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Self-Rating in a Community of Peers

Wenjie Li, Francesca Bassi, Laura Galluccio, and Michel Kieffer

Abstract— Consider a community of agents, all performing a
predefined task, but with different abilities. Each agent may be
interested in knowing how well it performs in comparison with
her peers. This general scenario is relevant, e.g., in Wireless
Sensor Networks (WSNs), or in the context of crowd sensing
applications, where devices with embedded sensing capabilities
collaboratively collect data to characterize the surrounding
environment, but the performance is very sensitive to the
accuracy of the gathered measurements.

In this paper we present a distributed algorithm allowing
each agent to self-rate her level of expertise/performance at the
task, as a consequence of pairwise interactions with the peers.
The dynamics of the proportions of agents with similar beliefs
in their expertise are described using continuous-time state
equations. The existence of an equilibrium is shown. Closed
form expressions for the various proportions of agents with
similar belief in their expertise is provided at equilibrium.
Simulation results match well theoretical results in the context
of agents equipped with sensors aiming at determining the
performance of their sensors.

I. INTRODUCTION

We consider a situation where all the agents in a com-
munity are engaged in the same activity, for which it is
reasonable to expect heterogeneous levels of ability. The
agents, who regularly meet their peers and interact with them
in pairs, are incentivated to self-rate their own capabilities
at the task in order to better address their future actions.
This general scenario may well describe, e.g., the needs of
a group of amateur chess players trying to pair up with
opponents of comparable strength; or the situation of a sensor
network, where devices with embedded sensing capabilities
collaboratively collect data to characterize the surrounding
environment, and nodes with scarce sensing accuracy may
prefer to withhold their contribution to avoid to pollute
the data. This may happen, for instance, in the context
of crowdsensing scenarios [1], where, in order to provide
reliable sensing services such as those advocated by the
S2aaS (Sensing as a service) paradigm [2], there is a need
for high quality measurements that are not always available
at devices since this is tightly related to the accuracy of the
sensors embedded.

This problem is counteracted in S2aaS scenarios by in-
troducing reputation-based mechanisms, see, e.g., the Trust-
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worthy Sensing for Crowd Management (TSCM) discussed
in [3]–[5]. In this scheme sensing data are collected from
smart-phones, based on an auction mechanism. The sensing
task is assigned to the nodes by the central authority on the
basis of their reputation level, to maximize the utility for the
crowd.

Reputation-based mechanisms as TSCM are effective in
rating the agents of the community, but are based on data
centralization and need to establish a rating authority. In this
work we are instead interested in distributed mechanism that
nodes can employ to self-rate their capabilities. A distributed
classification approach is taken in the context of WSN by
the works in [6], [7], where different nodes are subject
to different sensing noise models characterized by hidden
parameters. Each node is willing to co-operate with the rest
of the network via gossip or consensus algorithms to estimate
the common observed physical quantity, and simultaneously
learns its sensing model. For these algorithms to converge,
however, the WSN architecture needs to guarantee large
static connectivity for each node, and to disseminate node
identification. In this work we propose an alternative ap-
proach to distributed self-rating where instead nodes can be
mobile, connectivity can be dynamic, and identification is not
used by the algorithm, allowing, e.g., for node substitution
or removal without disrupting the network functionality.

The proposed self-rating algorithm needs a Local Compat-
ibility Test (LCT) adequate to establish which element of the
pair of agents engaging in the test is better in performing the
task. The self-rating algorithm consists then in performing
a LCT when two nodes meet, and in counting the number
of positive tests outcomes as well as the number of past
meetings. The agents, who have knowledge of the expected
proportion of nodes in each group, maintain a self-rating
which evolves in time, and converges fast and reliably. The
effectiveness of the proposed algorithm is measured by the
correct grade rate (CGR), i.e., the proportion of individuals
whose self-rating result corresponds to the real level, and by
the false grade rate (FGR), i.e., the proportion of individuals
who self-rate the wrong class. The behavior of the algorithm
is analyzed by describing its state equations. The analysis of
the equilibrium allows to uncover the relationship between
CGR and FGR and the characteristics of the local comparison
test, providing a powerful tool to optimize design.

The paper is organized as follows. Section II introduces the
system model and LCT. Section III introduces and analyzes
the proposed distributed self-rating algorithms. Proofs for
the analysis of the equilibrium are presented in Section IV.
Simulations results are reported in Section V before drawing
some conclusions in Section VI.



II. SYSTEM MODEL AND LOCAL COMPATIBILITY TEST

Consider a set S of NS moving agents. Assume that
the agents in S can be partitioned into NG groups denoted
S1, . . .SNG , containing respectively a proportion p1, . . . , pNG

of the agents. A group contains agents able to perform
some task with a similar level of expertise or reliability.
Groups are sorted in decreasing levels of expertise. Let
θi (t) ∈ G = {1, . . . , NG} be the index of the group Sθi(t)
to which Agent i belongs at time t. Initially, Agent i is not
aware of the actual value of θi but is willing to estimate
it as fast as possible. We assume that the group to which
Agent i belongs does not change over the time horizon of
the experiment, so θi(t) = θi.

In what follows, one will present a distributed algorithm
allowing each Agent i to get an estimate θ̂i of its group θi.
For that purpose a local comparison test (LCT) is introduced,
performed by Agent i after meeting and interacting with
any Agent j. Meetings are assumed to involve only two
agents. The output yi,j of the LCT performed by Agent i
upon interaction with Agent j is binary. The LCT determines
whether Agent i is better at doing the considered task
than Agent j (yi,j = 1), or vice-versa (yi,j = 0), without
being able to determine the Agent i’s absolute level of
expertise. LCTs may provide erroneous conclusions and are
characterized by their statistical properties

q (θi, θj) = P {Yi,j = 1|θi, θj} . (1)

One has not necessarily q (θi, θj) = 1 − q (θj , θi) . One
assumes that θi 6 θj implies q (θi, 1) > q (θj , 1) and
q (1, θi) > q (1, θj) ,which appears reasonable, since the first
group contains the agents with the highest level of expertise.

Interactions may take various forms depending on the
application scenario, ranging from the exchange of noisy
measurements mi and mj of the same physical quantity
when the agents are nodes of a WSN, to a blitz-game
between humans, willing, e.g., to self-rate their level in chess.
An example LCT is provided in Section V in the context of
WSNs. A meeting between two nodes does not necessarily
entail interaction: one assumes here that the probability of
interaction α

(
θ̂i, θ̂j

)
is a function of the estimates θ̂i(t) and

θ̂j(t) of the groups to which each agent belongs. When the
agents aim is to self-rate their level in chess, for instance,
α
(
θ̂i, θ̂j

)
will approach one when θ̂i and θ̂j are close and

thus the outcome of the LCT is reputed unpredictable, and
be small when θ̂i and θ̂j are very different, thus preventing
the agents wasting time in a LCT whose outcome is reputed
easily foreseeable. In practice, one assumes that when two
agents i and j meet, they start exchanging the estimated
index of their group, Agent i will request for a further
interaction with probability α

(
θ̂i, θ̂j

)
and Agent j with a

probability α
(
θ̂j , θ̂i

)
.

III. DISTRIBUTED SELF-RATING ALGORITHM

In the proposed Distributed Self-Rating (DSR) algorithm,
each agent manages two counters ct,i(t) and cb,i(t) initialized

at 0 at t = 0. The number of LCT tests performed by
Agent i and following an interaction it has requested is
stored in ct,i(t). The number of tests concluding that Agent
i is better than the agent met is stored in cb,i(t). An agent
involved in an interaction it has not requested does not update
ct,i(t) and cb,i(t). If the agents are randomly spread, the
ratio cb,i(t)/ct,i(t) will mainly depend on the proportions of
agents in each group, on the interaction probabilities, and on
the statistical properties of the LCT.

Intuitively, an Agent belonging to Group 1 is likely to
have a larger ratio cb,i(t)/ct,i(t) than an Agent belonging to
Group NG. One may thus introduce a partition of the interval
[0, 1] into NG decision intervals [νk, νk−1) with ν0 = 1 and
νNG = 0 and consider the decision rule

θ̂i (t) = k if cb,i(t)/ct,i(t) ∈ [νk, νk−1) , k = 1 . . . , NG.
(2)

Agents with the largest value of cb,i(t)/ct,i(t) choose the
smallest group index. The aim of this work is to show that
the decision rule (2) leads to a satisfying self-rating of the
agents, for appropriate choice of the value of νk, for all k =

1, . . . , NG. The values of α
(
θ̂i, θ̂j

)
are design parameters

that can be adjusted to optimize the performance of the self-
rating algorithm.

A. Practical Self-Rating Algorithm

Let xi(t) = (θi, ct,i(t), cb,i(t)) represent the state of each
Agent i. If all the LCT results obtained in the past are
considered, one has limt→∞ ct,i(t) → ∞, which results
an infinite number of possible values for xi(t). The global
(macroscopic) behavior of the algorithm is in this case
difficult to analyze. To limit the number of possible states,
one considers the evolution of ct,i(t) and cb,i(t) over a sliding
variable-length time interval containing the time instants of
the last M meetings during which Agent i has performed a
LCT. Algorithm 1 summarizes the proposed DSR algorithm
for an arbitrary reference Agent i.

B. Evolution of the state of an agent

At time t, among the agents in Group θ, let X`,d
θ (t) be

the proportion of agents in state xi(t) = (θ, `, d), i.e., with
ct,i (t) = ` and cb,i (t) = d. Since ` ∈ {0, 1, . . . ,M} and
d ∈ {0, . . . , `}, the number of values that may be taken by
the state of an agent is (M + 1) (M + 2) /2. The evolution
of the state of Agent i, conditioned by the index θ of its
actual group, follows a Markov model with state transition
diagram similar to that shown in Figure 1 for M = 4.

There are NG parallel chains conditioned by the value of
θ ∈ G. Define πδt,δb

θ as the transition probability from State
(θ, `, d) to State (θ, `+ δt, d+ δb). Note that πδt,δb

θ depends
on the current state (θ, `, d) of the reference Agent i, but also
on the current proportion of agents with estimated self-rating
θ̂i (t).

One has first to evaluate the probability that some Agent i
with state (θ, `, d) and estimated rating θ̂ (`, d) performs a
LCT upon meeting a random Agent J . This probability may



Algorithm 1 DSR algorithm for Agent i

1) Initialize t0i = 0, θ̂i
(
t0i
)

= 1, ct,i
(
t0i
)

= cb,i
(
t0i
)

= 0,
κ = 1, and µ = 0.

2) Do  θ̂i (t) = θ̂i
(
tκ−1i

)
,

ct,i (t) = ct,i
(
tκ−1i

)
,

cb,i (t) = cb,i
(
tκ−1i

)
,

(3)

t = t+ δt (4)

until the κ-th meeting occurs at time tκi with Agent
jκ ∈ S.

3) Transmit θ̂i (tκi ) to Agent jκ and receive θ̂jκ (tκi ) from
Agent jκ.

4) With probability α
(
θ̂i (tκi ) , θ̂jκ (tκi )

)
, perform a LCT

with outcome yµi , then
a) µ = µ+ 1. Update ct,i and cb,i as{

ct,i(t
κ
i ) = min {µ,M}

cb,i(t
κ
i ) =

∑µ
m=max{1,µ−M+1} y

m
i

(5)

b) Update θ̂i according to 2
5) κ = κ+ 1.
6) Go to 2.

0

0

1

2

3

4

1 2 3 4

cb

ct

Fig. 1. Example of Markov model for the evolution of the state of a agent
when M = 4.

be evaluated as

β (`, d) = E
(
α
(
θ̂ (`, d) , θ̂J (t)

))
(6)

where the expectation has to be taken over θ̂J (t). Then

β (`, d) =
∑

k1,k2∈G

α
(
θ̂ (`, d) , k2

)
P
{
θ̂J (t) = k2, θJ = k1

}
=

∑
k1,k2∈G

α
(
θ̂ (`, d) , k2

)
P
{
θ̂J (t) = k2|θJ = k1

}
P {θJ = k1}

=
∑

k1,k2∈G

α
(
θ̂ (`, d) , k2

)
pk1p

k1k2 (t) . (7)

In (7), one uses the fact that Agents are randomly spread
to get P {θJ = k1} = pk1 . We introduce pk1k2 (t) =

P
{
θ̂J (t) = k2|θJ = k1

}
as the proportion of agents in

Group k1 believing their group index is k2. Finally, one has

θ̂ (`, d) = k such that d/` ∈ [νk, νk−1). More specifically, it
is

pk1k2 (t) = P
{
θ̂J (t) = k2|θJ = k1

}
=

{
X0,0
k1

(t) +
∑
`,d,d/`∈[νk2 ,νk2−1)X

`,d
k1

(t) , if k2 = 1,∑
`,d,d/`∈[νk2 ,νk2−1)X

`,d
k1

(t) , else.
(8)

Two phases have to be considered in Algorithm 1, de-
pending on the value of ct,i(t). In the transient phase,
for states with ct,i(t) = ` < M , one has (δt, δb) ∈
{(0, 0) , (1, 0) , (1, 1)}, since ` may either increase or remain
constant and δb 6 δt. The only possibility leading to δt = 0
is that Agent i, once it has met a random Agent J , decides
not to continue interaction. Then

π0,0
θ (t, `, d) = 1− β (`, d) . (9)

A state transition occurs with (δt, δb) = (1, 1) when, once
Agent i has met Agent J , they continue interaction and the
LCT yields yi (t) = 1. Since α only depends on the group
estimates, these two events can be assumed as independent
and one has to consider all possible values taken by θ̂J (t)
to get

π1,1
θ (t, `, d)

=
∑
k2∈G

α
(
θ̂ (`, d) , θ̂J (t) = k2

)
P
{
Yi = 1, θ̂J (t) = k2|θi = θ

}
=

∑
k1,k2∈G

α
(
θ̂ (`, d) , k2

)
P
{
Yi = 1, θJ = k1, θ̂J (t) = k2|θi = θ

}
=

∑
k1,k2∈G

α
(
θ̂ (`, d) , k2

)
P {Yi = 1|θi = θ, θJ = k1}

· P
{
θ̂J (t) = k2|θJ = k1

}
P {θJ = k1}

=
∑

k1,k2∈G

α
(
θ̂ (`, d) , k2

)
pk1p

k1k2 (t) q (θ, k1) . (10)

Finally, π1,0
θ (t, `, d) is obtained similarly as (10),

π1,0
θ (t, `, d) =

∑
k1,k2∈G

α
(
θ̂ (`, d) , k2

)
pk1p

k1k2 (t) (1− q (θ, k1)) .

(11)
In the permanent regime, ct,i(t) = M and remains constant,

thus δt = 0. In Algorithm 1, µ is the number of LCTs
performed by Agent i till time t. When µ > M , only the
last M LCT outcomes are considered. To determine the value
taken by δb ∈ {−1, 0, 1} after the µ-th LODT, consider an
arbitrary y ∈ {0, 1} and the random event

Ey (t) =

Y µ−Mi = y

∣∣∣∣ µ−1∑
m=µ−M

Y mi = d

 . (12)

which corresponds to a situation where one knows that k
LCTs yield 1 among the last M tests and Y µ−Mi = y will be
ignored once the new LCT outcome is available. P {E1 (t)}
is relatively complex to evaluate, since P {Y ni = y} depends
on the actual group of the encountered agent and is time-
varying. In what follows, we assume that LCT outcomes
with Y mi = y, are independently distributed over the time



horizon corresponding to m = µ−M, . . . , µ−1. One obtains
then P {E1 (t)} = d/M and P {E0 (t)} = 1− d/M .

Assume that the (µ−M)-th LCT performed by Agent i
occurred at time t̃, then yµ−Mi can also be denoted as yi

(
t̃
)

and the transition related to cb,i is such that

δb = yi (t)− yi
(
t̃
)
∈ {−1, 0, 1} . (13)

To have (δt, δb) = (0, 1), three independent events have to
occur: 1) interaction has to continue once Agent J has been
met; 2) yi (t) = 1; 3) yi

(
t̃
)

= 0, i.e., E0 (t). The transition
probability is obtained using derivations similar to (10)

π0,1
θ (t,M, d)

=
∑

k1,k2∈G

α
(
θ̂ (M,d) , k2

)
pk1p

k1k2 (t) q (θ, k1)
M − d
M

. (14)

Consider now (δt, δb) = (0,−1), one has

π0,−1
θ (t,M, d)

=
∑

k1,k2∈G

α
(
θ̂ (M,d) , k2

)
pk1p

k1k2 (t) (1− q (θ, k1))
d

M
,

(15)

in the same way. Applying (14-15), π0,0
θ (t,M, d) can

be obtained from π0,0
θ (t,M, d) = 1 − π0,1

θ (t,M, d) −
π0,−1
θ (t,M, d).

C. Macroscopic evolution

All agent state transition probabilities evaluated in Sec-
tion III-B are now used to determine the evolution of the
various proportions X`,d

θ (t) of agents in the corresponding
states, with θ = 1, . . . , NG, ` = 0, . . . ,M and d 6 `. In what
follows, one assumes that agents are mobile and form a well-
mixed population. Considering an inter-contact rate λ, during
a short time interval [t, t+ δt], the number of agents with
state (θ, `, d) that will meet another agent can be estimated
as λpθNSX

`,d
θ (t)δt. When 0 < ` < M and 0 < d < `,

these agents will switch to the states (θ, `+ δt, d+ δb),
with (δt, δb) ∈ {(0, 0) , (1, 0) , (1, 1)} with a probability
πδt,δb
θ (t, `, d). Moreover, agents in the states (θ, `− 1, d− 1)

and (θ, `− 1, d) that have met another agent in the time
interval [t, t+ δt] may reach state (θ, `, d), respectively with
a probability π1,1

θ (t, `− 1, d− 1) and π1,0
θ (t, `− 1, d). The

evolution of X`,d
θ (t) is then described by the following

differential equation, where the time dependency is omitted
to lighten notations

dX`,d
θ

dt
= −λX`,d

θ

(
π1,0
θ (`, d) + π1,1

θ (`, d)
)

+ λX`−1,d−1
θ π1,1

θ (`− 1, d− 1) + λX`−1,d
θ π1,0

θ (`− 1, d) .
(16)

When ` = M and 0 < d < M , agents in state (θ,M, d)
will switch to the states (θ,M, d+ δb), δb ∈ {−1, 0, 1} with
a probability π0,δb

θ (t,M, d). Agents in the states (θ,M −
1, d − 1) and (θ,M − 1, d) that have met another agent in
the time interval [t, t+ δt] may reach state (θ,M, d), with
probability π1,1

θ (t,M − 1, d− 1) and π1,0
θ (t,M − 1, d), re-

spectively. As a consequence, the evolution of XM,d
θ (t) can

be described by

dXM,d
θ

dt
= −λXM,d

θ

(
π0,1
θ (M,d) + π0,−1

θ (M,d)
)

+ λXM−1,d−1
θ π1,1

θ (M − 1, d− 1) + λXM−1,d
θ π1,0

θ (M − 1, d)

+ λXM,d−1
θ π0,1

θ (M,d− 1) + λXM,d+1
θ π0,−1

θ (M,d+ 1) .
(17)

Similar derivations can be made for the remaining state
components to obtain

dX
0,0
θ
dt

(a)
= −λX0,0

θ

(
π1,0
θ (0, 0) + π1,1

θ (0, 0)
)
,

dX
`,0
θ
dt

(b)
= λ

(
−X`,0

θ

(
π1,0
θ (`, 0) + π1,1

θ (`, 0)
)

+X`−1,0
θ π1,0

θ (`− 1, 0)
)
,

dX
`,`
θ
dt

(c)
= λ

(
−X`,`

θ

(
π1,0
θ (`, `) + π1,1

θ (`, `)
)

+X`−1,`−1
θ π1,1

θ (`− 1, `− 1)
)
,

dX
M,0
θ
dt

(d)
= λ

(
−XM,0

θ π0,1
θ (M, 0) +XM−1,0

θ π1,0
θ (M − 1, 0)

+XM,1
θ π0,−1

θ (M, 1)
)
,

dX
M,M
θ
dt

(e)
= λ

(
−XM,M

θ π0,−1
θ (M,M)+XM,M−1

θ π0,1
θ (M,M−1)

+ XM−1,M−1
θ π1,1

θ (M − 1,M − 1)
)
,

(18)
for any ` = 1 . . .M−1, with the initial conditions X0,0

θ (0) =

1 and X`,d
θ (0) = 0, ∀`, d 6= 0. Note that the state equations

(16-18) are nonlinear, since each πδt,δb
θ depends on X`,d

θ .

D. Equilibrium point of X`,d
θ

In this section, the asymptotic behavior of the state
equations (16-18) is characterized. This analysis will be
performed considering the following special case for the αs.
One considers

α (k1, k2) =

{
1 if k2 = 1

0 else.
(19)

This hypothesis corresponds to a situation where interaction
is only performed when an Agent i meets an Agent j
believing it is in the best group. As will be seen in Section V,
this strategy is efficient to self-rate agents equipped with
sensors of different quality.

To perform the analysis of the equilibrium, one investi-
gates first the evolution of X`,k

θ (t) when ` < M in the
following proposition.

Proposition 1: For any ` < M and d 6 `,
limt→∞X`,d

θ (t) = 0.
The proof of Proposition 1 is in Section IV-A. As a con-
sequence, the only possible value at equilibrium of X`,d

θ (t)

with ` < M is 0. Let X
M,d

θ be the value at equilibrium of
XM,d
θ . The proportion of agents estimating their group is θ̂

depends on the partition of the interval [0, 1] introduced in
(2)

pθθ̂ =
∑

d:d/M∈[νθ̂,νθ̂−1)

X
M,d

θ . (20)

In what follows, the case θ̂ = 1 is analyzed in details. The
analysis of the other cases is similar.

Denote p1 =
[
p11, . . . , pNG1

]T
and consider the functions



hθ
(
p1) = ∑

k∈G pkp
k1q (θ, k)∑

k∈G pkp
k1

, (21)

Fθ
(
p1) = M∑

d=dν1Me

(
M

d

)(
hθ
(
p1))d (1− hθ (p1))M−d ,

(22)

and F
(
p1
)

=
[
F1

(
p1
)
, . . . , FNG

(
p1
)]T

. The following
proposition provides a non-linear equation that has to be
satisfied by p1. Once this equation is solved, one easily
deduces the various X

M,d

θ at equilibrium.
Proposition 2: Assume that the dynamic system described

by (16-18) admits some equilibrium X
`,d

θ , then for any θ ∈ G
and d 6 `,

X
`,d

θ =

{
0, ∀` < M,(
M
d

) (
hθ
(
p1
))d (

1− hθ
(
p1
))M−d

, ` = M,

(23)

where p1 are obtained by solving

p1 = F
(
p1
)
. (24)

See Section IV-B for the proof.
The existence of X

M,d

θ mainly depends on whether (24)
has a solution p1. For that purpose, in the special case where
NG = 2, one shows the existence of an equilibrium in
Proposition 3 using Brouwer’s fixed-point theorem.

Proposition 3: In the case NG = 2, for any ν1 ∈ [0, 1],
(24) always admits a solution, and the dynamical system
(16-18) has an equilibrium.
See Section IV-C for the proof.

E. Approximations of the equilibrium

Explicit expressions for pθ1 are difficult to obtain from
(24). Since pθ1 with θ 6= 1 represent the proportions of agents
that have wrongly estimated their group, the vector p1 =[
p11, . . . , pNG1

]T
should be close to p̃1 = [1, 0, . . . , 0]

T.
One has limp1→p̃1 hθ

(
p1
)

= q (θ, 1). Assuming that at
equilibrium, hθ

(
p1
)
' q (θ, 1), using (23), X

M,d

θ can be
approximated as

X̃M,d
θ =

(
M

d

)
(q (θ, 1))

d
(1− q (θ, 1))

M−d
, (25)

and follows thus a binomial distribution. Knowing X̃M,d
θ for

all θ ∈ G and all d 6 M gives some insights to properly
tune the decision thresholds introduced in (2). The value of
the νθs may fox example be adjusted to maximize the CGR
under some cumulated FGR constraint evaluated using (25),
but alternative performance requirements may be considered.

IV. PROOFS

A. Proof of Proposition 1

For the proof, one considers first the following lemmas.
Lemma 4: If

lim
t→∞

ˆ t

0

(∑
k∈G

pkp
k1 (τ)

)
dτ =∞ (26)

then
∑
k∈G pkp

k1 (τ) > 0 for all t ∈ R+.
Proof: Since pk > 0 at least for some k ∈ G, it suffices

to prove that ∑
k∈G

pk1 (τ) 6= 0 ∀t > 0. (27)

Assume that there exists a time instant t∗ > 0, such that∑
k∈G p

k1 (t∗) = 0. As a consequence, at time t∗, all agents
have an estimate θ̂ 6= 1. Considering the choice of αs done
in (19), no LCT will be performed after time t∗ and the state
of agents will remain constant . Hence, if

∑
k∈G p

k1 (t∗) =
0 for some t∗, then

∑
k∈G p

k1 (t) = 0 for all
t > t∗. Consequently, limt→∞

´ t
0

(∑
k∈G pkp

k1 (τ)
)
dτ =´ t∗

0

(∑
k∈G pkp

k1 (τ)
)
dτ , which contradicts (26).

Lemma 5: Property (26) is always satisfied.
Proof: From (18-a), one has

X0,0
θ (t) = exp

(
−λ
ˆ t

0

(∑
k∈G

pkp
k1 (τ)

)
dτ

)
. (28)

Assume that there exists C∗ such that
limt→∞

´ t
0

(∑
k∈G pkp

k1 (τ)
)
dτ 6 C∗. Then

X0,0
θ (t) > exp (−λC∗) > 0. (29)

However, from (8), one has pθ1 (τ) > X0,0
θ (τ), leading to

ˆ t

0

(∑
k∈G

pkp
k1 (τ)

)
dτ>
ˆ t

0

(∑
k∈G

pkX
0,0
k (τ)

)
dτ >exp (−λC∗) t

and exp (−λC∗) t → ∞ as t → ∞, which violates (29).
Hence, one always has (26).
The proof of Proposition 1 is then by induction. Starting
with (18.a), one has (28). Since (26) is satisfied according
to Lemma 5, for any ξ > 0, there exists t00 > 0 such that
t > t00 implies X0,0

θ (t) < ξ and limt→∞X0,0
θ (t) = 0.

Then, assume that for any ` 6 M − 1, and ξ > 0, there
exists t(`−1)0 > · · · > t00 such that t > t(`−1)0 implies
Xj,0
θ (t) < ξ for j = 0, . . . , ` − 1. One has to show now

that there exists t`0 > t(`−1)0 such that X`,0
θ (t) < ξ for all

t > t`0.
Define Z`,0θ (t) =

∑`
j=0X

j,0
θ (t). From (18a) and (18b),

one has

dZ`,0θ
dt

= −λ

(
v (t)Z`−1,0

θ (t) +
∑
k∈G

pkp
k1 (τ)X`,0

θ (t)

)
,

where v(t) = π1,1
θ (t, `, d), since π1,0

θ and π1,1
θ do not depend

on ` and k when ` < M . Using (27) one has dZ`,0θ /dt < 0

for any X`0
θ > 0. As a consequence, Z`,0θ (t) decreases until

X`,0
θ (t) reaches 0. Hence, for any ξ > 0, there exists t`,0 >

t(`−1)0, such that X`,0
θ < ξ and limt→∞ X`,0

θ (t) = 0.
In the same way, using (18c) and the previous results that

X`,d
θ (t)→ 0 with d = 1, . . . ,M − 2 and ` = d, . . . ,M − 2,

one can prove that for any d = 1, . . . ,M − 1, X`′,(k+1)
θ (t)

tends to zero as t→∞, with any `′ = d+ 1, . . . ,M − 1.



B. Proof of Proposition 2

According to Proposition 1, one has X
`,d

θ = 0, for all
` < M and d 6 `. To evaluate X

M,d

θ , one considers the
following simplified dynamics derived from (17-18),

dX
M,0
θ
dt

=λ
(
−XM,0

θ π0,1
θ (M, 0)+XM,1

θ π0,−1
θ (M, 1)

)
,

dX
M,M
θ
dt

=λ
(
−XM,M

θ π0,−1
θ (M,M)+XM,M−1

θ π0,1
θ (M,M− 1)

)
,

dX
M,d
θ
dt

=λ
(
−XM,d

θ

(
π0,−1
θ (M,d) + π0,1

θ (M,d)
)

+XM,d+1
θ π0,−1

θ (M,d+ 1) +XM,d−1
θ π0,1

θ (M,d−1)
)
.

(30)
At equilibrium, one has dXM,d

θ (t)/dt = 0 for all k 6 M .
Moreover, the transition probabilities will not vary any more.

Let X
M

θ =
[
X
M,1

θ , . . . , X
M,M

θ

]T
, aθ (d) = π0,1

θ (M,d), and

bθ (d) = π0,−1
θ (M,d). The vector X

M

θ should satisfy Ψ ·
X
M

θ = 0 where

Ψ =


−aθ (0) bθ (1)
aθ (0) −aθ(1)− bθ (1) bθ (2)

. . .
. . .

. . .
aθ (M − 1) −bθ (M)

 .

Summing Lines 1 to d+1, for d = 0, . . . ,M−1, one obtains
bθ (d+ 1)X

M,d+1

θ = aθ (d)X
M,d

θ , which leads to

X
M,d
θ = X

M,0
θ

d−1∏
j=0

a0 (j)

b0 (j + 1)
= X

M,0
θ

d−1∏
j=0

π0,1
θ (M, j)

π0,−1
θ (M, j + 1)

= X
M,0
θ

d−1∏
j=0

(M − j)
∑
k∈G pkp

k1q (θ, k)

(j + 1)
∑
k∈G pkp

k1 (1− q (θ, k))

= X
M,0
θ

(
M

d

)(
hθ

1− hθ

)d
(31)

where hθ is defined in (21). Since
∑M
d=0X

M,d

θ = 1, one
obtains for all θ ∈ G and d ∈ {0, . . . ,M}

X
M,d

θ =

(
M

d

)
hdθ (1− hθ)M−d . (32)

Introducing (32) in (20), one obtains (24) with Fθ defined in
(22). Thus one needs to solve (24) to determine pθ1 for all
θ ∈ G, which are the used to deduce X

M,d

θ using (32).

C. Proof of Proposition 3

To show the existence of a solution of (24) when
NG = 2, one uses Brouwer’s fixed-point [8]. For that
purpose, one has to show that for any

(
p110 , p

21
0

)
∈ P0 =

{(x, y) ∈ [0, 1]× [0, 1] and (x, y) 6= (0, 0)}, the discrete-
time system {

p11n+1 = F1

(
p11n , p

21
n

)
,

p21n+1 = F2

(
p11n , p

21
n

)
.

(33)

converges to a equilibrium point
(
p11, p21

)
. Recall that one

never has p110 = p210 = 0 from Lemma 4.
Both F1 and F2 are continuous functions, however P0 is

not a compact set. Thus one needs to find a compact Pn
such that F1

(
p11n , p

21
n

)
is a mapping Pn → Pn. One starts

showing some monotonicity properties. The monotonicity of
hθ (defined in (21)) depends on the values taken by q.

Lemma 6: For all (x, y) ∈ P0, h1 (x, y) is increasing with
x and decreasing with y. If q(2, 1) > q (2, 2), then h2 (x, y)
has the same monotonicity as h1; If q(2, 1) < q (2, 2), then
h2 (x, y) is decreasing with x and increasing with y; If
q(2, 1) = q (2, 2), then h2 is a constant.
Lemma 6 is proved by evaluating the partial derivative of
h1 and h2 and using the fact that q (1, 1) > q (1, 2), see
Section II.

Lemma 7: If 0 < ν1 < 1, the function

g(z) =

M∑
d=dMν1e

(
M

d

)
zd (1− z)M−d, (34)

is increasing for all z ∈ [0, 1].
Proof: For z ∈ [0, 1] and i = 0, . . . ,M , define the

elementary function fd (z) = zd (1− z)M−d. Evaluating
its derivative with respect to z, fd is easily shown to be
increasing over [0, dM ] and decreasing over [ dM , 1]. Now, to
evaluate the monotonicity of (34), first consider z ∈ [0, ν1].
Each i in the sum is such that z < ν1 6 d

M . Since fd (z)
is an increasing function for any z 6 d

M , the sum g (z) in
(34) is also increasing with z. Now, consider z ∈ [ν1, 1]. One
rewrites (34) as g(z) = 1−

∑dMν1e−1
d=0

(
M
i

)
fd (z) , in which

each d in the sum is such that d
M < ν1 6 z. As fd (z) is

decreasing for any d
M < z, g(z) is increasing with z. Thus

g(z) is a increasing function of z over [0, 1].
One considers the first case where q (2, 1) > q (2, 2). From
Lemma 6 and Lemma 7, one obtains that Fθ (x, y) =
g (hθ (x, y)) are increasing functions of x and decreasing
functions of y, for any θ ∈ {1, 2} and (x, y) ∈ P0. Define
pθ1max (n) and pθ1min (n) as the upper and lower bounds of
pθ1 (n), i.e., pθ1min (n) 6 pθ1 (n) 6 pθ1max (n). When n = 0,
one has pθ1min (0) = 0 and pθ0min (0) = 1. Based on the
monotonicity of Fθ, one gets{

Fθ
(
pθ1 (n) , pθ1 (n)

)
> Fθ

(
pθ1min (n) , p

θ1
max (n)

)
,

Fθ
(
pθ1 (n) , pθ1 (n)

)
6 Fθ

(
pθ1max (n) , p

θ1
min (n)

)
,

thus {
pθ1min (n+ 1) = Fθ

(
pθ1min (n) , pθ1max (n)

)
,

pθ1max (n+ 1) = Fθ
(
pθ1max (n) , pθ1min (n)

)
.

(35)

Lemma 8: For any θ ∈ {1, 2} and n ∈ N∗, if q (1, 1) >
q (1, 2) and q (2, 1) > q (2, 2), then{

pθ1min (n) > pθ1min (n− 1) ,

pθ1max (n) < pθ1max (n− 1) .
(36)

Proof: The proof is by induction. At the beginning, one
has pθ1min (0) = 0 and pθ1max (0) = 1, then{

pθ1min (1) = F0 (0, 1) = g (q(θ, 2)) > 0,

pθ1max (1) = F0 (1, 0) = g (q(θ, 1)) < 1,
(37)

thus (36) is true for n = 1.
Consider then an arbitrary n ∈ N∗ and n > 1. Assume

that (36) is satisfied for n−1, one needs to see whether (36)



is still satisfied for n. From (35) and the monotonicity of Fθ,
one has

pθ1min (n) = Fθ
(
pθ1min (n− 1) , pθ1max (n− 1)

)
> Fθ

(
pθ1min (n− 2) , pθ1max (n− 2)

)
= pθ1min (n− 1) ,

and

pθ1max (n) = Fθ
(
pθ1max (n− 1) , pθ1min (n− 1)

)
< Fθ

(
pθ1max (n− 2) , pθ1min (n− 2)

)
= pθ1max (n− 1) ,

which completes the proof.
From Lemma 8, one finds that as n increases, the upper
bound pθ1max (n) keeps decreasing while the lower bound
pθ1min (n) keeps increasing. In the other situations where
q (2, 1) 6 q (2, 2), one can have the same result using a
similar approach.

Since
(
F0

(
p00n , p

10
n

)
, F1

(
p00n , p

10
n

))
maps

[
p00min, p

00
max

]
×[

p10min, p
10
max

]
to
[
p00min, p

00
max

]
×
[
p10min, p

10
max

]
, ∀n ∈ N+, one

can apply Brouwer’s fixed-point theorem to prove Propo-
sition (3).

V. ILLUSTRATION

Consider a scenario where each agent i is equipped with
a sensor providing noisy observations of the scalar physical
quantity φ (o, t), at location o and at time t,

mi (o, t) = φ (o, t) + wi, ∀i ∈ S. (38)

The components wi of the measurement noise in (38) are as-
sumed to be realizations of random Gaussian variables Wi ∼
N
(
ei, σ

2
)
, where ei is a constant agent-dependent bias. The

agents can be classified according to the value of ei, i.e., the
sensors with small values of ei provide better measurements.
Assume that among different sensors, the absolute value
|eI | of a random agent I follows an exponential distribution
with parameter γ, i.e., P {|eI | 6 x} = 1 − exp (−γx). For
example, Group θ can be defined as

Sθ = {i ∈ S : Λθ−1 6 |ei| < Λθ} ,

where

Λθ =

{
θ, ∀θ ∈ G \ {NG} ,
∞, θ = NG.

Therefore, the proportion of agents in Group θ is pθ =
exp (−γ (θ − 1))− exp (−γθ).

Agent i does not know the characteristics of Wi and aim
at using Algorithm 1 to self-rate its sensor. For that purpose,
when meeting other agents, it will share measurements
performed at close locations and run the LCT introduced
in Section V-A.

A. LCT

Consider some tolerance ω and the interval [m] =
[m− ω,m+ ω] of width 2ω centered around some mea-
surement m. Consider now two sensors i and j meeting and
exchanging the measurements mi and mj . The set estimate
[9] of φ obtained combining mi and mj is defined as[

φ̂ (mi,mj)
]

= [mi] ∩ [mj ] . (39)

It may be used to define the following low-complexity LCT

yi = yj =

{
1, if

[
φ̂ (mi,mj)

]
6= ∅,

0, else.
(40)

If
[
φ̂ (mi,mj)

]
6= ∅ it is likely that the biases ei and ej are of

the same order of magnitude and both agents can conclude
that their sensor performs similarly. If

[
φ̂ (mi,mj)

]
= ∅,

it is likely that ei and ej differ significantly more than ω.
One is unable to indicate which agent has the best sensor in
that case, so, both agents choose to conclude that its sensor
behaves worse than that of the other agent.

For any arbitrary pair of groups (θi, θj), one
is able to evaluate the probability q (θi, θj) =
P
{
Yi,j = 1|i ∈ Sθi , j ∈ Sθj

}
as a function of ω,σ,

and γ.

B. Numerical verification of theoretical results

This section presents first the solution of the state equation
(16)-(18) describing the evolution of the proportion of nodes
in various states. Algorithm 1 is analyzed first considering
a random displacement of agents without constraint on their
speed.

For the numerical example, one takes NG = 4, σ2 = 0.25,
γ = 0.7, and ω = 1.8, resulting in

p1 = 0.503, p2 = 0.25, p3 = 0.124, p4 = 0.123, (41)

and

q =


0.92 0.65 0.24 0.02
0.65 0.53 0.42 0.11
0.24 0.42 0.49 0.26
0.02 0.11 0.26 0.36

 . (42)

Besides, one considers M = 50, and a sampling period ∆t
such that λ∆t = 0.33. The decision thresholds are chosen as
ν1 = 0.8, ν2 = 0.45, ν3 = 0.1, and ν4 = 0. Figure 2 presents
the evolution pθθ̂ (t), for θ, θ̂ ∈ G = {1, 2, 3, 4}. One
observes that the proportion agents of each state converges.
Moreover, for any θ ∈ G, pθθ is close to 1 for t sufficient
large, while pθθ̂ tends to 0 for any θ̂ 6= θ. Algorithm 1
behaves thus in a satisfying way.

Consider now a set S of NS = 1000 moving agents
which initial position is uniformly distributed over a unit
square. At first, one considers Agent i randomly chooses
its location at time instant (k + 1) ∆t, independently from
its previous location at time k∆t. Two agents communicate
only at discrete time instant k∆t when their distance is
less than r0. Agent i has its neighbors in the set Ni =
{j ∈ S : 0 < Ri,j 6 r0}, where Ri,j is the distance between
i and j. Then, we assume that Agent i can contact its
neighbor if and only if |Ni| = 1. Denote ρ = πr20NS as
the average value of |Ni|. The cardinality of Ni approxi-
mately follows a Poisson distribution provided that NS is
large enough, the inter-contact probability during ∆t is thus
λ∆t = P {|Ni| = 1} = ρ exp (−ρ) . In the simulations, we
used r0 = 0.014, so that ρ ≈ 0.6 and λ∆t ≈ 0.33.
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Fig. 2. Evolution of pθθ̂ (t) obtained solving (16-18).
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Fig. 3. Evolution of pθθ̂ (t) by simulations with the random displacement
model.

The resulting evolutions of pθθ̂ (t) are shown in Figure 3
and are very close to those predicted by the direct integration
of the state equation as shown in Figure 2.

Figure 4 further illustrates the good match between the-
ory and simulation for the proportions of states X

50,d

θ at
equilibrium. The approximation of X

50,d

θ using (25) is also
provided in Figure 4, which is also close to its actual value.

Similar results have been obtained with agents following
a Brownian motion model.

VI. CONCLUSIONS

This paper has investigated the problem of helping agents
self-rating their expertise level at doing some task via ex-
change of information with peers. Using local compatibility
tests involving, e.g., data exchanged during meetings with
other agents, each agent is able to estimate the proportion
of agents it is better at doing the considered task. With that
information, each agent may then determine to which group
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Fig. 4. Comparison of X50,d
θ at the equilibrium: circles are for the theoret-

ical values obtained integrating (16)-(18), triangles are the approximations
obtained from (25), and crosses are for the moving agents simulation.

of agents with similar expertise it belongs to.
The behavior of the proposed algorithm is described using

dynamical equations. The existence of an equilibrium is
established. The proportions of agents with similar beliefs
in their expertise is characterized at equilibrium. This gives
some insight in the tuning of the various parameters of the
proposed algorithm.

The approach is illustrated with agents equipped with
sensing devices of different sensing performance, which may
be found in crowd sensing scenarios. Simulation results are
in good match with theory.

Significant work remain to be done to analyze the behavior
of the proposed algorithm with generic probabilities of
interaction. The existence and uniqueness of the equilibrium
has also to be shown in the general case. Nevertheless, the
proposed approach may be useful to analyze other types of
self-rating problems.
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