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Abstract

In this paper, we propose a new method for exploring an unknown environment with a team of homogeneous mobile
robots. The goal of our approach is to minimize the exploration time. The challenge in multi-robot exploration is how to
develop distributed algorithm to govern the colony of robots while choosing its new direction so that they simultaneously
explore different regions. In this paper we use the extended version of Particle Swarm Optimization (PSO) to robotic
applications, which is referred to as Robotic Particle Swarm Optimization (RPSO), a technique to compute robots
new location. To better adapt this technique to the collective exploration problem, and maximize the exploring area,
we propose a new method for computing PSO’s global best parameter. Experiment results obtained in a simulated
environment show that our new method of computing PSO’s global best parameter increases the explored area with a

shorter time convergence.
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1. Introduction

25
The exploration and mapping of an unknown environ-

ment, which is also defined as simultanius localization and
mapping (SLAM), is a fundamental problem for mobile
robots and multi-robot systems. Many applications such
as rescue [I, 2] mowing [3] and cleaning [4] require full
coverage of the environment,its center of gravity, and also
the sides, in the fastest time possible (especially in rescue
operations).

Explore an environment using several robots instead
of one is much more advantageous. But in order to avoid
the exploration of the same surface multiple times, or by
more than one robot, there is a need to develop a move-
ment strategy which allows the robots to coordinate their
movements, and without the use of a centralized control
unit. 0

In the collective exploration of an unknown space, each
robot must: maintain communication with other robots
to share the progress and the discovered surface over a
period T, detect and distinguish between obstacles and
free space, avoid obstacles when moving, and choose the ,
best path where a robot can move to discover a maximum
space that hasnt been discovered yet.
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HACHAICHI), Younes.Lahbib@enicarthage.rnu.tn (Younes
LAHBIB)
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Particle Swarm Optimization (PSO) is one of the tech-
niques used for collective exploration of swarm robotic
systems which abides by those requirements. PSO is an
optimization technique developed by James Kennedy and
Russell Eberhart in 1995 [5] that models a set of potential
solutions to a particle moving in the space search. The
aim of this method is to be suitable for multi-robot appli-
cations, improvement has been made to take into account
the real world environmental constraints.

In this paper, in order to develop our strategy to govern
the whole colony of heterogeneous robots, we propose a
method inspired from Particle Swarm Optimization. We
adapt it to the exploration task. Our idea is to control
the robots in order to explore the space on two steps: in
the first, they try to converge to their center of gravity
to explore it, which is probably the center of the space to
explore. While in the second step, robots will carry on to
explore the sides. This way, we will have the map of the
entire space.

With the aim of exploring the space in two steps as
explained above, we have changed the way of calculating
the global best solution of the PSO (it will be detailed
in the section in order to calculate it by taking into
account all local optima of the colony, not only the best
performing candidate.

This paper is organized as follows. In section [2] we
will discuss related works. Section [3] presents the theo-
retical background of the PSO and its application in the
multi-robot field RPSO, in section [4] we will introduce our
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theoretic approach to help robots decision in motion coor-
dinated exploration with mobile robots. Section [5| presents
series of experiments which are carried out in simulationsio
and results. Finally, we discuss the results and use cases
in Section

2. Related works

115

The multi-robotic exploration, instead of one, is nowa-
days an advantageous approach which has several known
implementation techniques. These techniques can be clas-
sified into three categories: techniques in which the robots
move randomly, techniques that require planning the move-z
ments of robots in advance, and techniques in which robots
do not plan their trips in advance, but they coordinate
with each other.

Techniques where robots move randomly: In or-
der to explore an unknown environment, the author in [6]zs
focuses on the relative location between robots and ran-
dom robots exploration. The goal is to generate a col-
lective map of the explored area. The system works as
follows. Initially, robots might not know their relative po-
sitions. In such a case, each robot explores on its ownis
map. The explored portion increases in the robots mem-
ory until two robots can communicate. In this case, they
begin exchanging data and estimating their relative loca-
tion. Once they have a good hypothesis for their relative
location, they actively verify this hypothesis using a ren-
dezvous technique. If successful, the robots form an explo-'**
ration map, they combine their data in a shared map and
begin to coordinate their exploration activities. On the
other hand, if the assumption of relative location proves
to be false, robots continue to explore independently and
exchange data in order to refine their estimations of rela-
tive location. During the exploration, the size of the ex-
plored map increases more and more when a new robot™”
can determine its relative position.

Another approach was presented in [7], in which au-
thors represent the environment as a matrix of pixels (oc-
cupancy grid maps). They define discovered pixels that
have undiscovered adjacent pixels as frontier pixels. After,,,
detecting frontier pixels, the algorithm considers the pos-
sibility to send a robot to a pixel by calculating the cost of
moving the robot to each pixel and estimating the utility
of the pixel. The cost of moving is proportional to the dis-
tance between the robot and the pixel. On the other hand,
the utility of the pixel depends on the number of robots
that move towards that pixel or at a nearby location. 150

Keeping in mind that the robots moves randomly, algo-
rithms based on one of those techniques, will takes more
time especially when the map is quite complex and big
compared with the number of robot. Contrarily with our
approach, in which the robots movement is coordinated,
enables us to optimize the time of exploration.

Techniques that require planning of the robots:ss
movement in advance: Generally divide the environ-
ment into regions, and affect a robot to every region in

order to explore all regions. One of those methods, al-
lowing the division of the environment to regions, is the
Voronoi diagram [§]. It is a distribution of the map to
regions based on the distance between a point and a ref-
erence. The reference can be a robot or an obstacle, it
depends on the application. In each region, each point
is closer to the robot (or obstacle) in which the region is
affected than others.

In reference [9] authors propose a method for the de-
tection and trapping of an object / target using algorithms
inspired by the bacterial chemotaxis (BC). They followed
four main steps: the first step is the establishment of a
coordination system between robots [10], this step con-
sists of choosing a robot of the colony as a location refer-
ence. Then, the positions of the other robots (or any point
in the area) will be determined based on their distances
from the reference robot. The second step is to build the
Voronoi diagram [8]. Step 3 is the target research phase
(victim, terror ...). In this step each robot is looking for
the target in its region using the algorithm imitating BC.
In step 4 robots surround targets detected in step 3 using
the same algorithm (BC). In order to solve the problem
of distributed control of the colony, each robot moves in
the search space by imitating the movement mechanism
of BCs. While moving, a bacterium seeks to find a maxi-
mum concentration of nutrient. The main steps of the BC
algorithm are:

e Put to the target position a large concentration of
nutrient.

e Calculate the new direction of the bacteria.

e The bacterium moves in its direction previously cal-
culated in order to go forward to the target.

e The nutrient concentration in a pixel decreases when-
ever the bacterium finds it.

Similar work has been introduced in [I1] in which au-
thors presented their approach to the inspection of an en-
vironment which know its map previously. The algorithm
is summarized in the following steps:

e Define regions to be inspected by the robot using the
Voronoi diagram.

e Identify the frontiers cells to be traveled by the robots.

e Calculating the cost of moving each robot to each
frontier cell.

e Associate each robot to a frontier cells using the
Hungarian method [12].

e Finally, repeat the assignment of robots to frontiers
until travel up all frontiers.

In [I3] the authors also divided the map into regions, but
they divided it into equal rectangular segments. At first
they affect robots to segments randomly. When two robots
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meet, they exchange research results. Then each robot
changes its direction to the least explored segment.

Opposed to our exploration approach of an unknownas
environment, these approaches require prior knowledge of
the research area so that they can divide it into segments.
In addition, the decomposition of the field is done at a sin-
gle computer (or central control or leader robot). There-
fore, the malfunction of the calculator will lead to the stop-220
ping of all robots. Also, robots are not synchronized as in
our approach. In other hand, robot’s motion doesn’t de-
pend on status/position of other robots, so, the robot’s
motion, while exploring, isn’t fully coordinated.

Techniques where robots do not plan their tripss
in advance: As in our approach, robots recalculate their
new direction in each iteration based on the surroundings
and other robots. Using these methods, robots seem more
coordinated than using others previously presented.

In [I4] authors implemented an extended version ofzo
Particle Swarm Optimization (PSO) [5] which is an algo-
rithm inspired by the movement of birds in search of food.
This version is called Robotic Darwin Particle Swarm Op-
timization (RDPSO). In which, authors have implemented
two key ideas in PSO: 235

1. Adapt PSO to robotic applications RPSO, in which
they added two vectors, the first vector allows the
robot to avoid obstacles, and the second vector al-

lows maintaining communication between all the robots.

2. In the second idea, they used the Darwinian pun—240

ishment and reward mechanism (DPSO). It divides
the colony in sub-colonies, the algorithm punished
the sub-colony that is not improved by subtracting
the least performing robot, and rewards sub-colony
which improves by adding a robot from the excluded
ones. This mechanism allows the colony to avoid be-
ing trapped in sub-optimal solutions.

Other works inspired by the behavior of social insects and
animals have been compared in [I5]. Authors have com-zs
pared five algorithms implemented in the problem of explo-
ration. In their article, they compared the RDPSO with
the Extended PSO (EPSO) [16] and Physically-embedded
PSO (PPSO) [17], which are three algorithms inspired
from the PSO. And they compared them with Glowwormzss
Swarm Optimization (GSO) [18] and Aggregation of For-
aging Swarm (AFS) [19].

EPSO is one of the first extended versions of PSO
adapted to the constraints of the real world. The main
idea in the EPSO is that each robot only considers thezo
robots within the limits of its communication area. After
calculating the motion vector, authors use the Braitenberg
[20] obstacle avoidance algorithm.

In PPSO, like RDPSO, there is no central agent for co-
ordinating the movements or actions of robots. The algo-2ss
rithm also requires full synchronization of robots. Robots
can calculate their position only after all other robots
exchange needed information (eg, individual solutions).

Also, a robot does not share its position if its own so-
lution isnt the best solution throughout the colony. This
reduces communication traffic. However, it is also neces-
sary that the robots are stopped after each iteration to
process all relevant information. In addition, the collision
avoidance behavior was not considered in the equation of
the algorithm. Unlike the approach that we adopted where
avoidance collusion and obstacle are taken into account
when calculating the displacement. Instead of that, when
a robot will be trapped (or gets stuck), it moves back and
turns right.

GSO is an algorithm inspired by the behavior of Glow-
worm. Where each robot (Glowworm) chooses a nearby
robot and goes toward him. The robot which has the
greater brightness value (luciferin) has the highest proba-
bility of being chosen as the robot to what its neighbors are
heading. The brightness value is completely proportional
to the relevance of the solution found by the robot. This
will lead to divide the colony of robots into sub-colonies.
Each colony has a sub-leader. All robots in the same sub-
colony will diverge to the same point/solution (to their
leader), and explores in his neighborhood. The problem
here is that all the robots of the same sub-colony will ex-
plore the same surface. This is the same problem using
RDPSO. Maybe in other tasks, such as finding food, will
be a good idea to split the colony into sub-colonies. Un-
like our approach, which is more suited to the exploration
problem. The authors also used a low obstacle avoidance
mechanism.

In AFS, robots move following attractive and repulsive
forces between robots. The force of attraction dominates
over long distances, and the force of repulsion dominates
over short distances. In this approach, the authors con-
sider obstacles as a part of the objective function of the
colony. In other words, if the robots need to maximize a
given measure, for example, find the highest density of vic-
tims in a disaster site, the obstacles are considered global
minima of their objective function.

The results of comparison made in [I5] show a better
result in terms of percentage exploration using RDPSO in
any configuration (number of robot, communication dis-
tance). On the other side, in the problem of collective
exploration, the global optimum notion is not completely
true. In fact, a site that has been explored at time t is not
a solution for the time t 4+ 1. So the use of the Darwinian
principle has no great influence on the operation of the
algorithm.

Our approach extends the Robotic Particle Swarm Op-
timization idea in order to generate a faster exploration
algorithm. In contrast to [6] and [7] in our method, robots
dont move in the search space randomly, but they choose
their new directions in order to move to the less discov-
ered area. Also, in contrast to [9], [1I] and [I3], our ap-
proach doesnt require any prerequisites information about
the map shape or size. This makes our approach more flex-
ible and easier to implement in all shapes of maps. How-
ever, similar to [14], [16], [17], [I8] and [19], algorithms
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using our approach dont need any prerequisites knowledge
of the area, and the decision making is fully decentralized.
But comparison results presented in [I5] shows a better
result found using RDPSO presented in [I4]. In this pa-
per we will present an extended version of PSO that de-so
mocratizes the colony while choosing their new directions.
Experimental results show a faster exploration using our
method.

3. PSO and RPSO: Theoretical background

325
This section is organized as follows: first we will intro-
duce the PSO technique, and then we will discuss its main
variants, after that we will introduce its extended version
to the multi-robot applications as presented in [14].
330
3.1. Particle Swarm Optimization
Particle Swarm Optimization is a stochastic method
inspired by le behavior of the flocking of the bird, it has
been developed by Dr. Kennedy and Dr. Eberhart in
1995 [5]. The system is initialized with a population ofss
random particles. Each particle is a potential solution,
moves in the search space in order to find the optimal
solution. A particle is characterized by its position (Pos)
and its objective function (OF), and which moves into the
search space by following: 340

e The local optimal solution in its knowledge, mini-
mizing or maximizing its objective function;

e The global optimal solution, which is the best solu-

tion between local optima of the whole colony;
345

e Without completely changing its direction.

In every optimization step, each particle has to update its
new solution through equations [I] and

APos(t) = w.APos(t — 1)
+r1.wp.(Posigest — Pos(t — 1))
+rg.wy.(PoSgpest — Pos(t — 1))

Pos(t) = Pos(t — 1) + APos(t)

(1)350

(2)

Wherein Pos(t) is the desired position, APos(t) the ve-
locity of the particle, Pos;g.s; the optimal solution in its
local knowledge (Local Best), Posgpest the global opti-
mal solution (Global Best) in the swarm knowledge (thats
doesnt mean the best solution can be found), coefficient
w, w; and wy are the assigned weights to the inertia influ-
ence, local optimum solution and global swarm optimum
solution respectively, t is the time (or iteration number) ;3
and r, are random vectors between 0 and 1.

PSO is a computing method, which allows iteratively
the growth of the results of potential solution in order to
optimize a problem. The evaluation of the convergence
of the optimization problem to a solution is through anss°
objective function which reflects the result of the potential
solution.

The idea of our approach is to suggest a new method
to calculate the position of the global optimum Posgpest,
which is more adapted to the collective exploration prob-
lem of multi-robot system, a detailed explanation of the
classic method (classic Robotic PSO) and our new method
(Democratic Robotic PSO) will be presented in the follow-
ing sections.

3.2. Particle swarm optimizations variant and extended
version

Since the first appearance of the PSO, and due to its
effectiveness and simplicity in implementation, it has been
applied in many optimization problems such as power sys-
tem [2I], Robotics [22] [23], transportation [24, 25], data
clustering [26] and electronics [27]. This has led to the de-
velopment of many variant in order to adapt it in deferent
field.

In [28] authors reviewed diferent studies focusing on
PSO, advantages and disadvantages, the basic variants,
modifications and applications that have implemented us-
ing PSO. They divided the deferent versions of PSO into
two groups: Basic Variants, and Modifications. Basic Vari-
ants are influenced by the PSO control parameters such as
dimension of the search space, number of particles, accel-
eration coefficients. The modification in PSO consists of
three categories: extension of field searching space, adjust-
ment the parameters, and hybrid with another technique.

In this paper, we will adjust the global best parame-
ter, in order to adapt the extended version of PSO, called
RPSO, to the multi-robot exploration problem.

3.3. Robotic Particle Swarm Optimization

PSO technique has been extended to multi robot sys-
tem application [I4]and referred to as Robotic Particle
Swarm Optimization (RPSO), in addition to the PSO pa-
rameters, RPSO takes into account real-world constraints
to avoid obstacles and keep robots at a convenient dis-
tance to maintain communication between them without
interfering with each other.

In every optimization step, each robot has to update
its new position through equations [3] and

APos(t) = w.APos(t — 1)
+r1.wp.(Posigest — Pos(t — 1))
+7rg.wq.(Posgpest — Pos(t — 1))

+70bs-Wobs-(Posops — Pos(t — 1))

+rComm~wComm-(POSCOmm - POS(t - 1))

3)

Wherein Pos,ps the optimal solution that allows the
robot to avoid obstacles, PoScomm is the optimal solu-
tion that permits the robot to keep communication with
other robots within the swarm, coefficient wops and weomm
are the assigned weights to the avoidance obstacle compo-
nent and maintaining communication component, r.,s and
TComm are random vectors between 0 and 1.



365

370

375

380

385

390

395

An illustration of the influence of the parameters in
the final velocity of the robot can be seen in Figure [[}In
which the robot is represented by a blue triangle, a half
circle represents its limit of detection, the optimal solution
is shown in green and an obstacle is schematized as black*®
rectangle.

Detection limit

Obstacle

Optimum

.solution
405

% 410

Robot

415

Figure 1: Robot position’s updating

Vectors V1, V2, V3, V4, V5 and V6 shown in Figurd]]

represent, respectively :
420

e V1 which is w. APos(t—1), represents the old veloc-
ity at time ¢t — 1 robot. Weighted by w to increase or
decrease the importance of this vector. This vector
is used to keep the robot loyal to its previously made
choices. 425

e V2 which is r;.w;.(Pos;pest — Pos(t — 1)), represents
the cognitive vector. Weighted by w; which is used
to increase or decrease the importance of this vector,
and a random number r; which give it a stochastic430
aspects. This vector is used to drive the robot to-
ward to the position maximizing its objective func-
tion from its own local knowledge.

e V3 which is ry.wgy.(Posgpest — Pos(t — 1)), repre-
sents the global knowledge vector. Similar to V2, it
is weighted by w, and a random number r,. Thissas
vector is used to drive the robot toward to the po-
sition maximizing its objective function from global
robots knowledge.

e V4 which i8S rops.Weps.(P0Sops — Pos(t — 1)), repre-
sents the avoidance obstacle vector. Similar to V2,
it is weighted by w,s and a random number 7,,.*
This vector is used to drive the robot far from ob-
stacle based on its own local sensing.

40

e V5 which is rcomm - Weomm-(Poscomm — Pos(t — 1)),
represents the maintaining communication vector.as
Similar to V2, it is weighted by wWeomm and a random
number 7eomm. This vector is used to keep the robot

at convenient distance in order to maintain commu-
nication between all robots within the swarm.

e V6 which is APos(t), represents the new robot’s ve-
locity. It’s computed by the of V1, V2, V3, V4 and
V5.

In the following section, we present our proposed modifi-
cation in the RPSO’s global best solution in order to help
robots to chose it in a democratic way.

4. Democratic Robotic Particle Swarm Optimiza-
tion

In order to adapt the RPSO to the multi-robot explo-
ration problem, in this section, we propose a new method
which calculates the position of the global best solution in
democratic way.

Even if democratizing the swarm isn’t a new idea, the
way how democratizing it makes the difference. In [29] au-
thors introduced Democracy-inspired Particle Swarm Op-
timization with concept of Peer Group (DPG-PSO), which
integrate the PSO with the concept of governance in hu-
man society. In DPG-PSO, population has a governor
which represents the global best solution, and an opposi-
tion which takes certain properties from the governor and
some are random. Instead of being influenced by only the
global best solution, in DPG-PSO each particle has the
choice to vote to the governor or its opposition to lead the
group while in our approach all particles (even the worst)
participate in choosing the global best solution not a leader
to follow.

An older attempt to democratize the swarm has been
introduced as Democratic PSO (DPSO) [30] which uses an
extra term in the velocity update equation. The extra term
represents a global best solution, in which all particles, like
our method, participate in the choosing process. While in
our approach, no extra term has been used but the voted
global best solution replace the Posgpes: solution in the
equation [3] also the computing process is not the same.

4.1. Description of our proposed approach

Usually, in the PSO the global optimum solution, as
described in the equation is the best solution between
local optima of all the particles has ever discovered[5] :

Posgpest = Max(Posipest(1,T)); Vi € (1, N); VT € (0,t)(4)

With Pos;gest(i,T), as described before, is the local best
solution of the i*" particle from the N particles, in any
time T from the beginning of the optimization until the
current time t. This will guide all particles to the same
solution imposed by a single particle (the most efficient),
which is not always necessarily the best existing solution.

SLAM is not used to be an optimization problem, be-
cause a solution which has been discovered in any time T’
(which represent the size of the new discovered area) would
not be anymore a solution for any time ¢ > T'. So the PSO
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used as source of inspiration, and the update role of the
global best solution has been changed in order adapt it to
the multi-robot exploration problem.

In our work we have democratized the swarm. The
global optimum solution is calculated according to all local
optimums multiplied by their objective functions as follows

(equation [5)):

S (OF (i) * Posipest(i))

N * Moy(OF) 5)

POSgBest =

Wherein Pos;pest(;y and OF'(i) the local best solution (po-
sition) and the objective function value of particle i respec-
tively, N is the number of particles within the swarm, and
Moy(OF) is the average value of the objective function in
the whole colony.

In the collective exploration problem, the objective is
to maximize the explored surface, hence, the objective
function OF (i) depends only on the explored area by the
it" robot at a time t.

The same equation of Posgpes; is also as follows @

SN (OF (i) % Posipest(i))
N .
>i=1 OF (i)
This approach will guide all particles toward a middle
point (center of gravity). It will influence robots to dis-""

cover the center of the map without discovering the sides
(as shown in figure . For this reason, as describes equa-

485

(6)

POSgBest =

495

500

Figure 2: Explored area after 1000 iteration using Democratic RPSO
with fixed weights(in the same map used in [I4]).

tion [7] we changed the value of the weight of the social
component of PSO w, (which is, in most cases, a fixed™®
value), in a way that guide robots to discover their cen-
ter of gravity firstly, and, secondly the corners of the map
(as shown in figure . To do S0, gBestvaiue (Which is the
average value of objective functions of all robots) was com-
pared with a threshold value gpestvaiueThreshord, Which is™°
the value that decides when to switch from the first part to
the second, and was divided by the maximum value that
can take gpestvaiue and then, multiply it by the classic
weight value that should take wgstandard /WeClassic -

9BestValue — JvestValueThreshold
’LUg =
MangestValue

But, this will limit the value of w, between

* wgClassic (7)515

—GbestValueThreshold
MamgBestValue

* WyClassic

Figure 3: Explored area after 1000 iteration using Democratic RPSO
with changed weights (in the same map used in [14]).

and

(1 _ gbestValueThreshold)
Z\/langestValue
In this way, the robot will be penalized by decreasing its
step of advancement (which is strongly connected to the
sum of weight assigned to different RPSOs variables). To
adjust this limitation we, also, modified w; (the cognitive
vectors weight) as described equation

* WyClassic

(8)

Wy = WiClassic T WygClassic — abs(wg)

with abs(wg) is the absolute value of wy.
Thus the exploration is carried out in two steps,

1. When the value of w, is positive, robots will tend
to converge on the center of their gravity. This will
helps the colony to explore their center of gravity,
which is the center of the work map.

2. And when the value of w, is negative, robots will
tend to diverge far from the center of their gravity.
This will helps the colony to explore the sides of the
work map.

When the value of wy is equal to zero, each robot will
compute its new position without taking in consideration
the social component.

4.2. DRPSO algorithm

As algorithm describes, the steps of execution are
listed below:

First, initialize local best position, global best posi-
tion, the best position allows the robot to avoid obstacles
and the best position allows the robot to maintain com-
munication with other robots in its own position. Second,
initialize all the cells of the map on the robots memory as
unknown cells. After that, the robot repeats the following
step in each iteration until a stopping criterion:

1. Read data from sensors and update the map in the
robots memory.
2. Compute :
e The new fitness value (Objective Function) of

the robot. Which is the number of new discov-
ered cells.

e The local best position according to the con-
centration of the new discovered cells.
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Algorithm 1: DRPSO algorithm 545

Initialize Pos;Best; P0sgBest; P0sops and Poscomm
as own position.

Initialize the map in the robots memory as
unknown.

While stopping criteria (convergence/time) not
satisfied.

550

1. Read sensors.

2. Update OF, Pos;gest and Posps.

3. Update Poscomm- 555
4. Share Pos;gest and OF with other robots of the
swarm.

Read other robots Pos;pest(i) and OF (i) compute
POSgBest and GbestValue-

Compute wy and w;.

Compute APos(t).

Move to the new position Pos(t + 1).

ot

560

® N>

End.

565

e The avoidance obstacles position, which is the
symmetrical position of the obstacle relative to
the robot. In other words, it is the position
which allows the robot to move far away fromsn
obstacles.

3. Update the position which allows the swarm to main-
tain communication. Each robot should maintain
communication with the nearest neighbor robot that
hasnt been chosen as nearest neighbor before.

4. Share its own best position (Pos;pest) and fitness
value (OF) with other robots in the swarm.

5. Read other robots local best position (PoslBest(i))
and fitness value (OF(i)), and compute Posgpest_,
according to the equation [J] and With N is
the number of the robots. This method calculates
Posgpes+ with minimal iteration.

575

(N—1)gBestyaiue*PosgBest

Posgpest = (NT)gBestyorn TIFOF (i) (9)%
+ OF (i)*Pos;gest (1)
(N—1)gBesty qiue+1+OF (3)
N — 1)gBestyqiue + OF (i
gBeStValue = ( )g eslValue £ (Z) (10)

N

6. Compute w, and w; according to equations |Z| and
B
7. Compute Pos(t) according to equation

8. move to the new position Pos(t+1) using equation
595

590

5. Experimental result

In this part we will present an evaluation of the results

of two simulations, in the first simulation, we used the

RDPSO [14] (with Posgpes: is the best solution between
local optima), which is, according to [15], the most effi-
cient algorithm. In the second simulation, we used the new
method of calculating Posgpes:, which we named Demo-
cratic RPSO.

In this experiment, simulations are conducted only in
software simulation platform, real word constrains has not
been tackled. For a real robots simulation, the problems
of localization and noisy sensor inputs make a huge barrier
for this purpose.

In order to ensure the loyalty of the simulation result,
we simulated the two methods 20 times and calculated the
average values of each method. Each simulation lasted
1480 iterations. Both simulations were run on the same
map with the same initial conditions and on the same sim-
ulation platform MRSim (Multi-Robot Simulator), which
is an extension of the Autonomous mobile robotics toolbox
SIMROBOT developed for MatLab [2].

The constants parameters used in simulations are the
following : The assigned weights to the inertia influence
w = 0.6 ; The assigned weights to the local optimum so-
lution w; = (0.42 in the RDPSO algorithm, and is calcu-
lated using equation [8|in the Democratic RPSO) ; The as-
signed weights to the global optimum solution wy = (0.42
in the RDPSO algorithm, and is calculated using equa-
tion m in the Democratic RPSO) ; The assigned weights
to the avoidance obstacle component wy,s = 0.18 ; The
assigned weights to the maintaining communication com-
ponent weomm = 0.4 ; The global best threshold value
JbestValueThreshold = 90, which is the average value that
could take ; The classic weight value of the global solu-
tion and the local solution are wyciassic = WiCiassic =
0.42 are the same used in the RDPSO algorithm ; The
maximum number of free cells that a robot can sens in
our simulation experiments is Mazgpestvaiue = 210. Pa-
rameters presented here are obtained empirically without
giving benefit to an algorithm against other.

In these simulations, we used a colony which was formed
by 10 simulation models of homogeneous robots, equipped
with a laser scanner. The evaluation criterion is the area
covered by the colony during a period of time T (or af-
ter number of iteration). Table [I| presents a percentage
of the explored surface compared to the total area of the
environment of the two methods each 40 iterations, and a
comparison between the two methods.

Table shows an advantage of the new method of
calculating Posgpest (Democratic RPSO) all along the ex-
ploration operation. An advantage of 13.11% of the dis-
covered area of the total environment after 360 iterations
has been shown, which would translate into faster response
times in a rescue operation.

Figure [4]shows the progress state (discovered area) of
the two methods during the exploration time (based on
the number of iteration). We can see the benefits of our
new method throughout curves in figure {4} the simulation
result of the RDPSO method is shown in red color, and
the result of the our new method of computing Posgpest



Table 1: Discovered space with RDPSO and Democratic RPSO

RDPSO | Democratic | Dem RPSO
Iter RPSO - RPSO
40 | 29.06% 29.46% 0.40%
80 | 38.45% 39.51% 1.06%
120 | 46.27% 47.37% 1.09%
160 | 51.38% 54.15% 2.77%
200 | 54.36% 60.36% 6.00%
240 | 56.82% 65.94% 9.12%
280 | 59.50% 71.04% 11.54%
320 | 62.30% 75.08% 12.78%
360 | 65.29% 78.40% 13.11%
400 | 68.60% 81.15% 12.55%
440 | 71.91% 83.29% 11.38%
480 | 75.04% 85.01% 9.98%
520 | 78.16% 86.49% 8.33%
560 | 80.91% 87.97% 7.06%
600 | 83.56% 89.30% 5.74%
640 | 86.03% 90.48% 4.45%
680 | 88.04% 91.44% 3.39%
720 | 89.73% 92.32% 2.60%
760 | 91.51% 93.25% 1.74%
800 | 93.02% 94.10% 1.09%
840 | 94.22% 94.81% 0.60%
880 | 95.05% 95.54% 0.49%
920 | 95.64% 96.11% 0.46%
960 | 96.18% 96.59% 0.41%
1000 | 96.66% 97.03% 0.37%
1040 | 97.17% 97.38% 0.21%
1080 | 97.60% 97.75% 0.15%
1120 | 98.07% 98.00% -0.07%
1160 | 98.37% 98.20% -0.17%
1200 | 98.56% 98.36% -0.20%
1240 | 98.70% 98.46% -0.24%
1280 | 98.82% 98.52% -0.30%
1320 | 98.93% 98.61% -0.31%
1360 | 99.03% 98.73% -0.30%
1400 | 99.10% 98.82% -0.28%
1440 | 99.16% 98.89% -0.27%
1480 | 99.23% 98.93% -0.29%
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Figure 4: Discovered area using RDPSO and Democratic RPSO.

is represented in the blue curve.

As shown in Figure [4] the new method allows us to
discover near 75% of the card after 320 iterations, against
480 iterations for the RDPSO method, making it a benefit
of 160 iterations.

On the first steps (before 160 iterations) of the simula-
tion there is no big difference between the two simulations,
because the whole map has not been explored yet, and in
each direction the robot chooses to move, it will discover
a new area.

In the last iterations (after 840 iterations) both meth-
ods will end up discovering the whole map.

6. Conclusion

This paper presents a new method of calculating the
global best parameter of the PSO technique to better adapt
to the problem of collective exploration of an unknown en-
vironment. The idea of our method is to democratize the
colony when selecting the global optimum solution.

Simulations in a virtual environment have been made,
showing the benefit of our method.

Democratizing the colony saves the time (iterations)
in the problems that have a variable global optimum (e.g.
exploration, foraging, cleaning) but not necessarily in the
problem with a fixed global optimum (e.g. solving a math-
ematical equation).

For future work, we will implement the democratic
RPSO algorithm on physical robots in order to verify its
performance in the real world constraints.
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