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Abstract—This paper addresses the information theoretical
analysis of data compression achieved by random linear network
coding in wireless sensor networks. A sparse network coding
matrix is considered with columns having possibly different
sparsity factors. For stationary and ergodic sources, necessary
and sufficient conditions are provided on the number of required
measurements to achieve asymptotically vanishing reconstruction
error. To ensure the asymptotically optimal compression ratio,
the sparsity factor can be arbitrary close to zero in absence of
additive noise. In presence of noise, a sufficient condition on the
sparsity of the coding matrix is also proposed. 1

I. INTRODUCTION

Wireless sensor networks (WSN) [1] are composed by
autonomous nodes, with sensing capability of some physical
phenomenon (e.g. temperature, or pressure). In order to en-
sure ease of deployment and robustness, the communication
between the nodes might need to be performed in absence of
designated access points and of a hierarchical structure. At the
network layer, dissemination of the measurements to all the
nodes can be achieved using an asynchronous protocol based
on network coding (NC) [2] in order to reduce the traffic.
Each node in the network broadcasts a packet evaluated as
the linear combination of its local measurements, and of the
packets received from neighboring nodes. Once the sink node
has collected enough linearly independent combinations of the
network measurements, it can perform decoding by solving a
system of linear equations.

In many practical situations, the measurements obtained by
the WSN are spatially and temporally correlated. Thus, joint
source-network coding can be performed using techniques bor-
rowed from compressive sensing (CS) [3]. The main difficulty
comes from the fact that usually, sensor readings are real-
valued or quantized and NC operations are done in finite fields.
As a consequence, the NC matrix, which plays the role of
the sensing matrix in CS, has elements in a finite field and
it is difficult to exploit the efficient reconstruction algorithms
of CS. A first solution to this problem is proposed in [4],
where NC is performed in the real field. This framework is
also applied in [5], where data reconstruction is performed
progressively to reduce the decoding delay. In [6], linear
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combination resulting from real-field NC are quantized before
transmission. The price to be paid by all these technique is
larger headers and an incompatibility with classical NC.

This paper considers random linear network coding (RLNC)
[7], where both quantized measurements and NC coefficients
are chosen in the same finite field.With RLNC, the coding
coefficients are randomly chosen and sent in each packet
header [8]. Usually, NC vectors are sparse: packets reaching
the sink are seldom combinations of all packets and depend
on the network topology. This allows compressing efficiently
the NC vectors [9] and reduces the decoding complexity
[10]. Even if the local coding coefficients are independently
chosen by each node with the same distribution, the statistical
properties and the sparsity of the NC coding vectors reaching
the sink may differ significantly.

This paper thus investigates the compression efficiency of
RLNC when the NC matrix is assumed to be sparse with rows
with possibly different sparsity. The problem can be formu-
lated as the estimation of a source vector θN (of N symbols),
obtained by acquiring M non-adaptive linear measurements,
with M < N . In a Bayesian setting, θ is understood as a
realization of a random source Θ, whose a priori distribution
induces compressibility (sparsity and/or correlation between
the symbols). The reconstruction problem is formulated in
this case as an estimation problem, solvable using standard
Bayesian techniques, e.g., Maximum A Posteriori (MAP)
estimation.

A similar problem has been addressed in [11], where
specific correlation patterns (pairwise, cluster) between the
elements of Θ are considered and the statistical property of the
coding matrix depends on the clusters. Error exponents under
MAP decoding are derived in the noiseless case. This problem
of compressed sensing over finite field framework has been
previously considered in [12], [13]. The vector of measure-
ments at the nodes is interpreted as the compressible source
Θ, the network coding matrix as the sensing matrix. In [12],
the sensing matrix is considered as uniformly distributed and
the prior distribution induces sparsity on θ, whose elements
are assumed statistically independent. The error exponent
with respect to exact reconstruction is derived with `0-norm
minimization decoding for noiseless measurements, and with
minimum-empirical entropy decoding for noisy measurements.



The work in [13] assumes a known sparsity level of θ
and does not consider additive noise. Ideal decoding via `0-
norm minimization is assumed, and necessary and sufficient
conditions for exact recovery are derived as functions of the
size of θ, its sparsity level, the number of measurements, and
the sparsity of the sensing matrix. Numerical results show that
the necessary and sufficient conditions coincide, as the size of
θ asymptotically increases.

The major contribution of this work is that we consider a
sparse coding matrix with entries of different sparsity level,
which is a more realistic hypothesis. No analysis has been
previously performed for such model. We assume a Bayesian
setting with very mild assumptions on the distribution of the
source (Θ is an ergodic process), and we consider MAP
decoding of noisy measurements. We aim to derive sufficient
conditions on the ratio M/N for almost sure exact recovery
of θ, as its size asymptotically increases, and show their
convergence to necessary conditions. Our results generalize
those presented in [11], [12], and [13]. In addition, we can
formally prove the asymptotic convergence of necessary and
sufficient conditions on M/N both in the noiseless and noisy
settings. Sufficient conditions on the sparsity of the coding
matrix in the noisy setting are also provided. These conditions,
which depend on the noise distribution, have never been
discussed in the previous work, to the best of our knowledge.
If no noise is present, the coding matrix could be arbitrarily
small to ensure the optimal asymptotical compression ratio.

II. MOTIVATING EXAMPLE

Consider a WSN which topology is shown in Figure 1(a).
S = 29 wireless sensor nodes are uniformly distributed
over a square of unit area with a sink node located at the
center. Assume that each sensor Node i attempts to transmit
a binary measurement θi to the sink using RLNC over the
Galois field F2. Time is slotted and each sensor broadcasts
a packet or combination of packets in its time slot, starting
from the nodes the farthest from the sink. Each node can
only communicate with its neighbor nodes at a distance less
than 0.25. When Node i performs a combination of packets,
its local measurement θi is assumed to be always used,
whereas a packet received from one of its neighbors has a
probability ν to be involved. After NR communication rounds,
the sink is able to build an NC matrix with M = NRS0

lines and S columns, where S0 is its number of one-hop
neighbors. The sparsity of each column of the NC matrix is
then evaluated. Figure 1(b) represents the proportion of non-
zero coefficients of each column parametrized in ν averaged
over 106 independent Monte-Carlo simulations of the network.
Only connected networks are considered in the simulations.
The average value of M is 17 < S. Columns associated to
nodes which are far from the sink are sparser than columns
associated to nodes close to the sink. Moreover, a small value
of ν makes the overall coding matrix sparser. This justifies
our study considering coding matrices with sparsity varying
among columns.
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Figure 1. (a) example network topology ; (b) evolution of the proportion of
non-zero NC coefficient as a function of the node index sorted by increasing
distance to the sink, for ν ∈ {0.1, 0.2, 0.3, 0.4, 0.5} .

III. SYSTEM MODEL AND PROBLEM SETUP

In what follows, sans-serif is used to denote random quanti-
ties while deterministic quantities are with serif fonts. Matrices
are in bold-face upper-case letters. A length n vector is in bold-
face lower-case with a superscript n. Calligraphic font denotes
set, except H, which denotes the entropy rate. All logarithms
are in base 2.

A. System Model

Consider a WSN that consists of S sensor nodes and each
sensor node has T measurements, denote N = ST . The mea-
surements are quantized before transmission and represented
by a length-N random source vector ΘN with entries taking
values in the Galois Field FQ of size Q. Let θN ∈ FNQ be
a realization of ΘN . The probability mass function (pmf)
associated with ΘN is denoted by pΘN (θN ), or p(θN ), when
there is no ambiguity. The correlated source ΘN is assumed
to be stationary and ergodic with an entropy rate H (Θ).

Considering the random coding matrix A ∈ FM×NQ , as-
sumed to be independent of ΘN , the sink gets the vector
of measurements yM = AΘN + uM , where uM ∈ FMQ can
represent some additive noise due to some computation error
or Byzantine attacks, etc. Each entry of uM is assumed to
be iid with pmf pu. Denote Ai as the i-th column of A. The
entries of Ai are assumed to be iid in FQ with pmf

pAi (0) = 1−γi, pAi (q) =
γi

Q− 1
for q ∈ FQ \{0} (1)

where γi is the sparsity factor of Ai. The sparsity factors γi
and γj of two different columns Ai and Aj may be different.
Define γ = mini=1,...,N γi as the minimum sparsity factor.

B. MAP Decoding

With perfect knowledge of the realizations yM and A,
the decoder can reconstruct θN using an MAP estima-
tion approach. The estimate θ̂

N
is evaluated as θ̂

N
=

arg maxθN∈FN
Q
p(θN | yM ,A), where

p(θN | yM ,A) ∝ p(θN ,yM ,A)

=
∑

uM∈FM
Q

p(θN )p
(
uM
)
p (A) p(yM | θN ,uM ,A). (2)



Notice that p(yM | θN ,uM ,A) = 1yM=AθN+uM is an
indicator function, for fixed yM , A, and θN , there is exactly
one vector uM such that uM = yM −AθN , thus

p(θN | yM ,A) ∝ p(θN )puM (yM −AθN )p (A) . (3)

A decoding error happens if there exists a vector ϕN ∈ FNQ \
{θN} such that

pΘN (ϕN )puM (yM −AϕN ) ≥ pΘN (θN )puM (yM −AθN ).

An alternative way to state the error event is: For a given
realization θN , which implies the realization uM = yM −
AθN , there exists a pair (ϕN ,vM ) ∈ FNQ × FMQ such that

ϕN 6= θN ,

AϕN + vM = yM = AθN + uM ,

p(ϕN )p(vM ) ≥ p(θN )p(uM ).

(4)

Let Pr{e | θN ,uM} denote the conditional error probability
for fixed θN and uM . The average error probability Pe is

Pe =
∑

θN∈FN
Q

∑
uM∈FM

Q

p
(
θN ,uM

)
Pr
{

e | θN ,uM
}
. (5)

Our objective is to derive necessary and sufficient conditions
for asymptotically vanishing Pe.

C. Necessary Condition

Proposition 1 (Necessary condition). Consider some arbitrary
small δ ∈ R+. For N → ∞, the necessary conditions for
Pe < δ are

H (pu) < logQ, (6)

M

N
>

H (Θ)− ε
logQ−H (pu)

, (7)

where ε ∈ R+ is an arbitrary small constant.

Proposition 1 extends results obtained in [13] to the noisy
case. The proof involves a simple application of Fano’s in-
equality, see [14] for the detail.

D. Sufficient Condition

Proposition 2 (Sufficient condition). Consider a coding ma-
trix with minimum sparsity factor γ. For any δ > 0, there exist
small positive real numbers ε, ξ, and integers Nδ , Mε such
that ∀N > Nδ and ∀M > Mε, if the following conditions
hold:

H (pu) < logQ− ξ, (8)

γ > 1− 2−H(pu)−ε, (9)

M

N
>

H (Θ) + ε

logQ−H (pu)− ξ
, (10)

then one has Pe ≤ δ using MAP decoding. As N → ∞ and
M →∞, ε and ξ can be arbitrary close to zero.

The proof detail of Proposition 2 is given in Section IV.
In the noiseless case, the necessary condition in Proposi-

tion 1 and the sufficient condition in Proposition 2 asymptot-
ically coincide, since γ can be chosen arbitrarily small. This

confirms the numerical results obtained in [13]. In the noisy
case, the difference between the two conditions comes from
the constraint linking γ and the entropy of the communication
noise. In the analysis of the necessary conditions, the structure
of A was not considered and no condition on γ has been
obtained. The lower bound on γ implies that A should be
dense enough to fight against the noise.

IV. PROOF OF PROPOSITION 2

A. Upper Bound of the Error Probability

Proposition 3. Under MAP decoding, the asymptotic (N →
∞) probability of error can be upper bounded as

Pe ≤ 2−NE1(α) + 2−NE2(α) + 2ε, (11)

where ε ∈ R+ is an arbitrary small constant. E1 (α) and
E2 (α) are defined as

E1 (α) = −M
N

(H (pu) + log (1− γ) + ε)−H2 (α)

− α log (Q− 1)− log (αN)

N
, (12)

E2 (α) = −M
N

log

(
Q−1 +

(
1− γ

1−Q−1

)dαNe(
1−Q−1

))
−H (Θ)− M

N
(H (pu) + ε)− ε, (13)

with α ∈ R+ and α < 0.5.

Proof. Weak typicality is instrumental in the following proofs.
For any positive real number ε and some integer N >
0, the weakly typical set AN[Θ]ε ⊂ FNQ for a stationary
and ergodic source ΘN is AN[Θ]ε = {θN ∈ FNQ :∣∣∣− 1

N log p(θN )−H (Θ)
∣∣∣ ≤ ε}. Define AM[u]ε for the noise

vector uM similarly. Recall that the entries of uM are uncor-
related, so H (u) = H (pu). Thanks to Shannon-McMillan-
Breiman theorem [15, Sec. 16.8], the pmf of the general
stationary and ergodic source converges. In other words, for
any ε > 0, there exists Nε and Mε such that for all N > Nε
and M > Mε, one has Pr{ΘN ∈ AN[Θ]ε} ≥ 1 − ε and
Pr{uM ∈ AM[u]ε} ≥ 1 − ε. We can make ε arbitrary close
to zero as N → ∞ and M → ∞. Define U = AN[Θ]ε ×A

M
[u]ε

and U c such that U ∪ U c = FNQ × FMQ . One has

Pe =
∑

(θN ,uM)∈U∪U c

p
(
θN
)
p
(
uM
)

Pr
{

e | θN ,uM
}

≤
∑

(θN ,uM)∈U

p
(
θN
)
p
(
uM
)

Pr
{

e | θN ,uM
}

+ 2ε, (14)

which comes from the fact that Pr{e | θN ,uM} ≤ 1 and
Pr{(ΘN ,uM ) ∈ U c} ≤ 2ε.

Since A is generated randomly, define the random event
E(θN ,uM ;ϕN ,vM ) = {AθN + uM = AϕN + vM}, where
(θN ,uM ) is the realization of the environment state, and
(ϕN ,vM ) is the potential reconstruction result. Conditioned



on (θN ,uM ), Pr{e | θN ,uM} is the probability of the union
of the events E(θN ,uM ;ϕN ,vM ) with all the parameter
pairs (ϕN ,vM ) ∈ FNQ × FMQ such that ϕN 6= θN and
p(ϕN )p(vM ) ≥ p(θN )p(uM ), see (4). One has

Pr
{

e | θN ,uM
}

= Pr

 ⋃
ϕN∈FN

Q\{θN}, vM∈FM
Q :p(ϕN )p(vM )≥p(θN )p(uM )

E


(a)

≤
∑

ϕN∈FN
Q\{θN}, vM∈FM

Q

Φ
(
θN ,uM ;ϕN ,vM

)
Pr {E}

(b)

≤
∑

ϕN∈FN
Q\{θN}, vM∈FM

Q

(
p(ϕN )p(vM )

p(θN )p(uM )

)s
Pr {E} (15)

where (a) is by applying the union bound. An indicator
function is also introduced in (a), Φ(θN ,uM ;ϕN ,vM ) = 1
if p(ϕN )p(vM ) ≥ p(θN )p(uM ), otherwise it is equal to 0.
The idea of (b) comes from a part of Gallager’s derivation of
error exponents in [16, Sec. 5.6], the parameter s ∈ R and
0 < s ≤ 1. Introducing (15) in (14) and setting s = 1 yields

Pe ≤
∑

(θN ,uM )∈U

∑
ϕN∈FN

Q\{θN}

∑
vM∈FM

Q

p(ϕN )p(vM ) Pr {E}+2ε.

(16)
In (16), Pr {E} = Pr

{
AµN = sM

}
with µN = ϕN − θN ∈

FNQ \ {0}, and sM = uM − vM ∈ FMQ . This probability
depends on d1 =

∥∥µN∥∥
0

and d2 =
∥∥sM∥∥

0
. Both d1 and d2

are integers such that 1 ≤ d1 ≤ N and 0 ≤ d2 ≤M . Define

f (d1, d2) = Pr
{

AµN = sM |
∥∥µN∥∥

0
= d1,

∥∥sM∥∥
0

= d2
}
.

(17)
Lemma 1. The function f (d1, d2) is non-increasing in d2 for
a given d1 and

f (d1, d2) ≤ f (d1, 0) =

(
Q−1 +

(
1− γ

1−Q−1

)d1(
1−Q−1

))M
.

(18)
Moreover f (d1, 0) is non-increasing in d1 and

f (d1, 0) ≤ f (1, 0) = (1− γ)
M
. (19)

See [14] for the proof details. Using Lemma 1, (16) can be
expressed as

Pe

(a)

≤
N∑

d1=1

M∑
d2=0

∑
(θN,uM )∈U

ϕN∈FN
Q

:‖ϕN−θN‖0=d1

vM∈FM
Q

:‖uM−vM‖0=d2

p(ϕN )p(vM )f(d1, d2) + 2ε

(b)

≤
N∑

d1=1

∑
(θN,uM )∈U

ϕN∈FN
Q

:‖ϕN−θN‖0=d1

p(ϕN )f(d1, 0)
∑

vM∈FM
Q

p(vM ) + 2ε

(20)

where (a) is by the classification of ϕN and vM according
to the `0 norm of their difference with θN and uM respec-
tively and (b) is obtained using the bound (18) and using∑

vM∈FM
Q
p(vM ) = 1. From (20), one performs a splitting

to bound f (d1, 0) in different cases,

Pe ≤
bαNc∑
d1=1

∑
(θN ,uM )∈U

∑
ϕN∈FN

Q :‖ϕN−θN‖
0
=d1

p(ϕN )f (1, 0)

+

N∑
d1=dαNe

∑
(θN,uM )∈U

ϕN∈FN
Q

:‖ϕN−θN‖0=d1

p(ϕN )f (dαNe , 0) + 2ε, (21)

The parameter α is a positive real number with 0 < α < 0.5.
The way to choose α will be discussed in Section IV-B. For
the first term PU1 (α) in (21),

PU1 (α) = f (1, 0)

bαNc∑
d1=1

∑
(θN,uM )∈U

ϕN∈FN
Q

:‖ϕN−θN‖0=d1

p(ϕN )

(a)
= (1− γ)

M
∑

uM∈AM
[u]ε

bαNc∑
d1=1

∑
ϕN∈FN

Q

p(ϕN )
∑

θN∈AN
[Θ]ε

:

‖θN−ϕN‖0=d1

1

(b)

≤ (1− γ)
M

∑
uM∈AM

[u]ε

bαNc∑
d1=1

2NH2( d1
N ) (Q− 1)

d1

(c)

≤ (1− γ)
M ·

∣∣∣AM[u]ε∣∣∣ · αN · 2NH2(α) (Q− 1)
αN

(d)

≤ 2−NE1(α), (22)

where (a) is by changing the order of summation; (b) is by
ignoring θN ∈ AN[Θ]ε and

∑
θN∈FN

Q
:

‖θN−ϕN‖0=d1

1 =

(
N

d1

)
(Q− 1)

d1 ≤ 2NH2( d1
N ) (Q− 1)

d1 ,

where H2 (p) denotes the entropy of a Bernoulli-p source;
(c) is due to the fact that H2

(
d1
N

)
is increasing in d1 as d1 ≤

bαNc < N/2; (d) comes from [15, Theorem 3.1.2], the upper
bound of the size of the set,

∣∣∣AM[u]ε∣∣∣ ≤ 2M(H(pu)+ε) for M >

Mε. One gets finally E1 (α), as defined in (12). Now we turn
to PU2 (α),

PU2 (α) =

N∑
d1=dαNe

∑
(θN,uM )∈U

ϕN∈FN
Q

:‖ϕN−θN‖0=d1

p
(
ϕN
)
f (dαNe , 0)

(a)

≤
∑

(θN ,uM)∈U

∑
ϕN∈FN

Q

p
(
ϕN
)
f (dαNe , 0)

=
∣∣∣AN[Θ]ε

∣∣∣ ∣∣∣AM[u]ε∣∣∣ f (dαNe , 0)
(b)

≤ 2−NE2(α), (23)



where (a) is by ignoring
∥∥∥ϕN − θN∥∥∥

0
= d1, (b) is by the

upper bounds of
∣∣∣AN[Θ]ε

∣∣∣ and
∣∣∣AM[u]ε∣∣∣, and E2 (α) is defined in

(13). Combining (21-23) completes the proof.

B. Proof of the Sufficient Condition

Both 2−NE1(α) in (22) and 2−NE2(α) in (23) need to be
vanishing for increasing N and M . The exponent of each
term is considered separately. If E1 (α) > 0, for any τ1 ∈
R+ arbitrarily small, ∃Nτ1 such that ∀N > Nτ1 , one has
2−NE1(α) < τ1. If H (pu) + log (1− γ) + ε ≥ 0, E1 (α) is
negative, thus one should first have H (pu)+log (1− γ)+ε <
0, leading to (9). With this condition, E1 (α) > 0 leads to

M

N
>
H2 (α) + α log (Q− 1) + log(αN)

N

log 1
1−γ −H (pu)− ε

. (24)

Similarly, if E2 (α) > 0, for any τ2 ∈ R+ arbitrarily small,
∃Nτ2 ∈ N+ such that ∀N > Nτ2 , one has 2−NE2(α) < τ2.
Since 0 < γ ≤ 1 − Q−1, one gets 0 ≤ 1 − γ

1−Q−1 < 1 and

limN→∞

(
1− γ

1−Q−1

)dαNe
= 0. Thus for σ ∈ R+ arbitrarily

small, ∃Nσ such that ∀N > Nσ ,(
1− γ

1−Q−1

)dαNe (
1−Q−1

)
< σQ−1. (25)

Hence E2 (α) in (13) can be lower bounded by

E2 (α) > −H (Θ)− M

N
(H (pu)− logQ+ ξ)− ε, (26)

for N > Nσ , with

ξ = log (1 + σ) + ε. (27)

If this lower bound is positive, then E2 (α) is positive. Again,
if H (pu)− logQ+ξ ≥ 0, one obtains a negative lower bound
for E2 (α) from (26). Thus, one deduces (8) in Proposition 2.
From (8), to get a positive lower bound for (26), one should
have (10) in Proposition 2, with ε→ 0 and ξ → 0 as N →∞
and M →∞. The compression ratio M/N is lower bounded
by both (10) and (24). The value of α should be chosen such
that the required lower bound on M/N is minimum. One
may compare the necessary condition (7) with (10) and (24)
respectively. Obviously, (10) is similar to (7), since both ξ and
ε can be made arbitrarily close to 0 as N →∞. A good value
for α has thus to be such that

H2 (α) + α log (Q− 1) + log(αN)
N

log 1
1−γ −H (pu)− ε

≤ H (Θ) + ε

logQ−H (pu)− ξ
.

(28)
The function H2 (α) + α log (Q− 1) is increasing when α ∈
]0, 0.5[ and tends to 0 as α → 0. The term log (αN) /N is
also negligible for N large. Thus, there always exists some α
satisfying (28). Since the speed of convergence of ξ is affected
by α, we choose the largest α that satisfies (28). Then the
sufficient condition (10) for M/N is obtained.

From (11), one may conclude that Pe ≤ τ1 + τ2 + 2ε. To
ensure Pe < δ, we should choose τ1, τ2, and ε to satisfy
τ1 +τ2 +2ε < δ. Then a proper value of σ, which depends on

τ2 and ε, can be chosen. At last, ξ is obtained from (27). With
these well determined parameters, if all the three conditions
in Proposition 2 hold, there exists integers Nε, Nτ1 , Nτ2 , and
Nσ , such that for any N > Nδ = max {Nε, Nτ1 , Nτ2Nσ} one
has Pe < δ.

V. CONCLUSIONS

This paper considers RLNC for data compression in a WSN.
An asymptotically sufficient condition on the compression ra-
tio for reliable recovery at some sink of the node measurement
vector is obtained. Since necessary and sufficient conditions
asymptotically converge, the MAP decoder achieves the opti-
mum lower bound of the compression ratio, even in the case
of sparse coding matrices. Several previous results have been
generalized by considering a stationary and ergodic source
model. The choice of the sparsity factor of the coding matrix
depends on the noise.

REFERENCES

[1] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,”
Computer networks, vol. 52, no. 12, pp. 2292–2330, 2008.

[2] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network information
flow,” IEEE Trans. Inform. Theory, vol. 46, no. 4, pp. 1204–1216, 2000.

[3] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory,
vol. 52, no. 4, pp. 1289–1306, 2006.

[4] S. Feizi and M. Médard, “A power efficient sensing/communication
scheme: Joint source-channel-network coding by using compressive
sensing,” in Proc. 49th Allerton Conference, 2011, pp. 1048–1054.

[5] M. Leinonen, M. Codreanu, and M. Juntti, “Sequential compressed sens-
ing with progressive signal reconstruction in wireless sensor networks,”
IEEE Trans. Wireless Commu., vol. 14, no. 3, pp. 1622–1635, 2015.

[6] M. Nabaee and F. Labeau, “Quantized network coding for correlated
sources,” EURASIP Journal on Wireless Communications and Network-
ing, vol. 2014, no. 1, pp. 1–17, 2014.

[7] T. Ho, M. Medard, R. Koetter, D. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,”
IEEE Trans. Inform. Theory, vol. 52, no. 10, pp. 4413–4430, 2006.

[8] P. Chou, Y. Wu, and K. Jain, “Practical network coding,” in Proc. 41-st
Allerton Conference, Otc. 2003.

[9] M. Jafari, L. Keller, C. Fragouli, and K. Argyraki, “Compressed network
coding vectors,” in Proc. IEEE Intl. Symp. on Inf. Theory, Seoul, Korea,
2009, pp. 109–113.

[10] F. Bassi, C. Liu, L. Iwaza, and M. Kieffer, “Compressive linear network
coding for efficient data collection in wireless sensor networks,” in Proc.
20th EUSIPCO, Bucharest, Romania, 2012, pp. 714 – 718.

[11] K. Rajawat, C. Alfonso, and G. Giannakis, “Network-compressive cod-
ing for wireless sensors with correlated data,” IEEE Trans. on Wireless
Communications, vol. 11, no. 12, pp. 4264–4274, 2012.

[12] S. C. Draper and S. Malekpour, “Compressed sensing over finite fields,”
in Proc. Intl. Symp. Inf. Theory, Seoul, Korea, 2009, pp. 669 – 673.

[13] J.-T. Seong and H.-N. Lee, “Necessary and sufficient conditions for
recovery of sparse signals over finite fields,” IEEE Communications
Letters, vol. 17, no. 10, pp. 1976 – 1979, 2013.

[14] W. Li, F. Bassi, and M. Kieffer, “Robust bayesian compressed sensing
over finite fields: asymptotic performance analysis,” arXiv preprint
arXiv:1401.4313, 2014.

[15] T. Cover and J. Thomas, Elements of Information Theory. Wiley-
Interscience, 2006.

[16] R. Gallager, Information Theory and Reliable Communication. John
Wiley and Sons., 1968.


