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†
Université Paris-Est, Laboratoire d’Analyse et de Matématiques Appliquées (UMR 8050),

UPEM, UPEC, CNRS, F-94010, Créteil, France

June 6, 2016

This article propose an alternative approach to a problem introduced by
Galatolo and Pollicott, consisting in perturbing a dynamical system in order
for its absolutely continuous invariant measure (“acim”, assumed to exist) to
change in a prescribed way. Instead of using transfer operators, we rely on
the continuity equation to produce a perturbation of the system which is an
infinitesimal conjugacy. This allows us to work in any dimension and dispense
from any dynamical hypothesis. In particular, we don’t need to assume the
dynamical system is hyperbolic; but if it is, we obtain our acim-prescribed
perturbations within this class.

1 Introduction

When one studies a deformation of a dynamical system with a particularly nice invariant
measure (e.g. absolutely invariant measures, or more generally SRB or physical mea-
sures), a natural question is how this particular measure, if it continues to exist and
being unique, is deformed in the process. The linear response theory seeks conditions
under which a first-order perturbation of a dynamical system implies a first-order per-
turbation of that particular measure, depending linearly on the system perturbation; see
for example [Rue09, BS12].

A recent article by Galatolo and Pollicott [GP16] starts studying the opposite direc-
tion: which perturbation of a dynamical system should be requested in order to achieve a
target response for the particular measure? We shall call this the linear request problem,
in antonymy with the classical linear response theory.

∗Supported by the Agence Nationale de la Recherche, grant ANR-11-JS01-0011.
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Our goal here is to propose a simple point of view on these matters, which easily gives
solutions to the linear request problem when the system acts on a compact manifold
and admits a smooth enough invariant density (and which could probably be pushed to
further generality).

Our starting point is to look at diffeomorphisms, which act on dynamical systems by
conjugacy and on measures by push-forward. Let us give a first, easy example of this
point of view.

Proposition 1.1. Let M be a compact Riemannian manifold with volume form ω and
T : M → M a smooth map having an absolutely continuous invariant probability with
smooth positive density, fω, and assume gω is any absolutely continuous probability with
smooth positive density.

Then there is a map R : M → M which is smoothly conjugated to T and which
preserves gω.

Proof. A classical theorem of Moser [Mos65] ensures that there is a smooth diffeomor-
phism Φ : M → M such that Φ∗(fω) = gω. Then R = Φ ◦ T ◦ Φ−1 preserves gω.

In particular, as long as their exist some smooth measure with positive density on
M which is invariant under a smooth hyperbolic map, then every smooth measure with
positive density on M is also invariant under some smooth hyperbolic map. If say M
is the n-torus, then every smooth measure with positive density is invariant under some
hyperbolic map, and under some minimal smooth map, and under some k-periodic maps
for all k ∈ N, etc.

The above result does not a priori ensures that R is close to T whenever g is close to
f ; however it is possible to achieve this; more precisely, we will see that one can induce
this idea on first-order perturbations, replacing diffeomorphisms with vector fields. The
action on systems translates into a first-order perturbation of the system, and the action
on measures translates into a first-order perturbation of the (density of the) measure.
The main task to get a linear request formula is then to find a solution to a simple,
well-understood elliptic PDE. Our result is the following.

Theorem 1.2. Let k ≥ 0, α ∈ (0, 1) and T : M → M be a Ck+2,α map acting on
a compact smooth Riemannian manifold, preserving a Ck+1,α volume form fω. Let
g : M → R be a Ck,α function such that

∫

M
gω = 0.

If the dimension of M is n ≥ 2, then there is an infinite-dimensional space of Ck+1,α

vector fields w, each of which admits a family (Tt) of maps, all Ck+1,α conjugated to T ,
such that T0 = T and

d

dt

∣

∣

∣

∣

t=0

Tt(x) = w(x) ∀x ∈ M (1)

and such that Tt preserves a Ck,α volume form ftω with

d

dt

∣

∣

∣

∣

t=0

ft(x) = g(x) ∀x ∈ M (2)

If n = 1, then the same result holds, but with a one-dimensional family of solutions.
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Moreover in both cases there is a particular w that can be singled out by either an
optimization property, or equivalently by a particular form requirement.

It could be expected that instead of pointwise derivative, one could differentiate Tt

and ft “in Ck,α norm”, but this would at the very least complicate the proofs. Obtaining
derivatives in Ck norm would not be as big a deal, and should be achievable with
our proofs by tracking the o(t) and their norms. However for the sake of clarity and
simplicity, we stick to the weaker point-wise framework.

The fact that we formulate the regularity in the Ck,α spaces is partially motivated
by the theory of elliptic PDE, where this kind of assumptions allows loosing as little
regularity as possible, see Section 3.4 and references therein.

2 From measure perturbation to map perturbation

through vector fields

We fix the manifold M , assumed to be compact in order to avoid any completeness issue,
and endowed with a Riemannian metric (whose role will be mostly of normalization).

Let Ck,α(M) be the space of Ck,α functions M → R (i.e. functions having all partial
derivatives of order k well defined and α-Hölder continuous) and Γk,α(M) the space of
Ck,α vector fields on M .

2.1 Action of vector fields on maps

Elements of Γk+1,α(M) can act on dynamical systems (i.e. maps T : M → M) in two
natural manners.

First, as a direct perturbation of T : given a vector field w, one can consider the family
of maps defined as

x 7→ T (x) + tw(x).

where we use the notation x+ u := expx(u) whenever x ∈ M and u ∈ TxM (see Section
3.1).

More generally, we say that a family (Tt)t with T0 = T has w as tangent vector field
if for all x ∈ M and small enough t:

Tt(x) = T (x) + tw(x) + o(t).

This is only a reformulation of (1), and despite the use of the exponential map, the
metric does not in fact matter (different metrics will only yield different o(t)). Note that
all our remainder terms o(t) will be uniform in x.

Second, each v ∈ Γk+1,α(M) defines a flow (Φt
v)t∈R, where Φt

v is a Ck+1,α diffeomor-
phism of M for all t and

Φt
v(x) = x+ tv(x) + o(t).
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We can now conjugate T by Φt
v and let t go to zero: as soon as T and v are C1, for

all x ∈ M and small t we get

Φt
v ◦ T ◦ Φ−t

v (x) = Φt
v ◦ T

(

x− tv(x) + o(t)
)

= Φt
v

(

T (x)− tDT (x) · v(x) + o(t)
)

= T (x)− tDT (x) · v(x)+

tv
(

T (x)− tDT (x) · v(x) + o(t)
)

+ o(t)

= T (x)− tDT (x) · v(x) + tv(T (x)) + o(t)

and the family (Φt
v ◦ T ◦ Φ−t

v ) has DT · v + v ◦ T as tangent vector field. If T is Ck+2,α

and v is Ck+1,α, this vector field lie in Γk+1,α(M), see Section 3.2.

Definition 2.1. Assuming T is at least Ck+2,α with k ≥ 0, we define the conjugacy
operator

ST : Γk+1,α(M) → Γk+1,α(M)

v 7→ DT · v + v ◦ T

In other words, ST (v) is the tangent vector field of the perturbation of T by conjugacy
by the flow of v. The above operator would also make sense with k + 1 = 0, but its
interpretation would fall down since a C0,α vector field may not define a flow.

2.2 Action of vector fields on measures

When a flow (Φt
v) acts on a measure fω, the continuity equation states that the density

ft of (Φt
v)∗(fω) satisfies

d

dt

∣

∣

∣

∣

t=0

ft +∇ · (fv) = 0

where ∇· is the Riemannian divergence operator (see Lemma 3.2 below).

Remark 2.2. The continuity equation holds true in the distribution sense even at very
low regularity: if µ is any probability measure on M , v is a vector field with ‖v‖ ∈ L2(µ),
(Φt) is a family of Borel measurable maps with Φt(x) = x+ tv(x) + o(t), and µt := Φt

∗µ,
then for all smooth test function ϕ : M → R we have

d

dt

∣

∣

∣

∣

t=0

∫

ϕ dµt −

∫

∇ϕ · v dµ = 0

where · is the inner product induced on vectors by the Riemannian metric.

Definition 2.3. As soon as f ∈ Ck+1,α(M), we are thus lead to define the continuity
operator

Mf : Γk+1,α(M) → Ck,α(M)

v 7→ −∇ · (fv).

In other words, Mf(v) is the derivative at t = 0 of the density of (Φt
v)∗(fω).
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2.3 Proof of the main Theorem

Now, we shall try to find inverse images under Mf to solve the linear request problem.
Luckily enough, this is a well-known result as it involves a linear, uniformly elliptic
differential operator.

Proposition 2.4. Assume n ≥ 2. Given f ∈ Ck+1,α(M) positive, for all g ∈ Ck,α(M)
such that

∫

g ω = 0 there exist an infinite-dimensional affine space of solutions v ∈
Γk+1,α(M) to the equation

Mf(v) = g. (3)

Among them, precisely one minimizes
∫

‖v‖2 fω. This minimizing solution is also the
only solution which is the gradient of a function.

Proof. First, let us prove that there is a solution to (3) which is a gradient: this amounts
to find a function u such that

∇ · (f∇u) = −g

which is a linear, uniformly elliptic equation with Ck,α coefficients, well-known to have a
solution u ∈ Ck+2,α, see Section 3.4. The vector field v0 = ∇u is thus a gradient solution
of (3).

To find other solutions, one only has to find divergence-free vector fields v̄: then
v = v0 +

1
f
v̄ is solution of Mf(v) = g. It is well-known (see Section 3.5) that there is an

infinite-dimensional space of such vector fields as soon as n ≥ 2.
Conversely, any solution has the form v0 +

1
f
v̄ for some divergence-free vector field v̄,

and we have
∫

∥

∥v0 +
1

f
v̄
∥

∥

2
fω =

∫

‖v0‖
2 fω + 2

∫

(∇u) · v̄ ω +

∫

∥

∥

1

f
v̄
∥

∥

2
fω

=

∫

‖v0‖
2 fω − 2

∫

u(∇ · v̄)ω +

∫

∥

∥

1

f
v̄
∥

∥

2
fω

=

∫

‖v0‖
2 fω +

∫

∥

∥

1

f
v̄
∥

∥

2
fω

so that v0 is indeed uniquely minimizing among solutions.

In dimension 1, the problem can easily be solved but we have less room to maneuver.

Proposition 2.5. Assume M = R/τZ, the Riemannian circle of length τ . Given f ∈
Ck+1,α(M) positive, for all g ∈ Ck,α(M) such that

∫

g ω = 0 there exist a one dimensional
affine space of solutions v ∈ Γk+1,α(M) to the equation

Mf(v) = g. (4)

Among them, precisely one minimizes
∫

‖v‖2 fω. This minimizing solution is also the
only solution which is the gradient of a function.
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Proof. Equation (4) can be rewritten as −(fv)′ = g. Since g has vanishing average, its
τ -periodic lift to R has a τ -periodic antiderivative G, and (4) is easily solved by setting
v = (c − G)/f where c is any constant. There is precisely one value of c which gives
such a v vanishing average, i.e. makes it a gradient. The minimization property follows
as before.

Proof of Theorem 1.2. Let T : M → M be a Ck+2,α map (with k ≥ 0, α ∈ (0, 1))
assumed to have an absolutely continuous invariant probability measure fω where f ∈
Ck+1,α(M) is positive and let g ∈ Ck,α(M).

From Proposition 2.4 (or Proposition 2.5 if n = 1) we know that there is an infinite-
dimensional (or 1-dimensional) affine space V of vector fields v ∈ Γk+1,α(M) such that
Mf(v) = −g.

Section 2.1 shows that, given any v ∈ V , the vector field w = ST (v) ∈ Γk+1,α(M) is
tangent to the perturbation Tt = Φt

v ◦ T ◦ Φ−t
v of T .

But by Section 2.1, Tt preserves the absolutely continuous measure

Φt
v∗ fω =

(

f + tMf(v) + o(t)
)

ω =
(

f + tg + o(t)
)

ω.

A particular solution can be singled out: take w0 = ST (v0) where v0 is the unique
gradient solution of Mf(v0) = −g.

Remark 2.6. Since the maps Tt are Ck+1,α conjugated to T , the perturbation we obtain
share many properties with T . It has the same topological entropy, is hyperbolic if T
was hyperbolic, is minimal if T was minimal, etc.

Remark 2.7. One could hope to use the same strategy in the other direction to obtain
linear response formulas. However, contrary to Mf the operator ST is far from being
onto, so this approach seems hopeless. This relates to the fact that, even if expanding
maps T are structurally stable, i.e. are conjugated to any of their small perturbations,
the conjugacy is only topological: the spectrum of the derivative at a fixed point is
indeed a differentiable conjugacy invariant and arbitrarily close maps can have differ-
ent spectra. Now, if one pushes forward an absolutely continuous measure by a mere
homeomorphism, the resulting measure may not be absolutely continuous. So, even if
one can realize a first-order perturbation of T by a topological conjugacy, the absolutely
continuous invariant measure of the perturbed map may exist without being equal to
the corresponding pushed forward measure.

2.4 A model case

Let us now spell out what happens in the model case when M = R/Z and T (x) = 2x
mod 1; the acim of T is then the Lebesgue measure, which coincides with the Riemannian
volume ω, and we thus have f ≡ 1.

For all v ∈ Γk+1,α(R/Z) we have

ST (v) : x 7→ 2v(x) + v(2x)

Mf(v) : x 7→ −v′(x)
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Let g ∈ Ck,α(M) be a function with vanishing average, which will be identified with its
1-periodic lift to R. The gradient solution to Mf(v) = g is given by

v0(x) = −

∫ x

0

g(t) dt +

∫ 1

0

∫ y

0

g(t) dt dy

(the only primitive of g which has vanishing average).
To compare with [GP16], let us consider the case g(x) = sin(2πx). Then

v0(x) =
1

2π
cos(2πx)

and the corresponding perturbation of T is

w0 = ST (v0) : x 7→
1

π
cos(2πx) +

1

2π
cos(4πx).

Meanwhile, the L2(fω)-norm minimizing perturbation found in [GP16] is w1(x) =
1
2π

cos(4πx); this begs for the question: is the difference in the minimized energy, or
in the restriction to the image of ST ?

This is easily answered, as any solution to Mf(v) = −g has the form v = v0 + c
where c is a constant, and then ST (v0 + c) = w0 + 3c has L2(fω) norm equal to the
norm of w0 plus 3|c| by Parseval’s identity. Hence, not only does v0 minimize the L2(fω)
norm among solutions of Mf(v) = g, but w0 also minimizes the L2(fω) norm among
“infinitesimal conjugacies”, i.e. vector fields solving the request problem and lying in the
image of ST .

Note that w1 does writes as DT ·v1+v1 ◦T for some unique continuous vector field v1,
which is α-Hölder for all α < 1 but not C1; this vector field can be computed explicitly
as

v1(x) =
∑

k≥0

(−1)k

2k+1
sin(2π · 2k · x);

more generally we observe:

Proposition 2.8. For all w ∈ Γ0,α(R/Z), there is exactly one v ∈ Γ0,α(R/Z) such that
2v(x) + v(2x) = w(x) for all x.

Proof. A solution to 2v + v(2·) = w is a fixed point of the map

F Γ0,α(R/Z) → Γ0,α(R/Z)

v 7→
1

2

(

w − v(2·)
)

which is a 2α−1-contraction in the norm ‖·‖α, and thus has a unique fixed point.

3 Toolbox

In this last section we collect all classical statements we needed above, and provide proofs
or references for them.
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3.1 Additive notation for the exponential map

We used for convenience the additive notation x+u := expx(u), which needs an infinites-
imal associativity to reach its potential: the a priori ambiguous notation x + u1 + u2,
which we define as x+(u1+u2), can be identified with (x+ u1)+ u2 up to a small error
(note that these expressions do not both make sense unless u1 and u2 are vector fields).

Lemma 3.1. Let u1, u2 be C1 vector fields on M . Then we have

(x+ tu1(x)) + tu2

(

x+ tu1(x)
)

= x+ t(u1(x) + u2(x)) + o(t).

Proof. Fix x ∈ M ; for all v ∈ TxM , let ū2(x + v) ∈ Tx+vM be the parallel translate of
u2(x) along the geodesic defined by γt = expx(tv). This a priori depends on v, not only
on x+v, but restricting to small enough v it defines a vector fields ū2 on a neighborhood
of x, which coincides with u2 at x and such that ū2(x+ v) = u2(x+ v) +O(v).

We then have

(x+ tu1(x)) + tu2(x+ tu1(x)) = expx+tu1(x)(tu2(x+ tu1(x)))

= expx+tu1(x)(tū2(x+ tu1(x))) +O(t2)

= expx(tu1(x) + tu2(x)) +O(t2)

where the last line follows from D(expx)x = IdTxM , and the last remainder term involves
the curvature of M which can be uniformly bounded.

3.2 Hölder regularity

Let us start by gathering a few useful observations about the Hölder regularity. Since
a change of metric shall only change the involved norms in a multiplicatively controlled
way, and M is assumed to be compact, we can restrict to objects defined on a chart and
use any coordinate system there. We shall thus consider functions defined on an open
neighborhood U of a compact domain K of Rn and denote directional derivatives by ∂i
(where i ∈ {1, . . . , n}), and higher order derivatives by ∂ℓ

i (where i = (i1, . . . , iℓ) is an
unordered ℓ-tuple, and ℓ =: |i|). The case of any more complicated object (vector field
or map) can be recovered from its coordinate functions.

A function f : K → R is said to be Ck,α if it extends Ck to U , and all its kth order
derivatives are α-Hölder on K. Equivalently, f is Ck,α if its Ck,α norm

‖f‖Ck,α := ‖f‖∞ +
∑

1≤ℓ≤k

|i|=ℓ

‖∂ℓ
i f‖∞ +

∑

|i|=k

sup
x 6=y∈K

|∂k
i f(x)− ∂k

i f(y)|

|x− y|α

is finite, where | · | denotes absolute value or Euclidean norm in R
n and ‖·‖∞ is the

uniform norm of K.
This norm makes the space of Ck,α functions a Banach space. We also have a good

behavior with respect to products: for all f, g : K → R, we have

‖fg‖Ck,α . ‖f‖Ck,α‖g‖Ck,α
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where A . B means that there is a constant c depending only on K (or M), k and α
such that A ≤ cB.

Observe now that as soon as k ≥ 0,

‖f‖Ck+1,α = ‖f‖∞ +
n

∑

i=1

‖∂if‖Ck,α

which makes it possible to prove some inequalities by induction instead of managing
higher-order derivatives.

Notably, this shows that as soon as k ≥ 1 the Ck,α class is stable by composition: if
F,G are Ck,α maps defined from compact domains of Euclidean spaces such that F ◦G
makes sense, then it is Ck,α. This is a direct consequence of the 1-dimensional case,
which can be proven by induction on k since when f, g : R → R we have

‖f ◦ g‖Ck+1,α . ‖f ◦ g‖∞ + ‖(f ◦ g)′‖Ck,α

. ‖f‖∞ + ‖(f ′ ◦ g)g‖Ck,α

. ‖f‖∞ + ‖(f ′ ◦ g)‖Ck,α‖g‖Ck,α

and

‖f ◦ g‖C1,α . ‖f‖∞ + ‖f ′ ◦ g‖C0,α‖g‖C0,α

. ‖f‖∞ + ‖f ′‖C0,α‖g‖αC1‖g‖C0,α

Note that we do need k ≥ 1, as the composition of two α-Hölder maps is only α2-Hölder
in general.

3.3 The continuity equation

Let v be a Ck+1,α vector field and fω be a measure with positive, Ck,α density. The
following pointwise version of the continuity equation can obviously not claim any orig-
inality, but it seems simpler to provide a proof rather than a reference.

Lemma 3.2 (continuity equation). The n-forms (Φt
v)∗(fω) =: ftω satisfy

d

dt

∣

∣

∣

∣

t=0

ft +∇ · (fv) = 0

where ∇· is the Riemannian divergence operator.
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Proof. Let ϕ ∈ C∞(M) be any test function. Then we have for small t:

∫

ϕ ftω =

∫

ϕ
(

(Φt
v)∗(fω)

)

=

∫

ϕ ◦ Φt
v fω

=

∫

ϕ ◦ (Id+tv + o(t)) fω

=

∫

(

ϕ+ t∇ϕ · v + o(t)
)

fω

=

∫

ϕ fω + t

∫

∇ϕ · (fv)ω + o(t)

=

∫

ϕ fω − t

∫

ϕ∇ · (fv)ω + o(t).

Note that above, the o(t) can be taken uniform in x, hence its integral is indeed a o(t).
From this computation follows ft = f − t∇ · (fv) + o(t).

3.4 The modified Poisson equation

Let us consider the equation
∇ · (f∇u) = −g (5)

where f ∈ Ck+1,α, g ∈ Ck,α and u : M → R is the unknown. When f ≡ 1, this is called
the Poisson equation: ∆u = g. Many books treat in some detail the resolution of the
Poisson equation on a compact manifold, see e.g. [Aub98], but we did not find spelled
out explicitly a resolution of (5). However it can be handled in the very same way as
the Poisson equation, and for the convenience of the non-PDEist reader we provide a
combination of proofs and references.

One could try to perform a change of conformal factor to reduce to the Poisson equa-
tion; unfortunately, this only works in dimension different than 2. The approach we take
is through the Lax-Milgram theorem: first one observes that by integration by parts,
(5) is equivalent to

∫

ϕ∇ · (f∇u)ω = −

∫

ϕg ω ∀ϕ ∈ C∞(M)
∫

∇ϕ · ∇u fω =

∫

ϕg ω ∀ϕ ∈ C∞(M) (6)

and we are thus asking for u solving

Q(u, ϕ) = L(ϕ) ∀ϕ ∈ C∞(M)

where Q and L are the bilinear form, respectively the linear form, defined by each side
of (6), on the domain H1(M) of Sobolev functions. Recall that H1(M) can be defined
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as the set of L2(ω) functions whose gradient in the distribution sense is L2(ω), or as the
completion of C∞(M) with respect to the norm

‖ϕ‖H1
=

∫

ϕ2 ω +

∫

‖∇ϕ‖2 ω

where ‖·‖ is the norm in each tangent space induced by the Riemannian metric.
The Lax-Milgram theorem would precisely give us a weak solution u ∈ H1 if we proved

that Q and L are continuous in the H1 norm (which follows from the Cauchy-Schwarz
inequality), and that Q is coercive (i.e. the seminorm it induces on H1(M) is equivalent
to the H1 norm). That last statement does not hold as constants are in the kernel of Q;
we thus decompose

H1(M) = H⊥
1

⊥
⊕ {constants}

where H⊥
1 is the subspace of functions of vanishing ω-average. Now, on a compact

manifold one has :

Proposition 3.3 (Poincaré inequality). There exist a constant C depending only on M
and its metric such that for all ϕ ∈ H1(M), denoting by ϕ̄ = 1

vol(M)

∫

ϕω the average of
ϕ, it holds

∫

|ϕ− ϕ̄|2 ω ≤ C

∫

‖∇ϕ‖2 ω

This inequality is very classical, but hard to give a precise reference to. Looking
at the Rayleigh quotient, one sees it is equivalent to λ1(M) > 0 where λ1 is the first
eigenvalue of −∆ (in H⊥

1 ). This follows for example from Cheeger’s bound λ1 ≥ h2
C/4

where Cheeger’s constant hC(M) can be bounded below in terms of the diameter of M
and a (possibly negative) lower bound on its Ricci curvature, see for example Chapter
IV of [Bér86].

On H⊥
1 , the Poincaré inequality yields

Q(ϕ, ϕ) ≥ min(f)

∫

‖∇ϕ‖2 ω

≥ min(f)
(1

2

∫

‖∇ϕ‖2 ω +
1

2C

∫

ϕ2 ω
)

≥ C ′‖ϕ‖H1

which is precisely the coercivity of Q restricted to H⊥
1 . It follows from the Lax-Milgram

theorem that there is a u ∈ H⊥
1 , such that:

Q(u, ϕ) = L(ϕ) ∀ϕ ∈ H⊥
1

To get rid of the restriction that ϕ must have vanishing average, observe that given
ϕ ∈ H1(M), its centered version ϕ − ϕ̄ is in H⊥

1 ; on the one hand, ∇ϕ = ∇(ϕ − ϕ̄) so
that Q(u, ϕ) = Q(u, ϕ− ϕ̄) and on the other hand,

L(ϕ− ϕ̄) =

∫

ϕgω − ϕ̄

∫

gω = L(ϕ)
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since g has vanishing average. It follows that Q(u, ϕ) = L(ϕ) for all ϕ ∈ H1(M), in
particular for all smooth ϕ: u ∈ H1(M) is a weak solution of (5).

The last step we need is to improve this into a strong solution. This is well-known
but subtle, and is purely local: the manifold case is handled just as in the R

n case,
using charts. We refer for example to [Aub98] (Theorem 3.55 page 85) for a suitable
statement, which itself refers to [LU68], where it is proved that u ∈ Ck+2,α(M) whenever
the coefficients of (5) are Ck,α. This happens as soon as f ∈ Ck+1,α(M) and g ∈ Ck,α(M).

3.5 Divergence-free vector fields

Let us prove that, as soon as n ≥ 2, M carries an infinite-dimensional space of divergence-
free vector fields. Recall that one can define the divergence of a vector field v by

d(ivω) =: (∇ · v)ω.

Assume n ≥ 2 and let β be any smooth (n − 2) differential form on M . Then dβ is a
closed (n− 1)-form, and since ω is non-singular there exist a unique vector field vβ such
that ivβω = dβ. Then d(ivβω) = d2β = 0 so that vβ is divergence free.

If γ is another (n−2)-form and vγ = vβ, then dβ = dγ so that β−γ is closed. The space
of closed (n−2) forms is infinite codimensional, so that we obtain an infinite-dimensional
space of divergence-free vector fields.
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