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Distributed Faulty Node Detection in
Delay Tolerant Networks: Design and Analysis

Wenjie Li, Student Member, IEEE, Laura Galluccio, Member, IEEE,
Francesca Bassi, Member, IEEE, and Michel Kieffer, Senior Member, IEEE

Abstract—Propagation of faulty data in Delay Tolerant Networks can be a critical aspect to counteract due to the inherent feature of
exhibiting frequent disconnections,. Indeed the rare meeting events require that nodes are effective and efficient in propagating correct
information. Accordingly, mechanisms to rapidly identify possible faulty or misbehaving nodes should be searched. Distributed fault
detection has been addressed in the literature in the context of sensor and vehicular networks, but already proposed solutions suffer
from long delays in identifying and isolating misbehaving nodes. This paper proposes a fully distributed, easily implementable, and fast
convergent approach to allow each DTN node to rapidly identify whether its sensors are producing outliers, i.e., fauty data. The
behavior of the proposed algorithm is described by some continuous-time state equations, whose equilibrium is characterized.
Detection and false alarm rates are estimated by comparing both theoretical and simulation results. Numerical results assess the
effectiveness of the proposed solution and give guidelines in the design of the algorithm.

Index Terms—Delay tolerant network; Fault detection; Iterative algorithms; Distributed estimation; State equations; Equilibrium
analysis.
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1 INTRODUCTION

Delay/Disruption-Tolerant Networks (DTN) are challeng-
ing networks which have dynamic topology with fre-
quent disconnectivity [1]. For example, in Vehicular DTNs
(VDTNs) [2], two nodes can communicate with each other
only when they are closely located. This connection is in-
termittent as the nodes are moving vehicles. Due to this
sparse and intermittent connectivity, inference and learning
over DTNs is much more complicated than in traditional
networks, see, e.g., [3]–[7].

This paper considers the problem of distributed defec-
tive node detection in DTNs. A node is considered as de-
fective when one of its sensors frequently reports erroneous
measurements. The identification of such defective nodes is
very important to save communication resources and to pre-
vent erroneous measurements polluting estimates provided
by the DTN. We assume, as in [8], that nodes are not aware
of the status (good or defective) of their sensors, while their
computation and communication capabilities remain fine,
even if some of their sensors are defective. Moreover, each
node of the DTN is assumed to behave in a rational way
and is willing to know the status of its sensors.

Distributed fault detection (DFD) is a well-investigated
topic when considering Wireless Sensor Networks (WSNs),
see [9]–[11] and references therein. The WSNs considered in
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most of the literature are dense and have a static topology.
DFD in DTNs is much less investigated. Classical DFD al-
gorithms usually consist of two phases. First, a local outlier
detection test (LODT) is performed using data collected
from neighboring nodes. LODTs (based on majority voting
[12], the median [13], or the mean [14] of the measurements,
the modified three-sigma edit test [15], etc.) aim to decide
which data is erroneous. Second, the outcomes of the LODTs
are disseminated to improve the decision accuracy. When
only few measurements are available, classical LODTs are
not very efficient: for example, they cannot, based on two
measurements only, determine which node is defective. This
is a typical situation in DTNs when two nodes meet, take
measurements, and share these measurements. Applying
directly classical DFD algorithms in DTNs may thus be
quite ineffective. Moreover, usually the performance of DFD
algorithms is characterized experimentally. Theoretical anal-
ysis of the equilibrium and convergence properties of these
algorithms is seldom performed.

A closely related problem has been previously consid-
ered in [16] in the context of VDTN. A large number of
sensor nodes are fixed and some vehicles, called mobile
carriers (MC) collect data from these sensors. The sensor
nodes can only communicate with the MCs in their vicinity.
A MC needs to collect enough measurements to perform
a test to decide which have been produced by defective
sensors. Once a defective node is deemed defective by a
MC, it is added to its blacklist. The MC provides informa-
tion to sensors about their status. MCs also exchange their
blacklists to accelerate the faulty node detection.

In [17], a similar problem of distributed malware de-
tection in DTN is addressed. Each node evaluates after
the meeting with another node whether the latter has
performed suspicious actions (malware transmission trial).
When after several meetings of Node j, Node i detects
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often suspicious activities, a cut-off decision is performed
against Node j, which is ignored in next meetings. The
main drawback of this approach is the long time required
to identify and isolate misbehaving nodes. Misbehavior
detection in DTN is also considered in [5], [18], where the
DTN is perturbed by routing misbehavior caused by selfish
or malicious nodes. The identification approach in [5] is not
distributed, since a Trusted Authority periodically checks
the forwarding history of nodes to identify possible misbe-
havior. A collaborative approach is proposed in [18], where
each node can detect whether the encountered node is self-
ish using a local watchdog. The detection result is dissem-
inated over the network to increase the detection precision
and to reduce the delay. Trust/Reputation managemement
is another important aspect to help DTNs resist various
potential threats. For example, [19] provides an iterative
trust management mechanism to fight against Byzantine
attacks in which several nodes are totally controlled by the
adversary. In [20], a defense against Sybil attacks [21] is
introduced, which is based on the physical feature of the
wireless propagation channel. A trust model for underwater
acoustic sensor networks is presented in [22] to take into
account several trust metrics such as link trust, data trust,
and node trust.

This paper presents a fully distributed and easily im-
plementable algorithm to allow each node of a DTN to
determine whether its own sensors are defective. As in
[8], a LODT is assumed to be able to detect the presence
of outliers in a set of measurements, without necessarily
being able to determine which are the outliers. The generic
LODT is characterized by its probabilities of detection and
of false alarm. When two nodes meet, they exchange their
local measurements and use them to perform the same
LODT. The LODT results help both nodes to update their
estimate of the status of their own sensors. When, for a
given node, the proportion of meetings during which the
LODT suggests the presence of outliers is larger than some
threshold, this node decides its sensors may be defective.
In this case, it becomes silent. It does not transmit any
more its measurements to its neighbors, but keeps collecting
measurements from nodes met and updating the estimate of
the status of its sensors. It may then have the opportunity
to update its estimate and to communicate again. Although
the LODT considered here are those of [8], this work differs
significantly from [8] due to the communication conditions
of DTNs, which require a totally different DFD algorithm.
The analysis of the properties of the algorithm is also
totally different. This paper shows that the behavior of the
proposed DFD algorithm can be analyzed using Markov
models and tools borrowed from control theory and pop-
ulation dynamics. For that purpose, the belief of each node
about the status of its sensors is quantized. The evolution
of these quantized beliefs are then shown to follow two
Markov chains. The dynamic of the proportions of nodes
with a given belief is then analyzed. Sufficient conditions
on the decision parameters to ensure the existence and
unicity of an equilibrium of the DFD algorithm are then
provided. Given the characteristics of the LODT, upper and
lower bounds of the detection rate, i.e., proportion of nodes
which have effectively identified their sensors as defective,
and of the false alarm rate, i.e., proportion of nodes which

TABLE 1
Symbols used in this paper

θi status of the sensors of Node i
θ̂i estimate of status of the sensors of Node i
λ inter-contact rate
ν decision threshold
t time instant
yi outcome of a LODT performed by Node i
qD detection probability of a LODT
qFA false alarm probability of a LODT
cm,i number of LODTs performed by Node i
cd,i number of LODTs by Node i resulting in a detection of

outliers
M window size of the LODT results that are considered for

the decision
xi state of Node i, containing θi, cm,i, and cd,i

X`,k
θ state component of the DTN: proportion of nodes in

state xi = (θ, `, k) among the nodes with sensors of
actual status θ

pθ proportion of nodes with sensors of status θ
pθθ̂ proportion of nodes believing its sensors are in status θ̂,

among the nodes with sensors of actual status θ
X
`,k
θ value of X`,k

θ at equilibrium
pθθ̂ value of pθθ̂ at equilibrium
X̃`,k
θ approximate value of X`,k

θ at equilibrium
p̃θθ̂ approximate value of pθθ̂ at equilibrium

believe that their good sensors are in fact defective, are
also obtained. These theoretical results provide guidelines
to properly choose the parameters of the algorithm.

The rest of the paper is organized as follows. Section 2
presents the system model and basic assumptions. Section 3
details the DFD algorithm for DTNs. Section 4 discusses the
transition probabilities between the state values for some
reference nodes. Section 5 develops the theoretical analysis
of the macroscopic evolution of the proportion of nodes
in different states. Section 6 analyzes the property of the
equilibrium obtained from the state equations. Section 7
presents the approximation of the proportion of nodes at
the equilibrium and discusses the choice of the parameters
in the algorithm. Section 8 provides some numerical results
and Section 9 concludes this paper. Notations are presented
in Table 1.

2 SYSTEM MODEL

Consider a set S of NS moving nodes equipped with sen-
sors. D ⊂ S represents the subset of nodes with defective
sensors producing outliers, i.e., measurements corrupted by
a noise which has characteristics significantly different from
those of the noise corrupting measurements provided by
good sensors. The status of Node i is θi(t) = 0 (good node)
if all its sensors are good and θi(t) = 1 (defective node) if at
least one of them is defective. The proportion of nodes with
good and defective status are p0 and p1, with p0 + p1 = 1.
Each node is not aware of its own status. In what follows,
we assume that over the time horizon of the experiment, the
status of sensors does not change, i.e., θi(t) = θi.

Our aim is (i) to design a distributed algorithm so that
each Node i rapidly evaluates an accurate estimate θ̂i of its
own status θi, as fast as possible, (ii) to provide a theoretical
analysis of the behavior of this algorithm.
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2.1 Communication model
Nodes can exchange information only during the limited
time interval in which they are in vicinity. As in [6], [7], [18],
[23], we assume that the time interval between two succes-
sive meetings follows an exponential distribution with an
inter-contact rate λ. Moreover, we assume that each meeting
involves only two nodes. When more than two nodes meet
at the same time instant, processing is performed pair-
by-pair. These assumptions facilitate the analysis of the
proposed DFD algorithm.

2.2 Local outlier detection test
As in [8], we consider a family of LODTs able to detect
the presence of outliers in a set of n data (measurements,
measurements with associated regressors or experimental
conditions) M = {m1, . . . ,mn} but unable to identify
which data is an outlier. Denote y (M) the outcome of the
LODT, i.e., y (M) = 1 if data corresponding to outlier are
detected withinM, otherwise, y (M) = 0.

LODTs can take various forms, see [8] and Example 1
below. The LODT is characterized by a false alarm proba-
bility qFA (the probability of having y (M) = 1 under the
condition that none of the data in M are produced by
defective sensors) and by a detection probability qD (the
probability of having y (M) = 1 under the condition that
some data in M are really produced by some defective
sensors). Let n0 be the number of data produced by good
sensors and n1 be the number of data coming from defective
sensors. We further assume that both qD and qFA depend on
the number of data involved in the LODT. As a consequence,
we can denote qFA as qFA (n0) and qD as qD (n0, n1). Each
node performing a LODT on a set of data has not to know
n0 and n1, but the performance of the LODT will depend
on the actual values of n0 and n1, which are used in the
analysis of the DFD algorithm.

Example 1. This example introduces a LODT suited to a
DTN aiming at solving a bounded-error parameter estima-
tion problem, see, e.g., [24]–[26]. In such a context, some
parameter vector has to be estimated from noisy measure-
ments. The noise corrupting the measurements provided by
good sensors is assumed bounded with known bounds. Let
x ∈ X ⊂ Rnx be the vector of parameters to be estimated
from the vector measurements z1, . . . , znS provided by ns
sensors. Here, the data mi is a vector measurement zi.
Assume that the measurement model is

zi = zm (x∗) + wi (1)

where x∗ is the true value of the parameter vector, zm is a
possibly non-linear model of the measurement process, and
wi is some noise such that ‖wi‖∞ 6 ε, with ε representing
some known noise bound. One may then introduce the set
Xi of parameter vectors consistent with measurement zi as

Xi =
{
x ∈ X| ‖zi − zm (x)‖∞ 6 ε

}
(2)

and the set X of parameter vectors consistent with all mea-
surements as

X =

ns⋂
i=1

Xi =
{
x ∈ X| ‖zi − zm (x)‖∞ 6 ε, i = 1 . . . ns

}
. (3)

Accurate inner and outer-approximations of X may be ob-
tained, even for models zm non-linear in x with ellipsoids,
parallelotopes, zonotopes, boxes, unions of boxes, see [26],

[27]. When X is empty, the model zm is either not suited
to describe the system of interest, or the bounded noise
property ‖wi‖∞ 6 ε is not satisfied for at least one measure-
ment, i.e., there is at least one defective sensor. An empty X
may be obtained even with as few as two vector measure-
ments, providing the ability to detect outliers with very few
sensor readings. A LODT may then be designed in such
bounded-error parameter estimation context considering a
set of measurements z1 . . . znS by checking whether the set
X introduced in (3) is empty or not.

2.3 Detection scenario

We assume that during each meeting of a pair of nodes
(i, j) ∈ S , the nodes collect data with their sensors. Each
node may or may not transmit its data to the other node.
If a node has received data from its neighbor, it may run a
LODT involving its own data and those received from its
neighbor. We assume that the spatial and temporal correla-
tion between data is such that only data collected during
the meeting of two nodes can be exploited by a LODT.
Therefore, previously collected data are not exploited. As a
consequence, contrary to [8], where n0 and n1 may be large,
in the DTN scenario, a LODT will involve n0, n1 ∈ {0, 1, 2},
with n0 + n1 = 2. In this paper, one furthermore assumes
that qFA (2) < qD (1, 1) 6 qD (0, 2), which is reasonable, since
the outcome of a LODT is more likely to be 1 as the number
of outliers involved increases.

3 DFD ALGORITHM

In the proposed DFD algorithm, each node manages two
counters cm,i(t) and cd,i(t) initialized at 0 at t = 0. Using
cm,i(t), Node i counts the number of meetings during which
it has received data from its neighbor, and has been able
to perform a LODT. Using cd,i(t), it counts the number
of LODT tests resulting in the detection of outliers. When
cd,i(t)/cm,i(t) > ν, where ν is some constant decision
threshold, Node i considers itself as carrying defective sen-
sors, i.e., it sets its own estimate θ̂i (t) = 1. Otherwise, it
considers that its sensors are good, i.e., θ̂i (t) = 0.

When a node with θ̂i (t) = 1 encounters another node, it
still takes measurements, but it does not send these data to
the other node to avoid infecting the network with outliers.
Any node, upon receiving data from another node, performs
a LODT and updates cm,i(t) and cd,i(t). As a consequence,
a node which meets another node considering itself as
defective, transmits its data, but since it does not receive
any data, it does not update cm,i(t) and cd,i(t) at the end
of the meeting. Algorithm 1 summarizes the proposed DFD
technique for an arbitrary reference Node i.

The vector xi(t) = (θi, cm,i(t), cd,i(t)) represents the
(microscopic) state of each Node i. As t → ∞, one has
cm,i(t) → ∞, which leads to an infinite number of possible
values for xi(t) and the global (macroscopic) behavior of
the algorithm is difficult to analyze. To limit the number of
possible states, one has chosen to consider the evolution of
cm,i(t) and cd,i(t) over a sliding time window containing the
time instants of the last M meetings during which Node i
has performed a LODT. Algorithm 2 is a modified version of
Algorithm 1 accounting for this limited horizon procedure.
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Algorithm 1 DFD algorithm for Node i

1) Initialize at t0i = 0, θ̂i
(
t0i
)

= 0, cm,i(t
0
i ) = cd,i(t

0
i ) =

0, κ = 1.
2) Do  θ̂i (t) = θ̂i

(
tκ−1
i

)
,

cm,i (t) = cm,i
(
tκ−1
i

)
,

cd,i (t) = cd,i
(
tκ−1
i

)
,

(4)

t = t+ δt (5)

until the κ-th meeting occurs at time t = tκi with
Node jκ ∈ S \ {i}.

3) Perform local measurement of data mi (tκi ).
4) If θ̂i (tκi ) = 0, then transmit mi (tκi ) to Node jκ.
5) If data mjκ have been received from Node jκ, then

a) Perform a LODT with outcome yi (tκi ).
b) Update cm,i and cd,i according to{

cm,i(t
κ
i ) = cm,i(t

κ−1
i ) + 1

cd,i(t
κ
i ) = cd,i(t

κ−1
i ) + yi (tκi )

(6)

c) Update θ̂i as follows

θ̂i(t
κ
i ) =

{
1 if cd,i(t

κ
i )/cm,i(t

κ
i ) > ν,

0 else.
(7)

6) κ = κ+ 1.
7) Go to 2.

It involves an additional counter µ indicating the number of
LODT performed by Node i. Note that when µ < M, then
(8) is equivalent to (6).

The next sections are devoted to the analysis of Algo-
rithm 2.

Algorithm 2 Sliding-Window DFD algorithm for Node i

1) Initialize t0i = 0, θ̂i
(
t0i
)

= 0, cm,i(t
0
i ) = cd,i(t

0
i ) = 0,

κ = 1, and µ = 0.
2) Do (4)-(5) until the κ-th meeting occurs at time tκi

with Node jκ ∈ S \ {i}.
3) Perform local measurement of data mi (tκi ).
4) If θ̂i (tκi ) = 0, then transmit mi (tκi ) to Node jκ.
5) If data mjκ have been received from Node jκ, then

a) µ = µ + 1. Perform a LODT with outcome
yµi .

b) Update cm,i and cd,i as{
cm,i(t

κ
i ) = min {µ,M} ,

cd,i(t
κ
i ) =

∑µ
m=max{1,µ−M+1} y

m
i .

(8)

c) Update θ̂i using (7).

6) κ = κ+ 1.
7) Go to 2.

4 EVOLUTION OF THE STATE OF A NODE

The state of Node i is represented by the triple xi(t) =
(θ, cm,i (t) , cd,i (t)). Since cm,i (t) ∈ {0, 1 . . .M} and

0

0

1

2

3

4

1 2 3 4

cd

cm

Fig. 1. Example of Markov model for the evolution of the state of a node
when M = 4.

cd,i (t) ∈ {0 . . . cm,i (t)}, the number of values that may
be taken by the state of a node is

∑M
`=0 (`+ 1) =

(M + 1) (M + 2) /2. The evolution of the state of Node i,
conditioned by its status θi, follows a Markov model with
state transition diagram similar to that shown in Figure 1
for M = 4.

In particular, there are two chains, one conditioned
by θi = 0 and the other conditioned by θi = 1. Both
are characterized by a transient phase for state values
with cm,i(t) < M , then, a permanent regime starts when
cm,i(t) = M . With cm,i (t) = ` and cd,i (t) = k, the
transitions from State (θ, `, k) to State (θ, `′, k′) are analyzed
in what follows.

Assume that the reference Node i meets a random
Node J at time t and define the random event

E1(t) =
{
θ̂J (t) = 0

}
, (9)

representing the event that the node met believes its status
is good. According to (7), among the nodes with status θ,
the proportion of nodes that believe themselves as good is 1

pθ0 (t) = X0,0
θ (t) +

∑
`,k,k/`<ν

X`,k
θ (t) , (10)

where p10 (t) is in fact the non-detection rate (NDR) of the
nodes with defective sensors at time t. Assuming that the
nodes are randomly spread, the probability that Node J
believes it has only good sensors conditioned to its true
status is

P
(
θ̂J (t) = 0|θJ (t) = θ

)
= pθ0 (t) , (11)

and then
P {E1(t)} = p0p

00 (t) + p1p
10 (t) . (12)

Similarly, introducing E1(t) = {θ̂J (t) = 1}, among the
nodes with sensors in status θ, the proportion of nodes with
θ̂j (t) = 1 is

pθ1 (t) =
∑

`,k,k/`>ν

X`,k
θ (t) , (13)

where p01 (t) and p11 (t) represent the false alarm rate (FAR)
and the detection rate (DR) respectively. From (13), one gets

P
{
E1(t)

}
= p0p

01 (t) + p1p
11 (t) . (14)

Since Node i performs an LODT only when it meets a
node J with θ̂J (t) = 0, one introduces the random event

Eθ2 (t) =
{
Yi (t) = 1 | θi = θ, θ̂J (t) = 0

}
, (15)

1. For the sake of simplicity, the dependency of pθ0 (t) in ν is omitted,
as ν is constant during the DFD algorithm.
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for the reference node with actual status θ. As detailed in
Section 2.2, the statistical properties of the outcome Yi (t)
of the LODT depend only on θi and θj . For example, when
Node i has good sensors, one has

P
{
E02 (t)

}
=

1∑
ϕ=0

P
{
Yi (t) = 1, θJ = ϕ | θi = 0, θ̂J (t) = 0

}
(a)
=

1∑
ϕ=0

P {Yi (t) = 1 | θi = 0, θJ = ϕ}P
{
θJ = ϕ | θ̂J (t) = 0

}
(b)
=
p0qFA (2) p00 (t) + p1qD (1, 1) p10 (t)

p0p00 (t) + p1p10 (t)
. (16)

In (16-a), one uses the fact that the LODT outcome is not
influenced by the estimate of the status of a node and that in
P
{
θJ = ϕ | θi = 0, θ̂J (t) = 0

}
, the status of Node J , does

not depend on θi. In (16-b),{
P {Yi (t) = 1 | θi = 0, θJ = 0} = qFA (2) ,

P {Yi (t) = 1 | θi = 0, θJ = 1} = qD (1, 1) .
(17)

Moreover,

P
{
θJ = ϕ | θ̂J (t) = 0

}
=

P
{̂
θJ (t)=0|θJ =ϕ

}
P{θJ = ϕ}∑1

φ=0P
{̂
θJ (t)=0|θJ =φ

}
P{θJ = φ}

=
pϕp

ϕ0 (t)

p0p00 (t) + p1p10 (t)
.

Now, if Node i has defective sensors, (15) can be ex-
pressed as

P
{
E12 (t)

}
=
p0qD (1, 1) p00 (t) + p1qD (0, 2) p10 (t)

p0p00 (t) + p1p10 (t)
. (18)

Similarly, one may introduce the random event

Eθ3 (t) =
{
Yi (t) = 0 | θi = θ, θ̂J (t) = 0

}
, (19)

and show that

P
{
Eθ3 (t)

}
=


p0(1−qFA(2))p

00(t)+p1(1−qD(1,1))p
10(t)

p0p00(t)+p1p10(t)
, if θ = 0,

p0(1−qD(1,1))p
00(t)+p1(1−qD(0,2))p

10(t)
p0p00(t)+p1p10(t)

, if θ = 1.
(20)

Define πδm,δd
θ as the transition probability from State

(θ, `, k) to State (θ, `+ δm, k + δd), where θ ∈ {0, 1}. One
has δm ∈ {0, 1} since ` may either increase (δm = 1)
in the transient regime or remain constant (δm = 0) in
the permanent regime. One has δd ∈ {−1, 0, 1}, de-
pending on the value of the last LODT outcome and on
the value of the M + 1-th last LODT outcome, which
is no more considered in the permanent regime. Thus,
(δm, δd) ∈ {(0, 0) , (0, 1) , (0,−1) (1, 0) , (1, 1) , (1,−1)}.
Note that πδm,δd

θ depends on the current state of the reference
node, but also on the current proportion of active (good
and defective) nodes. Therefore, the transition probabilities
are denoted as πδm,δd

θ (t, `, k), where t is the time instant,
cm,i(t) = `, and cd,i(t) = k. Depending on the value of
`, two different cases are considered in Section 4.1 and in
Section 4.2, respectively corresponding to the transient and
permanent regimes.

4.1 Case I, ` < M

In the transient regime, when cm,i(t) = ` < M , cm,i(t) and
cd,i(t) are updated according to (6) whenever Node J with
θ̂J (t) = 0 is met,. The only possibility that leads to δm = 0 is
the event E1, i.e., Node i meets Node J with θ̂J (t) = 1. As a
consequence, no LODT is performed by Node i. Therefore,
for any θ ∈ {0, 1},

π0,0
θ (t, `, k) = P

{
E1 (t)

}
= p0p

01 (t) + p1p
11 (t) , (21)

where pθ1 (t) is defined by (13).
A state transition occurs with (δm, δd) = (1, 1) when

Node i with status θi = θ meets Node J with θ̂J (t) = 0
and when the LODT yields yi (t) = 1. Since the two events
are independent, one has

π1,1
θ (t, `, k) = P

{
Yi (t) = 1, θ̂J (t) = 0|θi = θ

}
= P {E1 (t)}P

{
Eθ2 (t)

}
. (22)

Depending on the value of θi, using (12), (16), and (18), one
may rewrite (22) as

π1,1
θ (t, `, k)=

{
p0qFA (2) p00 (t) + p1qD (1, 1) p10 (t) , if θ = 0,

p0qD (1, 1) p00 (t) + p1qD (0, 2) p10 (t) , if θ = 1.

(23)

Finally, π1,0
θ (t, `, k) = P

{
Yi (t) = 0, θ̂J (t) = 0|θi = θ

}
is obtained similarly from (20)

π1,0
θ (t, `, k) ={
p0 (1− qFA (2)) p00 (t) + p1 (1− qD (1, 1)) p10 (t) , if θ = 0,

p0 (1− qD (1, 1)) p00 (t) + p1 (1− qD (0, 2)) p10 (t) , if θ = 1.

(24)

4.2 Case II, cm,i(t) = M

In the permanent regime, cm,i(t) = M and does not increase
any more, thus δm = 0. In Algorithm 2, µ is the number
of LODTs performed by Node i up to time t. When µ >
M , only the last M LODT outcomes are considered: LODT
outcomes ymi with m 6 µ−M are no more considered.

To determine the value taken by δd ∈ {−1, 0, 1} after the
µ-th LODT, consider the random event

E14 (t) =

{
Y µ−Mi = 1 |

µ−1∑
m=µ−M

Y mi = k

}
, (25)

which corresponds to a situation where one knows that
k LODTs where positive among the last M tests and the
LODT that will be ignored, once the new LODT outcome
is available, also concluded in the presence of defective
sensors. P

{
E14 (t)

}
is relatively complex to evaluate, since

P {Y ni = 1} is time-varying according to (16-18). In what
follows, we assume that LODT outcomes with Y mi = 1
are independently distributed over the time horizon corre-
sponding to m = µ−M, . . . , µ− 1. One obtains then

P
{
E14 (t)

}
=

k

M
. (26)

This approximation is exact in steady-state, when the
X`,k
θ s do not vary any more. Similarly, define E04 (t) ={
Y µ−Mi = 0 |

∑µ−1
m=µ−M Y mi = k

}
. Making the same as-

sumption used to get (26), one has

P
{
E04 (t)

}
= 1− P

{
E14 (t)

}
≈ M − k

M
. (27)
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Assume that the (µ−M)-th LODT performed by Node i
occurred at time t̃, then yµ−Mi can also be denoted as yi

(
t̃
)

and the transition related to cd,i is such that δd = yi (t) −
yi
(
t̃
)
∈ {−1, 0, 1} .

To have (δm, δd) = (0, 1), three independent events have
to occur: 1) the encountered Node J believes it is good at
time t, i.e., E1 (t); 2) yi (t) = 1, i.e., E2 (t); 3) yi

(
t̃
)

= 0, i.e.,
E04 (t). Thus the transition probability may be expressed as

π0,1
θ (t,M, k) = P {E1 (t)}P

{
Eθ2 (t)

}
P
{
E04 (t)

}
. (28)

Using (12), (16), (18), and (26) in (28), one gets

π0,1
θ (t,M, k)

=

{(
p0qFA(2) p00 (t) + p1qD(1, 1) p10 (t)

)
M−k
M

, if θ = 0,(
p0qD(1, 1) p00 (t) + p1qD(0, 2) p10 (t)

)
M−k
M

, if θ = 1.
(29)

Consider now (δm, δd) = (0,−1). To have such transi-
tion, the three following independent events should occur:
1) E1 (t); 2) yi (t) = 0, i.e., E3 (t); 3) yi

(
t̃
)

= 1, i.e., E14 (t).
Thus, the transition probability is

π0,−1
θ (t,M, k) = P {E1 (t)}P

{
Eθ3 (t)

}
P
{
E14 (t)

}
=

{(
p0(1−qFA (2)) p00 (t) + p1(1−qD (1, 1)) p10 (t)

)
k
M
, if θ = 0,(

p0(1−qD (1, 1)) p00 (t) + p1(1−qD (0, 2)) p10 (t)
)
k
M
, if θ = 1.

(30)

Considering the last transition (δm, δd) = (0, 0), to obtain
the expression of π0,0

θ (t,M, k), one needs to introduce (29-
30) into

π0,0
θ (t,M, k) = 1− π0,1

θ (t,M, k)− π0,−1
θ (t,M, k) . (31)

5 MACROSCOPIC EVOLUTION OF THE DTN STATE

At time t, among the nodes with status θ ∈ {0, 1} , let
X`,k
θ (t) be the proportion of nodes in state (θ, `, k). All

node state transition probabilities evaluated in Section 4
are now used to determine the evolution of the DTN state
components, i.e., of the various proportions of nodesX`,k

0 (t)
and X`,k

1 (t) in the corresponding states, with ` = 0, . . . ,M
and k 6 `.

Considering an inter-contact rate λ and a well-mixed
population of nodes, during a short time interval [t, t+ δt]
the number of nodes with state (θ, `, k) that will meet
another node is λpθNSX

`,k
θ (t)δt.

When 0 < ` < k < M , these nodes will
switch to the states (θ, `+ δm, k + δd), with (δm, δd) ∈
{(0, 0) , (1, 0) , (1, 1)} with a probability πδm,δd

θ (t, `, k).
Moreover, nodes in the states (θ, `− 1, k − 1) and
(θ, `− 1, k) that have met an other node in the time interval
[t, t+ δt] may reach state (θ, `, k), respectively with a proba-
bility π1,1

θ (t, `− 1, k − 1) and π1,0
θ (t, `− 1, k), see Figure 2.

As a consequence, at time t+ δt, the number of nodes in
State (θ, `, k) may be expressed as follows

pθNSX
`,k
θ (t+ δt)

= pθNSX
`,k
θ (t)+λδtpθNS

(
−X`,k

θ (t)
(
π1,0
θ (t, `, k)+π1,1

θ (t, `, k)
)

+X`−1,k−1
θ (t)π1,1

θ (t, `−1,k−1)+X`−1,k
θ (t)π1,0

θ (t,`−1,k)
)
. (32)

𝜋𝜃
1,0 𝜋𝜃

1,1 

 𝜃, ℓ + 1, 𝑘 + 1   𝜃, ℓ + 1, 𝑘  

 𝜃, ℓ, 𝑘  

 𝜃, ℓ − 1, 𝑘   𝜃, ℓ − 1, 𝑘 − 1  

𝜋𝜃
1,0 𝜋𝜃

1,1 
𝜋𝜃
0,0 

Fig. 2. Transient regime: Possible state transitions from and to state
(θ, `, k) when 0 < ` < M and 0 < k < `

𝜋𝜃
0,−1 

𝜋𝜃
0,−1 

 𝜃,𝑀, 𝑘 + 1   𝜃,𝑀, 𝑘 − 1   𝜃,𝑀, 𝑘  

 𝜃,𝑀 − 1, 𝑘   𝜃,𝑀 − 1, 𝑘 − 1  

𝜋𝜃
1,0 

𝜋𝜃
1,1 

𝜋𝜃
0,0 

𝜋𝜃
0,1 

𝜋𝜃
0,1 

Fig. 3. Permanent regime: Possible state transitions from and to State
(θ,M, k) when 0 < k < M

The evolution of X`,k
θ (t) is then described by the following

differential equation, where the time dependency is omitted
to lighten notations

dX`,k
θ

dt
= −λX`,k

θ

(
π1,0
θ (`, k) + π1,1

θ (`, k)
)

+ λX`−1,k−1
θ π1,1

θ (`− 1, k − 1) + λX`−1,k
θ π1,0

θ (`− 1, k) . (33)

When ` = M and 0 < k < M , nodes in state (θ,M, k)
will switch to the states (θ,M, k + δd), δd ∈ {−1, 0, 1}
with a probability π0,δd

θ (t,M, k). Nodes in the states
(θ,M − 1, k − 1) and (θ,M − 1, k) that have met an other
node in the time interval [t, t+ δt] may reach state (θ,M, k),
respectively with a probability π1,1

θ (t,M − 1, k − 1) and
π1,0
θ (t,M − 1, k), see Figure 3. As a consequence, the evo-

lution of XM,k
θ (t) can be described by

dXM,k
θ

dt
= −λXM,k

θ

(
π0,1
θ (M,k) + π0,−1

θ (M,k)
)

+ λXM−1,k−1
θ π1,1

θ (M − 1, k − 1) + λXM−1,k
θ π1,0

θ (M − 1, k)

+ λXM,k−1
θ π0,1

θ (M,k − 1) + λXM,k+1
θ π0,−1

θ (M,k + 1) . (34)

Similar derivations can be made for the remaining DTN
state components to obtain

dX
0,0
θ
dt

(a)
= −λX0,0

θ

(
π1,0
θ (0, 0) + π1,1

θ (0, 0)
)
,

dX
`,0
θ
dt

(b)
= λ

(
−X`,0

θ

(
π1,0
θ (`, 0) + π1,1

θ (`, 0)
)

+X`−1,0
θ π1,0

θ (`− 1, 0)
)
,

dX
`,`
θ
dt

(c)
= λ

(
−X`,`

θ

(
π1,0
θ (`, `) + π1,1

θ (`, `)
)

+X`−1,`−1
θ π1,1

θ (`− 1, `− 1)
)
,

dX
M,0
θ
dt

(d)
= λ

(
−XM,0

θ π0,1
θ (M, 0) +XM−1,0

θ π1,0
θ (M − 1, 0)

+XM,1
θ π0,−1

θ (M, 1)
)
,

dX
M,M
θ
dt

(e)
= λ

(
−XM,M

θ π0,−1
θ (M,M)+XM,M−1

θ π0,1
θ (M,M−1)

+ XM−1,M−1
θ π1,1

θ (M − 1,M − 1)
)
,

(35)
for any ` = 1 . . .M−1, with the initial conditionsX0,0

θ (0) =

1 and X`,k
θ (0) = 0, ∀`, k 6= 0.



7

The state equation (35) is nonlinear, since each πδm,δd
θ

depends on X`,k
θ , see (10) and (13).

6 ANALYSIS OF THE DTN STATE EQUATIONS

In what follows, the asymptotic behavior of the DTN state
equations (35) is characterized. Algorithm 2 may drive X`,k

θ

to an equilibrium X
`,k
θ at which the proportions of nodes in

different states X`,k
θ (t) do not vary any more. As a conse-

quence, pθ0 (t) defined in (10) also tends to an equilibrium
pθ0.

6.1 Equilibrium of X`,k
θ

One investigates first the evolution of X`,k
θ (t) when ` <

M . As shown in the following proposition, the DTN state
always reaches the permanent regime.

Proposition 2. For any ` < M and k 6 `, lim
t→∞

X`,k
θ (t) = 0.

Proof: See Appendix A.
From Proposition 2, the only possible value at equilib-

rium of X`,k
θ (t) when ` < M is 0. Thus pθ0 may be written

as

pθ0 =
∑

k:k/M<ν

X
M,k
θ . (36)

Denote p =
(
p00, p10

)
∈ P0 with

P0 = {(x, y) ∈ [0, 1]× [0, 1] and (x, y) 6= (0, 0)} (37)

and consider the functions

h0 (p) =
p0qFA (2) p00 + p1qD (1, 1) p10

p0p00 + p1p10
, (38)

h1 (p) =
p0qD (1, 1) p00 + p1qD (0, 2) p10

p0p00 + p1p10
, (39)

Fθ (p) =

dMνe−1∑
k=0

(
M

k

)
(hθ (p))k (1− hθ (p))M−k , (40)

and F (p) = (F0 (p) , F1 (p)). The following proposition
provides a non-linear equation that has to be satisfied by p.
The various X

M,d
θ at equilibrium are easily deduced from

the solutions of the mentioned equation.

Proposition 3. Assume that the dynamic system described by
(33-35) admits some equilibrium X

`,d
θ , then p ∈ P0 is the

solution of

p = F (p) , (41)

and for any θ ∈ {0, 1} and k 6 `,

X
`,k
θ =

{
0, ∀` < M,(
M
k

)
(hθ (p))k (1− hθ (p))M−k , ` = M.

(42)

Proof: See Appendix B.

6.2 Existence and unicity of the equilibrium point

Now we investigate the existence and the unicity of the
solution of (41), which is rewritten in detail in (43) at the
top of the next page.

For that purpose, using fixed-point theorems, one may
alternatively show that for all p (0) =

(
p00 (0) , p10 (0)

)
∈

P0, the discrete-time system{
p00 (n+ 1) = F0

(
p00 (n) , p10 (n)

)
,

p10 (n+ 1) = F1

(
p00 (n) , p10 (n)

)
.

(46)

converges to a unique equilibrium point
(
p00, p10

)
, which is

then solution of (43).
One first shows the existence of an equilibrium using

Brouwer’s fixed-point theorem [28] in the following propo-
sition.

Proposition 4. For any ν ∈ [0, 1], (43) always admits a solution,
which is an equilibrium point of the dynamical system (33-35).

Before proving Proposition 4, one first shows that p00 (n)
and p10 (n) are contained in intervals with lower and upper
bounds increasing (resp. decreasing) with n.

Lemma 5. For any n ∈ N∗ and θ ∈ {0, 1}, one has

pθ0min (n) 6 pθ0 (n) 6 pθ0max (n) ,

with pθ0min (0) = 0, pθ0max (0) = 1, and{
pθ0min (n+ 1) = Fθ

(
p00min (n) , p10max (n)

)
, ∀n ∈ N+,

pθ0max (n+ 1) = Fθ
(
p00max (n) , p10min (n)

)
, ∀n ∈ N+.

(47)

Moreover,

p00min (n+ 1) > p00min (n) , p00max (n+ 1) < p00max (n) . (48)

Proof: See Appendix C.
Using Lemma 5, one can now prove Proposition 4.

Proof: F0 and F1 are both continuous functions. For
some n > 0, consider the set Pn =

[
p00min (n) , p00max (n)

]
×[

p10min (n) , p10max (n)
]
, where pθ0min (n) and pθ0max (n) are defined

in (47). For any p =
(
p00, p10

)
∈ Pn, one can prove using

Lemma 5 that F (p) ∈ Pn. Thus F maps Pn to Pn. Applying
Brouwer’s fixed-point theorem, F admits a fixed point and
Proposition 4 is proved.

Sufficient conditions on p0, p1, qD, qFA, M and ν are then
provided to ensure the uniqueness of this equilibrium by
applying Banach’s fixed-point theorem [29].

Proposition 6. If there exists some N ′, such that ∀θ ∈ {0, 1}
and ∀n > N ′, one has

cθ(qFA(2), qD(0, 2),qD (1, 1), p1,M, ν, n)< 1, (49)

where c0 and c1 are defined in (44-45), then the discrete-time
system (46) converges to a unique equilibrium point and the
solution of (43) is unique.

Proof: See Appendix D.
Due to the monotonicity of pθ0min (n) and pθ0max (n) shown

in Lemma 5, cθ decreases with n. Hence, if a given ν satisfies
(49) for some N ′, then ν will satisfy (49) for all n > N ′

and the equilibrium is unique. If the values of p1, qD, qFA,
and M are fixed, then one may deduce sufficient conditions
on the value of ν to have a unique equilibrium point. See
Example 7.
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(
p00, p10

)
=
∑
k:k/M<ν

(M
k

) (p0qFA(2)p
00+p1qD(1,1)p

10

p0p00+p1p10

)k (
p0(1−qFA(2))p

00+p1(1−qD(1,1))p
10

p0p00+p1p10

)M−k
,

p10 = F1

(
p00, p10

)
=
∑
k:k/M<ν

(M
k

) (p0qD(1,1)p
00+p1qD(0,2)p

10

p0p00+p1p10

)k (
p0(1−qD(1,1))p

00+p1(1−qD(0,2))p
10

p0p00+p1p10

)M−k
.

(43)

c0(qFA(2), qD(0,2),qD(1,1), p1,M, ν, n)=
M (qD (1,1)− qFA (2)) p0p1p

00
max (n) p10max (n)

(p0p00min(n)+p1p10min(n))((1− qFA(2))p0p00min(n)+(1− qD(1,1))p1p10min(n))
, (44)

c1(qFA(2), qD(0,2),qD(1,1), p1,M, ν, n)=
M (qD (0,2)− qD (1,1)) p0p1p

00
max (n) p10max (n)

(p0p00min(n)+p1p10min(n))((1− qD(1,1))p0p00min(n)+(1− qD(0,2))p1p10min(n))
, (45)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.4

0.5

0.6

0.7

0.8

0.9

1

p
1

ν
m

ax

 

 

M=4, q
D

(1,1)=0.8

M=4, q
D

(1,1)=0.5

M=10, q
D

(1,1)=0.8

M=10, q
D

(1,1)=0.5

Fig. 4. Upper bounds of ν to satisfy (49), with qFA (2) = 0.05, qD (0, 2) =
0.9, qD (1, 1) ∈ {0.5, 0.8}, M ∈ {4, 10}, and p1 ∈ [0.05, 0.5].

Example 7. Consider qFA (2) = 0.05, qD (0, 2) = 0.9,
qD (1, 1) ∈ {0.5, 0.8}, M ∈ {4, 10}, and p1 ∈ [0.05, 0.5].
One verifies whether (49) is satisfied considering n = 10
for different values of ν. One obtains that (49) holds if
0 < ν 6 νmax, where νmax depends on the values of p1,
qD, qFA, and M . See Figure 4 for the numerical values of
νmax in each case.

6.3 Equilibrium point as M →∞
Both p00 and p10 can be seen as functions ofM . AsM →∞,
Algorithm 2 turns into Algorithm 1. In this situation, if ν is
properly chosen, the probabilities of false alarm and non-
detection tend to zero, as shown in Proposition 8.

Proposition 8. If qFA (2) < ν < qD (1, 1), then (43) has a
unique solution and

lim
M→∞

p00 = 1, lim
M→∞

p10 = 0. (50)

Proof: See Appendix E.

7 APPROXIMATIONS OF THE EQUILIBRIUM

Closed-form expressions for p00 and p10 are difficult to
obtain from (43). This section introduces an approximation
of (43) from which some insights may be obtained on the
way ν should be chosen.

Since p10 represents the proportion of nodes with de-
fective sensors that have not detected their status, the
value of p10 should be small. From (38-39) one sees that
limp10→0 h0 = qFA (2) and limp10→0 h1 = qD (1, 1), thus one
may consider the following approximations

h0 ≈ h̃0 = qFA (2) , h1 ≈ h̃1 = qD (1, 1) . (51)

Therefore, (43) may be rewritten as{
p̃00 =

∑
k:k/M<ν

(
M
k

)
(qFA (2))k (1− qFA (2))M−k ,

p̃10 =
∑
k:k/M<ν

(
M
k

)
(qD (1, 1))k (1− qD (1, 1))M−k .

(52)

10
−15

10
−10

10
−5

10
0

0

0.2

0.4

0.6

0.8

1

p01=1−p00

p11
=

1−
p10

q
D

(1.1)=0.8, actual value

q
D

(1.1)=0.8, approximation

q
D

(1.1)=0.5, actual value

q
D

(1.1)=0.5, approximation

ν=0.2ν=0.4

ν=1

Fig. 5. Approximate p11 as a function of approximate p01, for various ν
and fixed M = 10 .

from which one deduces approximate values X̃M,k
0 of XM,k

0
at equilibrium{

X̃M,k
0 =

(
M
k

)
(qFA (2))k (1− qFA (2))M−k ,

X̃M,k
1 =

(
M
k

)
(qD (1, 1))k (1− qD (1, 1))M−k .

(53)

For any fixed value of M , qFA (2), and qD (1, 1), the
values of detection rate (p11) and false alarm rate (p01) at equi-
librium can be predicted using (52), since p01 = 1− p00 and
p11 = 1−p10. Consider for example M = 10, qFA (2) = 0.05,
and qD (1, 1) = 0.8. Figure 5 presents p̃11 as a function of p̃01

for different values of ν. This figure is helpful to choose the
value of ν to meet different performance requirements. The
actual values of p11 and p01 are also shown in Figure 5,
which are very close to p̃11 and p̃01, in the region where p11

is close to 1.

8 NUMERICAL RESULTS

8.1 Numerical verification of theoretical results

This section presents first the solution of the state equation
(35) describing the evolution of the proportion of nodes
in various states. Algorithm 2 is simulated considering a
random displacement of nodes without constraint on their
speed. This allows to verify the correctness of the theoretical
results presented in this paper.

Consider a LODT where qFA (0, 2) = 0.05, qD (1, 1) =
0.8, and qD (0, 2) = 0.9. Besides, p0 = 0.9, p1 = 0.1, M = 4,
ν = 0.4, and λ = 1. Figure 6 presents the evolution of
the proportion of nodes with good sensors (top part) and
defective sensors (bottom part) in different states, obtained
by solving (35). Note that ∆t represents the duration of a
unit time slot used in the simulation. One observes that the
proportion of nodes in each state becomes almost constant
as t/∆t > 15. For the nodes with θ = 0, only two states are
such that X`,k

0 > 0.05, (0, 4, 0) and (0, 4, 1), while the others
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Fig. 6. Evolution of X`,k
0 (t) (left) and X`,k

1 (t) (right) obtained from (35),
in the case where qFA (0, 2) = 0.05, qD (1, 1) = 0.8, qD (0, 2) = 0.9,
M = 4, ν = 0.4, and λ = 1.

are very close to 0. For the nodes with θ = 1, only X4,4
1 ,

X4,3
1 , andX4,2

1 are relatively large. Since there is no common
(`, k) such that both X`,k

0 and X`,k
1 have unnegligeable

values, the accuracy of the algorithm can be very good. With
ν = 0.4, one has p00 = 0.985 and p10 = 0.027. Only 1.5% of
the good nodes believe they are carrying defective sensors.
Less than 3% of the nodes with defective sensors have not
been detected.

Consider now a set S of NS = 1000 moving nodes
uniformly distributed over a square of unit area. In the
first displacement model (jump motion model): Node i
randomly chooses its location at time instant (k + 1) ∆t,
independently from its previous location at time k∆t. Two
nodes communicate only at discrete time instants k∆t when
their distance is less than r0. Node i has its neighbors in the
set Ni = {j ∈ S : 0 < Ri,j ≤ r0}, where Ri,j is the distance
between Nodes i and j. Furthermore, if |Ni| > 1, we assume
that Node i communicates only with its closest neighbor.
Denote ρ = πr20NS as the average value of |Ni|. The cardi-
nality of Ni approximately follows a Poisson distribution as
NS is large enough, the inter-contact probability is thus

λ∆t = P {|Ni| = 1} = ρ exp (−ρ) .

In the Monte-Carlo simulations, we set r0 = 0.014, so
that ρ ≈ 0.6 and λ∆t ≈ 0.33. Using the same values of
M , ν, qD, and qFA as in Figure 6, the simulation results for
this jump motion model are shown in Figure 7. Comparing
Figure 6 and Figure 7, one remarks that the state evolution
in the transient phase has similar shape but with different
convergence speed, which depends mainly on λ. Figure 8
shows a good match between theory and simulation for the
proportions of states at equilibrium. The approximation of
X

4,k
θ using (53) is also presented in Figure 8, which is very

close to its actual value.

8.2 Simulation with Brownian motion model
Consider now a Brownian motion model where each node
is moving with a random speed. Each node changes its
orientation when it reaches the boundary of the unit square.
Define Oi =

(
oix, o

i
y

)
as the location of Node i. Consider

a second order mobility model, i.e., d2ox/dt2 = vx and
d2oy/dt

2 = vy , where vx, vy ∼ N
(

0, (σr0)
2
)

.
Consider σ ∈ {0.1, 1}, qFA (2) = 0.05, qD (1, 1) = 0.8,

qD (0, 2) = 0.9, M = 10, and ν = 0.4. Figure 9 compares
the evolution of p01 and p10 as functions of time for the
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Fig. 7. Evolution of X`,k
0 (t) (left) and X`,k

1 (t) (right) by simulations with
the jump model, in the case where qFA (0, 2) = 0.05, qD (1, 1) = 0.8,
qD (0, 2) = 0.9, M = 4, ν = 0.4, and λ∆t = 0.33.
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Fig. 8. Comparison of X4,k
θ at the equilibrium.

jump motion model and the Brownian motion model, with
fixed ρ ≈ 0.6. At equilibrium, the performance obtained
for both models is quite close. However, the convergence
speed depends on the inter-contact rate λ. When σ = 0.1,
the algorithm converges slowly in the Brownian motion
model. When σ = 1, which results to a larger value of λ, the
evolution of p01 and p10 with the Brownian motion model
are close to the jump motion model.

At the beginning of the algorithm, each node believes
that its sensors are good, thus p01(0) = 0 and p10(0) = 1.
During the algorithm, p10(t) decreases in the transient phase
until it reaches the equilibrium. Whereas, p01(t) increases at
first and then decreases to the equilibrium. This comes from
the fact that p10(t) is large at the beginning and the LODT
performed on a good node often detects outliers.

8.3 Simulation with real databases

In this section, Algorithm 2 is executed on some experimen-
tal databases instead of motion models. These databases,
provided by the MIT Reality Mining Project [30] and the
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p01, Brownian, 

p01, Brownian, 
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p10, Brownian, σ=1
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Fig. 9. Evolution of p01 and p10 for the two moving models, with σ ∈
{0.1, 1}, qFA (2) = 0.05, qD (1, 1) = 0.8, qD (0, 2) = 0.9, M = 10 and
ν = 0.4.
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Fig. 11. Comparison of X10,k
θ at the equilibrium obtained using the

Reality database, the Infocom05 database, and predicted by the ap-
proximation (53).

Haggle Project [31], are well investigated in several previous
works, e.g., [3]. In this work, we use the following databases:

• Reality, where NS = 97, lasts more than 200 days
with about 111 inter-contacts per day.

• Infocom05, where NS = 41, lasts 3 days with approx-
imately 312 inter-contacts every hour.

More specifically, one is interested in the inter-contact trace,
i.e., which pair of nodes have a meeting at which time. The
traces were taken from [32], which are converted from the
original databases [30], [31].

Consider again the following parameters: qFA (2) = 0.05,
qD (1, 1) = 0.8, qD (0, 2) = 0.9, M = 10, and ν = 0.4.
Monte-Carlo simulations are performed 500 times for each
database. In each test, ND nodes with random index are
chosen to be defective. One sets ND = 10 in Infocom05 and
ND = 20 in Reality. At the top of Figure 10, the index of
the active nodes (which have contact with the others) are
presented at each time to show the frequence of the inter-
contacts at different epochs. The evolution of p10 and p01

is plotted at the bottom of Figure 10. Interestingly, both p10

and p01, obtained by all the three databases, decrease to
10−3 after a sufficient long time. One also observes that
the convergence speed of p10 and p01 is highly related to
the inter-contact rate (reflected by the density of points
in the sub-figures at the top): variations are significant at
beginning of working hours.

Figure 11 represents the states at equilibrium X
M,k
θ

obtained by using the databases Reality and Infocom05, and
also by the approximation (53). There is an excellent match
between the values at equilibrium predicted by theory and
those obtained in practice.

8.4 Influence of the parameters

This section characterizes the influence of the parameters,
such as p1, qD (1, 1) , and M , on the performance of Algo-
rithm 2. The jump motion model is used throughout this
section to describe the displacement of the nodes.

Consider fixed qFA (2) = 0.05, qD (1, 1) = 0.8, qD (0, 2) =
0.9, the evolution of p10 and p01 for various p1 ∈ {0.1, 0.5}
and M ∈ {4, 10, 20} is shown in Figure 12. For each
different case, the value of ν is chosen such that it minimises
p̃01 + p̃10. One observes that a large M leads to a better
performance at equilibrium. The price to be paid is a longer
time required to reach equilibrium. When M = 10, both p10

p
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Fig. 12. Evolution of p10 and p01 for various M ∈ {4, 10, 20} and p1 ∈
{0.1, 0.5}, with qFA (2) = 0.05, qD (1, 1) = 0.8, qD (0, 2) = 0.9.
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Fig. 13. Achievable p10 or p01 for different values of the pair
(qD (1, 1) , qFA (2)) when p1 = 0.1 (left) and for p1 = 0.5 (right).

and p01 are around 10−3. The proportion of the nodes with
defective sensors has also an impact on the convergence
speed of the algorithm. For example, when p1 is large, more
time is needed to achieve a given level of performance (in
terms of p10 and p01).

To show the effectiveness of the proposed DFD algo-
rithm, consider now qD (0, 2) = 0.9 and M = 10. For
p1 = 0.1 and p1 = 0.5, one is interested in the achievable p10

and p01 for 0 6 qFA (2) < qD (0, 2) and qFA (2) < qD (1, 1) 6
qD (0, 2). Four areas are considered:

• Area 3: both p10 and p01 are less than 10−3 ;
• Area 2: both p10 and p01 are less than 10−2 ;
• Area 1: both p10 and p01 are less than 10−1;
• Area 0: either p10 or p01 cannot be less than 10−1.

Figure 13 shows partition of the (qD (1, 1) , qFA (2)) triangle
in four areas, represented in different colors. The ratio of
defective nodes in the network has not a significant impact
on the performance at the equilibrium, even when 50% of
nodes are defective.

9 CONCLUSION

This paper presents a fully distributed algorithm allowing
each node of a DTN to estimate the status of its own sensors
using LODT performed during the meeting of nodes. The
DFD algorithm is analyzed considering a Markov model
of the evolution of the proportion of nodes with a given
belief in their status. This model is then used to derive
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Fig. 10. Indexes of active nodes (having met another node) at different time (top) and evolution of p01 and p10 (bottom) obtained by using the Reality
database (left) and the Infocom05 database (right), with qFA (2) = 0.05, qD (1, 1) = 0.8, qD (0, 2) = 0.9, M = 10, and ν = 0.4.

the evolution of the proportions of the nodes in different
states. The existence and uniqueness of an equilibrium is
discussed. Interestingly, the proportions at the equilibrium
follow a Binomial distribution. Approximations of these
proportions of nodes provide a clear guide to properly
choose the decision parameter of the DFD algorithm. In the
simulations, a jump motion model and a Brownian motion
model are considered. The results show a good match
with theory. The convergence speed of the DFD algorithm
depends on the inter-contact rate and on the proportion of
nodes with defective sensors p1. Nevertheless, p1 has not a
significant impact on the non-detection and false alarm rates
at equilibrium, showing the robustness of the approach to a
large number of defective nodes.

Further research will be dedicated to an adaptation of ν
with time to increase the convergence speed of the proposed
DFD algorithm. This may be particularly important in vari-
ants of the considered problem, such as malware detection.

APPENDIX A
PROOF OF PROPOSITION 2
For the proof, one considers first the following lemmas.

Lemma 9. If

lim
t→∞

ˆ t

0

(
p0p

00 (τ) + p1p
10 (τ)

)
dτ =∞ (54)

then p0p00 (t) + p1p
10 (t) > 0 for all t ∈ R+.

Proof: Since p0 > 0, p1 > 0, p00 > 0, and p10 > 0, it
suffices to prove that

p00 (t) + p10 (t) 6= 0 ∀t > 0. (55)

Assume that there exists a time instant t∗ > 0, such that
p00 (t∗)+p10 (t∗) = 0. As a consequence, at time t∗, all nodes
in the network believe themselves as carrying defective
sensors. As a consequence, no node will transmit its data
to its neighbors. No LODTs will be performed after time
t∗ and the state of nodes will remain constant. Hence, if
p00 (t∗) + p10 (t∗) = 0 for some t∗, then p00 (t) + p10 (t) = 0
for all t > t∗. Consequently,

lim
t→∞

ˆ t

0

(
p0p

00(τ)+p1p
10(τ)

)
dτ =

ˆ t∗

0

(
p0p

00(τ)+p1p
10(τ)

)
dτ,

which contradicts (54).

Lemma 10. The property (54) is always satisfied.

Proof: From (35-a), one has

X0,0
θ (t) = exp

(
−λ
ˆ t

0

(
p0p

00 (τ) + p1p
10 (τ)

)
dτ

)
. (56)

Assume that there exists C∗ > 0 such that

lim
t→∞

ˆ t

0

(
p0p

00 (τ) + p1p
10 (τ)

)
dτ 6 C∗ (57)

then ∀t > 0, one has
ˆ t

0

(
p0p

00 (τ) + p1p
10 (τ)

)
dτ 6 C∗. (58)

Combining (56) and (58), one gets

X0,0
θ (t) > exp (−λC∗) > 0. (59)

Moreover, from (10), one has p00 (τ) > X0,0
θ (τ), leading to

ˆ t

0

(
p0p

00(τ)+p1p
10(τ)

)
dτ>

ˆ t

0

p0X
0,0
θ (τ)dτ >p0 exp (−λC∗) t.

(60)

Since exp (−λC∗) t→∞ as t→∞, (60) leads to a violation
of the hypothesis (57). Hence, one always has (54).

The proof of Proposition 2 is then by induction. Starting
with (35-a), one has (56). Since (54) is satisfied according to
Lemma 10, for any ξ > 0, there exists t00 > 0 such that
t > t00 implies X0,0

θ (t) < ξ and limt→∞X0,0
θ (t) = 0.

Then, assume that for any ` 6 M − 1, and ξ > 0, there
exists t(`−1)0 > · · · > t00 such that t > t(`−1)0 implies
Xj,0
θ (t) < ξ for j = 0, . . . , ` − 1. One has to show now that

there exists t`0 > t(`−1)0 such thatX`,0
θ (t) < ξ for all t > t`0.

Define Z`,0θ (t) =
∑`
j=0X

j,0
θ (t). From (35a) and (35b),

one has

dZ`,0θ
dt

= −λ
(
v (t)Z`−1,0

θ (t) +
(
p0p

00 (t) + p1p
10 (t)

)
X`,0
θ (t)

)
,

where v(t) = π1,1
θ (t, `, k), since π1,0

θ and π1,1
θ do not depend

on ` and k when ` < M . Using (55) one has dZ`,0θ /dt < 0

for any X`0
θ > 0. As a consequence, Z`,0θ (t) decreases until
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X`,0
θ (t) reaches 0. Hence, for any ξ > 0, there exists t`,0 >

t(`−1)0, such that X`,0
θ < ξ and limt→∞ X`,0

θ (t) = 0.
In the same way, using (35c) and the previous results that

X`k
θ (t) → 0 with k = 1, . . . ,M − 2 and ` = k, . . . ,M − 2,

one can prove that for any k = 1, . . . ,M − 1, X`′,(k+1)
θ (t)

tends to zero as t→∞, with any `′ = k + 1, . . . ,M − 1.

APPENDIX B
PROOF OF PROPOSITION 3
According to Proposition 2, one has X

`,k
θ = 0, for all ` <

M and k 6 `. To evaluate X
M,k
θ , one thus considers the

following simplified dynamics derived from (35) for θ ∈
{0, 1},

dX
M,0
θ
dt

=λ
(
−XM,0

θ π0,1
θ (M, 0)+XM,1

θ π0,−1
θ (M, 1)

)
,

dX
M,M
θ
dt

=λ
(
−XM,M

θ π0,−1
θ (M,M)+XM,M−1

θ π0,1
θ (M,M− 1)

)
,

dX
M,k
θ
dt

=λ
(
−XM,k

θ

(
π0,−1
θ (M,k) + π0,1

θ (M,k)
)

+XM,k+1
θ π0,−1

θ (M,k + 1) +XM,k−1
θ π0,1

θ (M,k−1)
)
.

(61)
At equilibrium, one has dXM,k

θ (t)/dt = 0 for all k 6 M .
Moreover, the transition probabilities do not vary any more.

Let X
M

θ =
(
X
M,1
θ , . . . , X

M,M
θ

)T
, aθ (k) = π0,1

θ (M,k), and

bθ (k) = π0,−1
θ (M,k). From (61), one deduces that the

vector X
M

θ should satisfy Ψθ ·X
M

θ = 0 where

Ψθ =


−aθ (0) bθ (1)
aθ (0) −aθ(1)− bθ (1) bθ (2)

. . .
. . .

. . .
aθ (M − 1) −bθ (M)

 .

Summing Lines 1 to k + 1, for all k = 0, . . . ,M − 1, one
obtains aθ (k)X

M,k
θ = bθ (k + 1)X

M,k+1
θ , which leads to

X
M,k
θ = X

M,0
θ

k−1∏
j=0

a0 (j)

b0 (j + 1)
. (62)

One evaluates

aθ (j)

bθ (j + 1)
=

π0,1
θ (M, j)

π0,−1
θ (M, j + 1)

= ηθ
M − j
j + 1

, (63)

where using (29) and (30), one hasη0 = p0qFA(2)p
00+p1qD(1,1)p

10

p0(1−qFA(2))p00+p1(1−qD(1,1))p10
,

η1 = p0qD(1,1)p
00+p1qD(0,2)p

10

p0(1−qD(1,1))p00+p1(1−qD(0,2))p10
.

(64)

with p00 and p10 defined in (36).
From (62) and (63), one deduces

X
M,k
θ = X

M,0
θ

k−1∏
j=0

(
ηθ
M − j
j + 1

)

= X
M,0
θ ηkθ

M · (M − 1) · (M − k + 1)

1 · 2 · · · · k =

(
M

k

)
ηkθX

M,0
θ . (65)

Since
∑M
k=0X

M,k
θ = 1, one has

1 =

M∑
k=0

(
M

k

)
ηkθX

M,0
θ = (ηθ + 1)M X

M,0
θ . (66)

From (65) and (66), ∀k = 0, . . . ,M ,

X
M,k
θ =

(
M

k

)(
ηθ

ηθ + 1

)k(
1

ηθ + 1

)M−k
=

(
M

k

)
(hθ)

k(1− hθ)M−k

(67)

with hθ = ηθ
ηθ+1 . Introducing (67) into (36), one obtains (41)

with Fθ defined in (40). Thus one needs to solve (41) to
determine p, which is then used to deduce X

M,d
θ using (67).

APPENDIX C
PROOF OF LEMMA 5
To prove Lemma 5, one needs first investigate the mono-
tonicity of Fθ . To lighten the notations, let α = qFA (2),
β = qD (1, 1) and γ = qD (0, 2). Then h0 and h1 defined
in (38-39) can be rewritten as

h0 (x, y) =
αp0x+ βp1y

p0x+ p1y
, h1 (x, y) =

βp0x+ γp1y

p0x+ p1y
, (68)

with (x, y) ∈ P0. One starts showing some monotonicity
properties.

Lemma 11. If α < β < γ, then h0 and h1 are decreasing with
x and increasing with y, for all (x, y) ∈ P0. If β = γ, then
h1 = β = γ is a constant.

Proof: Since α < β 6 γ, one has

∂h0

∂x
=

(α− β) p0p1y

(p0x+ p1y)2
6 0,

∂h0

∂y
=

(β − α) p0p1x

(p0x+ p1y)2
> 0,

∂h1

∂x
=

(β − γ) p0p1y

(p0x+ p1y)2
6 0,

∂h1

∂y
=

(γ − β) p0p1x

(p0x+ p1y)2
> 0.

then Lemma 11 can be proved.

Lemma 12. For z ∈ [0, 1], the family of functions

fi (z) = zi (1− z)M−i, i = 0, 1 . . . ,M. (69)

are increasing over [0, i
M ] and decreasing over [ iM , 1].

Proof: Consider three possible situations: 1) If i = 0,
f0 (z) = (1− z)M is decreasing over [0, 1]. 2) If i = M ,
fM (z) = zM is increasing over [0, 1]. 3) If 1 6 i 6M − 1,

dfi
dz

= zi−1 (1− z)M−i−1 (i−Mz) , (70)

and dfi/dz > 0 when z ∈ [0, i
M ] and dfi/dz 6 0 when

z ∈ [ iM , 1]. Therefore, Lemma 12 holds ∀i = 0, . . . ,M.

Lemma 13. If 0 < ν < 1, the function

g(z) =
∑

i:i/M<ν

(
M

i

)
fi (z) =

∑
i:i/M<ν

(
M

i

)
zi (1− z)M−i, (71)

is decreasing for all z ∈ [0, 1].

Proof: First, consider z ∈ [ν, 1]. In (71), each i in the
sum is such that i

M < ν 6 z. From Lemma 12, fi (z) is
a decreasing function for any i

M < z, thus g(z) is also
decreasing with z.

Now, consider z ∈ [0, ν], one rewrites (71) as

g(z) = 1−
∑

i:i/M>ν

(
M

i

)
fi (z) , (72)

in which each i in the sum is such that z < ν 6 i
M . Applying

again Lemma 12, since fi (z) is an increasing function for
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any z 6 i
M , the sum in (72) is also increasing with z and

g (z) is decreasing. Thus g(z) is a decreasing function of z
over [0, 1].

Considering the functions hθ and g, then one may
rewrite Fθ as Fθ (x, y) = g (hθ (x, y)), ∀θ ∈ {0, 1}. The
monotonicity of F0 and F1 is shown in the following lemma.

Lemma 14. If α < β < γ, then F0 and F1 are increasing
functions of x and decreasing functions of y, for all (x, y) ∈ P0.
If β = γ, then F1 = g(β) = g(γ) is a constant.

Proof: The proof of obtained by combining
Lemma 11 and Lemma 13.

The proof of Lemma 5 is by induction. At the beginning,
one has 0 6 pθ0(0) 6 1, thus pθ0min (0) = 0 and pθ0max (0) = 1.
Using Lemma 14, one has Fθ(0, 1) 6 Fθ

(
p00 (0) , p10 (0)

)
6

Fθ (1, 0), thus
p00min (1) = F0 (0, 1) = g (β) > 0 = p00min (0) ,

p00max (1) = F0 (1, 0) = g (α) < 1 = p00max (0) ,

p10min (1) = F1 (0, 1) = g (γ) > 0 = p10min (0) ,

p10max (1) = F1 (1, 0) = g (β) < 1 = p10max (0) ,

(73)

thus (47) and (48) are true for n = 1.
Consider then an arbitrary n ∈ N∗ and n > 1. Assume

that (47) and (48) are satisfied for any n′ < n and n′ ∈ N∗,
one needs to see whether (47) and (48) are still satisfied for
n. Applying Lemma 14 again, one obtains

pθ0min (n) = Fθ
(
p00min (n− 1) , p10max (n− 1)

)
> Fθ

(
p00min (n− 2) , p10max (n− 2)

)
= pθ0min (n− 1) ,

and

pθ0max (n) = Fθ
(
p00max (n− 1) , p10min (n− 1)

)
< Fθ

(
p00max (n− 2) , p10min (n− 2)

)
= pθ0max (n− 1) ,

Similarly, one gets p10min (n) > p10min (n− 1) and pθ0max (n) <
pθ0max (n− 1) .

APPENDIX D
PROOF OF PROPOSITION 6
As seen in the proof of Proposition 4, ∀n ∈ N∗,
F (p) maps Pn to Pn, with Pn =

[
p00min (n) , p00max (n)

]
×[

p10min (n) , p10max (n)
]
. In order to apply Banach’s fixed-point

theorem [29] to prove Proposition 6, it suffices to show that
F is contracting, i.e., that for any pairs p = (x, y) ∈ Pn and
p + δ = (x+ δx, y + δy) ∈ Pn, one has

|F (p + δ)− F (p)| < |δ| . (74)

A sufficient condition to have (74) is that the eigenvalues
of the matrix

A =

(
∂F0(x,y)

∂x
∂F0(x,y)

∂y
∂F1(x,y)

∂x
∂F1(x,y)

∂y

)
have module less than 1. The eigenvalues of A are the
solutions of

z2 −
(
∂F0

∂x
+
∂F1

∂y

)
z +

(
∂F0

∂x

∂F1

∂y
− ∂F0

∂y

∂F1

∂x

)
= 0. (75)

As in Appendix C, denote α = qFA (2), β = qD (1, 1) and
γ = qD (0, 2). First, one evaluates

∂F0

∂x

∂F1

∂y
− ∂F0

∂y

∂F1

∂x
=

∂g

∂h0

∂g

∂h1

(
∂h0

∂x

∂h1

∂y
− ∂h0

∂y

∂h1

∂x

)
(a)
= 0,

where (a) comes from ∂h0

∂x
∂h1

∂y = ∂h0

∂y
∂h1

∂x , using the partial
derivatives calculated in the proof of Lemma 11. Then, the
solutions of (75) are z1 = ∂F0

∂x + ∂F1

∂y and z2 = 0. Hence, it
suffices to prove that |z1| < 1.

We begin with the evaluation of an upper bound of the
partial derivative of F0 (x, y) with respect to x

∂F0 (x, y)

∂x
=
∂g (h0 (x, y))

∂x
=

∂g

∂h0
· ∂h0

∂x

(a)
=

(β − α) p0p1y

(p0x+ p1y)2

∑
i:i/M<ν

(
M

i

)
hi0 (1− h0)M−i

h0M − i
h0 (1− h0)

(b)

6
(β − α) p0p1y

(p0x+ p1y)2
F0 (x, y)

M

1− h0
6 c0 (α, β, γ,M, ν, n) , (76)

where (a) is obtained using (70), (b) comes from i > 0, and
c0 is defined in (44). Meanwhile, from Lemma 14, one has
∂F0 (x, y) /∂x > 0, as F0 is an increasing function of x.

Similarly,

∂F1 (x, y)

∂y
=
∂g (h1 (x, y))

∂y
=

∂g

∂h1
· ∂h1

∂y

=
(γ − β) p0p1x

(p0x+ p1y)2

∑
i:i/M<ν

(
M

i

)
hi1 (1− h1)M−i

i− h1M

h1 (1− h1)

>
(γ − β) p0p1x

(p0x+ p1y)2
F1 (x, y)

−M
1− h1

> −c1 (α, β, γ,M, ν, n) , (77)

and ∂F1 (x, y) /∂y 6 0 as F1 is a non-decreasing function of
y. One concludes that

−c1 6
∂F0 (x, y)

∂x
+
∂F1 (x, y)

∂y
6 c0,

thus c0 < 1 and c1 < 1 lead to |z1| < 1, which ensures the
unicity of the equilibrium.

APPENDIX E
PROOF OF PROPOSITION 8
First, one shows that if ν < qD (1, 1), then for any ε > 0,
there exists M > M ′, such that p10 < ε.

From Lemma 5, p10 can be bounded as

p10 = F1

(
p00, p10

)
<

∑
k:k/M<ν

(
M

k

)
(qD (1, 1))

k
(1− qD (1, 1))

M−k (78)

Consider Φ1,Φ2, . . . an infinite sequence of i.i.d. binary
random variables with P {Φm = 1} = qD (1, 1). For any
% ∈ [0, 1] such that %M ∈ N+, one has

P

{∑M
m=1 Φm

M
=%

}
=

(
M

%M

)
(qD (1,1))%M (1−qD (1,1))M(1−%).

According to the weak law of large numbers [33], for ε > 0,
there exists M ′, such that for any M > M ′, one has

P

{∣∣∣∣∣
∑M
m=1 Φm

M
− qD (1, 1)

∣∣∣∣∣ > qD (1, 1)

}
< ε. (79)

From (79), one also has∑
k:k/M<(qD(1,1)−ε)

(qD (1, 1))k (1− qD (1, 1))M−k

=P

{∑M
m=1Φm

M
−qD(1,1)<−ε

}
6P

{∣∣∣∣∣
∑M
m=1Φm

M
−qD(1,1)

∣∣∣∣∣>ε
}

< ε. (80)
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If ν < qD (1, 1)− ε, then using (80), the bound of p10 in (78)
may be further written as

p10 <
∑

k:k/M<ν

(
M

k

)
(qD (1, 1))k(1−qD (1, 1))M−k

6
∑

k:k/M<(qD(1,1)−ε)

(qD (1, 1))k(1−qD (1, 1))M−k<ε. (81)

From Lemma 11 and the fact that qFA (2) 6 p10 6
qD (1, 1) and 0 6 p10 < ε, one has h0

(
p00, p10

)
∈

[qFA (2) , χ (ε)], with

χ (ε) =
p0 (qFA (2))2 + p1qD (1, 1) ε

p0qFA (2) + p1ε
. (82)

Thus, according to Lemma 13,

p00 = F0

(
p00, p10

)
= g

(
h0

(
p00, p10

))
> g (χ (ε)) =

∑
k:k/M<ν

(
M

k

)
(χ (ε))k (1− χ (ε))M−k . (83)

Using derivations similar to those leading to (80), one gets∑
k:k/M>(χ(ε)+ε)

(
M

k

)
(χ (ε))k (1− χ (ε))M−k < ε, (84)

which leads to∑
k:k/M6(χ(ε)+ε)

(
M

k

)
(χ (ε))k (1− χ (ε))M−k > 1− ε. (85)

If ν > χ (ε) + ε, then

p00 >
∑

k:k/M<ν

(
M

k

)
(χ (ε))k (1− χ (ε))M−k

>
∑

k:k/M6(χ(ε)+ε)

(χ (ε))k (1− χ (ε))M−k > 1− ε. (86)

As a conclusion, for any ε > 0, if χ (ε) + ε < ν <
qD (1, 1) − ε, then p00 > 1 − ε and p10 < ε. Since
limε→0 χ (ε) = qFA (2), one concludes that if qFA (2) < ν <
qD (1, 1), one obtains (50).
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