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Introduction

We consider the linear Stochastic Partial Differential Equation (SPDE) of kinetic transport type

d t f + (v • D x f + F • D v f ) dt + D v f • dW t = 0, f t=0 = f 0 (1)
and the associated stochastic characteristics described by the stochastic differential equation (SDE)

dX t = V t dt, dV t = F (X t , V t ) dt + dW t X (0) = x 0 , V (0) = v 0 . (2) 
Here

t ∈ [0, T ], (x, v) ∈ R d × R d , f : [0, T ] × R d × R d → R, f 0 : R d × R d → R, F : R d ×R d → R d , x 0 , v 0 ∈ R d and (W t ) t≥0 is a d-dimensional
Brownian motion defined on a complete filtered probability space Ω, F, (F t ) t≥0 , P ; the operation D v f • dW t = 1 d α=1 ∂ vα f • dW α t will be understood in the Stratonovich sense, in order to preserve (a priori only formally) the relation df (t, X t , V t ) = 0, when (X t , V t ) is a solution of the SDE; we use Stratonovich not only for this mathematical convenience, but also because, in the spirit of the so called Wong-Zakai principle, the Stratonovich sense is the natural one from the physical view-point as a limit of correlated noise with small time-correlation. The physical meaning of the SPDE (1) is the transport of a scalar quantity described by the function f (t, x, v) (or the evolution of a density f (t, x, v), when div v F = 0, so that F D v f = div v (F f )), under the action of a fluid -or particle -motion described by the SDE (2), where we have two force components: a "mean" (large scale) component F (x, v), plus a fast fluctuating perturbation given by dWt dt . Under suitable assumptions and more technical work one can consider more elaborate and flexible noise terms, space dependent, of the form ∞ k=1 σ k (x) dW k t (see [CF], [START_REF] Delarue | Noise prevents collapse of Vlasov-Poisson point charges[END_REF] for examples of assumptions on a noise with this structure and [START_REF] Falkovich | Particles and fields in fluid turbulence[END_REF] for physical motivations), but for the purpose of this paper it is sufficient to consider the simplest noise dW t = d k=1 e k dW k t , {e k } k=1,...,d being an orthonormal base of R d . Our aim is to show that noise has a regularizing effect on both the SDE (2) and the SPDE (1), in the sense that it provides results of existence, uniqueness and regularity under assumptions on F which are forbidden in the deterministic case. Results of this nature have been proved recently for other equations of transport type, see for instance [START_REF] Flandoli | Well-posedness of the transport equation by stochastic perturbation[END_REF], [START_REF] Fedrizzi | Noise prevents singularities in linear transport equations[END_REF], [START_REF] Flandoli | Random perturbation of PDEs and fluid dynamic models[END_REF], [BFGM], but here, for the first time, we deal with the case of "degenerate" noise, because dW t acts only on a component of the system. It is well known that the kinetic structure has good "propagation" properties from the v to the x component; however, for the purpose of regularization by noise one needs precise results which are investigated here for the first time and are technically quite non trivial. Let us describe more precisely the result proved here. First, we investigate the SDE (2) under the assumption (see below for more details) that F is in the mixed regularity space L p R d v ; W s,p R d x ; R d for some s ∈ ( 2 3 , 1) and p > 6d; this means that we require

R d F (•, v) p W s,p dv < ∞ ,
where W s,p = W s,p (R d ; R d ) is a fractional Sobolev space (cf. Hypothesis 1 and the comments after this assumption; see also Sections 3.1 and 3.2 for more details). Thus our drift is only L p in the "good" v-variable in which the noise acts and has Sobolev regularity in the other x-variable. This is particularly clear in the special case of

F (x, v) = ϕ(v)G(x) , (3) 
where G ∈ W s,p (R d ; R d ), ϕ ∈ L p (R d ) and p > 6d with s ∈ ( 2 3 , 1). Just to mention in the case of full-noise action, the best known assumption to get pathwise uniqueness (cf. [START_REF] Krylov | Strong solutions to stochastic equations with singular time dependent drift[END_REF]) is that F must belong to L p (R N ; R N ), p > N (in our case N = 2d).

According to a general scheme (see [START_REF] Veretennikov | Strong solutions and explicit formulas for solutions of stochastic integral equations[END_REF], [START_REF] Krylov | Strong solutions to stochastic equations with singular time dependent drift[END_REF], [START_REF] Flandoli | Well-posedness of the transport equation by stochastic perturbation[END_REF], [START_REF] Fedrizzi | Pathwise uniqueness and continuous dependence for SDEs with non-regular drift[END_REF], [START_REF] Flandoli | Random perturbation of PDEs and fluid dynamic models[END_REF] [Pr12], [START_REF] Fedrizzi | Hölder Flow and Differentiability for SDEs with Nonregular Drift[END_REF], [START_REF] Fedrizzi | Noise prevents singularities in linear transport equations[END_REF], [BFGM], [CdR], [START_REF] Wang | Degenerate SDEs in Hilbert Spaces with Rough Drifts[END_REF], [WZ]) to study regularity properties of the stochastic characteristics one first needs to establish precise regularity results for solutions to associated Kolmogorov equations. In our case such equations are degenerate elliptic equations of the type

λψ(x, v) - 1 2 v ψ(x, v) -v • D x ψ(x, v) -F (x, v) • D v ψ(x, v) = g(x, v) , (4) 
where λ > 0 is given (see Section 3.3). We prove an optimal regularity result for (4) in Bessel-Sobolev spaces (see Theorem 10). Such result requires basic L p -estimates proved in [START_REF] Bouchut | Hypoelliptic regularity in kinetic equations[END_REF] and [START_REF] Bramanti | Global L p estimates for degenerate Ornstein-Uhlenbeck operators[END_REF] and non-standard interpolation techniques for functions from R d with values in Bessel-Sobolev spaces (see in particular the proofs of Theorem 7 and Lemma 9). The results of Section 3 are exploited in Section 4 to prove existence of strong solutions to (2) and pathwise uniqueness. Moreover, we can also construct a continuous stochastic flow, injective and surjective, hence a flow of homeomorphisms. These maps are locally γ-Hölder continuous for every γ ∈ (0, 1). We cannot say that they are diffeomorphisms; however, we can show that for any t and P-a.s. the random variable Z t = (X t , V t ) admits a distributional derivative with respect to z 0 = (x 0 , v 0 ). Moreover, for any t and p > 1, the weak derivative D z Z t ∈ L p loc (Ω×R 2d ) (i.e., D z Z t ∈ L p (Ω×K), for any compact set K ⊂ R 2d ; see Theorem 33). These results are a generalization to the kinetic (hence degenerate noise) case of theorems in [START_REF] Fedrizzi | Noise prevents singularities in linear transport equations[END_REF].

Well-posedness for kinetic SDEs (2) with non-Lipschitz drift has been recently investigated: strong existence and uniqueness have been recently proved in [CdR] and [START_REF] Wang | Degenerate SDEs in Hilbert Spaces with Rough Drifts[END_REF]. Moreover, a stochastic flow of diffeomorphisms has been obtained in [WZ] even with a multiplicative noise. In [START_REF] Wang | Degenerate SDEs in Hilbert Spaces with Rough Drifts[END_REF] and [WZ] the drift is assumed to be β-Hölder continuous in the x-variable with β > 2 3 and Dini continuous in the v-variable. The results here are more general even concerning the regularity in the x-variable (see also Section 2.1). We stress that well-posedness is not true without noise, as the counter-examples given by Propositions 2 and 3 show.

Based on our results on the stochastic flow, we prove in Section 5 that if the initial condition f 0 is sufficiently smooth, the SPDE (1) admits a weakly differentiable solution and provide a representation formula (see Theorem 38). Moreover, the solution of equation (1) in the spatial variable is of class W 1,r loc R 2d , for every r ≥ 1, P-a.s., at every time t ∈ [0, T ]. Such regularity result is not true without noise: Proposition 3 gives an example where solutions develop discontinuities from smooth initial conditions and with drift in the class considered here. Moreover, assuming in addition that div v F ∈ L ∞ (R 2d ) we prove uniqueness of weakly differentiable solutions (see Theorem 39).

The results presented here may also serve as a preliminary for the investigation of properties of interest in the theory of kinetic equations, where again we see a regularization by noise. In a forthcoming paper we shall investigate the mixing property

f t L ∞ x (L 1 v ) ≤ C (t) f 0 L 1 x (L ∞ v ) ,
with C (t) diverging as t → 0, to see if it holds when the noise is present in comparison to the deterministic case (cf. [START_REF] Golse | Velocity averaging in L 1 for the transport equation[END_REF] and [H-K10]). Again the theory of stochastic flows, absent without noise under our assumptions, is a basic ingredient for this analysis.

The paper is constructed as follows. We begin by introducing in the next section some necessary notation and presenting some examples that motivate our study. In Section 3 we state some well-posedness results for an associated degenerate elliptic equation (see Theorem 10, which contains the main result of this section). These results will be used in Section 4 to solve the stochastic equation of characteristics associated to (1). This is a degenerate stochastic equation, but we can prove existence and uniqueness of strong solutions (see Theorem 21), generating a weakly differentiable flow of homeomorphisms (see Theorems 32 and 33). Using all these tools, we can finally show in Section 5 that the stochastic kinetic equation (1) is well-posed in the class of weakly differentiable solutions.

Notation and Examples

We will either use a dot or , to denote the scalar product in R d and | • | for the Euclidian norm. Other norms will be denoted by • , and for the sup norm we shall use both

• ∞ and • L ∞ (R d ) . C b (R d )
denotes the Banach space of all real continuous and bounded functions f : R d → R endowed with the sup norm;

C 1 b (R d ) ⊂ C b (R d )
is the subspace of all functions wich are differentiable on R d with bounded and continuous partial derivatives on

R d ; for α ∈ R + \N, C α (R d ) ⊂ C 0 is the space of α-Hölder continuous functions on R d ; C ∞ c (R d ) ⊂ C b (R d )
is the space of all infinitely differentiable functions with compact support. C, c, K will denote different constants, and we use subscripts to indicate the parameters on which they depend.

Throughout the paper, we shall use the notation z to denote the point (x, v) ∈ R 2d . Thus, for a scalar function g(z) : R 2d → R, D z g will denote the vector in R 2d of derivatives with respect to all variables z = (x, v), D x g ∈ R d denotes the vector of derivatives taken only with respect to the first d variables and similarly for D v g(z). We will have to work with spaces of functions of different regularity in the x and v variables: we will then use subscripts to distinguish the space and velocity variables, as in Hypothesis 1.

Let us state the regularity assumptions we impose on the force field F .

Hypothesis 1 The function

F : R 2d → R d is a Borel function such that R d F (•, v) p H s p dv < ∞ (5)
where s ∈ (2/3, 1) and p > 6d. We write that

F ∈ L p R d v ; H s p R d x ; R d .
The Bessel space H s p = H s p (R d ; R d ) is defined by the Fourier transform (see Section 3). According to Remark 5, condition (5) can also be rewritten using the related fractional Sobolev spaces

W s,p (R d ; R d ) instead of H s p (R d ; R d ).
In the sequel we will also write

H s p (R d ) instead of H s p (R d ; R d
) when no confusion may arise.

Examples

Without noise, when F is only in the space

L p R d v ; H s p R d x
for some s > 2 3 and p > 6d, the equation for the characteristics

x = v, v = F (x, v) (6) 
x (0) = x 0 , v (0) = v 0
and the associated kinetic transport equation

D t f + v • D x f + F • D v f = 0, f | t=0 = f 0 (7)
may have various types of pathologies. We shall mention here some of them in the very simple case of d = 1,

F (x, v) = ±θ (x, v) sign (x) |x| α (8) for some α ∈ 1 2 , 1 , θ ∈ C ∞ c R 2 .
First, note that this function belongs to L p R v ; H s p (R x ) for for some s > 2 3 and p > 6 (to check this fact one can use the Sobolev embedding theorem:

H 1 q (R) ⊂ H s p (R) if 1 p = 1 q -1 + s).
Thus F satisfies our Hypothesis 1. On the other hand when α ∈ 1 2 , 2 3 , the function sign (x) |x| α is not in C γ loc (R) for any γ > 2/3 and the results of [START_REF] Wang | Degenerate SDEs in Hilbert Spaces with Rough Drifts[END_REF], [WZ] do not apply.

Let us come to the description of the pathologies of characteristics and kinetic equation when

F (x, v) = ±θ (x, v) |x| α . Proposition 2 In d = 1, if θ ∈ C ∞ c R 2 , θ = 1 on B (0, R) for some R > 0, F (x, v) = θ (x, v) sign (x) |x|
α , then system (6) with initial condition (x 0 , 0) has infinitely many solutions. In particular, for small time (depending on R and α), (x t , v t ) = x 0 + At β , Aβt β-1 , with (β, A) satisfying (9) below, and also A = 0, are solutions.

Proof. Let us check that (x t , v t ) = At β , Aβt β-1 with the specified values of (β, A) and a small range of t, are solutions. We have

x t = v t , v t -F (x, v t ) = Aβ (β -1) t β-2 -sign (x t ) |x t | α = Aβ (β -1) t β-2 -sign (A) |A| α t αβ = 0 for αβ = β -2 and Aβ (β -1) = sign (A) |A| α , namely β = 2 1 -α , A = ± 1 β (β -1) 1 1-α = ± (1 -α) 2 2 (1 + α) 1 1-α . ( 9 
)
With a little greater effort one can show, in this specific example, that every solution (x t , v t ) from the initial condition (0, 0) has, for small time, the form (x t , v t ) =

A (t -t 0 ) β , Aβ (t -t 0 ) β-1 1 t≥t0 for some t 0 ≥ 0, or it is (x t , v t ) = (0, 0) ((β, A)
always given by ( 9)) and that existence and uniqueness holds from any other initial condition, even from points of the form (0, v 0 ), v 0 = 0, around which F is not Lipschitz continuous. Given T > 0 and R > 0 large enough, there is thus, at every time t ∈ [0, T ], a set Λ t ⊂ R 2 of points "reached from (0, 0)", which is the set

Λ t = A (t -t 0 ) β , Aβ (t -t 0 ) β-1 ∈ R 2 : t 0 ∈ [0, t] .
Using this family of sets one can construct examples of non uniqueness for the transport equation ( 7), because a solution f (t, x, v) is not uniquely determined on Λ t . However, these examples are not striking since the region of non-uniqueness, ∪ t≥0 Λ t , is thin and one could say that uniqueness is restored by a modification of f on a set of measure zero. But, with some additional effort, it is also possible to construct un example with F (x, v) = ±θ (x, v) |x| α . In this case, for some negative m (depending on R and α), one can construct infinitely many solutions (x t , v t ) starting from any point in a segment (x 0 , 0), x 0 ∈ [m, 0). Indeed, (x t , v t ) = (x 0 , 0) is a solution, but there are also solutions leaving (x 0 , 0) which will have v t > 0, at least for some small time interval. Then one obtains that the solution f (t, x, v) is not uniquely determined on a set of positive Lebesgue measure.

More relevant, for a simple class of drift as the one above, is the phenomenon of loss of regularity. Preliminary, notice that, when F is Lipschitz continuous, system (6) generates a Lipschitz continuous flow and, using it, one can show that, for every Lipschitz continuous f 0 : R 2 → R, the transport equation ( 7) has a unique solution in the class of continuous functions f : [0, T ] × R 2 → R that are Lipschitz continuous in (x, v), uniformly in t. The next proposition identifies an example with non-Lipschitz F where this persistence of regularity is lost. More precisely, even starting from a smooth initial condition, unless it has special symmetry properties, there is a solution with a point of discontinuity. This pathology is removed by noise, since we will show that with sufficiently good initial condition, the unique solution f (t, z) is of class W 1,r loc (R 2 ) for every r ≥ 1 and t ∈ [0, T ] a.s., hence in particular continuous. However, in the stochastic case, we do not know whether the solution is Lipschitz under our assumptions, whereas presumably it is under the stronger Hölder assumptions on F of [WZ].

Proposition 3 In d = 1, if θ ∈ C ∞ c R 2 , θ = 1 on B (0, R) for some R > 0, F (x, v) = θ (x, v) sign (x) |x|
α , then system (6) has a unique local solution on any domain not containing the origin, for every initial condition. For every t 0 > 0 (small enough with respect to R), the two initial conditions At β 0 , -Aβt β-1 0 with (β, A) given by (9) produce the solution

(x t , v t ) = A (t 0 -t) β , -Aβ (t 0 -t) β-1
for t ∈ [0, t 0 ], and (x t0 , v t0 ) = (0, 0) . As a consequence, the transport equation (7) with

any smooth f 0 such that f 0 At β 0 , -Aβt β-1 0 = f 0 -At β 0 , Aβt β-1 0 for some t 0 > 0,
has a solution with a discontinuity at time t 0 at position (x, v) = (0, 0).

Proof. The proof is elementary but a full proof is lengthy. We limit ourselves to a few simple facts, without proving that system (6) is forward well posed (locally in time) and the transport equation ( 7) is also well posed in the set of weak solutions. We only stress that the claim (x t0 , v t0 ) = (0, 0) when the initial condition is At β 0 , -Aβt β-1 0 can be checked by direct computation (as in the previous proposition) and the discontinuity of the solution f of ( 7) is a consequence of the transport property, namely the fact that whenever f is regular we have

f (t, x t , v t ) = f 0 (x 0 , v 0 ) (10)
where (x t , v t ) is the unique solution with initial condition (x 0 , v 0 ). Hence we have this identity for points close (but not equal) to the coalescing ones mentioned above, where the forward flow is regular and a smooth initial condition f 0 gives rise to a smooth solution; but then, from identity (10) in nearby points, the limit lim

(x,v)→(0,0) f (t 0 , x, v)
does not exists if t 0 is as above and

f 0 At β 0 , -Aβt β-1 0 = f 0 -At β 0 , Aβt β-1 0 .
3 Well-posedness for degenerate Kolmogorov equations in Bessel-Sobolev spaces

Preliminaries on functions spaces and interpolation theory

Here we collect basic facts on Bessel and Besov spaces (see [START_REF] Bergh | Interpolation spaces. An introduction[END_REF], [START_REF] Triebel | Interpolation theory, function spaces, differential operators[END_REF] and [START_REF] Stein | Singular integrals and differentiability properties of functions[END_REF] for more details). In the sequel if X and Y are real Banach spaces then Y ⊂ X means that Y is continuously embedded in X.

The Bessel (potential) spaces are defined as follows (cf. [START_REF] Bergh | Interpolation spaces. An introduction[END_REF] page 139 and [Ste70] page 135). For the sake of simplicity we only consider p ∈ [2, ∞) and s ∈ R + .

First one considers the Bessel potential J s ,

J s f = F -1 [(1 + | • | 2 ) s/2 )Ff ]
where F denotes the Fourier transform of a distribution

f ∈ S (R d ), d ≥ 1. Then we introduce H s p (R d ) = {f ∈ S (R d ) : J s f ∈ L p (R d )} (clearly H 0 p (R d ) = L p (R d ))
. This is a Banach space endowed with the norm f H s p = J s f p , where • p is the usual norm of L p (R d ) (we identify functions with coincide a.e.). It can be proved that

H s p (R d ) = {f ∈ L p (R d ) : F -1 [| • | s Ff ] ∈ L p (R d )} ( 11 
)
and an equivalent norm in

H s p (R d ) is f s,p = f p + F -1 [| • | s Ff ] p F -1 [(1 + | • | s ) Ff ] p .
To show this characterization one can use that

(1 + 4π 2 |x| 2 ) s/2 = (1 + (2π|x| s )) [Fφ(x) + 1], x ∈ R d , for some φ ∈ L 1 (R d ) (see page 134 in [Ste70]
), and basic properties of convolution and Fourier transform. We note that

H k p (R d ) = W k,p (R d ) (12)
if k ≥ 0 is an integer with equivalence of norms (here W k,p (R d ) is the usual Sobolev space; W 0,p (R d ) = L p (R d )); see Theorem 6.2.3 in [START_REF] Bergh | Interpolation spaces. An introduction[END_REF]. However if s is not an integer we only have (see Theorem 6.4.4 in [START_REF] Bergh | Interpolation spaces. An introduction[END_REF] or [START_REF] Stein | Singular integrals and differentiability properties of functions[END_REF] page 155)

H s p (R d ) ⊂ W s,p (R d ) ( 13 
)
where W s,p (R d ) is a fractional Sobolev space (see below). We have (cf. Theorem 6.2.3 in [START_REF] Bergh | Interpolation spaces. An introduction[END_REF])

H s2 p (R d ) ⊂ H s1 p (R d ) if s 2 > s 1 and, moreover, C ∞ c (R d ) is dense in any H s p (R d ).
One can compare Bessel spaces with Besov spaces B s p,q (R d ) (see, for instance, Theorem 6.2.5 in [START_REF] Bergh | Interpolation spaces. An introduction[END_REF]). Let p, q ≥ 2, s ∈ (0, 2), to simplify notation.

If s ∈ (0, 1) then

B s p,q (R d ) consists of functions f ∈ L p (R d ) such that [f ] B s p,q = R d dh |h| d+sq R d |f (x + h) -f (x)| p dx q/p 1/q < ∞ . Thus we have B s p,p (R d ) = W s,p (R d ) ( 14 
)
with equivalence of norms. However if

s = 1, B 1 p,q (R d ) consists of all functions f ∈ L p (R d ) such that [f ] B 1 p,q = R d dh |h| d+q R d |f (x + 2h) -2f (x + h) + f (x)| p dx q/p 1/q < ∞ .

Thus we only have

B 1 p,p (R d ) ⊂ W 1,p (R d ). Note that B s p,q (R d
) is a Banach space endowed with the norm:

• p +[•] B s p,q . Similarly, if s ∈ (1, 2), then B s p,q (R d ) consists of functions f ∈ W 1,p (R d ) such that [f ] B s p,q = d i=1 R d dh |h| d+sq R d |∂ xi f (x + h) -∂ xi f (x)| p dx q/p 1/q < ∞ . (15) Moreover, C ∞ c (R d ) is dense in any B s p,q (R d ) and B s2 p,q (R d ) ⊂ B s1 p,q (R d ), 0 < s 1 < s 2 < 2, p ≥ 2 . ( 16 
)
We also have the following result (cf. Theorem 6.4.4 in [START_REF] Bergh | Interpolation spaces. An introduction[END_REF])

B s p,2 (R d ) ⊂ H s p (R d ) ⊂ B s p,p (R d ) , (17) 
s ∈ (0, 2), p ≥ 2. Next we state a result for which we have not found a precise reference in the literature. This is useful to give an equivalent formulation to Hypothesis 1 (cf. Remark 5). The proof is given in Appendix.

Proposition 4 Let p > 2, s, s such that 0 < s < s < 1. We have

W s ,p (R d ) ⊂ B s p,2 (R d ) ⊂ H s p (R d ) .
It is important to notice that Besov spaces are real interpolation spaces (for the definition of interpolation spaces (X, Y ) θ,q with X and Y real Banach spaces and Y ⊂ X see Chapter 1 in [START_REF] Lunardi | Analytic Semigroups and Optimal Regularity in Parabolic Problems[END_REF] or [START_REF] Bergh | Interpolation spaces. An introduction[END_REF]). As a particular case of Theorem 6.2.4 in [START_REF] Bergh | Interpolation spaces. An introduction[END_REF] we have for 0

≤ s 0 < s 1 ≤ 2, θ ∈ (0, 1), p ≥ 2, (H s0 p (R d ), H s1 p (R d )) θ,p = B s p,p (R d ) ( 18 
)
with s = (1 -θ)s 0 + θs 1 . Moreover, it holds (see Theorem 6.4.5 in [START_REF] Bergh | Interpolation spaces. An introduction[END_REF]):

(B s0 p,p (R d ), B s1 p,p (R d )) θ,p = B s p,p (R d ) (19) with 0 < s 0 < s 1 < 2, s = (1 -θ)s 0 + θs 1 , θ ∈ (0, 1).

Interpolation of functions with values in Banach spaces

We follow Section VII in [START_REF] Lions | Sur une classe d'espaces d'interpolation[END_REF] and [START_REF] Cwikel | On (L p0 (A 0 ), L p1 (A 1 )) θ, q[END_REF]. Let A 0 be a real Banach space. We will consider the Banach space L p (R d ; A 0 ), 1 ≤ p < ∞, d ≥ 1. As usual this consists of all strongly measurable functions f from R d into A 0 such that the real valued function f (x) A0 belongs to L p (R d ). We have

f L p (R d ;A0) = R d f (x) A0 dx 1/p , f ∈ L p (R d ; A 0 ) .
If A 1 is another real Banach spaces with A 1 ⊂ A 0 we can define the Banach space

L p (R d ; (A 0 , A 1 ) θ,q ) ,
by using the interpolation space (A 0 , A 1 ) θ,q , q ∈ (1, ∞), p ≥ 1 and θ ∈ (0, 1). One can prove that

L p (R d ; A 0 ), L p (R d ; A 1 ) θ,q = L p (R d ; (A 0 , A 1 ) θ,q ) . ( 20 
)
with equivalence of norms (see [START_REF] Lions | Sur une classe d'espaces d'interpolation[END_REF] and [START_REF] Cwikel | On (L p0 (A 0 ), L p1 (A 1 )) θ, q[END_REF]). In the sequel we will often use, for

s ≥ 0, p ≥ 2, L p (R d ; H s p (R d )) . (21) 
We will often identify this space with the Banach space

L p R d v ; H s p R d x of all mea- surable functions f (x, v), f : R d × R d → R such that f (•, v) ∈ H s p (R d
), for a.e. v ∈ R d , and, moreover (see (11))

R d f (•, v) p H s p dv = R d dv R d |F -1 x [(1 + | • | s )F x f (•, v)](x)| p dx < ∞ (22) 
(here F x denotes the partial Fourier transform in the x-variable; as usual we identify functions which coincide a.e.). As a norm we consider

f L p (R d v ;H s p (R d x )) = R d f (•, v) p H s p dv 1/p . ( 23 
) Also L p (R d v ; L p (R d x )
) can be identified with L p (R 2d ). Similarly, we can define

L p (R d v ; B s p,p (R d x )). Using (17) we have L p (R d ; H s p (R d )) ⊂ L p (R d ; B s p,p (R d )), (24) 
p ≥ 2, 0 < s < 2. Finally using (20) and (19) we get for 0

< s 0 < s 1 < 2, θ ∈ (0, 1), p ≥ 2, L p (R d ; (B s0 p,p (R d )), L p (R d ; (B s1 p,p (R d )) θ,p = L p (R d ; B s p,p (R d )), (25) 
with s = (1 -θ)s 0 + θs 1 .

In the sequel when no confusion may arise, we will simply write

L p (R d ) instead of L p (R d ; R k ), k ≥ 1, p ∈ [1, ∞). Thus a function U : R d → R k belongs to L p (R d ) if all its components U i ∈ L p (R d ), i = 1, . . . , k. Moreover, U L p = k i=1 U i p L p 1/p
. This convention about vector-valued functions will be used for other function spaces as well.

Remark 5 Proposition 4 and formula (13) show that Hypothesis 1 is equivalent to the following one:

F : R 2d → R d is a Borel function such that R d F (•, v) p W s,p dv < ∞ , (26) 
where s ∈ (2/3, 1) and p > 6d.

Regularity results in Bessel-Sobolev spaces

Here

R N = R 2d and z = (x, v) ∈ R d × R d . Let also p ∈ (1, ∞), s ∈ (0, 1) and λ > 0.
This section is devoted to the study of the equation

λψ(z) - 1 2 v ψ(z) -v • D x ψ(z) -F (z) • D v ψ(z) = g(z) = λψ(z) - 1 2 Tr QD 2 ψ(z) -Az, Dψ(z) -B(z), Dψ(z)
where

A = 0 I 0 0 , Q = 0 0 0 I are (2d × 2d)-matrices, B = 0 F : R 2d → R 2d .
We shall start by considering the simpler equation with B = 0, i.e.,

λψ(z) - 1 2 v ψ(z) -v • D x ψ(z) = λψ(z) -Lψ(z) = g(z), z ∈ R 2d . (27) 
Recall that D v ψ and D x ψ denote respectively the gradient of ψ in the v-variables and in the x-variables; moreover, D 2 v ψ indicates the Hessian matrix of ψ with respect to the v-variables (we have v ψ = Tr(D 2 v ψ)). Definition 6 The space X p,s consists of all functions f ∈ W 1,p (R 2d ) such that

D 2 v f and v • D x f belong to L p (R d v ; H s p (R d x )). Recall that D 2 v f p L p (R d v ;H s p (R d x )) = R d d i,j=1 ∂ 2 vivj f (•, v) p H s p (R d ) dv .
It turns out that X p,s is a Banach space endowed with the norm:

f Xp,s = f W 1,p (R 2d ) + D 2 v f L p (R d v ;H s p (R d x )) + v • D x f L p (R d v ;H s p (R d x )) . (28) If f ∈ X p,s then (λf -Lf ) ∈ L p (R d v ; H s p (R d x )) (see (27)).
With a slight abuse of notation, we will still write f ∈ X p,s for vector valued functions f : R 2d → R 2d , meaning that all components f i : R 2d → R, i = 1 . . . 2d belong to X p,s .

The following theorem improves results in [START_REF] Bouchut | Hypoelliptic regularity in kinetic equations[END_REF] and [START_REF] Bramanti | Global L p estimates for degenerate Ornstein-Uhlenbeck operators[END_REF]. In particular it shows that there exists the weak derivative D x ψ ∈ L p (R 2d ) so that (27) admits a strong solution ψ which solves equation ( 27) in distributional sense.

Theorem 7 Let λ > 0, p ≥ 2, s ∈ (1/3, 1) and g ∈ L p (R d v ; H s p (R d x )
). There exists a unique solution ψ = ψ λ ∈ X p,s to equation (27). Moreover, we have

λ ψ L p (R 2d ) + √ λ D v ψ L p (R 2d ) + D 2 v ψ L p (R 2d ) + v •D x ψ L p (R 2d ) ≤ C g L p (R 2d ) (29) with C = C(d, p) > 0 and D x ψ L p (R 2d ) ≤ C(λ) g L p (R d v ;H s p (R d x )) , (30) 
with C(λ) = C(λ, s, p, d) > 0 and C(λ) → 0 as λ → ∞. In addition there exists c = c(s, p, d) > 0 such that

λ ψ L p (R d v ;H s p (R d x )) + √ λ D v ψ L p (R d v ;H s p (R d x )) + D 2 v ψ L p (R d v ;H s p (R dx )) (31) 
+ v • D x ψ L p (R d v ;H s p (R d x )) ≤ c g L p (R d v ;H s p (R d x ))
Proof. Uniqueness. Let ψ ∈ X p,s be a solution. Multiplying both sides of equation ( 27) by |ψ| p-2 ψ and integrating by parts we obtain

λ ψ p L p (R 2d ) + (p -1) 2 d k=1 R 2d |ψ| p-2 |∂ v k ψ| 2 dz + R 2d (v • D x ψ)|ψ| p-2 ψ dz = R 2d
g|ψ| p-2 ψ dz (this identity can be rigorously proved by approximating ψ by smooth functions). Note that there exists the weak derivative

D x (|ψ| p ) = p|ψ| p-2 ψD x ψ ∈ L 1 (R 2d )
and so

R 2d (v • D x ψ)|ψ| p-2 ψ dz = 1 p R 2d v • D x (|ψ| p )dz = 0 .
It follows easily that

ψ L p (R 2d ) ≤ 1 λ g L p (R 2d ) (32) 
which implies uniqueness of solutions for the linear equation (27).

Existence. I Step. We prove existence of solutions and estimates (29) and (30).

Let us first introduce the Ornstein-Uhlenbeck semigroup

P t g(z) = P t g(x, v) = R 2d g(e tA z + y)N (0, Q t ) dy (33) = R 2d g(x + tv + y 1 , v + y 2 )N (0, Q t ) dy , g ∈ C ∞ c (R 2d ), t ≥ 0,
where N (0, Q t ) is the Gaussian measure with mean 0 and covariance matrix

Q t = t 0 e sA Qe sA * ds = t 0 e sA 0 0 0 I R d e sA * ds = 1 3 t 3 I R d 1 2 t 2 I R d 1 2 t 2 I R d tI R d (34) 
(A * denotes the adjoint matrix). By the Young inequality (cf. the proof of Lemma 13 in [START_REF] Priola | On weak uniqueness for some degenerate SDEs by global L p estimates[END_REF]) we know that P t g is well-defined also for any g ∈ L p (R 2d ), z a.e.; moreover

P t : L p (R 2d ) → L p (R 2d
), for any t ≥ 0, and

P t g L p (R 2d ) ≤ g L p (R 2d ) , g ∈ L p (R 2d ), t ≥ 0. ( 35 
)
Let us consider, for any

λ > 0, z ∈ R d , g ∈ C ∞ c (R 2d ), ψ(z) = G λ g(z) = +∞ 0 e -λt P t g(z) dt . (36) 
Using the Jensen inequality, the Fubini theorem and (35) it is easy to prove that G λ g is well defined for g ∈ L p (R 2d ), z a.e., and belongs to L p (R 2d ). Moreover, for any p ≥ 1,

G λ : L p (R 2d ) → L p (R 2d ), G λ g p ≤ g p λ , λ > 0, g ∈ L p (R 2d ). ( 37 
) Note that L p (R d v ; H s p (R dx )) ⊂ L p (R d v ; W s,p (R d x )) (see (13)). Let us consider a sequence (g n ) ∈ C ∞ c (R 2d ) such that g n → g in L p (R d v ; W s,p (R d x )).
Arguing as in [Pr15, Lemma 13] one can show that there exist classical solutions ψ n to (27) with g replaced by g n . Moreover, ψ n = G λ g n . By [Pr15, Theorem 11], which is based on results in [START_REF] Bramanti | Global L p estimates for degenerate Ornstein-Uhlenbeck operators[END_REF], we have that

D 2 v ψ n L p (R 2d ) ≤ C g n L p (R 2d ) , (38) 
λ > 0, n ≥ 1, C = C(p, d).
Using also (37) we deduce easily that (ψ n ) and

(D 2 v ψ n ) are both Cauchy sequences in L p (R 2d ). Let us denote by ψ ∈ L p (R 2d ) the limit function; it holds that ψ = G λ g and D 2 v ψ ∈ L p (R 2d
). Passing to the limit in (27) when ψ and g are replaced by ψ n and g n we obtain that ψ solves (27) in a weak sense (v • D x ψ is intended in distributional sense). By (38) as n → ∞ we also get

D 2 v ψ L p (R 2d ) ≤ C g L p (R 2d ) , ψ L p (R 2d ) ≤ 1 λ g L p (R 2d ) (39) and v • D x ψ L p (R 2d ) ≤ C g L p (R 2d ) .
To prove (29) it remains to show the estimate for D v ψ. This follows from

D v ψ p L p (R 2d ) = R d D v ψ(x, •) p L p (R d ) dx ≤ ( ψ L p (R 2d ) ) p/2 ( D 2 v ψ L p (R 2d ) ) p/2 . (40) To prove that ψ ∈ W 1,p (R 2d ) it is enough to check that ψ ∈ L p R d v ; W 1,p (R d x ) . (41) 
Thus we have to prove that ψ(•, v) ∈ W 1,p (R d ) for a.e. v and

R d dv R d |D x ψ(x, v)| p dx < ∞ .
To this purpose we will use a result in [START_REF] Bouchut | Hypoelliptic regularity in kinetic equations[END_REF] and interpolation theory. We consider

η ∈ C ∞ c (R) such that Supp(η) ⊂ [-1, 1] and 1 -1 η(t)dt > 0. Setting f (t, z) = η(t)ψ(z), where ψ solves (27) we have that f ∈ L p (R × R d × R d ).
In order to apply Corollary 2.2 in [START_REF] Bouchut | Hypoelliptic regularity in kinetic equations[END_REF] we note that, for z

= (x, v) ∈ R 2d , t ∈ R, ∂ t f (t, z) + v • D x f (t, z) = η (t)ψ(z) -η(t)g(z) + λη(t)ψ(z) - 1 2 η(t) v ψ(z). Since D 2 v ψ ∈ L p (R 2d ) we deduce that ∂ t f + v • D x f and D 2 v f both belong to L p (R × R d × R d ).
By Corollary 2.2 in [START_REF] Bouchut | Hypoelliptic regularity in kinetic equations[END_REF] and (39) we get easily that ψ(

•, v) ∈ H 2/3 p (R d ), for v ∈ R d a.
e., and

R d dv R d |F -1 x [(1 + | • | 2/3 )F x ψ(•, v)](x)| p dx ≤ λ + 1 λ 2p/5 c g p L p (R 2d ) , λ > 0, with c = c(p, d), i.e., ψ = G λ g ∈ L p (R d v ; H 2/3 p (R d x )) and G λ g L p (R d v ;H 2/3 p (R d x )) ≤ λ + 1 λ 2/5 c 1 g L p (R 2d ) .
(42) By ( 20) and ( 18) with s 0 = 0 and s 1 = 2/3 we can interpolate between (42) and the estimate

G λ g L p (R d ;L p (R d )) ≤ 1 λ g L p (R 2d ) (see Proposition 1.2.6 in [Lu95]) and get, for ∈ (0, 2/3), G λ g L p (R d v ;W 2/3-,p (R d x )) ≤ c (λ) g L p (R 2d ) . ( 43 
) with c (λ) → 0 as λ → ∞. Suppose now that g ∈ L p (R d v ; W 1,p (R d x )
) and fix k = 1, . . . , d. By approximating g with regular functions, it is not difficult to prove that there exists the weak derivative ∂ x k ψ ∈ L p (R 2d ), and

∂ x k ψ(z) = ∂ x k G λ g(z) = +∞ 0 e -λt P t (∂ x k g)(z)dt . ( 44 
)
Arguing as in (43) we obtain that

∂ x k ψ ∈ L p (R d v ; W 2/3-,p (R d x )
) and

∂ x k ψ L p (R d v ;W 2/3-,p (R d x )) ≤ c (λ) ∂ x k g L p (R 2d ) , k = 1, . . . , d , so that G λ g L p (R d v ;B 1+2/3-,p p,p (R d x )) ≤ c (λ) g L p (R d v ;W 1,p (R d x )) . (45) 
Taking into account (18), ( 19) and ( 20) we can interpolate between (43) and (45) (see also ( 21) and ( 22)) and get

G λ : L p (R d v ; W s,p (R d x )) = L p (R d ; H 0 p (R d )), L p (R d ; W 1,p (R d )) s,p (46) 
-→ L p (R d ; W 2/3-,p (R d )), L p (R d ; B 5/3- p,p (R d ))) s,p = L p (R d v ; B s+2/3- p,p (R d x )). Since L p (R d v ; B s+2/3- p,p (R d x )) ⊂ L p (R d v ; W 1,p (R d x )
) with small enough (recall that s ∈ (1/3, 1)) we finally obtain that

G λ : L p (R d v ; W s,p (R d x )) → L p (R d v ; W 1,p (R d x )) (47) 
is linear and continuous. Moreover, we have with

ψ = G λ g R d dv R d |∂ x k ψ(x, v)| p dx ≤ C (λ) g p L p (R d v ;W s,p (R d x )) ≤ C (λ) g p L p (R d v ;H s p (R d x )) , (48) 
k = 1, . . . , d, where C (λ) and C (λ) tend to 0 as λ → ∞ (recall the estimates ( 43) and ( 45)). This proves (30) and (41).

II

Step. We prove the last assertion (31).

The main problem is to show that

R d D 2 v ψ(•, v) p H s p (R d ) dv = R d dv R d |F -1 x [(1 + | • | s )F x D 2 v ψ(•, v)](x)| p dx = R d dv R d |D 2 v F -1 x [(1 + | • | s )F x ψ(•, v)] (x)| p dx ≤ C g p L p (R d v ;H s p (R d x ))
(F x denotes the Fourier transform in the x-variable) with ψ = G λ g. We introduce

h s (x, v) = F -1 x [(1 + | • | s )F x g(•, v)](x), x, v ∈ R d . We know that h s ∈ L p (R 2d
) by our hypothesis on g. A straightforward computation based on the Fubini theorem shows that

F -1 x [(1 + | • | s )F x ψ(•, v)](x) = G λ h s (x, v).
By using (39) (with g replaced by h s and ψ by G λ h s ) we easily obtain that

R d D 2 v ψ(•, v) p H s p (R d ) dv = R d dv R d |D 2 v G λ h s (x, v)| p dx (49) ≤ C h s p L p (R 2d ) = C g p L p (R d v ;H s p (R d x )) ,
where C = C(d, p). Similarly, we have

R d D v ψ(•, v) p H s p (R d ) dv = R d dv R d |D v G λ h s (x, v)| p dx (50) ≤ C (λ) p/2 h s p L p (R 2d ) = C (λ) p/2 g p L p (R d v ;H s p (R d x ))
and

ψ L p (R d v ;H s p (R d x )) = G λ h s L p (R 2d ) ≤ 1 λ G λ h s L p (R 2d ) = 1 λ g L p (R d v ;H s p (R d x )) . The proof is complete. Lemma 8 Assume as in Theorem 7 that g ∈ L p (R d v ; H s p (R d x )), s ∈ (1/3, 1). Moreover, suppose that p > d. Then the solution ψ = G λ g to (27) verifies also sup v∈R d D v ψ(•, v) H s p (R d ) ≤ C(λ) g L p (R d v ;H s p (R d x )) , λ > 0, ( 51 
)
where C(λ) → 0 as λ → ∞.

Proof. Using the notation introduced in the previous proof, we have for any v ∈ R d , a.e.,

D v ψ(•, v) p H s p (R d ) = R d |D v G λ h s (x, v)| p dx .
By (49), (50) and the Fubini theorem we know that

R d dx R d |D v G λ h s (x, v)| p dv + R d dx R d |D 2 v G λ h s (x, v)| p dv < ∞ . It follows that, for x ∈ R d a.e., D v G λ h s (x, •) p W 1,p (R d ) = R d |D v G λ h s (x, v)| p dv + R d |D 2 v G λ h s (x, v)| p dv < ∞ .
In order to prove (51) with C(λ) → 0, we consider r ∈ (0, 1) such that rp > d. Let us fix x ∈ R d , a.e.; by the previous estimate the mapping

v → D v G λ h s (x, v) belongs to W r,p (R d ) ⊂ W 1,p (R d ).
We can apply the Sobolev embedding theorem (see page 203 in [START_REF] Triebel | Interpolation theory, function spaces, differential operators[END_REF]) and get

that v → D v G λ h s (x, v) in particular is bounded and continuous on R d . Moreover, sup v∈R d |D v G λ h s (x, v)| p ≤ c D v G λ h s (x, •) p W r,p (R d ) , (52) 
where c = c(p, d, r). Integrating with respect to x we get

R d sup v∈R d |D v G λ h s (x, v)| p dx ≤ c R d D v G λ h s (x, •) p W r,p (R d ) dx .
By (18) we know that L p (R d ), W 1,p (R d ) r,p = W r,p (R d ). Applying Corollary 1.2.7 in [START_REF] Lunardi | Analytic Semigroups and Optimal Regularity in Parabolic Problems[END_REF] we obtain that, for any f ∈ W 1,p (R d ),

f W r,p (R d ) ≤ c(r, p) f L p (R d ) 1-r • f W 1,p (R d ) r .
It follows that sup

v∈R d D v ψ(•, v) p H s p (R d ) = sup v∈R d R d |D v G λ h s (x, v)| p dx ≤ R d sup v∈R d |D v G λ h s (x, v)| p dx ≤ c R d D v G λ h s (x, •) p W r,p (R d ) dx ≤ c R d D v G λ h s (x, •) p(1-r) L p (R d ) • D v G λ h s (x, •) pr W 1,p (R d ) dx ≤ c R d D v G λ h s (x, •) p L p (R d ) dx 1-r • R d D v G λ h s (x, •) p W 1,p (R d ) dx r .
Now we easily obtain (51) using ( 49) and (50), since

R d D v G λ h s (x, •) p L p (R d ) dx = R d dv R d |D v G λ h s (x, v)| p dx ≤ C(λ) g L p (R d v ;H s p (R d x ))
with C(λ) → 0 as λ → ∞.

We complete the study of the regularity of solutions to equation ( 27) with the next result in which we strengthen the assumptions of Lemma 8. Note that the next assumption on p holds when p > 6d as in Hypothesis 1.

Lemma 9 Let λ > 0, s ∈ (2/3, 1) and g ∈ L p (R d v ; H s p (R d x )
). In addition assume that p(s -1 3 ) > 2d, then the following statements hold. (i) The solution ψ = G λ g (see (37)) is bounded and Lipschitz continuous on R 2d . Moreover there exists the classical derivative D x ψ which is continuous and bounded on R 2d and, for λ > 0,

ψ ∞ + D x ψ ∞ ≤ C(λ) g L p (R d v ;H s p (R d x )) , with C(λ) → 0 as λ → ∞. ( 53 
) (ii) D v ψ ∈ W 1,p (R 2d
) (so in particular there exist weak partial derivatives

∂ xi ∂ vj ψ ∈ L p (R 2d ), i, j = 1, . . . , d)
and

D v ψ W 1,p (R 2d ) ≤ c(λ) g L p (R d v ;H s p (R d x )) , λ > 0, with c = c(λ) → 0 as λ → ∞. (54) Proof. (i)
The boundedness of ψ follows easily from estimates (29) and (30) using the Sobolev embedding since in our case p > 2d. Let us concentrate on proving the Lipschitz continuity.

First we recall a Fubini type theorem for fractional Sobolev spaces (see [START_REF] Strichartz | Fubini-type theorems[END_REF]):

W γ,p (R 2d ) = f ∈ L p (R 2d ) : R d f (x, •) p W γ,p (R d )) dx+ R d f (•, v) p W γ,p (R d )) dv < ∞ , (55) 
γ ∈ (0, 1] (with equivalence of the respective norms). Let η ∈ (0, s + 2/3 -1) be such that ηp > 2d .

(56)

We will prove that D x ψ ∈ W η,p (R 2d ) so that by the Sobolev embedding W η,p (R 2d ) ⊂ C η-2d/p b (R 2d ) (see page 203 in [START_REF] Triebel | Interpolation theory, function spaces, differential operators[END_REF]) we get the assertion. According to (55) we check that

R d D x ψ(•, v) p W η,p (R d )) dv ≤ C(λ) g p L p (R d v ;H s p (R d x )) , (57) 
and

R d D x ψ(x, •) p W η,p (R d )) dx ≤ C(λ) g p L p (R d v ;H s p (R d x )) . (58) 
with C(λ) → 0 as λ → ∞. Estimate (57) follows by (46) which gives

ψ ∈ L p (R d v ; B η+1 p,p (R d x )) with η = s --1/3.
Let us concentrate on (58). We still use the interpolation theory results of Section 3.2 but here in addition to (22) we also need to identify

L p (R d ; H s p (R d )) with the Banach space L p (R d x ; H s p (R d v )) of all measurable functions f (x, v), f : R d × R d → R such that f (x, •) ∈ H s p (R d ), for x ∈ R d a.e., 0 ≤ s ≤ 2, and, moreover R d f (x, •) p H s p dx < ∞. As a norm one considers f L p (R d x ;H s p (R d v )) = R d f (x, •) p H s p (R d ) dx 1/p . ( 59 
)
Similarly, we identify

L p (R d ; B s p,p (R d )) with the Banach space L p (R d x ; B s p,p (R d v )) of all measurable functions f : R d × R d → R such that f (x, •) ∈ B s p,p (R d
), for x a.e., and 29) and (30) in Theorem 7 and using (44) we find with ψ = G λ g

R d f (x, •) p B s p,p (R d ) dx < ∞. By (
R d dx R d |D x ψ(x, v)| p dv = R d D x ψ(x, •) p L p (R d ) dx ≤ C(λ) g p L p (R d v ;H s p (R d x )) , R d dx R d |D 2 v (D x ψ)(x, v)| p dv = R d D 2 v (D x ψ)(x, •) p L p (R d ) dx ≤ c g p L p (R d v ;H 1 p (R d x )) , (60) 
with c = c(d, p) > 0. Thus we can consider the following linear maps (s ∈ (1/3, 1) will be fixed below)

D x G λ : L p R d v ; H s p (R d x ) → L p (R 2d ) = L p R d x ; L p (R d v ) , (61) 
D x G λ : L p R d v ; H 1 p (R d x ) → L p R d x ; H 2 p (R d v ) .
Interpolating, choosing s ∈ (1/3, 1) such that

s < 2s -1,
we get (see ( 18) and ( 20)

with θ = s-s 1-s > 1/2) D x G λ : L p R d v ; W s,p (R d x ) = L p R d v ; H s p (R d x ) , L p R d v ; H 1 p (R d x ) θ,p (62) 
-→ L p R d x ; L p (R d v ) , L p R d x ; H 2 p (R d v ) θ,p = L p R d x ; B 2θ p,p (R d v )
and by the estimates in (60) we find

R d D x (G λ g)(x, •) p B 2θ p,p (R d ) dx ≤ C (λ) g p L p (R d v ;H s p (R d x )) (recall that H s p (R d ) ⊂ W s,p (R d )). Since η < 2/3 we have B 2θ p,p (R d ) ⊂ W η,p (R d ) (cf. ( 16 
)) and we finally get (58). (ii) We fix j = 1, . . . , d and prove the assertion with D v ψ replaced by ∂ vj ψ.

By Theorem 7 we already know that there exists

D v ∂ vj ψ ∈ L p (R 2d
). Therefore to show the assertion it is enough to check that there exists the weak derivative

D x (∂ vj ψ) = ∂ vj (D x ψ) ∈ L p (R 2d ). ( 63 
)
We use again (62) with the same θ. Since 2θ > 1 we know in particular that

D x G λ g ∈ L p (R d x ; W 1,p (R d v )
). Thus we have that there exists the weak derivative ∂ vj D x ψ(x, •), for x a.e., and

R d dx R d |∂ vj D x ψ(x, v)| p dv = R d ∂ vj D x ψ(x, •) p L p (R d ) dx ≤ C(λ) g p L p (R d v ;H s p (R d x )) . (64) 
This finishes the proof. Now we study the complete equation 22) and ( 23)). From the previous results we obtain (see also Definition 6) Theorem 10 Let s ∈ (2/3, 1) and p be such that p(s

λψ(z) - 1 2 v ψ(z) -v • D x ψ(z) -F (z) • D v ψ(z) = g(z), z = (x, v) ∈ R 2d , (65) 
assuming that F ∈ L p (R d v ; H s p (R d x )) (cf. (
-1 3 ) > 2d. Assume that g, F ∈ L p (R d v ; H s p (R d x )).
Then there exists

λ 0 = λ 0 (s, p, d, F L p (R d v ;H s p (R d x )
) > 0 such that for any λ > λ 0 there exists a unique solution ψ = ψ λ ∈ X p,s to (65) and moreover

λ ψ L p (R d v ;H s p (R d x )) + √ λ D v ψ L p (R d v ;H s p (R d x )) + D 2 v ψ L p (R d v ;H s p (R d x )) (66) 
+ v • D x ψ L p (R d v ;H s p (R d x )) ≤ C g L p (R d v ;H s p (R d x )) with C = C(s, p, d, F L p (R d v ;H s p (R d x ) ) > 0.
We also have

sup v∈R d D v ψ(•, v) H s p (R d ) ≤ C(λ) g L p (R d v ;H s p (R d x )) , with C(λ) → 0 as λ → ∞. (67) 
Moreover, ψ ∈ C 1 b (R 2d ), i.e., ψ is bounded on R 2d and there exist the classical derivatives D x ψ and D v ψ which are bounded and continuous on R 2d ; we also have with

C(λ) → 0 as λ → ∞ ψ ∞ + D x ψ L p (R 2d ) + D x ψ ∞ + D v ψ ∞ ≤ C(λ) g L p (R d v ;H s p (R d x )) . (68) 
Finally, D v ψ ∈ W 1,p (R 2d ) and

D v ψ W 1,p (R 2d ) ≤ c(λ) g L p (R d v ;H s p (R d x )) , c = c(λ) → 0 as λ → ∞. (69) 
Proof. First note that, since p > 2d, the boundedness of ψ follows by the Sobolev embedding (recall also (28)). Similarly the second estimate in (68) follows from (69). We consider the Banach space

Y = L p (R d v ; H s p (R d x )
) and use an argument similar to the one used in the proof of Proposition 5 in [START_REF] Da Prato | Strong uniqueness for stochastic evolution equations in Hilbert spaces perturbed by a bounded measurable drift[END_REF]. Introduce the operator

T λ : Y → Y , T λ f := F • D v (G λ f ), f ∈ Y,
where G λ is defined in (36). It is not difficult to check that T λ f ∈ Y for f ∈ Y . Indeed by Lemma 8 we get

R d T λ f (•, v) p H s p (R d ) dv ≤ sup v∈R d D v (G λ f )(•, v) p H s p (R d ) R d F (•, v) p H s p (R d ) dv ≤ C(λ) f p L p (R d v ;H s p (R d x )) F p L p (R d v ;H s p (R d x )) .
It is clear that T λ is linear and bounded. Moreover we find easily that there exists λ 0 > 0 such that for any λ > λ 0 we have that the operator norm of T λ is less than 1/2. Let us fix λ > λ 0 . Since T λ is a strict contraction, there exists a unique solution

f ∈ Y to f -T λ f = g. ( 70 
)
We write f = (I -T λ ) -1 g ∈ Y .

Uniqueness. Let ψ 1 and ψ 2 be solutions in X p,s . Set w = ψ 1 -ψ 2 . We know that

λw(z) - 1 2 v w(z) -v • D x w(z) -F (z) • D v w(z) = 0. We have λw -1 2 v w -v • D x w = f ∈ Y .
By uniqueness (see Theorem 7) we get that w = G λ f . Hence, for z a.e.,

0 = f (z) -F (z) • D v w(z) = f (z) -F (z) • D v G λ f (z).
Since T λ is a strict contraction we obtain that f = 0 and so ψ 1 = ψ 2 . Existence. It is not difficult to prove that

ψ = ψ λ = G λ (I -T λ ) -1 g, (71) 
is the unique solution to (65).

Regularity of ψ and estimates. All the assertions follow easily from (71) since (I -T λ ) -1 g ∈ Y and we can apply Theorem 7, Lemmas 8 and 9.

In the Appendix we will also present a result on the stability of the PDE (65), see Lemma 40 .

Regularity of the characteristics

We will prove existence of a stochastic flow for the SDE (2) assuming Hypothesis 1.

We can rewrite our SDE as follows. Set Z t = (X t , V t ) ∈ R 2d , z 0 = (x 0 , v 0 ) and introduce the functions b(x, v) = A • z + B(z) : R 2d → R 2d , where

A = 0 I 0 0 , R = 0 I , R R * = Q = 0 0 0 I , B = RF = 0 F : R 2d → R 2d .
(72) With this new notation, (2) can be rewritten as

dZ t = b(Z t ) dt + R • dW t Z 0 = z 0 (73) or dZ t = A • Z t + B(Z t ) dt + R • dW t Z 0 = z 0 . ( 74 
)
We have

X t = x 0 + t 0 V s ds = x 0 + tv 0 + t 0 (t -s)F (X s , V s ) ds + t 0 W s ds , V t = v 0 + t 0 F (X s , V s ) ds + W t . (75) 

Strong well posedness

To prove strong well posedness for (73) we will also use solutions U with values in R 2d of

λU (z) - 1 2 Tr QD 2 U (z) -Az, DU (z) -B(z), DU (z) = B(z), i.e., λU (z) -LU (z) = B(z) (76) 
(defined componentwise at least for λ large enough). Note that U = 0 ũ where

λũ(z) -Lũ(z) = F (z)
is again defined componentwise (ũ : R 2d → R d ).

Remark 11 In the following, according to (72), we will say that the singular diffusion Z t (the noise acts only on the last d coordinates {e d+1 , . . . , e 2d }) or the associated Kolmogorov operator We collect here some preliminary results, which we will later need. Recall the OU process

Lf (z) = 1 2 v f (z) + b(z), Df (z) , b(z) = Az + B(z),
dL t = AL t dt + R dW t L 0 = z ∈ R 2d , i.e., L t = L z t = e tA z + t 0 e (t-s)A R dW s . (77) 
Using the fact that L t is hypoelliptic, for any t > 0, one gets that the law of L t is equivalent to the Lebesgue measure in R 2d (see for example the proof of the next lemma). We also have the following result.

Lemma 12 Let (L z t ) be the OU process solution of (77). Let f : R 2d → R belong to L q (R 2d ) for q > 2d. Then there exists a constant C depending on q, d and T such that

sup z∈R 2d E T 0 f (L z s ) ds ≤ C f L q (R 2d ) . (78) 
Proof. We need to compute

E T 0 f (L z s ) ds = T 0 P s f (z) ds ,
where P t is the Ornstein-Uhlenbeck semigroup introduced in (33). By changing variable and using the Hölder inequality we find, for t ∈ [0, T ], z ∈ R 2d ,

|P t f (z)| = c d R 2d f (e tA z + Q t y)e -|y| 2 2 dy ≤ c q R 2d |f (e tA z + Q t y)| q dy 1/q = c q (det(Q t )) 1/2q R 2d |f (e tA z + w)| q dw 1/q = c q (det(Q t )) 1/2q f L q (R 2d ) .
with c q independent of z. We now have to study when

t 0 1 (det(Q s )) 1/2q ds < ∞ . ( 79 
)
By a direct computation for s → 0

+ (det(Q s )) 1/2q ∼ c(s 4d ) 1/2q ,
hence the result follows for q > 2d.

We state now the classical Khas'minskii lemma for an OU process. The original version of this lemma ( [START_REF] Khas'minskii | On positive solutions of the equation Au+V u = 0[END_REF], or [Sz98, Section 1, Lemma 2.1]) is stated for a Wiener process, but the proof only relies on the Markov property of the process, so that its extension to this setting requires no modification.

Lemma 13 (Khas'minskii 1959) Let (L z t ) be our 2d-dimensional OU process starting from z at time 0 and f : R 2d → R be a positive Borel function. Then, for any T > 0 such that

α = sup z∈R 2d E T 0 f L z t dt < 1 , (80) 
we also have

sup z∈R 2d E exp T 0 f L z t dt < 1 1 -α . ( 81 
)
We now introduce a generalization of the previous Khas'minskii lemma which we will use to prove the Novikov condition, allowing us to apply Girsanov's theorem.

Proposition 14 Let (L t ) be the OU process solution of (77). Let f : R 2d → R belong to L q (R 2d ) for q > 2d. Then, there exists a constant K f depending on d, q, T and continuously depending on f L q (R 2d ) such that

sup z∈R 2d E exp T 0 |f (L z s )|ds = K f < ∞ . ( 82 
)
Proof. From Lemma 12, for any a > 1 s.t. q/a > 2d we get sup

z∈R 2d E T 0 |f | a (L z s ) ds ≤ C f a L q (R 2d ) . Setting ε = (C f a L q ) -1 ∧ 1, we apply Young's inequality: |f (z)| ≤ a |f (z)| a + C a-1 a
and Khas'minskii's Lemma 13 replacing f with ε a |f | a to get sup

z∈R 2d E exp T 0 |f (L z s )|ds ≤ sup z∈R 2d E exp T 0 ε a |f (L z s )| a ds e T cε,a ≤ 1 1 -α e CT <∞.
The next result can be proved by using the Girsanov theorem (cf. [START_REF] Ikeda | Stochastic Differential Equations and Diffusion Processes[END_REF] and [START_REF] Liptser | Statistics of Random Processes I. General Theory[END_REF]).

Theorem 15 Suppose that in (73) we have F ∈ L p (R 2d ; R d ) with p > 4d. Then the following statements hold.

(i) Equation ( 73) is well posed in the weak sense.

(ii) For any z ∈ R 2d , T > 0 the law in the space of continuous functions C([0, T ]; R 2d ) of the solution Z = (Z t ) = (Z z t ) to the equation ( 73) is equivalent to the law of the OU process L = (L t ) = (L z t ). (iii) For any t > 0, z ∈ R 2d , the law of Z t is equivalent to the Lebesgue measure in R 2d .

Proof. (i) Existence. We argue similarly to the proof of Theorem IV.4.2 in [START_REF] Ikeda | Stochastic Differential Equations and Diffusion Processes[END_REF]. Let T > 0. Starting from an Ornstein-Uhlenbeck process (cf. (77))

L t = L z t = z + t 0 AL s ds + RW t , t ≥ 0
defined on a stochastic basis (Ω, F, (F t ), P) on which it is defined an R d -valued Wiener process (W t ) = W , we can define the process

H t := W t - t 0 F (L r ) dr , t ∈ [0, T ]. ( 83 
)
Since p > 4d, Proposition 14 with f = F 2 provides the Novikov condition ensuring that the process

Φ t = exp t 0 F (L s ), dW s - 1 2 t 0 |F (L s )| 2 ds , t ∈ [0, T ],
is an F t -martingale. Then, by the Girsanov theorem (H t ) t∈[0,T ] is a d-dimensional Wiener process on (Ω, F T , (F s ) s≤T , Q), where Q is the probability measure on (Ω, F T ) having density Φ = Φ T with respect to P. We have that on the new probability space

L t = L z t = z + t 0 AL s ds + t 0 RF (L s ) ds + RH t , t ∈ [0, T ] (cf. ( 72 
)). Hence L = (L t ) is a solution to (73) on (Ω, F T , (F s ) s≤T , Q).
Uniqueness. To prove weak uniqueness we use some results from [START_REF] Liptser | Statistics of Random Processes I. General Theory[END_REF]. First note that the process

V t = v 0 + t 0 F (X s , V s ) ds + W t (84) 
(cf. ( 75)) is a process of diffusion type according to Definition 7 in page 118 of [LS01, Section 4.2]. Indeed, since X t = x 0 + t 0 V s ds we have

V t = v 0 + t 0 F x 0 + s 0 V r dr, V s ds + W t and the process (b s (V )) s∈[0,T ] = (F (x 0 + s 0 V r dr, V s )) s∈[0,T ] is (F V t )-adapted (here F V t is the σ-algebra generated by {V s , s ∈ [0, t]}).
We can apply to V = (V t ) Theorem 7.5 on page 257 of [START_REF] Liptser | Statistics of Random Processes I. General Theory[END_REF] (see also paragraph 7.2.7 in [START_REF] Liptser | Statistics of Random Processes I. General Theory[END_REF]): since T 0 |b s (V )| 2 ds < ∞, P-a.s., we obtain that

µ V ∼ µ W on B C([0, T ]; R d ) ,
i.e. the laws of V = (V t ) t∈[0,T ] and W = (W t ) t∈[0,T ] are equivalent. Moreover, by [LS01, Theorem 7.7], the Radon-Nykodim derivative µ

V µ W (x), x ∈ C([0, T ]; R d ), verifies µ V µ W (W ) = exp T 0 b s (W ), dW s - 1 2 T 0 |b s (W )| 2 ds .
It follows that, for any Borel set

B ∈ B(C([0, T ]; R d )), E 1 B (V ) = E µ W 1 B µ V µ W = E 1 B (W ) exp T 0 b s (W ), dW s - 1 2 T 0 |b s (W )| 2 ds ;
this shows easily that uniqueness in law holds.

Clearly (iii) follows from (ii). Let us prove (ii).

(ii) The processes L = (L t ) and Z = (Z t ), t ∈ [0, T ], satisfy the same equation ( 73) in (Ω, F, F t , Q, (H t )) and (Ω, F, F t , P, (W t )) respectively. Therefore, by weak uniqueness, the laws of L and Z on C([0, T ]; R 2d ) are the same (under the probability measures Q and P respectively). Hence, for any Borel set J ⊂ C([0, T ]; R 2d ), we have

E[1 J (Z)] = E[1 J (L) Φ] .
Since W t = ( L t , e d+1 , . . . , L t , e 2d ) we see that each W s is measurable with respect to the σ-algebra generated by the random variable L s , s ≤ T . By considering L as a random variable with values in C([0, T ]; R 2d ), we obtain that

Φ = exp[G(L)]
for some measurable function

G : M = C([0, T ]; R 2d ) → R. Using the laws µ Z of Z and µ L of L we find M 1 J (ω)µ Z (dω) = E[1 J (Z)] = E 1 J (L) exp[G(L)] = M 1 J (ω) exp[G(ω)]µ L (dω) . Finally note that |G(ω)| < ∞, for any ω ∈ M µ L -a.s. (indeed M |G(ω)|µ L (dω) = E[|G(L)|] < ∞).
It follows that exp[G(ω)] > 0, for any ω ∈ M µ L -a.s., and this shows that µ L is equivalent to µ Z .

We can now prove that the result of Lemma 12 holds also replacing the OU process L t with Z t .

Lemma 16 Let Z z t be a solution of (73). Let f : R 2d → R belong to L q (R 2d ) for some q > 2d. Then there exists a constant C depending on q, d and T such that

sup z∈R 2d E T 0 f (Z z s ) ds ≤ C f L q (R 2d ) (85) 
and a constant K f depending on q, d, T and continuously depending on f L q (R 2d ) for which

sup z∈R 2d E exp T 0 f (Z z s ) ds ≤ K f . (86) 
Proof. Recall that F ∈ L p (R 2d ) for p > 4d. As seen in the previous proof, the laws of L t and Z t are the same under the Q and P respectively. Then, applying Hölder's inequality with 1/a + 1/a = 1 we have

E P T 0 f (Z s ) ds = E Q T 0 f (L s ) ds ≤ E P T 0 f a (L s ) ds 1/a E P Φ a 1/a .
Taking a > 1 small enough so that q/a > 2d, we can apply Lemma 12 to |f | a and control the first expectation on the right hand side with a constant times f L q (R 2d ) .

Then we write

Φ a = exp T 0 a F (L s ), dW s - 1 2 T 0 |a F (L s )| 2 ds + (a ) 2 -a 2 T 0 |F (L s )| 2 ds ,
which has finite expectation due to Proposition 14. Both these estimates are uniform in z, so that (85) follows. Similarly, we have

E P exp T 0 f (Z s ) ds ≤ E P exp 2 T 0 f (L s ) ds 1/2 E P Φ 2 1/2 .
Both terms on the right hand side are finite due to Proposition 14: this proves (86).

Recall that we are always assuming Hypothesis 1.

Lemma 17 Any process (Z t ) which is solution of the SDE (73) has finite moments of any order, uniformly in t ∈ [0, T ]:

for any q ≥ 2 E |Z z t | q ≤ C z,q,d,T < ∞ . (87) 
Proof. Recall that, setting

Z z t = Z t , Z t = z + t 0 F (Z s ) ds + t 0 AZ s ds + t 0 R dW s .
It follows from (86) that for any q ≥ 1, E | T 0 F (Z t ) dt| q ≤ C. Using this bound, the Burkholder inequality for stochastic integrals and the Grönwall lemma we obtain the assertion.

In the proof of strong uniqueness of solutions of the SDE (73) we will have to deal with a new SDE with a Lipschitz drift coefficient, but a diffusion which only has derivatives in L p . However, following un idea of Veretennikov [START_REF] Veretennikov | Strong solutions and explicit formulas for solutions of stochastic integral equations[END_REF], we can deal with increments of the diffusion coefficient on different solutions by means of the process A t defined in (88). The following lemma generalizes Veretennikov's result to our degenerate kinetic setting and even provides bounds on the exponential of the process A t . It will be a key element to prove continuity of the flow associated to (73) and will also be used in subsection 4.3 to study weak derivatives of the flow.

Lemma 18 Let Z t , Y t be two solutions of (73) starting from z, y ∈ R 2d respectively, U : R 2d → R 2d , U ∈ X p,s ∩ C 1 b (see Definition 6), and set

A t = t 0 1 {Zs =Ys} [DU (Z s ) -DU (Y s )]R 2 HS |Z s -Y s | 2 ds , (88) 
where • HS denotes the Hilbert-Schmidt norm. Then, A t is a well-defined, real valued, continuous, adapted, increasing process such that

E[A T ] < ∞, for every t ∈ [0, T ] t 0 DU (Z z s ) -DU (Y y s ) R 2 HS ds = t 0 Z z s -Y y s 2 dA s ( 89 
)
and for any k ∈ R, uniformly with respect to the initial conditions z, y:

sup z,y∈R 2d E e kA T < ∞ . ( 90 
) Proof. Recall that B = 0 F and DU (Z s )-DU (Y s ) R 2 HS = D v ũ(Z s )-D v ũ(Y s ) 2 .
We have

D v ũ(Z s ) -D v ũ(Y s ) = 2d i=1 (Z s -Y s ) i 1 0 D i D v ũ(rZ s + (1 -r)Y s ) dr ≤ |Z s -Y s | 1 0 DD v ũ rZ s + (1 -r)Y s dr .
Set Z r t = rZ t + (1 -r)Y t (the process (Z r t ) t≥0 depends on r ∈ [0, 1]). We will first prove that

E 1 0 dr t 0 DD v ũ(Z r s ) 2 ds < ∞ , t > 0 . (91) 
By setting F r s = [rF (Z s ) + (1 -r)F (Y s )] and z r = rz + (1 -r)y, we obtain, for any r ∈ [0, 1], 

Z r t = z r + t 0 0 F r s ds + 0 W t + t 0 AZ r s ds . Since T 0 |F r s | 2 ds ≤ C T 0 |F (Z s )| 2 + |F (Y s )| 2 ds,
E exp k T 0 |F r s | 2 ds ≤ C k < ∞ , (92) 
where the constant C k depends on k, p, T and F L p (R 2d ) , but is uniform in z, y and r. We can use again the Girsanov theorem (cf. the proof of Theorem 15). The process

Wt := W t + t 0 F r s dr , t ∈ [0, T ]
is a d-dimensional Wiener process on (Ω, (F s ) s≤T , F T , Q), where Q is the probability measure on (Ω, F T ) having the density ρ r with respect to P,

ρ r = exp T 0 -F r s , dW s - 1 2 T 0 |F r s | 2 ds .
Recalling the Ornstein-Uhlenbeck process L t (starting at z r ), i.e.,

L t = e tA z r + W A (t), where W A (t) = t 0 e (t-s)A R dW s , (93) 
we have:

Z r t = L t + t 0 e (t-s)A R F r s ds . Hence Z r t = e tA z r + t 0 e (t-s)A d Ws
is an OU process on (Ω, (F s ) s≤T , F T , ρ r P).

We now find, by the Hölder inequality, for some a > 1 such that 1/a + 1/a = 1,

E ρ -1/a r ρ 1/a r t 0 |DD v ũ(Z r s )| 2 ds ≤ c T E ρ r t 0 |DD v ũ(Z r s )| 2a ds 1/a E[ρ -a /a r ] 1/a (94) ≤ C T E ρ r t 0 |DD v ũ(Z r s )| 2a ds 1/a
, for any t ∈ [0, T ]. Observe that the bound on the moments of ρ r is uniform in the initial conditions z, y ∈ R 2d due to (92). Setting f (z) = |DD v ũ(z)| 2a and using the Girsanov Theorem, assertion (91) follows from Lemma 12 if we fix a > 1 such that q = p/2a > 2d. Therefore, the process A t is well defined and 89) and the other properties of A t follow.

E[A t ] < ∞ for all t ∈ [0, T ]. (
To prove the exponential integrability of the process A t we proceed in a way similar to [FF13a, Lemma 4.5]. Using the convexity of the exponential function we get

E e kA T ≤ E exp k T 0 1 0 |DD v ũ(Z r s )| 2 drds ≤ 1 0 E exp k T 0 |DD v ũ(Z r s )| 2 ds dr
and we can continue as above (superscripts denote the probability measure used to take expectations) sup z,y

E P e kA T ≤ sup z,y 1 0

E P ρ -1/a r ρ 1/a r exp k T 0 |DD v ũ(Z r s )| 2 ds dr ≤ C T sup z,y 1 0 E Q exp ak T 0 |DD v ũ(Z r s )| 2 ds 1/a dr ≤ C T sup z,y 1 0 E P exp ak T 0 |DD v ũ(L s )| 2 ds 1/a dr .
The last integral is finite due to Lemma 14 because p/2 > 2d. The proof is complete.

Proposition 19 (Itô formula) If ϕ : R 2d → R belongs to X p,s ∩ C 1 b and Z t is a solution of (73), for any 0 ≤ s ≤ t ≤ T the following Itô formula holds:

ϕ(Z t ) = ϕ(Z s ) + t s b(Z r ) • Dϕ(Z r ) + 1 2 ∆ v ϕ(Z r ) dr + t s D v ϕ(Z r ) dW r . ( 95 
)
Proof. Note that we can use (iii) in Theorem 15 to give a meaning to the critical term t s ∆ v ϕ(Z r ) dr. The result then follows approximating ϕ with regular functions and using Lemma 16.

Let

ϕ ε ∈ C ∞ c → ϕ in X p,s
. ϕ ε satisfy the assumptions of the classical Itô formula, which provides an analogue of (95) for ϕ ε (Z t ). For any fixed t, the random variables ϕ ε (Z t ) → ϕ(Z t ) P-almost surely. Using that Dϕ is bounded and almost surely F (Z r ) and AZ r are in L 1 (0, T ) (this follows by Lemma 16 and Lemma 17 respectively), the dominated convergence theorem gives the convergence of the first term in the Lebesgue integral. For the second term we use Lemma 16 with f = ∆ v ϕ ε -∆ v ϕ (recall that p > 6d):

E t s ∆ v ϕ ε (Z r ) -∆ v ϕ(Z r ) dr ≤ C ∆ v ϕ ε -∆ v ϕ L p (R 2d ) → 0 .
In the same way, one can show that E t s |D v ϕ ε (Z r )-D v ϕ(Z r )| 2 dr converges to zero, which implies the convergence of the stochastic integral by the Itô isometry.

Remark 20 Using the boundedness of ϕ, it is easy to generalize the above Itô formula (95) to ϕ a (Z t ) for any a ≥ 2.

We can finally prove the well-posedness in the strong sense of the degenerate SDE (73). A different proof of this result in a Hölder setting is contained in [CdR], but no explicit control on the dependence on the initial data is given there, so that a flow cannot be constructed. See also the more recent results of [START_REF] Wang | Degenerate SDEs in Hilbert Spaces with Rough Drifts[END_REF]. We here present a different, and in some sense more constructive, proof. This approach, based on ideas introduced in [FGP10], [START_REF] Krylov | Strong solutions to stochastic equations with singular time dependent drift[END_REF], [START_REF] Fedrizzi | Hölder Flow and Differentiability for SDEs with Nonregular Drift[END_REF], will even allow us to obtain some regularity results on certain derivatives of the solution. We will use Theorem 10 from Section 3.3, which provides the regularity X p,s ∩ C 1 b (R 2d ) of solutions of (76).

Theorem 21 Equation ( 73) is well posed in the strong sense.

Proof. Since we have weak well posedness by (i) of Theorem 15, the Yamada-Watanabe principle provides strong existence as soon as strong uniqueness holds. Therefore, we only need to prove strong uniqueness. This can be done by using an appropriate change of variables which transforms equation ( 73) into an equation with more regular coefficients. This method was first introduced in [START_REF] Flandoli | Well-posedness of the transport equation by stochastic perturbation[END_REF], where it is used to prove strong uniqueness for a non degenerate SDE with a Hölder drift coefficient.

Here, the SDE is degenerate and we only need to regularize the second component of the drift coefficient, F (•), which is not Lipschitz continuous. We therefore introduce the auxiliary PDE (76) with λ large enough such that

U λ L ∞ (R 2d ) + DU λ L ∞ (R 2d ) < 1/2 (96)
holds (see ( 68)). In the following we will always use this value of λ and to ease notation we shall drop the subscript for the solution U λ of (76), writing U λ = U.

Let Z t be one solution to (73) starting from z ∈ R 2d . Since

Z t = z + t 0 B(Z s ) ds + t 0 AZ s ds + R W t ,
and U ∈ X p,s ∩ C 1 b (see Theorem 10), by the Itô formula of Proposition 19 we have

U (Z t ) = U (z) + t 0 DU (Z s )R dW s + t 0 LU (Z s ) ds = U (z) + t 0 DU (Z s )R dW s + λ t 0 U (Z s ) ds - t 0 B(Z s ) ds .
Using the SDE to rewrite the last term we find

U (Z t ) = U (z) + t 0 DU (Z s )R dW s + λ t 0 U (Z s ) ds -Z t + z + t 0 AZ s ds + R W t
and so

Z t = U (z) -U (Z t ) + t 0 DU (Z s )R dW s + λ t 0 U (Z s )ds + z + t 0 AZ s ds + R W t . ( 97 
)
Let now Y t be another solution starting from y ∈ R 2d and let

γ(x) = x + U (x), x ∈ R 2d . ( 98 
)
We have γ(z)-γ(y) = z -y +U (z)-U (y), and so

|z -y| ≤ |U (z)-U (y)|+|γ(z)-γ(y)|. Since we have chosen λ such that DU L ∞ (R 2d ) < 1/2, there exist finite constants C, c > 0 such that c|γ(z) -γ(y)| ≤ |z -y| ≤ C|γ(z) -γ(y)|, ∀z, y ∈ R 2d . ( 99 
)
We find dγ

(Z t ) = λU (Z t ) + AZ t dt + DU (Z t ) + I R • dW t (100)
and

γ(Z t ) -γ(Y t ) = z -y + U (z) -U (y) + t 0 DU (Z s ) -DU (Y s ) R • dW s (101) + λ t 0 U (Z s ) -U (Y s ) ds + t 0 A(Z s -Y s ) ds .
For a ≥ 2, let us apply Itô formula to

γ(Z t ) -γ(Y t ) a = 2d i=1 γ(Z t ) -γ(Y t ) 2 i a/2 : d γ(Z t ) -γ(Y t ) a = a γ(Z t ) -γ(Y t ) a-2 γ(Z t ) -γ(Y t ) • d γ(Z t ) -γ(Y t ) + a 2 γ(Z t ) -γ(Y t ) a-4 2d i,j=1 d k=1 (a -2) γ(Z t ) -γ(Y t ) i γ(Z t ) -γ(Y t ) j + δ i,j γ(Z t ) -γ(Y t ) 2 × DU (Z t ) -DU (Y t ) R k,i DU (Z t ) -DU (Y t ) R k,j dt ≤ a γ(Z t ) -γ(Y t ) a-2 γ(Z t ) -γ(Y t ) • DU (Z t ) -DU (Y t ) R • dW t + γ(Z t ) -γ(Y t ) • λ U (Z t ) -U (Y t ) + A(Z t -Y t ) dt + C a,d DU (Z t ) -DU (Y t ) R 2 HS dt .
Note that Z t has finite moments of all orders, and U is bounded, so that also the process γ(Z t ) has finite moments of all orders. Using also that DU is a bounded function, we deduce that the stochastic integral is a martingale M t :

M t = t 0 a γ(Z s ) -γ(Y s ) a-2 γ(Z s ) -γ(Y s ) • DU (Z s ) -DU (Y s ) R • dW s
As in [START_REF] Krylov | Strong solutions to stochastic equations with singular time dependent drift[END_REF] and [START_REF] Fedrizzi | Pathwise uniqueness and continuous dependence for SDEs with non-regular drift[END_REF] we now consider the following process

B t = t 0 1 {Zs =Ys} [DU (Z s ) -DU (Y s )]R 2 HS |γ(Z s ) -γ(Y s )| 2 ds ≤ C 2 A t , (102) 
where we have used the equivalence (99) between |Z t -Y t | and |γ(Z t ) -γ(Y T )| and A t is the process defined by (88) and studied in Lemma 18. Just as the process A t , also B t has finite moments, and even its exponential has finite moments. With these notations at hand we can rewrite

d γ(Z t ) -γ(Y t ) a ≤ a γ(Z t ) -γ(Y t ) a-2 γ(Z t ) -γ(Y t ) • λ U (Z t ) -U (Y t ) + A(Z t -Y t ) dt + dM t + C a,d γ(Z t ) -γ(Y t ) a dB t .
Again by Itô formula we have

d e -C a,d Bt γ(Z t ) -γ(Y t ) a = -C a,d e -C a,d Bt γ(Z t ) -γ(Y t ) a dB t (103) + e -C a,d Bt a γ(Z t ) -γ(Y t ) a-2 γ(Z t ) -γ(Y t ) • λ U (Z t ) -U (Y t ) + A(Z t -Y t ) dt + dM t + C a,d γ(Z t ) -γ(Y t ) a dB t .
The term e -C a,d Bt dM t is still the differential of a zero-mean martingale. Integrating and taking the expected value we find

E e -C a,d Bt γ(Z t ) -γ(Y t ) a = γ(z) -γ(y) a + E t 0 e -C a,d Bs a γ(Z s ) -γ(Y s ) a-2 × γ(Z s ) -γ(Y s ) • λ U (Z s ) -U (Y s ) + A(Z s -Y s ) ds .
Using again the equivalence (99) between |Z t -Y t | and |γ(Z t ) -γ(Y T )| and the fact that U is Lipschitz continuous, this finally provides the following estimate:

E e -C a,d Bt Z t -Y t a ≤ C |z -y| a + t 0 E e -C a,d Bs Z s -Y s a ds .
By Grönwall's inequality, there exists a finite constant C such that

E e -C a,d Bt Z t -Y t a ≤ C z -y a . (104) 
Using that B t is increasing and a.s. B T < ∞, taking z = y we get for any fixed t ∈ [0, T ] that P Z t = Y t = 0. Strong uniqueness follows by the continuity of trajectories. This completes the proof.

Corollary 22 Using the finite moments of the exponential of the process B t , we can also prove that for any a ≥ 2,

E Z t -Y t a ≤ C z -y a . ( 105 
)
Proof. Using Hölder's inequality and for an appropriate constant c, we have

E Z t -Y t a = E e cBt e -cBt Z t -Y t a ≤ C E e -2cBt Z t -Y t 2a 1/2 ≤ C z -y a .

Stochastic Flow

Many of the proofs of results contained in this section follow closely the proofs of [Ku84, Chapter II.2] or [Ku90, Chapter 4.5]. To avoid reporting lengthy computations from those references, we will often content ourselves with describing how to adapt the classical proofs to our setting.

We stress that the main ingredient is the quantitative control on the continuous dependence on the initial data of solutions of the SDE (73), which was already obtained in Corollary 22.

We will repeatedly use the transformation γ introduced in (98) and the Itô formula (100), which we rewrite as

dγ(Z z t ) = b(Z t ) dt + σ(Z t ) • dW t ,
where b(z) = λU (z) + Az is Lipschitz continuous and σ(z) = DU (z) + I 2d R is bounded.

Continuity

Lemma 23 Let a be any real number. Then there is a positive constant C a independent of t ∈ [0, T ] and z ∈ R 2d such that

E 1 + Z z t 2 a ≤ C a,d 1 + |z| 2 a . (106) 
Proof. Using the boundedness of the solution U of the PDE (76) (see ( 96)) one can show the equivalence

c(1 + |z| 2 ) ≤ 1 + |γ(z)| 2 ≤ C(1 + |z| 2 ) . Set γ t = γ(Z z t ). Then, it is enough to prove that E 1 + |γ t | 2 a ≤ C a,d 1 + |γ(z)| 2 a . Set f (z) := (1 + |z| 2 ).
The idea is to apply Itô formula to g(γ t ), where g(z) = f a (z). Since

∂g ∂z i (z) = 2af a-1 (z)z i , ∂ 2 g ∂z i ∂z j (z) = 4a(a -1)f a-2 (z)z i z j + 2af a-1 (z)δ i,j ,
we see that

g(γ t ) -g(γ(z)) = 2a t 0 f a-1 (γ s ) γ s • σ(γ s ) • dW s + 2a t 0 f a-1 (γ s ) γ s • b(γ s ) ds (107) + 2d i,j,k=1 t 0 2af a-2 (γ s ) (a -1)γ i s γ j s + δ i,j f (γ s ) σ k,i (γ s ) σ k,j (γ s ) ds.
Here we have used the relation d γ t , γ t = σ(γ t ) σ t (γ t ) dt . Since γ t has finite moments, the first term on the right hand side of (107) is a martingale with zero mean. Note that

f (z) ≥ 1, so that f a-1 ≤ f a and |z| ≤ f 1/2 (z). Moreover, since σ is bounded and b is Lipschitz continuous, | b(z)| ≤ C(1 + |z|) ≤ Cf 1/2 (z).
Using all this, we can see that the second and third term on the right hand side of (107) are dominated by a constant times t 0 g(γ s ) ds. Therefore, taking expectations in (107) we have

E g(γ t ) -g(γ 0 ) ≤ C a,d t 0 E g(γ s ) ds ,
and the result follows by Grönwall's lemma.

Proposition 24 Let Z z t be the unique strong solution to the SDE (73) given by Theorem 21 and starting from the point z ∈ R 2d . For any a > 2, s, t ∈ [0, T ] and z, y ∈ R 2d we have

E Z z t -Z y s a ≤ C a,d,λ,T |z -y| a + 1 + |z| a + |y| a |t -s| a/2 . ( 108 
)
Proof. Assume t > s. It suffice to show that

E Z z s -Z y s a ≤ C|z -y| a (109) E Z z t -Z z s a ≤ C 1 + |z| a |t -s| a/2 . ( 110 
)
The first inequality was obtained in Corollary 22. To prove the second inequality we use the equivalence (99) between Z t and γ(Z t ). We use the Itô formula (100) for γ(Z t ) and γ(Z s ): we can control the differences of the first and last term using the fact that U and DU are bounded, together with Burkholder's inequality

E Z z t -Z z s a ≤ CE γ(Z z t ) -γ(Z z s ) a ≤ C a,d t s λU 2 ∞ dr a/2 + E t s AZ z r dr a + DU ∞ E R(W t -W s )
a and for the linear part we use Hölder's inequality and Lemma 23:

E t s AZ z r dr a ≤ (t -s) a/2 E t s |AZ z r | a dr ≤ C(t -s) a/2 t s (1 + |z 2 |) a/2 dr .
Applying Kolmogorov's regularity theorem (see [Ku84, Theorem I.10.3]), we immediately obtain the following Theorem 25 The family of random variables (Z z t ), t ∈ [0, T ], z ∈ R d , admits a modification which is locally α-Hölder continuous in z for any α < 1 and β-Hölder continuous in t for any β < 1/2.

From now on, we shall always use the continuous modification of Z provided by this theorem.

Injectivity and Surjectivity

The proofs of the injectivity and surjectivity are inspired by [START_REF] Kunita | Stochastic differential equations and stochastic flows of diffeomorphisms[END_REF] and are similar to the ones given in Section 5 of [START_REF] Fedrizzi | Hölder Flow and Differentiability for SDEs with Nonregular Drift[END_REF]. Thus proofs of the main results in this section are given in Appendix.

To obtain the injectivity of the flow, we review the computations of Proposition 24: we now want to allow the exponent a to be negative. The proofs of the following two lemmas are given in Appendix.

Lemma 26 Let a be any real number and ε > 0. Then there is a positive constant C a,d (independent of ε) such that for any t ∈ [0, T ] and z, y ∈ R 2d

E ε + Z z t -Z y t 2 a ≤ C a,d ε + |z -y| 2 a . (111) 
Corollary 27 Let ε tend to zero in Lemma 26. Then, by monotone convergence, we have:

E Z z t -Z y t a ≤ C a,d |z -y| a . (112) 
Considering the case a < 0 we get that z = y ⇒ Z z t = Z y t a.s. for any t ∈ [0, T ].

Kunita in [START_REF] Kunita | Stochastic differential equations and stochastic flows of diffeomorphisms[END_REF] calls the previous property "weak injectivity". This intermediate result allows to obtain the following lemma.

Lemma 28 For t ∈ [0, T ] set η t (z, y) := |Z z t -Z y t | -1 .
Then for any a > 2 there exists a constant C = C a,d,λ,T such that for any δ > 0

E η t (z, y) -η t (z , y ) a ≤ C δ -2a |z -z | a + |y -y | a + 1 + |z| a + |z | a + |y| a + |y | a |t -t | a/2 holds for any t, t ∈ [0, T ] and |z -z | ≥ δ, |y -y | ≥ δ.
Theorem 29 The map Z t : R 2d → R 2d is one to one, for any t ∈ [0, T ] almost surely.

Proof. Take a/2 > 2(d+1) in Lemma 28. Kolmogorov's theorem states that

η t (z, y) is continuous in (t, z, y) in the domain {(t, z, y)| t ∈ [0, T ], |z-y| ≥ δ}. Since δ is arbitrary, it is also continuous in the domain D := {(t, z, y)| t ∈ [0, T ], z = y}.
Note that D has at most two connected components, both intersecting the hyperplane {t = 0}. Then, since η 0 is finite, η t must be finite on all of D. Therefore, if z = y, Z z t = Z y t , and the theorem is proved. Surjectivity will follow from the next lemma which is similar to [Ku84, Lemma II.4.2]. Theorem 31 below can be proved using an homotopy argument, as in [START_REF] Kunita | Stochastic differential equations and stochastic flows of diffeomorphisms[END_REF]pag. 226]. Both proofs will be given in Appendix.

Lemma 30 Let R 2d be the one point compactification (Alexandrov compactification) of R 2d . For z ∈ R 2d \{0} set z := z/|z| 2 , z := ∞ for z = 0 and define for every t ∈ [0, T ]

η t ( z) :=    1 1 + |Z z t | if z ∈ R 2d , 0 if z = 0 .
Then, for any positive a there exists a constant C = C a,d,λ,T such that

E η t ( z) -η t ( y) a ≤ C | z -y| a + |t -t | a/2 , y, z ∈ R 2d , t, t ∈ [0, T ] .
Theorem 31 The map Z t : R 2d → R 2d is onto for any t ∈ [0, T ] almost surely.

The flow

We resume the results we have obtained so far for the flow associated to the SDE (73) in the following theorem.

Theorem 32 The unique strong solution Z t = (X t , V t ) of the SDE (2) defines a stochastic flow of Hölder continuous homeomorphisms φ t .

Proof. The map Z t (ω) is Hölder continuous, see Theorem 25, it is one to one by Theorem 29 and it is onto by Theorem 31. Hence the inverse map Z t (ω) -1 is well defined, one to one and onto. We claim that it is also continuous. Indeed, since the map Z t (ω) is one to one and continuous from the compact space R 2d into itself, it is a closed map. Hence the inverse map Z t (ω) -1 is continuous, and so is its restriction to R 2d .

Regularity of the derivatives

Although F is not even weakly differentiable, from the reformulation (97) of equation ( 73) it is reasonable to expect differentiability of the flow, since the derivatives DX t , DV t with respect to the initial conditions (x, v) formally solve suitable SDEs with well-defined, integrable coefficients. We have the following result.

Theorem 33 Let φ t (z) be the flow associated to (73) provided by Theorem 32. Then, for any t ∈ [0, T ], P-a.s., the random variable φ t (z) admits a weak distributional derivative with respect to z; moreover D z φ t ∈ L p loc (Ω × R 2d ), for any p ≥ 1.

Proof.

Step 1. (Bounds on difference quotients) It is sufficient to prove the existence and regularity of D zi φ t for some fixed i ∈ {1, . . . , 2d}. We omit to write i and set e = e i . Introduce for every h > 0 the stochastic processes

θ h t (z) = φ t (z + he) -φ t (z) h , ξ h t (z) = γ φ t (z + he) -γ φ t (z) h , (113) 
where γ(z) = z + U (z) as in (98). It is clear that they have finite moments of all orders because φ and γ(φ) do. The two processes are also equivalent in the sense that there exist constants C 1 , C 2 such that

C 1 |ξ h t (z)| ≤ |θ h t (z)| ≤ C 2 |ξ h t (z)| . ( 114 
)
This follows from (99). To fix the ideas, consider the case i > d. We have

ξ h t = e + 1 h U (z + he) -U (z) (115) + t 0 λ h U φ s (z + he) -U φ s (z) + Aθ h t (z) ds + 1 h t 0 D v U φ s (z + he) -D v U φ s (z) R • dW s .
Proceeding as in the proof of Theorem 21 above we have

d ξ h t p ≤ p ξ h t p-2 ξ h t • λ h U φ t (z + he) -U φ t (z) + Aθ h t (z) dt + p h ξ h t p-2 ξ h t • D v U φ t (z + he) -D v U φ t (z) R • dW t + C p,d h 2 ξ h t p-2 D v U φ t (z + he) -D v U φ t (z) R 2 HS dt = p ξ h t p-2 ξ h t • λ h U φ t (z + he) -U φ t (z) + Aθ h t (z) dt + dM h t + C p,d ξ h t p-2 θ h t 2 dA t ,
where the process A t is defined as in ( 88), but with Z = φ(z + he) and Y = φ(z), and for every h > 0, dM After integrating and taking expectations we find

E e -CpAt ξ h t p ≤ e + 1 h U (z + he) -U (z) p + t 0 E e -CpAs p ξ h s p-2 ξ h t • λ h U φ s (z + he) -U φ s (z) + Aθ h s (z) ds ≤ C 1 + DU p L ∞ (R 2d ) + t 0 C λ DU L ∞ (R 2d ) + |A| E e -CpAs p ξ h s p ds .
A similar estimate holds for the case i ≤ d. We now apply Grönwall's inequality and proceeding as in the proof of Corollary 22 we finally get that

E θ h t p ≤ CE ξ h t p ≤ C p,d,T,λ < ∞ . (117) 
Step 2. (Derivative of the Flow) Remark that, due to the boundedness of DU , the bound (117) is uniform in h and z, and we get sup

z∈R 2d sup h∈(0,1] E θ h t p ≤ C p,d,T,λ < ∞ . ( 118 
)
We can then apply [BF13, Corollary 3.5] and obtain the existence of the weak derivative for the flow Dφ t ∈ L p loc (Ω × R 2d ).

Remark 34 Since the bound (117) is also uniform in time, applying [BF13, Theorem 3.6] one would also get the existence of the weak derivative as a process Dφ t belonging to L p loc ([0, T ] × R 2d ) with probability one, and the weak convergence

θ h t Dφ t in L p loc (Ω × [0, T ] × R 2d ).

Stochastic kinetic equation

We present here results on the stochastic kinetic equation (1). The first result concerns existence of solutions with a certain Sobolev regularity (see Theorem 38). The second one is about uniqueness of solutions (see Theorem 39). We will use the results of the previous sections together with results similar to the ones given in [START_REF] Fedrizzi | Noise prevents singularities in linear transport equations[END_REF] to approximate the flow associated to the equation of characteristics. We report them in the Appendix for the sake of completeness. To prove that some degree of Sobolev regularity of the initial condition is preserved on has to deal with weakly differentiable solutions, according to the definition introduced in [START_REF] Fedrizzi | Noise prevents singularities in linear transport equations[END_REF] for solutions of the stochastic transport equation.

Recall that, as observed in Section 2, by point 2 of the next definition and Sobolev embedding, weakly differentiable solutions of the stochastic kinetic equation are a.s. continuous in the space variable, for every t ∈ [0, T ]; this is in contrast with the deterministic kinetic equation, where solutions can be discontinuous (see Proposition 3). In the sequel, given a Banach space E we denote by C 0 [0, T ]; E the Banach space of all continuous functions from [0, T ] into E endowed with the supremum norm.

Definition 35 Assume that F satisfies Hypothesis 1. We say that f is a weakly differentiable solution of the stochastic kinetic equation (1) if

1. f : Ω × [0, T ] × R 2d → R is measurable, R 2d f (t, z) ϕ (z) dz (well defined by property 2 below) is progressively measurable for each ϕ ∈ C ∞ c R 2d ; 2. P f (t, •) ∈ ∩ r≥1 W 1,r
loc R 2d = 1 for every t ∈ [0, T ] and both f and Df are in In the next result the inverse of φ t will be denoted by φ t 0 .

∩ r≥1 C 0 [0, T ]; L r (Ω × R 2d ) ;
R 2d f (t, z)ϕ(z) dz + t 0 R 2d b(z) • Df (s, z)ϕ(z) dzds = R 2d f 0 (z)ϕ(z) dz + d i=1 t 0 R 2d f (s, z) ∂ vi ϕ (z) dz dW i s + 1 2 t 0 R 2d f (s, z)∆ v ϕ(z) dzds . Remark 36 The process s → Y i s := R 2d f (s, z) ∂ vi ϕ(z)
Theorem 38 If F satisfies Hypothesis 1 and f 0 ∈ ∩ r≥1 W 1,r (R 2d ), then f (t, z) := f 0 (φ t 0 (z)) is a weakly differentiable solution of the stochastic kinetic equation (1).

Proof. The proof follows the one of [START_REF] Fedrizzi | Noise prevents singularities in linear transport equations[END_REF]Theorem 10]. We divide it into several steps.

Step 1 (preparation). The random field (ω, t, z) → f 0 (φ t 0 (z)(ω)) is jointly measurable and (ω, t) → R 2d f 0 (φ t 0 (z)(ω)) ϕ (z) dz is progressively measurable for each ϕ ∈ C ∞ c (R 2d ). Hence part 1 of Definition 35 is true. To prove part 2 and 3 we approximate f (t, z) by smooth fields f n (t, z).

Let f 0,n be a sequence of smooth functions which converges to f 0 in W 1,r (R 2d ), for any r ≥ 1, and so uniformly on R 2d by the Sobolev embedding. This can be done for instance by using standard convolution with mollifiers. Moreover suppose that F n are smooth approximations converging to F in L p (R 2d ) (p is given in Hypothesis 1), let φ t,n be the regular stochastic flow generated by the SDE (74) where B is replaced by B n = RF n and let φ t 0,n be the inverse flow. Then f n (t, z)

:= f 0,n φ t 0,n (z) is a smooth solution of df n = -v • D x f n + F n • D v f n dt -D v f n • dW t and thus for every ϕ ∈ C ∞ c (R 2d ), t ∈ [0, T ] and bounded r.v. Y , it satisfies E Y R 2d f n (t, z)ϕ(z) dz + E Y t 0 R 2d b n (z) • Df n (s, z) ϕ (z) dzds = E Y R 2d f 0,n (z) ϕ (z) dz + d i=1 E Y t 0 R 2d f n (s, z) ∂ vi ϕ (z) dz dW i s + 1 2 E Y t 0 R 2d f n (s, z) ∆ v ϕ (z) dzds . (119) 
We shall pass to the limit in each one of these terms. We are forced to use this very weak convergence due to the term

E Y t 0 R 2d b n (z) • Df n (s, z) ϕ (z) dzds , (120) 
where we may only use weak convergence of Df n .

Step 2 (convergence of f n to f ). We claim that, uniformly in n and for every r ≥ 1,

sup t∈[0,T ] R 2d E |f n (t, z)| r dz ≤ C r , (121) 
sup

t∈[0,T ] R 2d E |Df n (t, z)| r dz ≤ C r . (122) 
Let us show how to prove the second bound; the first one can be obtained in the same way. The key estimate is the bound (135) on the derivative of the flow, which is proved in Appendix. We use the representation formula for f n and the Hölder inequality to obtain

R 2d E |Df n (t, z)| r dz 2 ≤ sup z∈R 2d E |Dφ t 0,n (z)| 2r R 2d E Df 0,n φ t 0,n (z) 2r dz .
The first term on the right-hand side can be uniformly bounded using Lemma 42. Also the last integral can be bounded uniformly: changing variables (all functions are regular) we get

R 2d E Df 0,n φ t 0,n (z) 2r dz = R 2d
Df 0,n (y) 2r E J φt,n (y) dy , where J φt,n (y) is the Jacobian determinant of φ t,n (y). Then we conclude using again the Hölder inequality, (135) and the boundedness of (f 0,n ) in W 1,r (R 2d ) (for every r ≥ 1). Remark that all the bounds obtained are uniform in n and t.

We can now consider the convergence of f n to f . Let us first prove that, given t ∈ [0, T ] and ϕ ∈ C ∞ c (R 2d ),

P -lim n→∞ R 2d f n (t, z) ϕ (z) dz = R 2d f (t, z) ϕ (z) dz (123) 
(convergence in probability). Using the representation formulas f n = f 0,n (φ t 0,n ), f = f 0 (φ t 0 ) and Sobolev embedding W 1,4d → C 1/2 we have (Supp(ϕ) ⊂ B R where B R is the ball of radius R > 0 and center 0)

R 2d (f n (t, z) -f (t, z)) ϕ (z) dz ≤ f 0,n -f 0 L ∞ (R 2d ) ϕ L 1 (R 2d ) + C ϕ L ∞ (R 2d ) B R φ t 0,n (z) -φ t 0 (z) 1/2 dz .
The first term converges to zero by the uniform convergence of f 0,n to f 0 . From Lemma 41 we get

lim n→∞ E B R φ t 0,n (z) -φ t 0 (z) dz = 0 ,
and the convergence in probability (123) follows. This allows to pass to the limit in the first and in the last term of equation (119) using the uniform bound (121) and the Vitali convergence theorem. Similarly, we can show that, given ϕ

∈ C ∞ c R 2d , P -lim n→∞ T 0 R 2d (f n (t, z) -f (t, z)) ϕ (z) dz 2 dt = 0 (124) 
and allows to pass to the limit in the stochastic integral term of (119). Hence, one can easily show convergence of all terms in (119) except for the one in (120) which will be treated in Step 4.

Step 3 (a bound for f ). Let us prove property 2 of Definition 35. The key estimate is property (122) obtained in the previous step.

Recall we have already obtained the convergence (123) and the uniform bound (122) on Df n . We can then apply [FF13b, Lemma 16] which gives P f (t, •) ∈ W 1,r loc (R 2d ) = 1 for any r ≥ 1 and t ∈ [0, T ], and

E B R |Df (t, z)| r dz ≤ lim sup n→∞ E B R |Df n (t, z)| r dz ≤ C r ,
for every R > 0 and t ∈ [0, T ]. Hence, by monotone convergence we have sup

t∈[0,T ] E R 2d |Df (t, z)| r dz ≤ C r . (125) 
A similar bound can be proved for f itself using (121), the convergence in probability (123) and the Vitali convergence theorem.

Step 4 (passage to the limit). Finally, we prove that we can pass to the limit in equation ( 119) and deduce that f satisfies property 3 of Definition 35. It remains to consider the term

E Y t 0 R 2d b n (s, z) • Df n (s, z) ϕ (z) dzds . Since F n → F in L p (R 2d ), it is sufficient to use a suitable weak convergence of Df n to Df . Precisely, for t ∈ [0, T ], E Y t 0 R 2d b n (z) • Df n (s, z) ϕ (z) dzds -E Y t 0 R 2d b (z) • Df (s, z) ϕ (z) dzds = I (1) n (t) + I (2) n (t) ; I (1) n (t) = E Y t 0 R 2d F n (z) -F (z) • D v f n (s, z) ϕ (z) dzds ; I (2) n (t) = E Y t 0 R 2d ϕ (z) b (z) • Df n (s, z) -Df (s, z) dzds .
We have to prove that both I

(1) n (t) and I

(2) n (t) converge to zero as n → ∞. By the Hölder inequality, for all t ∈ [0, T ]

I (1) n (t) ≤ C F n -F L p (R 2d ) sup t∈[0,T ] E Df n (t, •) L p (R 2d )
where 1/p + 1/p = 1 and C = C Y,T,ϕ . Thus, from (122), I (2) n (t). Using the integrability properties shown above we can change the order of integration. The function

h n (s) := E R 2d Y ϕ (z) b (z) • Df n (s, z) -Df (s, z) dz , s ∈ [0, T ],
converges to zero as n → ∞ for almost every s and satisfies the assumptions of the Vitali convergence theorem (we shall prove these two claims in Step 5 below). Hence I

(2) n (t) converges to zero. Now we may pass to the limit in equation ( 119) and from the arbitrariness of Y we obtain property 3 of Definition 35.

Step 5 (auxiliary facts). We have to prove the two properties of h n (s) claimed in Step 4. For every s ∈

[0, T ] [FF13b, Lemma 16] gives E R 2d ∂ zi f (s, z) ϕ (z) Y dz = lim n→∞ E R 2d ∂ zi f n (s, z) ϕ (z) Y dz , (126) 
for every ϕ ∈ C ∞ c (R 2d ) and bounded r.v. Y . Since the space C ∞ c (R 2d ) is dense in L p (R 2d ), we may extend the convergence property (126) to all ϕ ∈ L p (R 2d ) by means of the bounds (122) and (125), which proves the first claim.

Moreover, for every ε > 0 there is a constant C Y,ε such that (Supp(ϕ)

⊂ B R ) sup n≥1 T 0 h 1+ε n (s) ds ≤ C Y,ε bϕ 1+ε L p E T 0 B R Df n (s, z) r dzds 1+ε r + E T 0 B R Df (s, z) r dzds 1+ε r
for a suitable r depending on ε (we have used Hölder inequality; cf. page 1344 in [START_REF] Fedrizzi | Noise prevents singularities in linear transport equations[END_REF]). The bounds (122) and (125) imply that T 0 h 1+ε n (s) ds is uniformly bounded, and the Vitali theorem can be applied. The proof is complete.

We now present the uniqueness result for weakly differentiable solutions. The proof seems to be of independent interest.

Theorem 39 If F satisfies Hypothesis 1 and, moreover, div v F ∈ L ∞ (R 2d ) (div v F is understood in distributional sense) weakly differentiable solutions are unique.

Proof. By linearity of the equation we just have to show that the only solution starting from f 0 = 0 is the trivial one.

Step 1 (f 2 is a solution). We prove that for any solution f , the function f 2 is still a weak solution of the stochastic kinetic equation. Take test functions of the form

ϕ n ζ (z) = ρ n (ζ -z), where (ρ n ) n is a family of standard mollifiers (ρ n has support in B 1/n ). Let ζ = (ξ, ν) ∈ R 2d , f n (t, ζ) = f (t, •) ρ n (ζ)
. By definition of solution we get that, P-a.s.,

f n (t, ζ) + t 0 b(ζ) • Df n (s, ζ) ds + t 0 D v f n (t, ζ) • dW s = t 0 R n (s, ζ) ds , R n (s, ζ) = R 2d b(ζ) -b(z) • D z f (s, z) ρ n (ζ -z) dz .
The functions f n are smooth in the space variable. For any fixed ζ ∈ R 2d , by the Itô formula we get

df 2 n = 2f n df n = -2f n b • Df n dt -2f n D v f n • dW t + 2f n R n dt . Now we multiply by ϕ ∈ C ∞ c (R 2d
) and integrate over R 2d . Using the Itô integral we pass to the limit as n → ∞ and find, P-a.s.,

R 2d f 2 n (t, ζ)ϕ(ζ) dζ - 1 2 t 0 R 2d f 2 n (s, ζ) v ϕ(ζ) dζds + t 0 R 2d ϕ(ζ) b(ζ) • Df 2 n (s, ζ) dζds - t 0 R 2d f 2 n (s, ζ)D v ϕ(ζ) dζ • dW s = 2 t 0 R 2d f n (s, ζ) R n (s, ζ)ϕ(ζ) dζds . ( 127 
) Recall that b(z) = A • z + 0 F (z) ∈ R 2d .
Let us fix t ∈ [0, T ]. By definition of weakly differentiable solution it is not difficult to pass to the limit in probability as n → ∞ in all the terms in the left hand side of (127). Indeed, we can use that, for every t ∈

[0, T ], r ≥ 1, f n (t, •) → f (t, •) in W 1,r loc (R 2d
), P-a.s., together with the bounds

sup t∈[0,T ] R 2d E |f n (t, z)| r dz ≤ C r , sup t∈[0,T ] R 2d E |Df n (t, z)| r dz ≤ C r , (128) 
and the Vitali theorem. For instance, if Supp(ϕ) ⊂ B R we have

J n (t) = E t 0 R 2d |f 2 n (s, ζ) -f 2 (s, ζ)|| v ϕ(ζ)| dζds ≤ C ϕ T 0 E B R |f 2 n (s, ζ) -f 2 (s, ζ)| dζds,
and, for any s ∈ [0, T ], P-a.e ω, k n (ω, s)

= B R |f 2 n (ω, s, ζ) -f 2 (ω, s, ζ)| dζ → 0 as n → ∞. From (128) we deduce easily that sup n≥1 E T 0 k 2 n (s) ds < ∞
and so by the Vitali theorem we get

T 0 E B R |f 2 n (s, ζ) -f 2 (s, ζ)| dζ ds → 0, as n → ∞, which implies lim n→∞ J n (t) = 0. In order to show that E t 0 R 2d |f n (s, ζ) R n (s, ζ)ϕ(ζ)| dζds ≤ C ϕ E t 0 B R |f n (s, ζ) R n (s, ζ)| dζds → 0
as n → ∞, it is enough to prove that for fixed ω, P-a.s., and s ∈ [0, T ] we have

B R |f n (s, ζ) R n (s, ζ)| dζ → 0 , (129) 
as n → ∞. Indeed once (129) is proved, using the bounds (128) and the Hölder inequality we get

sup n≥1 E t 0 B R f n (s, ζ) R n (s, ζ) dζ 2 ds ≤ C R sup n≥1 E t 0 B R |f n (s, ζ) R n (s, ζ)| 2 dζds < ∞ .
Thus we can apply the Vitali theorem and deduce the assertion. Let us check (129). By Sobolev regularity of weakly differentiable solutions we know that

sup n≥1 sup ζ∈B R |f n (s, ζ)| = M < ∞ . Hence it is enough to prove that B R |R n (s, ζ)|dζ → 0. Recall that R n (s, ζ) = b(ζ) • Df n (s, ζ) -[(b • Df (s, •)) * ρ n ](s, ζ) .
Since in particular g(t, z) ∈ C 0 ([0, T ]; W 1,r (R 2d )), with r = p p-1 , we obtain

R 2d g(t, z) dz = t 0 R 2d div v F (z)g(s, z) dzds ≤ div v F (z) ∞ t 0 R 2d g(s, z) dzds .
Applying the Grönwall lemma we get that g is identically zero and this proves uniqueness for the kinetic equation.

Appendix

Proof of Proposition 4. By (17) we only have to prove the first inclusion. Let (cf. ( 16) and ( 14)). The proof is complete.

f ∈ W s ,p (R 2d ). Recall that [f ] 2 B s p,2 = R 2d dh |h| 2d+2s R 2d |f (x + h) -f (x)| p dx
Proof of Lemma 26. Remark that, due to (99),

ε + Z z t -Z y t 2 a ≤ C ε + γ(Z z t ) -γ(Z y t ) 2 a
.

Therefore, we can prove (111) for γ(Z t ) instead of Z t .

We proceed as in [Ku84, Lemma II.2.4] or [START_REF] Fedrizzi | Hölder Flow and Differentiability for SDEs with Nonregular Drift[END_REF]Lemma 5.4]. Fix any t ∈ [0, T ] and set for z, y ∈ R 2d : g(z) := f a (z), f (z) := (ε + |z| 2 ) and η t := γ(Z z t ) -γ(Z y t ). Then, applying Itô formula we obtain as in the proof of Lemma 23 g(η t ) -g(η 0 ) = 2a We can continue with the estimates and obtain g(η t ) -g(η 0 ) ≤ 2C|a| Here, A t is the process introduced and studied in Lemma 18: To complete the proof of the lemma, we manipulate (131) using Hölder's inequality and we conclude invoking Lemma 18 to bound the term E[e 2A T ]:

E ε + Z z t -Z y t 2 a 2
≤ E e 2At E e -2At g 2 (η t ) ≤ C a,d ε + |z -y| 2 2a .

Proof of Lemma 28. We have set here η t (z, y) := |Z z t -Z y t |. To ease notation in the following computations we will write η and η for η t (z, y) and η t (z , y ) respectively and set ξ = η -1 and ξ = η -1 . Observe that η t (z, y) -η t (z , y ) Proof. To ease notation, we shall prove the convergence result for the forward flows φ t,n → φ t . This in enough since the backward flow solves the same equation with a drift of opposite sign. Since the flow φ t is jointly continuous in (t, z), the image of [0, T ] × B R is contained in [0, T ] × B r for some r < ∞. Observe that this bound is uniform in n and z ∈ R 2d . Proceeding as in Corollary 22 we can get rid of the exponential term and obtain the desired uniform bound on ξ t,n .

a = 1 ξ - 1 ξ a = ξ

  3. setting b(z) = A • z + B(z), b : R 2d → R 2d , see (72), for every ϕ ∈ C ∞ c R 2d and t ∈ [0, T ], with probability one, one has

  dz is progressively measurable by property 1 and T 0 Y i s 2 ds < ∞ P-a.s. by property 2, hence the Itô integral is well defined. Remark 37 The term t 0 R 2d b (z)•Df (s, z) ϕ (z) dzds is well defined with probability one because of the integrability properties of b (assumptions) and Df (property 2).

n

  (t) converges to zero as n → ∞. Let us treat I

.W≤

  We have with = s -s 2 > 0|h|≤1 1 |h| 2d+2s R 2d |f (x + h) -f (x)| p dx (x + h) -f (x)| p |h| 2d+(s+ /2)p dx s+ 2 ,pSimilarly, we have with 0 < < min(2s, s -s2 ) (x + h) -f (x)| p dx (x + h) -f (x)| p |h| 2d+(s-/2)p dx C[f ] 2 W s-2 ,p ≤ C f 2 W s+ 2 ,p

t 0 f

 0 a-1 (η s ) η s • b Z z s -1 (η s ) η s • σ Z z r -2 (η s ) f (η s )δ i,j + 2(a -1)Recall that |z| ≤ f 1/2 (z) and that the coefficient b is Lipschitz continuous:| b(z) -b(y)| ≤ L|z -y| ≤ C|γ(z) -γ(y)| ≤ Cf 1/2 |γ(z) -γ(y)| .

t 0 f

 0 a (η s ) ds + 2 a t 0 f a-1 (η s )η s σ Z z s -σ Z y s dW s (130) + C a,d |a| t 0 f a-1 (η s ) |η s | 2 dA s .

≤

  The stochastic integral in (130) is a martingale with zero mean ( σ is bounded). Proceeding as in (103), we getE e -At g(η t ) -e -A0 g(η 0 ) ≤ C a,d t 0 E e -As g(η s ) ds .By Grönwall's inequality applied to the function h(t):= E e -At g(η t ) , it follows E e -At ε + Z z t -CE e -At g(η t ) ≤ C a,d g(η 0 ) = C a,d ε + |γ(z) -γ(y)| 2 a ≤ C a ε + |z -y| 2 a .(131)

  The case z = ∞ (or y = ∞) is even easier, since η t ( z) = 0 and Lemma 23 again impliesE η t ( y) a ≤ C a,d 1 + |y| -a ≤ C a,d | y| a .Lemma 41 ([FF13b, Lemma 3]) For every R > 0, a ≥ 1 and z ∈ B R ,

  h t is the differential of a martingale because DU is bounded and ξ h t has finite moments. Setting C p = (C 2 ) 2 C p,d we get

	d e -CpAt ξ h t	p = -C p e -CpAt ξ h t	p dA t + e -CpAt d ξ h t	p	(116)
	≤ e -CpAt p ξ h t	p-2 ξ h t •	λ h	U φ t (z + he) -U φ t (z) + Aθ h t (z) dt + e -CpAt dM h t .

  -ξ ξξ a = |η| a |η | a |ξ -ξ| a C a |η| a |η | a |Z z t -Z z t | a + |Z y t -Z y t | a .The first inequality above follows from the triangular inequality as in [Ku84, Lemma II.4.1]: every side of a quadrilateral is shorter that the sum of the other three. We now take expectations and use Hölder's inequality:E η t (z, y) -η t (z , y ) ≤ C a,d,λ,T |z -y| -a |z -y | -a |z -z | a + |y -y | a + 1 + |z| a + |z | a + |y| a + |y | a |t -t | a/2 .For the last inequality we have used (112) to estimate the first two terms and Proposition 24 for the last ones.Proof of Lemma 30. Consider first the case z, y = ∞ ( z, y = 0). In this case, proceeding just as in the proof of Lemma 28 we obtain the estimateη -a |z -y| a + 1 + |z| a + |y| a |t -t | a/2 ≤ C | z -y| a + |t -t | a/2 .The last inequality above holds if z and y are both finite and is a consequence of the inequality(1 + |z|) -1 (1 + |y|) -1 |z -y| ≤ | z -y| = z |z| 2 -

			= |η| a |η | a |Z z t -Z y t | -|Z z t -Z y t |	a
			≤ |η| a |η | a |Z z t -Z z t | + |Z y t -Z y t |
	a				
	≤ C a E |η| 4a 1/4	E |η | 4a 1/4	E |Z z t -Z z t | 2a 1/2	+ E |Z y t -Z y t | 2a 1/2
	a =	1 + |Z y t | -1 -|Z z t | 1 + |Z z t | 1 + |Z y t |
			4a 1/4	E [ η t ( y)	4a 1/4	E Z z t -Z y t	2a 1/2
						y |y| 2 .

a ≤ t ( z) -η t ( y) a ≤ η t ( z)η t ( y) a Z z t -Z y t a .

Use again Hölder's inequality, Lemma 23 and Proposition 24:

E η t ( z) -η t ( y) a ≤ E [ η t ( z) ≤ C(1 + |z|) -a (1 + |y|)

  Thus for z ∈ B R , from Lemma 40 we get |U n(φ t,n ) -U (φ t )| ≤ g(n) + 1/2|φ t,n -φ t | and |D v U n (φ t,n ) -D v U (φ t )| ≤ g(n) + |D v U n (φ t,n ) -D v U n (φ t )|. Extending the definition (98) to γ n (z) = z + U n (z) we have the approximate equivalence 2 3 γ n (φ t,n ) -γ(φ t ) -g(n) ≤ φ t,n -φ t ≤ 2 γ n (φ t,n ) -γ(φ t ) + g(n) .Therefore, it is enough prove the convergence result for the transformed flows γ t,n = γ n (φ t,n ) → γ(φ t ) = γ t . Proceeding as in the proof of Theorem 21 we get, for any a ≥ 21 a d γ t,n -γ t a ≤ γ t,n -γ t a-2 γ t,n -γ t • λ U n (φ t,n ) -U (φ t ) + A(φ t,n -φ t ) dt + γ t,n -γ t • DU n (φ t,n ) -DU (φ t ) R • dW t + C a,d DU n (φ t,n ) -DU (φ t ) RThe stochastic integral is a martingale. Since|φ t,n -φ t | |γ t,n -γ t | ≤ C 1 + g(n) |γ t,n -γ t | , the term on the last line in (134) can be bounded using (132) by a constant times |γ t,n -γ t | a dB t,n + |γ t,n -γ t | a-2 g 2 (n)(dB t,n + dt), where for every n the process B t,n is defined as in (102) but with DU n (φ t,n ) and DU n (φ t ) in the place of DU (Z t ) and DU (Y t ) respectively. One can show that B t,n share the same integrability properties of the process A t studied in Lemma 18, uniformly in n, see [FF13b, Lemma 14]. Computing E[e -Bt,n |γ t,n -γ t | a ] using Itô formula and taking the supremum over t ∈ -Bs,n γ s,n -γ s a-2 dB s,n . Using the integrability properties of φ t , φ t,n , U (φ t ), U n (φ t,n ) one can see that all terms are bounded, uniformly in n. To conclude the proof we can pass to the limit E e -Bt,n γ t,n -γ t a ds , apply Grönwall's lemma and proceed as in Corollary 22 to get rid of the exponential term. Lemma 42 ([FF13b, Lemma 5]) For every a ≥ 1, there exists C a,d,T > 0 such that Proof. Let us show the bound for the forward flows φ t,n . These are regular flows: let θ t,n and ξ t,n denote the weak derivative of Dφ t,n and Dγ t,n = Dγ n (φ t,n ), respectively. They are equivalent in the sense of (114), so we shall prove the bound for ξ t,n instead of θ t,n . Proceeding as in the proof of Theorem 33 we obtain as in (116) de -C1Bt,n ξ t,n a ≤ e -C1Bt,n C 2 ξ t,n a dt + dM t , where the process B t,n is simply given by t 0 |DD v U n (φ s,n )| 2 ds. We can integrate, take expected values, the supremum over t ∈ [0, T ] and apply Grönwall's inequality to get sup t∈[0,T ] E e -C1Bt,n |ξ t,n | a ≤ C T |ξ 0,n | a = C a,d,T .

		sup t∈[0,T ]	sup z∈R 2d	E Dφ t 0,n (z)	a ≤ C a,d,T	(135)
	uniformly in n.			
						2 HS dt .	(134)
	[0, T ] leads to			
	sup					T	e -Bs,n γ s,n -γ s	a ds
	t∈[0,T ]					0
		+ Cg(n)E	T	e -Bs,n γ s,n -γ s	a-1 + g(n) γ s,n -γ s	a-2 ds
			0		
			T	
	+ g 2 (n)E e lim sup 0 sup E e -Bt,n γ t,n -γ t a ≤ C	T	lim sup	sup
	n	t∈[0,T ]				0	n	t∈[0,s]

E e -Bt,n γ t,n -γ t a ≤ CE
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Using the fact that b ∈ L p loc (R 2d ), with p given in Hypothesis 1, the Hölder inequality and basic properties of convolutions we have

as n → ∞. This shows that (129) holds. We have proved that also f 2 is a weakly differentiable solution of the stochastic kinetic equation.

Step 2 (f is identically zero). Due to the integrability properties of f , the stochastic integral in Itô's form is a martingale; it follows that the function

We have, for any s ∈ [0, T ],

) such that η = 1 on the ball B 1 of center 0 and radius 1. By considering the test functions:

Now we fix m ≥ 1 and pass to the limit as n → ∞ by the Lebesgue theorem. We infer

Passing to the limit as m → ∞ we arrive at

The lemma is proved.

Proof of Theorem 31. Take a > 2(2d + 3) in Lemma 30. Then, by Kolmogorov's theorem, η t ( z) is continuous at z = 0. Therefore, Z z t can be extended to a continuous map from R 2d into itself for any t ∈ [0, T ] almost surely and the extension Z z t (ω) is continuous in (t, z) almost surely. For all ω such that Z is continuous, the map Z t (ω) : R 2d → R 2d is homotopically equivalent to the identity map Z 0 (ω). Proceeding by contradiction, assume that Z t (ω) is not surjective. Then it takes values in R 2d without one point, which is a contractible space, so that is must be homotopically equivalent to a constant. This implies that also the map Id R 2d = Z 0 (ω) is homotopically equivalent to a constant, and the space R 2d would be contractible, which is absurd (because, for example, π 2d ( R 2d ) = Z). The contradiction found shows that the function Z t (ω) needs to be an onto map. Since Z ∞ t (ω) = ∞, the restriction of Z t (ω) to R 2d is again onto. The theorem is proved.

We now present some results on the convergence and regularity of approximations φ t 0,n of the inverse flow φ t 0 associated to the SDE (73). Note that φ t 0,n are solutions of SDEs with regular coefficients, see the proof of Theorem 38. These results are adapted from [START_REF] Fedrizzi | Noise prevents singularities in linear transport equations[END_REF] and based on the following lemma on the stability of the PDE (76), which is of independent interest.

Lemma 40 (Stability of the PDE (76)) Let U n be the unique solutions provided by Theorem 10 to the PDE (76) with smooth approximations B n (z) = (0, F n (z)) of B(z) = (0, F (z)) and some λ large enough for (133

, with s, p as in Hypothesis 1, then U n and D v U n converge pointwise and locally uniformly to the respective limits. In particular, for any r > 0 there exists a function g(n) → 0 as n → ∞ s.t.

Moreover, there exists a λ 0 s.t. for all λ > λ 0

Proof. Setting V n = (U n -U ) we write for λ large enough (cf. (76))

By (66) we know that ) . On the other hand the last assertion follows from (69).