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Bernoulli Numbers: from Ada Lovelace to the Debye Functions 
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Abstract:  Jacob Bernoulli owes his fame for the numerous contributions to calculus and for his 

discoveries in the field of probability. Here we will discuss one of his contributions to the theory of 

numbers, the Bernoulli numbers. They were proposed as a case study by Ada Lovelace in her 

analysis of Menabrea’s report on Babbage Analytical Engine. It is probable that it was this 

Lovelace’s work, that inspired Hans Thirring in using the Bernoulli numbers in the calculus of the 

Debye functions.  
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Introduction 

Jacob Bernoulli (1655-1705) was one of the many prominent mathematicians in the Bernoulli 

family, a family of merchants and scholars, originally from Antwerp that resettled in Basel, 

Switzerland. Another member and prominent scholar of this family was Daniel Bernoulli that 

worked in fluid dynamics, publishing his results in the book Hydrodynamica in 1738. 

Jacob Bernoulli owes his fame for the numerous contributions to calculus; along with his brother 

Johann, was one of the founders of the calculus of variations. Jacob’s most important contribution is 

generally considered in the field of probability. In fact, he derived the first version of the law of 

large numbers in his work Ars Conjectandi [1].  

Here we will discuss one of his contributions to the theory of numbers, the Bernoulli numbers. They 

were proposed as a case study by Ada Lovelace in her analysis of Menabrea’s report on Babbage 

Analytical Engine. Among their several uses, we have the calculus of the Debye functions, in theory 

of the lattice specific heat. Probably, their use had been inspired by the Lovelace’s work. 

Bernoulli and the integers 

One of the numbers that Jacob Bernoulli investigated was e. In 1683, Bernoulli discovered the 

constant e by studying a question about compound interests, which required him to find the value of 

the following limit, having as a value e: 
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Number e is an important mathematical constant that is the base of the natural logarithm. It is 

approximately equal to 2.71828. Sometimes, this number is called Euler's number after Leonhard 

Euler,  but it is not to be confused with γ, the Euler–Mascheroni constant, sometimes  called simply 

Euler's constant. In fact, number e is also known as the Napier's constant (see Appendix for e). 

However, here our aim is discussing the Bernoulli’s numbers.  

The manner in which Bernoulli discovered then is discussed in detail in [2] by K. Ward. Bernoulli 

was working on the sums of the natural number power series. He noted certain facts about them and 

discovered a close formula by means of which the sum of a given power of natural number is 

calculated. This formula requires some special numbers, that is, the Bernoulli numbers. In his 

original formulae, Bernoulli used for then the letters A,B,C, etc.. Ward gives us the following 

formula: 
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In (2), we have (with p and q integers): .
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Ada Lovelace and the Bernoulli numbers 

Augusta Ada King-Noel, Countess of Lovelace (née Byron; 1815–1852) was an English 

mathematician known for her work on Charles Babbage's  mechanical computer, the Analytical 

Engine. Babbage (1791-1871) is considered a computer pioneer, because of the design of this first 

automatic computing engine. 

In 1840, Giovanni Plana of University of Turin invited Babbage for a talk about his Analytical 

Engine, in occasion of the Second Congress of Italian Scientists invited by the King Carlo Alberto 

of Savoy, congress that was held at the Academy of Science. “La presentazione appassionò gli 

scienziati italiani e proseguì in seminari ristretti. Particolarmente interessati a questi seminari, nei 

quali per la prima volta si discusse di concatenamento delle operazioni, potremmo dire di 

programmazione, furono il fisico Mossotti e Luigi Menabrea” [3].  

Luigi Menabrea, an engineer who became a Prime Minister of Italy, wrote an article upon the 

Babbage's lecture in French, and this transcript was published in the Bibliothèque Universelle de 

Genève in October 1842. Babbage's friend Charles Wheatstone commissioned Ada Lovelace to 

translate Menabrea's paper into English. She added some notes to the translation, with a discussion 

on the calculation of  Bernoulli numbers [4,5]. So we have that the Bernoulli numbers had been 

recognized as important for calculations that we can obtain by concatenated operations.  

In reading the Ref.[5], we can see that Ada Lovelace proposed one of this operations, that, as we 

will see, is used for the Debye functions (see Figure 1). 

 



 

 

Figure 1: Snapshot from Ref.5. 

 

Note that from the formula (2) in the Figure 1, we have the following values. For n = 1, we have B1 

= 1/6 and for n = 2, B3 = 1/30. Then, for n = 3, B5 = 1/42, and so on. The notation that Ada Lovelace 

used is different from the modern one. Let us call these numbers 
A
nB 12 − . 

A modern view: According to [6,7] there are two definitions for the Bernoulli numbers. In the 

modern use, they are written as nB . But in the older literature they were written as 
*

nB . These 

numbers are a special case of the Bernoulli Polynomial )(xBn or )(* xBn , where )0(nn BB =  and 

)0(**

nn BB = . The older definition of the Bernoulli numbers is given using equation:  
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In the modern use, the Bernoulli number s are given by the general of the generating function: 
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The choice n=0 and n=1 lead to:  
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The formula for the case n=0 is the case used by Ada Lovelace (see Figure 1). 

As told in [6], the modern Bernoulli numbers appears in the calculation of the Debye functions, 

which are: 

 

(8)                                 












+
+

+
−=

−
∑∫
∞

=1

2
2

0
)!2)(2()1(2

1

1 k

k
kn

x

t

n

knk

xB

n

x

n
x

e

dtt
 

 

where |x|<2π and Bn are the Bernoulli numbers. 

Let us see when and where this modern use is mentioned for the first time. 

 

Debye theory: The first  use of the Bernoulli numbers in the Debye theory of the specific heat was 

given by  Hans Thirring in 1913, as told in [8,9]. In solid state physics, the Debye model is a 

method developed by Peter Debye in 1912. 

From the Debye model we can estimate the phonon contribution to the specific heat in a solid [10]. 

The model correctly predicts the low temperature dependence of the heat capacity, and, like the 

Einstein model, it is giving the Dulong–Petit law at high temperatures. As told in [9], for 

intermediate temperatures, Thirring proposed a specific heat given by:  
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where hν/kT<2π, h is the Planck constant and k the Boltzmann constant.  Bn are the Bernoulli 

numbers. In (9), ν is the frequency of a linear oscillator. 

In the Ref.9, B1 is equal to 1/6. In fact, it is giving the following for the heat capacity: 
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It means that in [9], it was an old notation used for the Bernoulli numbers.  

Let us write Eq.10 with the notation of Ada Lovelace of these numbers: 
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Probably, their use had been inspired to Thirring by the Lovelace’s work. 

In general, the expression of the heat capacity is: 
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In (12), we have ∑=
ν
νµ n

n  [11]. 

 

Appendix: Number e has a very interesting history [12]. In [12], it is told that the number e first 

comes into mathematics in a very minor way. This was in 1618 when, in an appendix to Napier's 

work on logarithms, a table appeared giving the natural logarithms of various numbers. A few years 

later, in 1624, Briggs gave a numerical approximation to the base 10 logarithm of e but did not 

mention this number in his work. The next possible occurrence of e is dubious, when, in 1647, 

Saint-Vincent computed the area under a rectangular hyperbola. Certainly by 1661, Huygens 

understood the relation between the rectangular hyperbola and the logarithm. Huygens made 

another advance in 1661. He defined a curve that he calls "logarithmic", that in today terminology is 

an exponential curve, having the form y = k a
x
. In 1668, Nicolaus Mercator published 

Logarithmotechnia which contains the series expansion of log(1+x). In this work Mercator uses the 

term "natural logarithm" for the first time for logarithms to base e. As told in [12], it is curious that, 

since the works on logarithms had come so close to recognizing the number e, that e was first 

"discovered"  not through the notion of logarithm  but rather through a study of compound interest, 

as did in 1683 Jacob Bernoulli looked at the problem of compound interest [12]. 
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