0

h (ng, nd)
µnd

d µ
ng−1
g

nd! (ng − 1)!
exp (−µd − µg) ,

(29)

f2 (µg, µd) = P {Yi = 1 | θi = 1}

=

∞∑
ng=0

∞∑
nd=1

h (ng, nd)
µnd−1

d µ
ng
g

(nd − 1)!ng!
exp (−µd − µg) . (30)

Lemma 4: f1 (µg, µd) and f2 (µg, µd) are non-decreasing
functions of µg and µd.

Proof: One may easily show that

∂f1
∂µg

=

∞∑
ng=1

∞∑
nd=0

µnd
d µ

ng−1
g

nd! (ng − 1)!
exp (−µd − µg)

· (h (ng + 1, nd)− h (ng, nd)) . (31)

From (31), one has ∂f1
∂µg
≥ 0 as h (ng, nd + 1) ≥ h (ng, nd)

by Lemma 3. Similarly, one has ∂f1
∂µd
≥ 0, ∂f2

∂µg
≥ 0, and

∂f2
∂µd
≥ 0.

Define now the conditional false alarm event

Eng,nd
i,FA =

Yi = 1,

∑
j∈Ui

Yj

ng + nd
≥ γ

∣∣∣∣θi = 0, Ng = ng, Nd = nd


representing, according to (9), the situation where the node i
with non-defective sensor diagnoses it as defective, knowing
that Ng = ng ≥ 1 and Nd = nd ≥ 0. Let τFA (ng, nd) =

P
{
Eng,nd
i,FA

}
, then PFA defined in (11) can be expressed as

PFA =

∞∑
ng=1

∞∑
nd=0

τFA (ng, nd)P
{
Ng = ng, Nd = nd

∣∣∣∣θi = 0

}

=

∞∑
ng=1

∞∑
nd=0

τFA (ng, nd)
µnd

d µ
ng−1
g exp (−µd − µg)

nd! (ng − 1)!
. (32)

Similarly, consider a non-defective sensor i: the conditional
defective sensor detection event is

Eng,nd
i,D =

Yi = 1,

∑
j∈Ui

Yj

ng + nd
≥ γ

∣∣∣∣θi = 1, Ng = ng, Nd = nd





where ng ≥ 0 and nd ≥ 1. Let τD (ng, nd) = P
{
Eng,nd
i,D

}
,

then PFA defined in (11) can be expressed as

PD =

∞∑
ng=0

∞∑
nd=1

τD (ng, nd)P
{
Ng = ng, Nd = nd

∣∣∣∣θi = 1

}

=

∞∑
ng=0

∞∑
nd=1

τD (ng, nd)
µnd−1

d µ
ng
g exp (−µd − µg)

(nd − 1)!ng!
, (33)

To find a closed-form expression for PFA and PD, one has to
evaluate the pmf of

(∑
j∈Ui Yj | Ng, Nd, θi

)
. Consider now

the event

Yng,nd
j,D =

{
Yj = 1

∣∣∣∣j ∈ Ui, Ng = ng, Nd = nd, θi = 1

}
with j ∈ Ui. For any j′ ∈ Ui with j 6= j′, Yng,nd

j,D and Yng,nd
j′,D

are dependent. Their dependency comes from the fact that
in general Nj ∩Nj′ 6= ∅. The pmf of

∑
j∈Ui Yj is thus quite

difficult to evaluate, since the dependency between the Yjs is
not explicit. For this reason, only upper bounds of PFA and
PD are derived in the following instead of closed analytical
forms.

Lemma 5: For any 0 < γ ≤ 1, one has

PFA (µg, µd) < f1 (µg, µd) , (34)

PD (µg, µd) < f2 (µg, µd) . (35)
Proof: By definition,

τFA (ng, nd)

= P
{
Yi = 1,

∑
j∈Ui Yj

ng + nd
= 1

∣∣∣∣θi = 0, Ng = ng, Nd = nd

}
≤ P

{
Yi = 1

∣∣∣∣θi = 0, Ng = ng, Nd = nd

}
= h (ng, nd) .

(36)

Then from (29), (32), and (36), one obtains (34). Then, (35)
can be proved similarly.

B. Proof of Proposition 1
The following lemma provides sufficient conditions to

have monotone left hand-side expressions in (17) and (18).
Lemma 6: Assume that the LODT (3) satisfies Proper-

ties 1 and 2, as well as (19) and (20), then, for any µ10,

gFA (µ00, µ10) =
µ00PFA (µ00, µ10)

µg − µ00
(37)

is an increasing function of µ00 over [0, µg] and for any µ00,

gD (µ00, µ10) =
µ10PD (µ00, µ10)

µd − µ10
(38)

is an increasing function of µ10 over [0, µd].
Proof: To prove that gFA (µ00, µ10) as defined in (37)

is monotone increasing in µ00 under the condition (19), one
has to show that

∂gFA

∂µ00
=

µ00

µg − µ00

∞∑
ng=1

∞∑
nd=0

µnd
d µ

ng−1
g exp (−µd − µg)

nd! (ng − 1)!

·
(
τFA (ng + 1, nd) +

µ2
00 − µ00µg + µg

µ00 (µg − µ00)
τFA (ng, nd)

)
(39)

is strictly positive. Therefore, a sufficient condition to have
∂gFA
∂µ00

> 0 is

τFA (ng + 1, nd) > −
µ2
00 − µ00µg + µg

(µg − µ00)µ00
· τFA (ng, nd) . (40)

Since

−
µ2
00 − µ00µg + µg

(µg − µ00)µ00
= 1−

µg

(µg − µ00)µ00
≤ 1− 4

µg
, (41)

a sufficient condition to have (40) is

min
ng≥1,nd≥0

τFA (ng + 1, nd)

τFA (ng, nd)
> 1− 4

µg
. (42)

One needs to find a lower bound of τFA (ng + 1, nd) as a
function of τFA (ng, nd). By definition,

τFA (ng + 1, nd)

(a)
= P

{
Yi = 1,

∑
j∈B Yj

ng + nd + 1
≥ γ

}
(b)

≥ P

{
Yi = 1,

∑
j∈B Yj

ng + nd + 1
≥ γ,

∑
j∈B\{k} Yj

ng + nd
≥ γ

}

= P

{
Yi = 1,

∑
j∈B\{k} Yj

ng + nd
≥ γ

}

· P

{ ∑
j∈B Yj

ng + nd + 1
≥ γ

∣∣∣∣
∑
j∈B\{k} Yj

ng + nd
≥ γ, Yi = 1

}
(c)

≥ τFA (ng, nd)

· P

{ ∑
j∈B Yj

ng + nd + 1
≥ γ

∣∣∣∣
∑
j∈B\{k} Yj

ng + nd
≥ γ, Yi = 1

}
(43)

where in (a), B is a set Ui such that θi = 0, Ng = ng + 1,
and Nd = nd. In (b), k is an arbitrary node in Ni ∩ G.
Suppose that an arbitrary network topology is fixed under
the condition that Ng = ng + 1 and Nd = nd, local tests are
performed based on the data vector MB, and the outcome
of local test is Yj = yj for ∀j ∈ B. Now one removes an
arbitrary node k from Ni ∩G and re-performs the local tests
based on the vector MB\{k}, with the outcome Yj = y′j .
Then one is sure that yj ≥ y′j and∑

j∈B\{k}

yj ≥
∑

j∈B\{k}

y′j , (44)

using Property 2. Thus (c) is true. From (43),

τFA (ng + 1, nd)

τFA (ng, nd)

≥ P

{ ∑
j∈B Yj

ng + nd + 1
≥ γ

∣∣∣∣
∑
j∈B\{k} Yj

ng + nd
≥ γ, Yi = 1

}

≥ P

{
Yk = 1,

∑
j∈B Yj

ng + nd + 1
≥ γ

∣∣∣∣
∑
j∈B\{k} Yj

ng + nd
≥ γ, Yi = 1

}



≥ P

{
Yk = 1

∣∣∣∣
∑
j∈B\{k} Yj

ng + nd
≥ γ, Yi = 1

}

· P

{ ∑
j∈B Yj

ng + nd + 1
≥ γ | Yk = 1, Yi = 1,

∑
j∈B\{k} Yj

ng + nd
≥ γ

}
(a)
= P

{
Yk = 1 |

∑
j∈B\{k} Yj

ng + nd
≥ γ, Yi = 1

}
(b)

≥ P{Yk = 1 | Yi = 1, θi = θk = 0,

Ng = ng + 1, Nd = nd, k ∈ Ni}, (45)

where (a) is by the fact that if Yk = 1 and∑
j∈B\{k} Yj > γ (ng + nd) are true, then one has∑
j∈B Yj > γ (ng + nd + 1). Then (b) comes from

P {Yk = 1} ≤ P {Yk = 1 | Yi = 1}
≤ P {Yk = 1 | Yi = 1, Yj = 1} ≤ · · · (46)

see [12] for more details. According to (42) and (45), the
first statement of Lemma 6 is proved.

Similarly, a sufficient condition to have gD (µ00, µ10) an
increasing function of µ10 is that

τD (ng, nd + 1)

τD (ng, nd)
≥ P {Yk = 1 | θi = θk = 1}

≥ qD (0, 2) > 1− 4

µd
, (47)

which corresponds to the second statement of Lemma 6.
Then, we study first the behavior of the right-hand side of
(17) for a fixed value of µ10. As shown in Section V-A, f1
is a positive and non-decreasing function of µ00, then 1−f1
is a non-increasing function of µ00. If (19) is satisfied, the
left-hand side of (17) is a strictly increasing function of µ00

over [0, µg]. Moreover

gFA (0, µ10) = 0 < 1− f1 (0, µ10) ,

and

lim
µ00→µg

gFA (µ00, µ10)� 1− lim
µ00→µg

f1 (µ00, µ10)

since limµ00→µg gFA (µ00, µ10) → ∞. Therefore, there ex-
ists a unique intersection of the graphs of the functions
gFA (µ00, µ10) and 1 − f1 (µ00, µ10) as µ00 goes from 0
to µg, for any fixed µ10. The value µ+

00 of µ00 at which
they intersect is thus a function of µ10. One may write
µ+
00 = α (µ10) , where α : [0, µd] → [0, µg]. The continuity

of α is deduced from that of f1 and gFA.
Similarly, one can show that if (20) is satisfied, for any

fixed µ00, there exists a unique intersection of the graphs of
gD (µ00, µ10) and 1 − f2 (µ00, µ10) as µ10 varies from 0 to
µd.The value µ+

10 of µ10 at which both graphs intersect is thus
a function of µ00. One may write µ+

10 = β (µ00) , where β :
[0, µg]→ [0, µd]. The continuity of β is deduced from that of
f2 and gD. Then, the equation µ∗00 = α (β (µ∗00)) admits at
least a solution from Brouwer’s fixed-point theorem, since α◦
β : [0, µg]→ [0, µg] is continuous. In this way, Proposition 1
is proved.

VI. ILLUSTRATION

Assume that each sensor i gets a noisy observation of the
same constant scalar physical quantity φ

mi = φ+ wi, ∀i ∈ S. (48)

The components wi of the measurement noise in (48) are
assumed to be realizations of random variables Wi. Various
outlier models may be considered. Here, we assume that
Wi ∼ N

(
Ei, σ

2
)
, where the bias Ei is also a random

variable. If i ∈ G, then Ei is uniformly distributed in
[−∆,∆]. If i ∈ D, then Ei is uniformly distributed in
[−ξ∆,−∆]∪ [∆, ξ∆] with ξ > 1. Moreover, the value of Ei
of each sensor is constant, i.e., Ei does not vary over time.

A. LODT

Consider some tolerance ν > 0 and the interval [mi] =
[mi − ν,mi + ν] of width 2ν centered around mi. Consider
now the set estimate [13] of φ defined as[

φ̂ (mA)
]

=
⋂
i∈A

[mi] . (49)

From
[
φ̂ (mA)

]
, one deduces the following low-complexity

LODT

T (mA) =

{
1, if

[
φ̂ (mA)

]
= ∅,

0, else.
(50)

With and without presence of outliers, one is able to
evaluate the probability P

{[
φ̂
]

= ∅
}

as a function of σ,
ξ, and ∆. The test (50) involves mA, but does not need
the identity of the node producing the data. Thus qD and
qFA defined in (4) and (5) only depend on ng = |A ∩ G|
and nd = |A ∩ D|. Property 1 is thus satisfied. Assume now
that T (mA) = 0 which implies

[
φ̂ (mA)

]
6= ∅, then by

definition of (49), one must have
[
φ̂
(
mA\{j}

)]
6= ∅ for any

j ∈ A and Property 2 is satisfied as well.
Now one analyzes the condition in Proposition 1.
Lemma 7: Consider the LODT defined in (49-50), one has

P {Yk = 1 | Yi = 1, θk = θi = 0, k ∈ Ni} > 1−
√

3

π
− 5

6π2
.

(51)
The details of the proof may be found in [12].

From (49) and (51), one obtains the constraint of Proposi-
tion 1, 1− 3

√
3

4π −
5

6π2 ≥ 1− 4
µg

and thus µg ≤ 24π2

5+6
√
3π
≈ 6.3.

.

B. Simulation results

Consider a wireless sensor network (WSN) of 1000 sen-
sors independently and uniformly deployed over a square
of size 10 × 10 units. To avoid boundary effects, only the
sensors in the square of size (10− 2R0)× (10− 2R0) units
are considered in the evaluations of PD and PFA. One sets
ξ = 10 and γ = 0.95. All results have been averaged over
200 independent realizations of the WSN.

The evolution of PD and PFA are shown in Figures 1-3
for µ ∈ {6, 20}, µd/µ ∈ {0.1, 0.3} and ν/σ ∈ {1, 3, 6}.
The verification of Proposition 2, as wells as the eigenvalues



TABLE I
VERIFICATION OF PROPOSITION 2 AND THE EIGENVALUES λ1 AND λ2

OF THE MATRIX A IN (21)

µ ν
σ

µd
µ

Q1 Q2 Q3 λ1 λ2
6 6 0.1 -0.12 0.96 1.01 0.12 -0.10
6 3 0.1 -0.02 0.89 1.07 0.19 -0.10
6 1 0.1 0.02 1.56 0.48 -0.38 -0.50
6 6 0.3 -0.10 0.84 0.97 0.34 -0.28
6 3 0.3 -0.10 0.93 0.98 0.35 -0.28
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Fig. 1. PD (left) and PFA (right) as a function of the number of rounds,
with µ = 6, µd/µ ∈ {0.1, 0.3}, and ν/σ ∈ {3, 6}.

of the matrix A in (21), are shown in Table I, with Q1 =
A11A22−A12A21, Q2 = (1−A11)(1−A22)−A12A21, and
Q3 = (1+A11)(1+A22)−A12A21. One sees that the value
of ν and µd/µ has important influence on the convergence
speed of the algorithm: when ν is large and µd/µ is small,
convergence is faster. The iterative DFD does not converge
to a an equilibrium when µ = 20, µd/µ = 0.1, and ν = σ.
Notice that with these values of the parameters, (51) is not
satisfied.

VII. CONCLUSIONS AND FUTURE WORK

This work proposes a variant of the iterative DFD algo-
rithm proposed in [2] and presents a theoretical analysis
of its equilibrium and local asymptotic stability. Sufficient
conditions for the existance of a unique and locally stable
equilibrium point have been derived. Properties for the
uniqueness of the equilibrium are derived independently of
the LODT involved at the nodes of the WSN. For a given
example, the sufficient conditions translate into upper bounds
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Fig. 2. PD (left) and PFA (right) as a function of the number of rounds,
with µ = 20, µd/µ ∈ {0.1, 0.3}, and ν/σ ∈ {3, 6}.
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Fig. 3. PD (left) and PFA (right) as a function of the number of rounds,
with µd/µ = 0.1, ν/σ = 1 and µ ∈ {6, 20}.

on µg and µd. When these bounds are satisfied, the algorithm
behaves well. When they are not satisfied, the equilibrium
may not exist.

This iterative algorithm is promising and will be extended
to the detection of sparse events.
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