On the analysis of perfectly matched layers for a class of dispersive media and application to negative index metamaterials

Eliane Bécache, Patrick Joly, Valentin Vinoles

- To cite this version:

Eliane Bécache, Patrick Joly, Valentin Vinoles. On the analysis of perfectly matched layers for a class of dispersive media and application to negative index metamaterials. 2016. hal-01327315v1

HAL Id: hal-01327315
https://hal.science/hal-01327315v1
Preprint submitted on 6 Jun 2016 (v1), last revised 12 Jul 2017 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. publics ou privés.

On the analysis of perfectly matched layers for a class of dispersive media and application to negative index metamaterials

Éliane Bécache ${ }^{1, \mathrm{a}}$, Patrick Joly ${ }^{1, \mathrm{~b}}$ and Valentin Vinoles ${ }^{* 1,2, \mathrm{c}}$
${ }^{1}$ Laboratoire Poems (UMR 7231 CNRS/Inria/ENSTA ParisTech), ENSTA ParisTech, 828, Boulevard des Maréchaux, 91762 Palaiseau, France
${ }^{2}$ Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 75005, Paris, France
${ }^{\text {a }}$ eliane.becache@inria.fr
${ }^{\text {b }}$ patrick.joly@inria.fr
${ }^{c}$ valentin.vinoles@ensta-paristech.fr

Abstract

This work deals with Perfectly Matched Layers (PMLs) in the context of dispersive media, and in particular for Negative Index Metamaterials (NIMs). We first present some properties of dispersive isotropic Maxwell equations that include NIMs. We then demonstrate numerically the inherent instabilities of the classical PMLs applied to NIMs. We propose and analyse the stability of very general PMLs for a large class of dispersive systems using a new change of variable. We give necessary criteria for the stability of such models. For dispersive isotropic Maxwell equations, this analysis is completed by giving necessary and sufficient conditions of stability. Finally, we propose new PMLs that satisfy these criteria and demonstrate numerically their efficiency.

1 Introduction

One of the hardest difficulties to simulate wave propagation in unbounded domains is to construct artificial boundary conditions which absorb the outgoing waves without reflecting them into the computational domain. A widely used technique to do so is the so-called Perfectly Matched Layer (PML) [17] first proposed by Bérenger [4] for the 3D Maxwell equations. The method consists in surrounding the computational domain by an absorbing layer (the PML) which generates no reflection inside it. Even if they are very effective in many cases, PMLs can exhibit instabilities for some equations because of backward waves, which are waves whose phase and group velocities point in "opposite" directions with respect to the interface. For non-dispersive media, Bécache et al. in [1] established a necessary (but not sufficient) criterion of stability: classical PMLs are stable only if there is no backward wave. This is always the case for isotropic media but not for all anisotropic ones. For some of them (e.g. anisotropic acoustic equations [12], aeroacoustics [13]), new stable

[^0]PLMs have been successfully proposed but, to our knowledge, the case of anisotropic elastic waves remains open [1].

The case of dispersive systems has been much less studied. A very important example of such media are metamaterials, i.e. artificial composite materials having extraordinary electromagnetic properties. In particular, Negative Index Metamaterials (NIMs), also called left-handed media or double negative metamaterials, have negative permittivity and permeability at some frequencies due to microscopic resonating structures [26]. Since the 1990s, NIMs are the subject of active researches due to their promising applications as superlens, cloaking, improved antenna, etc [10]. The fact is that, even in isotropic media, NIMs naturally support backward waves (at least in some range of frequencies), which leads to anticipate difficulties with PMLs, by analogy with what occurs with non dispersive media.

PMLs in NIMs have already been studied by the physicists community [9, 11, 14, 21, 25]. To our knowledge, in [11], Cummer was the first to notice that classical PMLs fail in NIMs and gave a physical explanation related to the presence of backward waves. He proposed stable PMLs for a particular case of Drude materials corresponding to $\omega_{e}=\omega_{m}$ (see (2.12) in Section 2.1.3 for more details). This work was extended in $[14,25]$ to the general case $\omega_{e} \neq \omega_{m}$. In all these works the instability of PMLs was observed through numerical or explained by arguments coming from the physics.

The goal of this paper is to clarify and bring a mathematical eye to the question of the stability of PMLs for NIMs and also to generalise the construction of stable PMLs for a much larger class of dispersive electromagnetic media than the Drude ones. Let us mention a first paper [3] by the authors in which we have already claimed some of the results of the present article, in particular how to construct stable PMLs for the Drude model, but without any proof (we also extended our method to a simple plasma model).

The outline of the article is as follows. In Section 2, we present the class of mathematical models that we consider in this paper for isotropic dispersive electromagnetic media and give their main mathematical properties (Section 2.1) as well as an analysis of dispersion phenomena (Section 2.2), introducing in particular the definition of backward modes and negative index. In Section 3, which can be seen as a motivation of the rest of the paper, we focus on the Drude model for which we construct the classical PMLs (Section 3.1) and illustrate the instability of classical PMLs through numerical simulations (Section 3.2). Sections 4 and 5 contain the main results of this paper. In Section 4 we consider the question of PMLs for non-dissipative dispersive first order hyperbolic systems. These are presented in Section 4.1 and generalize the models of Section 2. In Section 4.2, we propose generalised PMLs for such systems and initiate their stability analysis (the main issue of this paper) in Section 4.3. In particular, we derive two necessary stability conditions in Sections 4.3.4 and 4.3.5. In Section 5, we come back to dispersive isotropic Maxwell equations and complete, in this case, the stability analysis initiated in Section 4.3. We obtain a necessary and sufficient stability condition (Theorems 5.4 and 5.9) for our generalised PMLs. Finally, in Section 6, we construct stable PMLs for Drude materials (Section 6.1, with numerical illustration), for generalised Lorentz materials (Section 6.2) and propose a procedure to construct stable PMLs for general models in Section 6.3.

2 Isotropic dispersive media

In this section, we consider a general class of mathematical models for the propagation of electromagnetic waves in dispersive, isotropic non-dissipative 2D media. The restriction to the 2D
case is really non essential and adopted only for simplicity.

2.1 The mathematical models

2.1.1 The Maxwell equations

We consider the two dimensional Maxwell equations in the Transverse Electric (TE) mode in the free space [16]

$$
\left\{\begin{array} { l }
{ \partial _ { t } D _ { x } = \partial _ { y } H , } \tag{2.1}\\
{ \partial _ { t } D _ { y } = - \partial _ { x } H , } \\
{ \partial _ { t } B = \partial _ { y } E _ { x } - \partial _ { x } E _ { y } , }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
\partial_{t} \mathbf{D}=\operatorname{curl} H \\
\partial_{t} B=-\operatorname{curl} \mathbf{E}
\end{array}\right.\right.
$$

where $\mathbf{E}:=\left(E_{x}, E_{y}\right)^{\mathrm{T}}$ and $\mathbf{D}:=\left(D_{x}, D_{y}\right)^{\mathrm{T}}$ are the electric field and the electric induction, H and B the magnetic field and the magnetic induction. Here we use the differential operators curlu $\mathbf{u}:=\partial_{x} u_{y}-\partial_{y} u_{x}$ and $\operatorname{curl} u:=\left(\partial_{y} u,-\partial_{x} u\right)^{\mathrm{T}}$. To close this system, one must add some constitutive relations which link \mathbf{E} and \mathbf{D} on the one hand, H and B on the other hand. Classically, constitutive relations for dispersive models are described in the frequency domain and relate the time Fourier transforms of the fields (we adopt for the Fourier transform the convention that transforms the time derivative ∂_{t} into the multiplication by $i \omega$):

$$
\begin{equation*}
\widehat{\mathbf{D}}(\omega, \cdot)=\varepsilon(\omega, \cdot) \widehat{\mathbf{E}}(\omega, \cdot) \quad \text { and } \quad \widehat{B}(\omega, \cdot)=\mu(\omega, \cdot) \widehat{H}(\omega, \cdot) \tag{2.2}
\end{equation*}
$$

where $\varepsilon(\omega, x, y)$ and $\mu(\omega, x, y)$ are respectively the permittivity and the permeability at the point (x, y) and frequency ω. In the rest of the paper, we shall restrict our presentation to homogeneous media, that is to say to the case where $\varepsilon(\omega, x, y)=\varepsilon(\omega)$ and $\mu(\omega, x, y)=\mu(\omega)$. This is not restrictive as far as the question of PMLs is concerned, PMLs are used in homogeneous regions. However, the reader will observe that a large part of this section still applies to heterogeneous media.

In the frequency domain, (2.1) becomes after eliminating \mathbf{D} and B thanks to (2.2):

$$
\left\{\begin{array}{l}
i \omega \varepsilon(\omega) \widehat{\mathbf{E}}=\operatorname{curl} \widehat{H} \tag{2.3}\\
i \omega \mu(\omega) \widehat{H}=-\operatorname{curl} \widehat{\mathbf{E}}
\end{array}\right.
$$

When ε and μ do not depend on the frequency ω, the medium is a standard dielectric one, otherwise it is a so-called dispersive medium.

2.1.2 Admissible forms of the permittivity and the permeability

Even though the content of this section has to be considered as rather formal from the mathematical point of view, it is worth mentioning that mathematical properties of $\varepsilon(\omega)$ and $\mu(\omega)$ are usually required in order to ensure the well-posedness and physical soundness of the evolution problem corresponding to (2.3). In particular, in order to preserve the causality of the constitutive laws (2.2) and the fact that the electric and magnetic fields in time domain are real valued, one must impose that

$$
\begin{equation*}
\varepsilon(\omega) \text { and } \mu(\omega) \text { are Fourier transforms of real and causal distributions. } \tag{2.4}
\end{equation*}
$$

In particular, $\varepsilon(\omega)$ and $\mu(\omega)$ can be extended to the complex plane as analytic functions in the lower half-plane $\mathbb{C}^{-}:=\{z \in \mathbb{C}: \operatorname{Im} z \leq 0\}$. In the following, we shall also assume that

$$
\begin{equation*}
\text { for } \omega \in \mathbb{R}, \varepsilon(\omega) \text { and } \mu(\omega) \text { are real valued, } \tag{2.5}
\end{equation*}
$$

which in practice amounts to consider non dissipative media (we shall give a more precise definition in the next section). In many cases, dispersive media are also (slightly) dissipative but we are convinced that the question of PMLs is more difficult for non dissipative media.

Finally we shall also assume that both $\varepsilon(\omega)$ and $\mu(\omega)$ have a finite limit at high frequency: there exist two real numbers $\varepsilon^{\infty}>0$ and $\mu^{\infty}>0$ such that

$$
\begin{equation*}
\varepsilon(\omega) \underset{\omega \rightarrow+\infty}{\longrightarrow} \varepsilon^{\infty} \quad \text { and } \quad \mu(\omega) \underset{\omega \rightarrow+\infty}{\longrightarrow} \mu^{\infty} \tag{2.6}
\end{equation*}
$$

In other words, such media behave as a standard dielectric medium at high frequency and, from the mathematical point of view, the model in time that corresponds to (2.3) can be seen as a lower order perturbation of classical Maxwell equations associated to $\left(\varepsilon^{\infty}, \mu^{\infty}\right)$.

For the simplicity of our analysis, but also because it already covers a large class of models of the literature, we shall restrict ourselves to local dispersive media in the sense that $\varepsilon(\omega)$ and $\mu(\omega)$ are rational fractions. Doing so, if one takes into account (2.4), (2.5) and (2.6), one must impose that:

$$
\begin{gather*}
\varepsilon(\omega) \text { and } \mu(\omega) \text { are real, even rational fractions of } \omega \tag{2.7}\\
\text { with a constant entire part and real poles. }
\end{gather*}
$$

The justification of the terminology "local" is due to the fact that, when coming back to the time domain from (2.2), the relationship between \mathbf{E} and \mathbf{D} (resp. H and B) can be expressed in terms of ordinary differential equations, modulo the introduction of auxiliary unknowns.

In what follows, we shall restrict ourselves to dispersive media satisfying (2.7). In these cases, the evolution problem corresponding to (2.3) can be rewritten as the standard Maxwell equations coupled to ordinary differential equations. Indeed, the relationships (2.2) actually have to be understood in the sense

$$
\begin{equation*}
Q_{e}(i \omega) \widehat{\mathbf{D}}(\omega, \cdot)=P_{e}(i \omega) \widehat{\mathbf{E}}(\omega, \cdot) \quad \text { and } \quad Q_{m}(i \omega) \widehat{B}(\omega, \cdot)=P_{m}(i \omega) \widehat{H}(\omega, \cdot) \tag{2.8}
\end{equation*}
$$

where $\varepsilon(\omega)=P_{e}(i \omega) / Q_{e}(i \omega)$ and $\mu(\omega)=P_{m}(i \omega) / Q_{m}(i \omega)$, with P_{e}, Q_{e} real polynomials of degree $2 M_{e}, P_{m}$ and Q_{m} real polynomials of degree $2 M_{m}$ such that

$$
\begin{equation*}
P_{e} P_{m} \text { and } Q_{e} Q_{m} \text { are coprime. } \tag{2.9}
\end{equation*}
$$

We also introduce the following notations:

$$
\begin{equation*}
P_{e m}:=P_{e} P_{m} \quad \text { and } \quad Q_{e m}:=Q_{e} Q_{m} . \tag{2.10}
\end{equation*}
$$

In the time domain, (2.8) becomes a system of ordinary differential equations

$$
\begin{equation*}
Q_{e}\left(\partial_{t}\right) \mathbf{D}=P_{e}\left(\partial_{t}\right) \quad \text { and } \quad \mathbf{E}, \quad Q_{m}\left(\partial_{t}\right) B=P_{m}\left(\partial_{t}\right) H \tag{2.11}
\end{equation*}
$$

Remark 2.1. Condition (2.9) is not restrictive since it always may be satisfied up to a change of unknowns.

We give below two examples of such models.

2.1.3 The Drude model

One of the simplest local dispersive medium is the Drude one that corresponds to

$$
\begin{equation*}
\varepsilon(\omega)=\varepsilon_{0}\left(1-\frac{\omega_{e}^{2}}{\omega^{2}}\right) \quad \text { and } \quad \mu(\omega)=\mu_{0}\left(1-\frac{\omega_{m}^{2}}{\omega^{2}}\right) \tag{2.12}
\end{equation*}
$$

Figure 1 - Plot of $\varepsilon(\omega)$ and $\mu(\omega)$ defined by the Drude model (2.12)
where $\varepsilon_{0}>0$ and $\mu_{0}>0$ are the permittivity and the permeability of the vacuum, and $\omega_{e}>0$ and $\omega_{m}>0$ are the electric and the magnetic plasma frequencies. Both functions $\varepsilon(\omega)$ and $\mu(\omega)$ have a changing sign as illustrated by the Figure 1.

The Drude model is widely used to describe the permittivity in metals [16, §7.5]. For the permeability, the Drude model can be thought as a simplification of more complicated models which describe artificial magnetism in resonating structures [23, 29]. A derivation of this model can be found in [22] (see also [6, 7] for mathematical justifications based on high-contrast homogenization). Let us emphasize that, despite its simplicity, the Drude model (2.12) already contains all the difficulties to construct stable PMLs. That is why we consider this model as our privileged toy problem.

To write the Drude model in the time domain, we first substitute (2.12) into (2.3):

$$
\left\{\begin{array}{l}
\varepsilon_{0}\left(i \omega \widehat{\mathbf{E}}+\frac{\omega_{e}^{2}}{i \omega} \widehat{\mathbf{E}}\right)=\operatorname{curl} \widehat{H} \tag{2.13}\\
\mu_{0}\left(i \omega \widehat{H}+\frac{\omega_{m}^{2}}{i \omega} \widehat{H}\right)=-\operatorname{curl} \widehat{\mathbf{E}}
\end{array}\right.
$$

We now introduce auxiliary fields $\mathbf{J}:=\left(J_{x}, J_{y}\right)^{\mathrm{T}}$ and K (called the induced electric and magnetic currents) which are the primitives in time of the fields \mathbf{E} and H :

$$
\begin{equation*}
i \omega \widehat{\mathbf{J}}=\widehat{\mathbf{E}} \quad \text { and } \quad i \omega \widehat{K}=\widehat{H} . \tag{2.14}
\end{equation*}
$$

We then obtain the TE first-order system for the Drude model in the time domain

$$
\left\{\begin{array}{l}
\partial_{t} \mathbf{E}+\omega_{e}^{2} \mathbf{J}=\varepsilon_{0}^{-1} \operatorname{curl} H \tag{2.15}\\
\partial_{t} \mathbf{J}-\mathbf{E}=0 \\
\partial_{t} H+\omega_{m}^{2} K=-\mu_{0}^{-1} \operatorname{curl} \mathbf{E} \\
\partial_{t} K-H=0
\end{array}\right.
$$

2.1.4 Generalised Lorentz models

A generalisation of the Drude model (2.12) is the generalised Lorentz materials corresponding to :

$$
\begin{equation*}
\varepsilon(\omega)=\varepsilon_{0}\left(1-\sum_{j=1}^{M_{e}} \frac{\omega_{e, j}^{2}}{\omega^{2}-\Omega_{e, j}^{2}}\right) \quad \text { and } \quad \mu(\omega)=\mu_{0}\left(1-\sum_{k=1}^{M_{m}} \frac{\omega_{m, k}^{2}}{\omega^{2}-\Omega_{m, k}^{2}}\right) . \tag{2.16}
\end{equation*}
$$

The reader will easily check that the Drude model (2.12) is a particular case of (2.16) with $M_{e}=$ $M_{m}=1$ and $\Omega_{e, 1}=\Omega_{m, 1}=0$. The time domain model corresponding to (2.16) can be written as follows (using auxiliary unknowns as we did for the Drude model, we omit the details)

$$
\left\{\begin{array}{l}
\partial_{t} \mathbf{E}+\sum_{j=1}^{M_{e}} \omega_{e, j}^{2} \mathbf{J}_{j}=\varepsilon_{0}^{-1} \mathbf{c u r l} H \tag{2.17}\\
\partial_{t} \mathbf{J}_{j}+\Omega_{e, \ell}^{2} \mathbf{P}_{j}-\mathbf{E}=0, \quad \partial_{t} \mathbf{P}_{j}-\mathbf{J}_{j}=0, \quad\left(1 \leq j \leq M_{e}\right) \\
\partial_{t} H+\sum_{k=1}^{M_{m}} \omega_{m, k}^{2} K_{k}=-\mu_{0}^{-1} \operatorname{curl} \mathbf{E} \\
\partial_{t} K_{k}+\Omega_{m, k}^{2} R_{k}-H=0, \quad \partial_{t} R_{k}-K_{k}=0, \quad\left(1 \leq k \leq M_{m}\right)
\end{array}\right.
$$

Note that the spatial differential operators only apply to the electric and magnetic fields \mathbf{E} and H and not on the auxiliary fields. We also remark that the unknowns of this system take values in \mathbb{R}^{m} with $m=2 M_{m}+4 M_{e}+3$ (at least when all the $\Omega_{e, j}$ and $\Omega_{m, k}$ do not vanish, otherwise some of the unknowns are not necessary, as in the Drude model).
Remark 2.2. For the generalised Lorentz models, the fields \mathbf{D} and B can be recovered by

$$
\begin{equation*}
\mathbf{D}=\varepsilon_{0}\left(\mathbf{E}+\sum_{j=1}^{M_{e}} \omega_{e, j}^{2} \mathbf{P}_{\ell}\right) \quad \text { and } \quad B=\mu_{0}\left(H+\sum_{k=1}^{M_{e}} \omega_{e, k}^{2} R_{k}\right) \tag{2.18}
\end{equation*}
$$

The well-posedness of the system (2.17) is a simple application of one of the classical theories for linear evolution equations like the Hille-Yosida's theory [15] (the details are left to the reader). Moreover, one can easily establish the following energy identity

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathcal{E}_{e}+\mathcal{E}_{m}\right)=0 \tag{2.19}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
\mathcal{E}_{e}=\frac{1}{2} \int_{\mathbb{R}^{2}} \varepsilon_{0}|\mathbf{E}|^{2}+\frac{1}{2} \sum_{j=1}^{M_{e}} \int_{\mathbb{R}^{2}} \varepsilon_{0} \omega_{e, j}^{2}\left(\left|\mathbf{J}_{j}\right|^{2}+\Omega_{m, j}^{2}\left|\mathbf{P}_{j}\right|^{2}\right) \tag{2.20}\\
\mathcal{E}_{m}=\frac{1}{2} \int_{\mathbb{R}^{2}} \mu_{0}|H|^{2}+\frac{1}{2} \sum_{k=1}^{M_{m}} \int_{\mathbb{R}^{2}} \mu_{0} \omega_{m, k}^{2}\left(\left|K_{k}\right|^{2}+\Omega_{m, k}^{2}\left|R_{k}\right|^{2}\right)
\end{array}\right.
$$

Remark 2.3. It has been shown (see e.g. [27]) that, modulo an adequate generalization that would consist in the fact that the indexes j and k in (2.16) and (2.17) become a continuous real variable, the sum becoming an integral with respect to a given positive measure, the generalised Lorentz models are representative of all causal and passive electromagnetic materials. Note that such materials are in general no longer local dispersive materials in the sense of Definition (2.7).

2.1.5 Growing property

One has a very useful property of the generalised Lorentz models (2.16) that we call "growing property" in the following.

Definition 2.4. A local dispersive material in the sense of Definition (2.7) possesses the growing property if the functions $\varepsilon(\omega)$ and $\mu(\omega)$ satisfy

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \omega}(\omega \varepsilon(\omega))>0 \quad \text { and } \quad \frac{\mathrm{d}}{\mathrm{~d} \omega}(\omega \mu(\omega))>0 \tag{2.21}
\end{equation*}
$$

for all the frequencies ω that are not a pole of ε or μ.
The interest of this property will be emphasized in Section 2.2 (Theorem 2.20 and Proposition 2.19) and even more in Sections 5 and 6. As claimed, the generalised Lorentz models (2.16) verify the growing property:

Proposition 2.5. All generalised Lorentz models (2.16) possess the growing property (2.21).
Proof. It suffices to remark that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \omega}\left(\frac{\omega}{\omega^{2}-\Omega_{e, j}^{2}}\right)=\frac{\omega_{e, j}^{2}+\omega^{2}}{\left(\omega^{2}-\Omega_{e, j}^{2}\right)^{2}}, \quad j \in\left\{1, \ldots, M_{e}\right\} \tag{2.22}
\end{equation*}
$$

to conclude that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \omega}(\omega \varepsilon(\omega))=\varepsilon_{0} \sum_{j=1}^{M_{e}} \Omega_{e}^{2} \frac{\omega_{e, j}^{2}+\omega^{2}}{\left(\omega^{2}-\Omega_{e, j}^{2}\right)^{2}}>0 \tag{2.23}
\end{equation*}
$$

The same holds for $\mu(\omega)$.
Remark 2.6. One can wonder whether local dispersive materials satisfying the growing property (2.21) are reduced to generalised Lorentz materials. We did not investigate this question.

2.2 Analysis of dispersive properties

2.2.1 Modal analysis

The dispersion properties of (2.1)-(2.2) are classically analysed through the notion of harmonic plane waves.

Definition 2.7. For a given wave vector $\mathbf{k} \in \mathbb{R}^{2}$, a plane wave is a solution $\mathbf{u}=(\mathbf{E}, H, \mathbf{B}, D)^{\mathrm{T}}$ of (2.1)-(2.2) (or more rigorously (2.1)-(2.11)) under the form

$$
\begin{equation*}
u(\mathbf{x}, t)=\widehat{\mathbf{U}} e^{i(\omega t-\mathbf{k} \cdot \mathbf{x})} \tag{2.24}
\end{equation*}
$$

where $\widehat{\mathbf{U}} \in \mathbb{C}^{6} \backslash\{0\}$ is the amplitude vector and $\omega \in \mathbb{C}$ the frequency.
Introducing the set \mathcal{F} of forbidden frequencies defined as

$$
\begin{equation*}
\mathcal{F}:=\{\omega \in \mathbb{R}: \omega \text { is a pole of } \varepsilon(\omega) \mu(\omega)\} \tag{2.25}
\end{equation*}
$$

it is easy to see using (2.9) that the existence of a plane wave implies that $\omega \in \mathcal{O}$ where \mathcal{O} is the set of admissible frequencies:

$$
\begin{equation*}
\mathcal{O}:=\mathbb{C} \backslash \mathcal{F} \tag{2.26}
\end{equation*}
$$

For $\omega \in \mathcal{O}$, one sees from (2.3) that a plane wave should satisfy the dispersion relation

$$
\begin{equation*}
\omega \varepsilon(\omega)\left(\omega^{2} \varepsilon(\omega) \mu(\omega)-|\mathbf{k}|^{2}\right)=0 \tag{2.27}
\end{equation*}
$$

therefore either $\omega \varepsilon(\omega)=0$, which corresponds to non-propagative waves associated to curl-free electric fields, or ω and \mathbf{k} must satisfy the reduced dispersion relation

$$
\begin{equation*}
\omega^{2} \varepsilon(\omega) \mu(\omega)=|\mathbf{k}|^{2} \tag{2.28}
\end{equation*}
$$

Remark 2.8. The zeroes of $\varepsilon(\omega)$ play here a particular role because we consider a 2 D model. In 3D, $\varepsilon(\omega)$ and $\mu(\omega)$ would play a symmetric role.
Remark 2.9. For a local dispersive model satisfying (2.7), the dispersion relation (2.28) can be rewritten as a polynomial equation of degree $M:=2\left(M_{e}+M_{m}+1\right)$ with respect to ω, where $M_{e}\left(\right.$ resp. $\left.M_{m}\right)$ is the degree of the denominator of $\varepsilon(\omega)$ (resp. $\mu(\omega)$) (at least in the case where $\omega=0$ is not a pole of ε or $\mu)$. When adding the $2 M_{e}+1$ non-propagative modes, one recovers $m=2 M_{m}+4 M_{e}+3$ modes, corresponding to the number of unknowns of the original system (see for instance (2.17) for the generalised Lorentz system). However these non-propagative modes, labelled as $\omega_{j}, M+1 \leq j \leq m$, will not play any role in what follows, since they do not depend on \mathbf{k}. Concerning the solutions $\omega_{j}(\mathbf{k}), 1 \leq j \leq M$ of (2.28), they actually only depends on $|\mathbf{k}|: \omega_{j}(\mathbf{k})=\omega_{j}(|\mathbf{k}|)$. These can be reinterpreted as the eigenvalues of a matrix that depends polynomially on $|\mathbf{k}|$. As a consequence of well known results from perturbation theory for spectral problems (see e.g. [18, chapter II, §1]), it is known that these functions can be renumbered to form M branches of solutions which are piecewise smooth functions of $|\mathbf{k}|$, i.e. on an open subset of \mathbb{R}^{2} that only excludes a discrete set of circles.

2.2.2 Non dissipative models

Definition 2.10. The dispersive model associated to the constitutive laws (2.2) is said to be non dissipative if all solutions $\omega_{j}(\mathbf{k})$ of (2.28) are real valued. By opposition, the medium is called dissipative if $\operatorname{Im} \omega_{j}(\mathbf{k})>0$ for some j and \mathbf{k}.

In the sequel, we will consider only local dispersive model in the sense of (2.7) that are non dissipative. In other words, the set \mathcal{O} of admissible frequencies (2.26) satisfies

$$
\begin{equation*}
\mathcal{O} \subset \mathbb{R} \tag{2.29}
\end{equation*}
$$

As told before, even if dispersive media are often dissipative, we are convinced that the question of PMLs is more difficult for non dissipative media.

For the Drude model (2.12), we can check explicitly that it is non dissipative. Indeed, injecting (2.12) in (2.28) shows that, for a given wave vector \mathbf{k}, ω has to be a zero of the polynomial

$$
\begin{equation*}
P_{\mathbf{k}}(\omega):=\omega^{4}-\left(\omega_{e}^{2}+\omega_{m}^{2}+c^{2}|\mathbf{k}|^{2}\right) \omega^{2}+\omega_{e}^{2} \omega_{m}^{2} \tag{2.30}
\end{equation*}
$$

where $c:=1 / \sqrt{\varepsilon_{0} \mu_{0}}$ is the speed of light in the vacuum.
Proposition 2.11. For all wave vectors $\mathbf{k} \in \mathbb{C}^{2}$, the polynomial $P_{\mathbf{k}}$ given by (2.30) has 4 real distinct zeros $\pm \omega_{j}(\mathbf{k}), j=1,2$ depending only on $|\mathbf{k}|$ and given by

$$
\left\{\begin{array}{l}
\pm \omega_{1}(\mathbf{k}):= \pm \frac{\sqrt{2}}{2} \sqrt{\omega_{e}^{2}+\omega_{m}^{2}+c^{2}|\mathbf{k}|^{2}+\Sigma(|\mathbf{k}|)} \tag{2.31}\\
\pm \omega_{2}(\mathbf{k}):= \pm \frac{\sqrt{2}}{2} \sqrt{\omega_{e}^{2}+\omega_{m}^{2}+c^{2}|\mathbf{k}|^{2}-\Sigma(|\mathbf{k}|)}
\end{array}\right.
$$

where $\Sigma(|\mathbf{k}|):=\sqrt{\left(\omega_{e}^{2}-\omega_{m}^{2}+c^{2}|\mathbf{k}|^{2}\right)^{2}+4 \omega_{m}^{2} c^{2}|\mathbf{k}|^{2}}$.
Proof. By defining $W=\omega^{2}$, the dispersion relation is the quadratic equation $W^{2}-\left(\omega_{e}^{2}+\omega_{m}^{2}+\right.$ $\left.c^{2}|\mathbf{k}|^{2}\right) W+\omega_{e}^{2} \omega_{m}^{2}=0$. The discriminant of this equation is actually $\Sigma(|\mathbf{k}|)^{2}$. Thus the two solutions are real and given by

$$
\begin{equation*}
W_{1}=\frac{\omega_{e}^{2}+\omega_{m}^{2}+c^{2}|\mathbf{k}|^{2}+\Sigma(|\mathbf{k}|)}{2} \quad \text { and } \quad W_{2}=\frac{\omega_{e}^{2}+\omega_{m}^{2}+c^{2}|\mathbf{k}|^{2}-\Sigma(|\mathbf{k}|)}{2} \tag{2.32}
\end{equation*}
$$

It is clear that $W_{1}>0$. Notice that the product $W_{1} W_{2}$ of the zeros of this quadratic equation is also equal to $\omega_{e}^{2} \omega_{m}^{2}>0$, then necessarily $W_{2}>0$. Taking the square roots of W_{1} and W_{2} gives the result.

Remark 2.12. In a different way, the non dissipativity of the Drude model is also a consequence of the energy conservation result (2.19)-(2.20). For the same reason, all generalised Lorentz models (2.16) are also non dissipative. As a matter of fact, the solutions $\omega_{j}(\mathbf{k})$ of (2.28) can be interpreted as the eigenvalues of an hermitian matrix (see also Section 4.1, case of symmetrisable systems) depending polynomially on $|\mathbf{k}|^{2}$. We also know that in this case (see [18, chapter II, §6]), the functions $\omega_{j}(\mathbf{k})$ are - provided an adequate numbering - smooth functions (analytic in fact) over all \mathbb{R}^{2}.

2.2.3 Phase and group velocities

Definition 2.13. A family $\omega_{j}(|\mathbf{k}|)$ of solution of (2.28) indexed by \mathbf{k} that is smooth with respect to \mathbf{k} (see Remark 2.12) is called a branch. The associated plane waves (2.24) are called modes.

Definition 2.14. For a mode associated to a branch $\omega(\mathbf{k})$, its phase and group velocities $\mathbf{v}_{\mathbf{p}}(\omega(\mathbf{k}))$ and $\mathbf{v}_{\mathbf{g}}(\omega(\mathbf{k}))$ are defined as

$$
\begin{equation*}
\mathbf{v}_{\mathbf{p}}(\omega(\mathbf{k})):=\frac{\omega(|\mathbf{k}|)}{|\mathbf{k}|} \frac{\mathbf{k}}{|\mathbf{k}|} \quad \text { and } \quad \mathbf{v}_{\mathbf{g}}(\omega(\mathbf{k})):=\nabla_{\mathbf{k}} \omega(\mathbf{k})=\omega^{\prime}(|\mathbf{k}|) \frac{\mathbf{k}}{|\mathbf{k}|} \tag{2.33}
\end{equation*}
$$

Note that, since we consider isotropic media, the phase and group velocities are collinear. In a dielectric material, in which ε and μ do not depend on ω, they are always equal but for more general models these quantities are different: this characterizes dispersive effects. Moreover, the scalar product of the two vectors can be positive (as in a non dispersive medium) or negative. This leads us to distinguish two cases:

Definition 2.15. For a given wave vector \mathbf{k}, a plane wave associated to $\omega(\mathbf{k})$ is called forward if

$$
\begin{equation*}
\mathbf{v}_{\mathbf{p}}(\omega(\mathbf{k})) \cdot \mathbf{v}_{\mathbf{g}}(\omega(\mathbf{k}))>0 \tag{2.34}
\end{equation*}
$$

or equivalently $\omega\left(|\mathbf{k}| \omega^{\prime}(|\mathbf{k}|)>0\right.$, and backward if

$$
\begin{equation*}
\mathbf{v}_{\mathbf{p}}(\omega(\mathbf{k})) \cdot \mathbf{v}_{\mathbf{g}}(\omega(\mathbf{k}))<0 \tag{2.35}
\end{equation*}
$$

or equivalently $\omega\left(|\mathbf{k}| \omega^{\prime}(|\mathbf{k}|)<0\right.$.
A mode associated to a branch $\omega(\mathbf{k})$ will be called forward (resp. backward) if for all \mathbf{k}, the plane wave associated to $\omega(\mathbf{k})$ is forward (resp. backward).

2.2.4 Negative index

Thanks to Definition 2.15, we can give a precise definition of a Negative Index Metamaterial (NIM). We refer to Remark 2.21 for a justification of the denomination and further discussion.

Definition 2.16. A Negative Index Metamaterial (NIM) is a local dispersive medium (in the sense of (2.7)) for which backward modes exist.

One can easily characterize NIMs only in terms of properties of the functions $\varepsilon(\omega)$ and $\mu(\omega)$. More precisely let us introduce, for $\omega \in \mathcal{O}$ (the set of admissible frequencies, see (2.29)) the following function:

$$
\begin{equation*}
\mathfrak{D}(\omega):=\frac{1}{2 \omega} \frac{\mathrm{~d}}{\mathrm{~d} \omega}\left(\omega^{2} \varepsilon(\omega) \mu(\omega)\right)=\mu(\omega) \frac{\mathrm{d}}{\mathrm{~d} \omega}(\omega \varepsilon(\omega))+\varepsilon(\omega) \frac{\mathrm{d}}{\mathrm{~d} \omega}(\omega \mu(\omega)) \tag{2.36}
\end{equation*}
$$

Note that, from the properties (2.7) of ε and $\mu, \mathfrak{D}(\omega)$ is an even function, strictly positive as soon as ω is large enough.
Lemma 2.17. A mode is forward (resp. backward) when $\mathfrak{D}(\omega(\mathbf{k}))>0($ resp. $\mathfrak{D}(\omega(\mathbf{k}))<0)$.
Proof. The differentiation of (2.28) with respect to \mathbf{k} leads to the fact that for any branch $\omega(\mathbf{k})$ one has (as soon as $\mathfrak{D}(\omega(\mathbf{k})) \neq 0)$

$$
\begin{equation*}
\mathbf{v}_{\mathbf{g}}(\omega(\mathbf{k}))=\frac{\mathbf{k}}{\omega(|\mathbf{k}|)} \frac{1}{\mathfrak{D}(\omega(\mathbf{k}))} \tag{2.37}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\mathbf{v}_{\mathbf{p}}(\omega(\mathbf{k})) \cdot \mathbf{v}_{\mathbf{g}}(\omega(\mathbf{k}))=\mathfrak{D}(\omega(\mathbf{k}))^{-1} \tag{2.38}
\end{equation*}
$$

Let us now introduce the spectrum \mathcal{S} of the medium as the set of propagative frequencies, namely the range of admissible frequencies ω which are attained by all the branches of solution $\omega_{j}(\mathbf{k})$ of (2.28):

$$
\begin{equation*}
\mathcal{S}:=\bigcup_{j=1}^{M}\left\{\omega_{j}(\mathbf{k}): \mathbf{k} \in \mathbb{R}^{2},\right\} \tag{2.39}
\end{equation*}
$$

and \mathcal{G}, the set of non propagative frequencies (also called gap):

$$
\begin{equation*}
\mathcal{G}:=\mathcal{O} \backslash \mathcal{S} \tag{2.40}
\end{equation*}
$$

If $\omega \in \mathcal{O}$ and $\varepsilon(\omega) \mu(\omega)>0$, one can find \mathbf{k} such that (2.28) holds. Thus $\omega=\omega_{j}(\mathbf{k})$ for some j. This leads to the following characterizations:

$$
\begin{equation*}
\mathcal{S}=\{\omega \in \mathcal{O}: \varepsilon(\omega) \mu(\omega)>0\} \quad \text { and } \quad \mathcal{G}=\{\omega \in \mathcal{O}: \quad \varepsilon(\omega) \mu(\omega) \leq 0\} \tag{2.41}
\end{equation*}
$$

Note that, since $\varepsilon(\omega) \mu(\omega)$ is continuous in $\mathbb{R} \backslash \mathcal{F}, \mathcal{S}$ (resp. \mathcal{G}) is an open (resp. closed) subset of $\mathbb{R} \backslash \mathcal{F}$.

Joining Definition 2.16, Lemma 2.17 and(2.39), we obtain the following characterization of NIMs (the straightforward proof is left to the reader):

Theorem 2.18. A local dispersive material (in the sense of (2.7)) is a NIM (in the sense of the Definition 2.16) if, and only if,

$$
\begin{equation*}
\mathcal{N}:=\mathcal{S} \cap\{\omega \in \mathcal{O}: \mathfrak{D}(\omega)<0\} \neq \emptyset \tag{2.42}
\end{equation*}
$$

In the sequel, \mathcal{N} will be referred as the set of negative frequencies, $\mathcal{P}:=\mathcal{S} \backslash \mathcal{N}$ being by definition the set of positive frequencies.

Let us take for example the Drude model (2.12). This is indeed a NIM since the function $|\mathbf{k}| \mapsto \omega_{1}(|\mathbf{k}|)$ is increasing while $|\mathbf{k}| \mapsto \omega_{2}(|\mathbf{k}|)$ is decreasing (see Proposition 2.11) as illustrated by Figure 2. As a consequence, according to Definition 2.15, the two modes associated to $\pm \omega_{1}(\mathbf{k})$ are forward for any \mathbf{k} while the two modes associated to $\pm \omega_{2}(\mathbf{k})$ are backward for any \mathbf{k}. This is confirmed by Theorem 2.18. Indeed, denoting $\omega_{-}:=\min \left\{\omega_{e}, \omega_{m}\right\}$ and $\omega_{+}:=\max \left\{\omega_{e}, \omega_{m}\right\}$ one has

$$
\begin{equation*}
\mathcal{O}=\mathbb{R} \backslash\left\{ \pm \omega_{e}, \pm \omega_{m}\right\} \quad \text { and } \quad \mathcal{G}=\left(-\omega_{+},-\omega_{-}\right) \cup\left(\omega_{-}, \omega_{+}\right) \tag{2.43}
\end{equation*}
$$

On the other hand, one easily computes that

$$
\begin{equation*}
\mathfrak{D}(\omega)=\frac{\omega^{4}-\omega_{e}^{2} \omega_{m}^{2}}{c^{2} \omega^{4}} \tag{2.44}
\end{equation*}
$$

so that $\mathcal{N}=\left(-\omega_{-}, \omega_{-}\right) \neq \emptyset$.
One can wonder whether a NIM is nothing but a material for which $\varepsilon(\omega)$ and $\mu(\omega)$ become negative together. In fact, as far as our definition of NIM is retained, the two things are decorrelated: a dispersive medium may be a NIM even though $\varepsilon(\omega)$ and $\mu(\omega)$ remain positive. Let us take an

Figure 2 - the modes ω_{1} and ω_{2} in terms of $|\mathbf{k}|$
example of such a medium (that however escapes to the class of generalised Lorentz materials (2.16)):

$$
\begin{equation*}
\varepsilon(\omega)=\left(1-\frac{\omega_{0}^{2}}{\omega^{2}}\right)^{2} \quad \text { and } \quad \mu(\omega)=1 \tag{2.45}
\end{equation*}
$$

The spectrum of this material is $\mathcal{S}=\mathbb{R}$ while the function \mathfrak{D} is the same as for the Drude model with $\omega_{e}=\omega_{m}=\omega_{0}$. As a consequence, $\mathcal{N}=\left(-\omega_{0}, \omega_{0}\right) \neq \emptyset$ thus this material is a NIM.

However, for generalised Lorentz materials, or more generally for any material that satisfies the growing property (2.21), we have the following proposition.

Proposition 2.19. For any local dispersive material (in the sense of (2.7)) possessing the growing property (2.21), one has for all $\omega \in \mathcal{S}$

$$
\begin{equation*}
\varepsilon(\omega) \mathfrak{D}(\omega)>0 \quad \text { and } \quad \mu(\omega) \mathfrak{D}(\omega)>0 \tag{2.46}
\end{equation*}
$$

Proof. Observe that

$$
\begin{equation*}
\varepsilon(\omega) \mathfrak{D}(\omega)=\left[\varepsilon(\omega) \mu(\omega]\left[\frac{\mathrm{d}}{\mathrm{~d} \omega}(\omega \varepsilon(\omega))\right]+\left[\varepsilon(\omega)^{2}\right]\left[\frac{\mathrm{d}}{\mathrm{~d} \omega}(\omega \mu(\omega))\right]\right. \tag{2.47}
\end{equation*}
$$

and that all quantities inside brackets are positive when ω belongs to \mathcal{S}. The same holds for μ.
As a consequence of this property, we have the result:
Theorem 2.20. For any local dispersive material (in the sense of (2.7)) possessing the growing property (2.21), one has

$$
\begin{equation*}
\mathcal{N}=\{\omega \in \mathcal{S}: \varepsilon(\omega)<0 \text { and } \mu(\omega)<0\} \tag{2.48}
\end{equation*}
$$

In other words, this medium is a NIM if, and only if, $\varepsilon(\omega)$ and $\mu(\omega)$ become negative together.

Proof. From Theorem 2.18, the material is a NIM if and only if $\mathcal{N} \neq \emptyset$, i.e. there exists some $\omega \in \mathcal{O}$ such that $\varepsilon(\omega) \mu(\omega)>0$ and $\mathfrak{D}(\omega)<0$. From Proposition 2.19, a material possessing the growing property (2.21) satisfies (2.46), which implies that $\varepsilon(\omega)$ and $\mu(\omega)$ become negative simultaneously.

Remark 2.21. The terminology "negative index" comes from the physics. The refraction index n of a dispersive medium is defined as $n(\omega)=\sqrt{\varepsilon(\omega) \mu(\omega)}$ where this quantity is to be understood as the limit of $\sqrt{\varepsilon(\omega) \mu(\omega)}$ when $\operatorname{Im} \omega$ tends to 0 . One can show that $n(\omega)$ is actually negative when both $\varepsilon(\omega)$ and $\mu(\omega)$ are negative. As a consequence, if one is looking at the reflection-transmission of a plane wave across a plane interface between the vacuum and a negative material, the usual Snell-Descartes law are inverted. We refer to [28, 29] for more details and to our previous article [3] for an illustration of the effects of the negativity of refraction indexes.

2.2.5 Numerical illustration of backward and forward modes

The coexistence of backward and forward waves for the Drude model (2.12) can be nicely illustrated with time domain numerical experiments. The numerical simulations that we present have been obtained with a quite standard FDTD scheme for (2.15) inspired from the Yee scheme for Maxwell equations. The only point - and the only difference with what is done in [20] for instance - is due to the fact that we use an implicit time discretization for the ODEs governing \mathbf{J} and K (see $[5,24]$ for similar approaches). The advantage of this choice is that the CFL stability condition of the scheme is independent of the parameters of the Drude model $\left(\omega_{e}, \omega_{m}\right)$.

The computational domain is the square $\Omega=[-20,20]^{2}$. We choose $\varepsilon_{0}=\mu_{0}=1$ so that the speed of light is normalized: $c=1 / \sqrt{\varepsilon_{0} \mu_{0}}=1$ and we take $\omega_{e}=\omega_{m}=2$. All the fields are zeros at the initial time $t=0$ and we add at the right hand side of (2.15) (the one for H) a source term $f(x, y, t)=g(|x-y|) h(t)$ where the spatial function is quite localized (see Figure 3) and $h(t)$ is the derivative of a Gaussian pulse, that possesses a large spectrum of frequencies,

$$
\begin{equation*}
g(r)=e^{-5 r^{2}} \quad \text { and } \quad h(t)=-20(t-1) e^{-10(t-1)^{2}} \tag{2.49}
\end{equation*}
$$

The duration of the experiment is chosen in such a way that the solution does not reach the boundary of Ω. The space steps used are $\Delta x=\Delta y=0.05$ and the time step Δt is chosen to respect the CFL condition of the scheme: $\Delta t=\Delta x / \sqrt{2}=0.05 / \sqrt{2}$.

In the Figure 4, we compare the propagation in the Drude medium with the propagation in the vacuum by showing snapshots of the field H at different times. The huge dispersion of the Drude model is clearly visible through the spreading of the propagated signal and the multiplication of the wavefronts due to different velocities. Which is difficult to distinguish with snapshots, but obvious on a movie, is that the wave can be separated into two parts: we have tried to image this on figure 4 by introducing an artificial doted circle that varies in time. The wave inside the circle - the slowest one - seems to be convergent and is interpreted as the superposition of backward waves (this is the meaning of the white arrows on the picture), while the one outside the circle, the fastest one, is divergent and interpreted as the superposition of forward waves.

3 Classical PMLs and their instabilities for the Drude model

In this section, we construct the so-called classical Perfectly Matched Layers (PMLs) for the Drude model. Then we perform some numerical experiments and notice that the obtained PML

Figure 3 - the Gaussian pulse $h(t)$ (left) and the Gaussian $g(r)$ (right)

Figure 4 - Snapshots of the field H at different times t. Top pictures correspond to a Drude material with $\omega_{e}=\omega_{m}=2$, bottom pictures to the vacuum $\left(\omega_{e}=\omega_{m}=0\right)$.
system is unstable. For an introduction to Perfectly Matched Layers, we refer to [17].

3.1 Construction of classical PMLs for the Drude model

Classical Perfectly Matched Layers (PMLs) were first introduced by Bérenger for the 3D Maxwell equations [4]. By classical PMLs for the Drude model, we simply mean the result of the direct extension of the construction of Bérenger - the split field method - to the case where ε and μ are frequency dependent. The first step is to use the standard splitting of the field H in two fields $H=H^{x}+H^{y}[2]$ in order to write (2.1) coupled with (2.2) as a system in which, for each equation, only derivatives with respect to one of the space variable (x or y) appears:

$$
\left\{\begin{array}{l}
i \omega \varepsilon(\omega) \widehat{\mathbf{E}}=\operatorname{curl}\left(\widehat{H}^{x}+\widehat{H}^{y}\right) \tag{3.1}\\
i \omega \mu(\omega) \widehat{H}^{x}=\partial_{y} \widehat{E}_{x} \\
i \omega \mu(\omega) \widehat{H}^{y}=-\partial_{x} \widehat{E}_{y}
\end{array}\right.
$$

To see that this system is "equivalent" to the original Maxwell system (2.1) with (2.2), one can observe that the original Maxwell system is recovered from the sum of the last two equations. Then, the PML system is obtained by adding zero order "damping terms" to each equation of (3.1). One elegant way to construct these terms - in the direction x for instance - is to perform a change of variables in the complex plane [8] (using the fact that we can extend the solution to the complex plane $x \in \mathbb{C}$ by analyticity):

$$
\begin{equation*}
x \longrightarrow x+\frac{1}{i \omega} \int_{0}^{x} \sigma_{x}(s) \mathrm{d} s \tag{3.2}
\end{equation*}
$$

in the frequency domain, where $\sigma_{x} \geq 0$ is the damping factor in the x-direction (a function which depends on x only). This change of variable is equivalent to replace ∂_{x} by

$$
\begin{equation*}
\partial_{x} \longrightarrow\left(1+\frac{\sigma_{x}}{i \omega}\right)^{-1} \partial_{x} \tag{3.3}
\end{equation*}
$$

Of course, one can also construct a PML in the y-direction with the change of variable

$$
\begin{equation*}
\partial_{y} \longrightarrow\left(1+\frac{\sigma_{y}}{i \omega}\right)^{-1} \partial_{y} \tag{3.4}
\end{equation*}
$$

where $\sigma_{y} \geq 0$ the damping term in the y direction which depends on y only.
Injecting (2.12) in (3.1) and using the changes of variable (3.3) and (3.4) leads to

$$
\left\{\begin{array}{l}
(i \omega+\mathfrak{S}) \widehat{\mathbf{E}}+\omega_{e}^{2} \frac{\widehat{\mathbf{E}}}{i \omega}+\omega_{e}^{2} \mathfrak{S} \frac{\widehat{\mathbf{E}}}{-\omega^{2}}=\varepsilon_{0}^{-1} \operatorname{curl}\left(\widehat{H}^{x}+\widehat{H}^{y}\right) \tag{3.5}\\
\left(i \omega+\sigma_{y}\right) \widehat{H}^{x}+\omega_{m}^{2} \frac{\widehat{H}^{x}}{i \omega}+\sigma_{y} \omega_{m}^{2} \frac{\widehat{H}^{x}}{-\omega^{2}}=\mu_{0}^{-1} \partial_{y} \widehat{E}_{x} \\
\left(i \omega+\sigma_{x}\right) \widehat{H}^{y}+\omega_{m}^{2} \frac{\widehat{H}^{y}}{i \omega}+\sigma_{x} \omega_{m}^{2} \frac{\widehat{H}^{y}}{-\omega^{2}}=-\mu_{0}^{-1} \partial_{x} \widehat{E}_{y}
\end{array}\right.
$$

with $\mathfrak{S}:=\operatorname{diag}\left(\sigma_{y}, \sigma_{x}\right) \in \mathcal{M}_{2}(\mathbb{R})$. In order to go back to the time domain, we introduce the primitives in time \mathbf{J}, K^{x} and K^{y} of \mathbf{E}, E_{y}, H^{x} and H^{y}, as in Section 2.1.3, as well as primitives in
time \mathbf{P}, M^{x} and M^{y} of the above functions (called the electric and magnetic polarisations), namely

$$
\begin{align*}
& i \omega \widehat{\mathbf{J}}=\widehat{E}, \quad i \omega \widehat{\mathbf{P}}=\widehat{J}, \quad i \omega \widehat{K}^{x}=\widehat{H}^{x}, \quad i \omega \widehat{M}^{x}=\widehat{K}^{x} \\
& i \omega \widehat{K}^{y}=\widehat{H}^{y} \quad \text { and } \quad i \omega \widehat{M}^{y}=\widehat{K}^{y} . \tag{3.6}
\end{align*}
$$

Finally, we get the classical Perfectly Matched Layers system for the Drude model

$$
\left\{\begin{array}{l}
\partial_{t} \mathbf{E}+\mathfrak{S} \mathbf{E}+\omega_{e}^{2} \mathbf{J}+\omega_{e}^{2} \mathfrak{S} \mathbf{P}=\varepsilon_{0}^{-1} \mathbf{c u r l}\left(H^{x}+H^{y}\right) \tag{3.7}\\
\partial_{t} \mathbf{J}-\mathbf{E}=0, \quad \partial_{t} \mathbf{P}-\mathbf{J}=0 \\
\partial_{t} H^{x}+\sigma_{y} H^{x}+\omega_{e}^{2} K^{x}+\sigma_{y} \omega_{m}^{2} M^{x}=\mu_{0}^{-1} \partial_{y} E_{x} \\
\partial_{t} K^{x}-H^{x}=0, \quad \partial_{t} M^{x}-K^{x}=0 \\
\partial_{t} H^{y}+\sigma_{x} H^{y}+\omega_{m}^{2} K^{y}+\sigma_{x} \omega_{m}^{2} M^{y}=-\mu_{0}^{-1} \partial_{x} E_{y} \\
\partial_{t} K^{y}-H^{y}=0, \quad \partial_{t} M^{y}-K^{y}=0
\end{array}\right.
$$

This system can handle PMLs in both x direction $\left(\sigma_{x} \neq 0\right.$ and $\left.\sigma_{y}=0\right)$ and y direction $\left(\sigma_{x}=0\right.$ and $\left.\sigma_{y} \neq 0\right)$, and also for corner domains $\left(\sigma_{x} \neq 0\right.$ and $\left.\sigma_{y} \neq 0\right)$.

3.2 A numerical experiment of classical PMLs for the Drude model

We now perform a numerical simulation using the system (3.7). We use exactly the same parameters and sources as in Section 2.2 .5 but we add a surrounding PML around the computational domain of width $L=3$ so that the total computational domain is still $\Omega=[-20,20]^{2}$ but the physical domain is now $[-17,17]^{2}$. In order to reduce numerical reflections at the interface between the physical domain and the PML, the damping terms σ_{x} and σ_{y} are taking continuous: a classical choice is to take a quadratic function $\sigma_{x}(x)=\sigma(x)$ and $\sigma_{y}(y)=\sigma(y)$ where σ is defined by

$$
\sigma(\tau)= \begin{cases}(\tau-17)^{2} & \text { if } \tau \geq 17 \tag{3.8}\\ (\tau+17)^{2} & \text { if } \tau \leq-17 \\ 0 & \text { otherwise }\end{cases}
$$

The FDTD scheme used here is based exactly on the same idea as in Section 2.2.5. The Figure 5 shows snapshots of the field H at different times. We clearly observe instabilities. One can check that these are not numerical instabilities: one can refine the mesh and/or reduce the time step and get the same phenomena. The boundary conditions at the end of the PMLs do not matter either. The instabilities come from the model (3.7) itself.

One can notice that the experiment suggests that the backward waves are responsible of the instabilities. Indeed, the forward waves - the faster ones - are well absorbed by the PML but as soon as the backward waves reach the PML, the solution grows exponentially in time. The Figure 6 illustrates this statement by plotting in \log-log scale the energy $\mathcal{E}_{e}+\mathcal{E}_{m}$ defined by (2.20). More precisely, one can deduce from the Proposition 2.11 that the group velocity of the forward modes $\mathbf{v}_{\mathbf{g}}\left(\omega_{ \pm 1}\right)$ is bounded by $c=1$ but the group velocity of the backward modes $\mathbf{v}_{\mathbf{g}}\left(\omega_{ \pm 2}\right)$ is bounded by $c / 2=0.5$. That is why instabilities can only occur after a time $t=17 / 0.5=34 \mathrm{~s}$.

Figure 5 - Snapshots of the field H at different times t.

Figure 6 - Logarithm of the energy $\mathcal{E}_{e}+\mathcal{E}_{m}$ defined by (2.20).

4 Construction and analysis of PML models for a class of dispersive systems

We now want to explain why the classical PMLs are unstable for the Drude model. For linear wave propagation in non dispersive - but possibly anisotropic - media, it has been shown in [1] that the presence of backward waves, due to anisotropy, gives rise to instabilities. It seems that it is still the case for NIMs as it was observed in the previous section and pointed out in several papers from the physicist community [11, 21].

In this section, we aim at extending the result of [1] (valid for non dispersive systems) to a class of dispersive systems, described in Section 4.1. These models contain in particular the isotropic dispersive Maxwell models considered in Section 2. We shall consider - this is not restrictive of course - a PML in the x-direction, involving a single damping coefficient denoted σ (instead of σ_{x} in Section 3). In fact, we propose to introduce and analyse a new class of PML models (Section 4.2) obtained by a generalisation of the classical complex change of variable 3.2 that, in addition to the damping coefficient σ, involves a new ingredient, namely a real valued function of the frequency $\chi(\omega)$ to be determined in practice (the choice $\chi(\omega)=1$ giving the classical PML model). Such a generalization appears to be useful to propose an alternative to classical PMLs when these are unstable.

Finally, in Section 4.3, we provide a preliminary stability analysis for these new PML models. In particular, we establish a necessary stability condition (Proposition 4.8) which generalizes the one given in [1]. This allows us to explain the instabilities of classical PMLs and will help in designing new stable PMLs in the next Section 5 for the isotropic dispersive Maxwell models.

We have to emphasize that our stability analysis will be performed through a modal analysis, thus limited to constant coefficients. Rigorously speaking, our analysis cannot be applied for situations of practical interest where the damping coefficient σ (or σ_{x} or σ_{y}) in the PMLs must depend on the space variable (in particular it has to be 0 in the physical domain and strictly positive inside he PML region). Nevertheless, we think that this relative weakness does dot affect the interest of our analysis for the following reasons

- The case of constant coefficients is a particular case of non constant coefficients and thus deserves to be studied anyway. Moreover, one can hardly expect that a model that leads to instability in the constant coefficients case becomes stable when used with variable coefficients.
- There are numerical evidences, as we shall see in Section 6.1, that our analysis provides the good answers even in the non constant coefficients case.
- Even in the case of non dispersive media, there are very few results on the stability (we speak here of stability and not only well-posedness) of PML models with non constant σ (at the exception of [13] for the wave equation).

4.1 A class of first order dispersive hyperbolic systems

Consider a general 2D hyperbolic system with a zero order perturbation of the form

$$
\begin{equation*}
\partial_{t} \mathbf{u}+B \mathbf{u}=A_{x} \partial_{x} \mathbf{u}+A_{y} \partial_{y} \mathbf{u}, \quad(x, y) \in \mathbb{R}^{2}, t \geq 0 \tag{4.1}
\end{equation*}
$$

where the unknown \mathbf{u} takes values in \mathbb{R}^{m} and A_{x}, A_{y} and B are real constant $m \times m$ matrices. The hyperbolic nature of the unperturbed system $(B=0)$ is equivalent to assuming that:

$$
\begin{equation*}
\text { for all }\left(k_{x}, k_{y}\right) \in \mathbb{R}^{2}, k_{x} A_{x}+k_{y} A_{y} \text { has real eigenvalues. } \tag{4.2}
\end{equation*}
$$

Next, we express the fact that the perturbed system is non dissipative.
Definition 4.1. The dispersive system (4.1) is said to be non dissipative if

$$
\begin{equation*}
\text { for all }\left(k_{x}, k_{y}\right) \in \mathbb{R}^{2}, k_{x} A_{x}+k_{y} A_{y}-i B \text { has real eigenvalues. } \tag{4.3}
\end{equation*}
$$

Looking at $|\mathbf{k}| \rightarrow+\infty$, (4.3) implies (4.2), i.e. the hyperbolicity of the unperturbed system. Definition (4.1) is justified by the Fourier analysis that permits to study the stability in terms of plane waves that are solutions of (4.1) of the form

$$
\begin{equation*}
\mathbf{u}(x, y, t)=\widehat{\mathbf{U}} e^{i(\omega t-\mathbf{k} \cdot \mathbf{x})} \tag{4.4}
\end{equation*}
$$

where $\widehat{\mathbf{U}} \in \mathbb{C}^{m}$ is the amplitude vector, $\mathbf{k}=\left(k_{x}, k_{y}\right) \in \mathbb{R}^{2}$ the wave vector and $\omega \in \mathbb{C}$ the angular frequency. It is easy to check that ω and \mathbf{k} must satisfy the so-called dispersion relation

$$
\begin{equation*}
F\left(\omega, k_{x}, k_{y}\right)=0, \tag{4.5}
\end{equation*}
$$

where F is a polynomial in ω of order m defined by

$$
\begin{equation*}
F\left(\omega, k_{x}, k_{y}\right)=\operatorname{det}\left(i \omega I+B+i k_{x} A_{x}+i k_{y} A_{y}\right) \tag{4.6}
\end{equation*}
$$

which is nothing, up to a multiplicative coefficient, but the characteristic polynomial of $k_{x} A_{x}+$ $k_{y} A_{y}-i B$. As a consequence, (4.5) admits m branches of solutions $\omega_{j}(\mathbf{k}), j=1, \ldots, m$ that is to say the eigenvalues of $k_{x} A_{x}+k_{y} A_{y}-i B$ repeated with their multiplicity which are continuous and piecewise analytic functions of k_{x} and k_{y} respectively (see for instance [18, chapter II, $\left.\S 1\right]$).

Considering a family of plane wave solutions (a mode) associated to a smooth branch $\omega(\mathbf{k})=$ $\omega_{j}(\mathbf{k})$, as an extension of the Definition 2.14, its group and phase velocities are defined by

$$
\begin{equation*}
\mathbf{v}_{\mathbf{p}}(\omega(\mathbf{k})):=\frac{\omega(\mathbf{k})}{|\mathbf{k}|} \frac{\mathbf{k}}{|\mathbf{k}|} \quad \text { and } \quad \mathbf{v}_{\mathbf{g}}(\omega(\mathbf{k})):=\nabla_{\mathbf{k}} \omega(\mathbf{k}) \tag{4.7}
\end{equation*}
$$

The main difference with the isotropic case is that these two vectors are not necessarily collinear.
A particular case of non dissipative systems is the symmetrisable systems which corresponds to the case where it exists a symmetric positive definite matrix $M \in \mathcal{M}_{m}(\mathbb{R})$ such that $M A_{x}$ and $M A_{y}$ are symmetric and $M B$ is skew symmetric. Under condition (4.3), using Fourier analysis, it is then possible, for instance, to obtain polynomial (in time) bounds on the L^{2}-norm (in space) of the solution of the Cauchy problem associated to (4.1) (see [19]). These bounds are even uniform in time in the case of symmetrisable systems. Indeed, one has the conservation in time of the energy:

$$
\begin{equation*}
\mathcal{E}(t):=\frac{1}{2} \int_{\mathbb{R}^{2}}(M \mathbf{u}, \mathbf{u}) \tag{4.8}
\end{equation*}
$$

where (\cdot, \cdot) denotes the inner product in \mathbb{R}^{m}. In this case, the perturbation theory for self-adjoint analytic families of matrices (see for instance [18, chapter II, §6]) even asserts that the functions $\omega_{j}(\mathbf{k})$ can be chosen in such a way that they are analytic functions of k_{x} and k_{y} (separately) everywhere.

One can see that the Drude model (2.15) is a particular case of such systems and is nondissipative. Indeed, it can be written under the form (4.1) with $\mathbf{u}=\left(E_{x}, J_{x}, E_{y}, J_{y}, H, K\right)^{\mathrm{T}}$,

$$
\begin{align*}
A_{x}=- & {\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \varepsilon_{0}{ }^{-1} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \mu_{0}-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right], \quad A_{y}=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & \varepsilon_{0}{ }^{-1} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\mu_{0}^{-1} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] } \tag{4.9}\\
& \text { and } B=\left[\begin{array}{cccccc}
0 & \omega_{e}^{2} & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \omega_{e}^{2} & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \omega_{m}^{2} \\
0 & 0 & 0 & 0 & -1 & 0
\end{array}\right] .
\end{align*}
$$

One easily checks that this system is symmetrisable with the diagonal matrix

$$
\begin{equation*}
M=\operatorname{diag}\left(\varepsilon_{0}, \varepsilon_{0} \omega_{e}^{2}, \varepsilon_{0}, \varepsilon_{0} \omega_{e}^{2}, \mu_{0}, \mu_{0} \omega_{m}^{2}\right) \tag{4.10}
\end{equation*}
$$

and the energy (4.8) is nothing but $\mathcal{E}_{e}+\mathcal{E}_{m}$ in (2.20). More generally, it is not difficult, although tedious, to show that the generalised Lorentz model (2.17) is also symmetrisable and non-dissipative.

4.2 New generalised PMLs for dispersive models

From now on, we will only consider dispersive systems of the form (4.1) that are non-dissipative, i.e. they satisfy (4.3). What follows only concerns PMLs in the x-direction, but everything can easily be adapted to PMLs in the y-direction. As announced in the introduction of this section, we consider a new change of variable that generalises (3.2) under the form

$$
\begin{equation*}
x \longrightarrow X(\omega, x):=x+\frac{\chi(\omega)}{i \omega} \int_{0}^{x} \sigma(s) \mathrm{d} s \tag{4.11}
\end{equation*}
$$

where the damping function σ is non-negative and χ is a real-valued function of ω. In the frequency domain, the corresponding PML model, i.e. the equation satisfied by

$$
\begin{equation*}
\widehat{\mathbf{u}}(x, y, \omega):=\mathcal{F} \mathbf{u}(X(\omega, x), y, \omega) \tag{4.12}
\end{equation*}
$$

where $\mathcal{F} \mathbf{u}$ is the time Fourier transform of \mathbf{u}, extended analytically to complex values of x, is simply obtained by changing

$$
\begin{equation*}
\partial_{x} \longrightarrow\left(1+\frac{\sigma \chi(\omega)}{i \omega}\right)^{-1} \partial_{x} \tag{4.13}
\end{equation*}
$$

in the frequency version of the original system (4.1). We obtain

$$
\begin{equation*}
i \omega \widehat{\mathbf{u}}+B \widehat{\mathbf{u}}=\left(1+\frac{\sigma \chi(\omega)}{i \omega}\right)^{-1} A_{x} \partial_{x} \widehat{\mathbf{u}}+A_{y} \partial_{y} \widehat{\mathbf{u}} \tag{4.14}
\end{equation*}
$$

In what follows, we shall restrict ourselves to functions $\chi(\omega)$ that mimic (2.16): they are of the form

$$
\begin{equation*}
\chi(\omega)=1+\sum_{\ell=1}^{N} \frac{b_{\ell}}{a_{\ell}^{2}-\omega^{2}} \tag{4.15}
\end{equation*}
$$

where a_{ℓ} and b_{ℓ} are non-zero real constants such that $0<a_{1}^{2}<a_{2}^{2}<\cdots<a_{N}^{2}$. Notice that χ is chosen to fulfil the following criteria:

- At high frequencies, the system becoming non dispersive (in the sense that the functions $\omega_{j}(\mathbf{k})$ behave more and more as functions which are homogeneous of degree 1), there is no reason that χ varies with ω for large ω so a natural criterion is that $\chi(\omega)$ tends to 1 when ω tends to $+\infty$.
- For practical reasons linked to numerical simulations, the function $\chi(\omega)$ should be the symbol of a local operator in time (i.e. expressed with the help of differential operators and inverse of differential operators) which means that $\chi(\omega)$ should be a rational fraction in ω.
- In order to ensure that the solutions of the time dependent problems remain real-valued, the operator of symbol $\chi(\omega)$ should be real (in the sense that it transforms real valued functions into real valued functions).
- The poles of $\chi(\omega)$ must be real. This last criterion is more mathematical and related to the stability of the corresponding evolution problem.
We shall also use in the following analysis the equivalent expression of χ :

$$
\begin{equation*}
\chi(\omega)=1+\frac{P_{\chi}(\omega)}{Q_{\chi}(\omega)} \tag{4.16}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{\chi}(\omega)=\sum_{\ell=1}^{N} b_{\ell} \prod_{p \neq \ell}\left(a_{p}^{2}-\omega^{2}\right) \quad \text { and } \quad Q_{\chi}(\omega)=\prod_{\ell=1}^{N}\left(a_{\ell}^{2}-\omega^{2}\right) \tag{4.17}
\end{equation*}
$$

and we will denote by $\pm z_{\ell}, \ell=1, \ldots, N$, the zeros of χ.
Using (4.11) and coming back to the time domain, we are going to show that (4.14) can be rewritten as an augmented first order system of the form

$$
\begin{equation*}
\partial_{t} \mathbf{u}_{a}+\widetilde{B} \mathbf{u}_{a}+\sigma \widetilde{S} \mathbf{u}_{a}=\widetilde{A}_{x} \partial_{x} \mathbf{u}_{a}+\widetilde{A}_{y} \partial_{y} \mathbf{u}_{a}, \quad(x, y) \in \mathbb{R}^{2}, t \geq 0 \tag{4.18}
\end{equation*}
$$

in which the new "augmented" unknown \mathbf{u}_{a} takes values in $\mathbb{R}^{m_{a}}$, and $\widetilde{B}, \widetilde{S}, \widetilde{A}_{x}$ and \widetilde{A}_{y} are $m_{a} \times m_{a}$ real matrices. The dimension m_{a} can be decomposed as $m_{a}=m+m_{\text {ex }}$ so \mathbf{u}_{a} can be seen as $\mathbf{u}_{a}=\left(\mathbf{u}, \mathbf{u}_{\mathrm{ex}}\right)^{\mathrm{T}}$ where

- \mathbf{u}, with values in \mathbb{R}^{m}, is the inverse time Fourier transform of $\hat{\mathbf{u}}$ defined by (4.12): it corresponds to the original solution in the region where σ is 0 .
- \mathbf{u}_{ex}, with values in $\mathbb{R}^{m_{\mathrm{ex}}}$, is a vector of extra auxiliary variables.

More precisely, defining

$$
\begin{equation*}
i \omega \widehat{\mathbf{d}}:=\sigma \chi(\omega) \widehat{\mathbf{u}} \tag{4.19}
\end{equation*}
$$

the equation (4.14) can be rewritten

$$
\begin{equation*}
(i \omega+B)(\widehat{\mathbf{u}}+\widehat{\mathbf{d}})=A_{x} \partial_{x} \widehat{\mathbf{u}}+A_{y} \partial_{y}(\widehat{\mathbf{u}}+\widehat{\mathbf{d}}) \tag{4.20}
\end{equation*}
$$

From the expression (4.15) of χ, we deduce that

$$
\begin{equation*}
\chi(\omega) \widehat{\mathbf{u}}=\widehat{\mathbf{u}}+\sum_{\ell=1}^{N} b_{\ell} \widehat{\mathbf{u}}_{\ell} \tag{4.21}
\end{equation*}
$$

where the $\widehat{\mathbf{u}}_{\ell}$ are defined by

$$
\begin{equation*}
\left(a_{\ell}^{2}-\omega^{2}\right) \widehat{\mathbf{u}}_{\ell}=\widehat{\mathbf{u}}, \quad \ell=1, \ldots, N \tag{4.22}
\end{equation*}
$$

Using the above, (4.19) gives

$$
\begin{equation*}
i \omega \widehat{\mathbf{d}}=\sigma\left(\widehat{\mathbf{u}}+\sum_{\ell=1}^{N} b_{\ell} \widehat{\mathbf{u}}_{\ell}\right) \tag{4.23}
\end{equation*}
$$

so that (4.20) can be rewritten as

$$
\begin{equation*}
i \omega \widehat{\mathbf{u}}+B(\widehat{\mathbf{u}}+\widehat{\mathbf{d}})+\sigma\left(\widehat{\mathbf{u}}+\sum_{\ell=1}^{N} b_{\ell} \widehat{\mathbf{u}}_{\ell}\right)=A_{x} \partial_{x} \widehat{\mathbf{u}}+A_{y} \partial_{y} \widehat{\mathbf{u}}+A_{y} \partial_{y} \widehat{\mathbf{d}} \tag{4.24}
\end{equation*}
$$

With (4.21), (4.22), (4.23) and (4.24), we finally obtain the system:

$$
\left\{\begin{array}{l}
i \omega \widehat{\mathbf{u}}+B(\widehat{\mathbf{u}}+\widehat{\mathbf{d}})+\sigma\left(\widehat{\mathbf{u}}+\sum_{\ell=1}^{N} b_{\ell} \widehat{\mathbf{u}}_{\ell}\right)=A_{x} \partial_{x} \widehat{\mathbf{u}}+A_{y} \partial_{y} \widehat{\mathbf{u}}+A_{y} \partial_{y} \widehat{\mathbf{d}} \tag{4.25}\\
i \omega \widehat{\mathbf{d}}-\sigma\left(\widehat{\mathbf{u}}+\sum_{\ell=1}^{N} b_{\ell} \widehat{\mathbf{u}}_{\ell}\right)=0 \\
i \omega \widehat{\mathbf{u}}_{\ell}=\widehat{\mathbf{v}}_{\ell}, \quad i \omega \widehat{\mathbf{v}}_{\ell}+a_{\ell}^{2} \widehat{\mathbf{u}}_{\ell}-\widehat{\mathbf{u}}=0, \quad(\ell=1, \ldots, N),
\end{array}\right.
$$

where (4.22) was decomposed into the two last equations of (4.24) thanks to the introduction of the $\widehat{\mathbf{v}}_{\ell}$ in order to get a first-order system in time. Indeed, (4.25) gives in the time domain the following system:

$$
\left\{\begin{array}{l}
\partial_{t} \mathbf{u}+B(\mathbf{u}+\mathbf{d})+\sigma\left(\mathbf{u}+\sum_{\ell=1}^{N} b_{\ell} \mathbf{u}_{\ell}\right)=A_{x} \partial_{x} \mathbf{u}+A_{y} \partial_{y} \mathbf{u}+A_{y} \partial_{y} \mathbf{d} \tag{4.26}\\
\partial_{t} \mathbf{d}-\sigma\left(\mathbf{u}+\sum_{\ell=1}^{N} b_{\ell} \mathbf{u}_{\ell}\right)=0 \\
\partial_{t} \mathbf{u}_{\ell}-\mathbf{v}_{\ell}=0, \quad \partial_{t} \mathbf{v}_{\ell}+a_{\ell}^{2} \mathbf{u}_{\ell}-\mathbf{u}=0, \quad(\ell=1, \ldots, N)
\end{array}\right.
$$

This is an augmented system of the form (4.18) with $m_{a}=m+(2 N+1) m$ (thus $m_{\mathrm{ex}}=(2 N+1) m$) and $\mathbf{u}_{a}=\left(\mathbf{u}, \mathbf{u}_{\mathrm{ex}}\right)^{\mathrm{T}}$ where $\mathbf{u}_{\mathrm{ex}}=\left(\mathbf{d}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{N}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{N}\right)^{\mathrm{T}}$.
Remark 4.2. Let us emphasize that there is not a unique way to write the augmented system (4.18) from (4.14)-(4.15) (even not a unique choice for the dimension m_{a}) because there are several possible choices for the additional auxiliary unknowns. In particular, this type of formulation is an alternative to the split-form of PMLs, as it is done in the original work of Bérenger [4] or as in Section 4. The one chosen here in (4.26) appears more convenient to us for the mathematical analysis but the conclusions are valid for any equivalent reformulation of this system.

4.3 Modal stability analysis of the generalised PML model

4.3.1 Definition of stability

We are interested in the stability analysis of the system (4.18) (or equivalently (4.26)) when σ is constant (i.e. independent of x). Here again, we use a modal approach to the notion of stability, looking at plane waves

$$
\begin{equation*}
\mathbf{u}_{a}(x, y, t)=\widehat{\mathbf{U}}_{a} e^{i\left(\omega t-k_{x} x-k_{y} y\right)}, \quad \widehat{\mathbf{U}}_{a} \in \mathbb{C}^{m_{a}}, \mathbf{k}=\left(k_{x}, k_{y}\right) \in \mathbb{R}^{2}, \omega \in \mathbb{C} \tag{4.27}
\end{equation*}
$$

which are a solution of (4.18) if, and only if, $\left(\omega, k_{x}, k_{y}\right)$ satisfies the augmented dispersion relation

$$
\begin{equation*}
\operatorname{det}\left(i \omega I+\widetilde{B}+\sigma \widetilde{S}+i k_{x} \widetilde{A}_{x}+i k_{y} \widetilde{A}_{y}\right)=0 \tag{4.28}
\end{equation*}
$$

Seen as an equation in ω, (4.28) defines m_{a} branches of solutions $\omega_{j}(\mathbf{k}, \sigma), 1 \leq j \leq m_{a}$ where the functions $\omega_{j}(\mathbf{k}, \sigma)$ are continuous and piecewise smooth in \mathbf{k} and σ (they are piecewise analytic in k_{x}, k_{y} and σ separately [18, chapter II, §2]).

Definition 4.3. Given $\sigma>0$, the PML model (4.18) is stable if, for all $j \in\left\{1, \ldots, m_{a}\right\}$ and for all $\mathbf{k} \in \mathbb{R}^{2}$, one has

$$
\begin{equation*}
\omega_{j}(\mathbf{k}, \sigma) \in \mathbb{C}^{+}:=\{z \in \mathbb{C}: \operatorname{Im} z \geq 0\} \tag{4.29}
\end{equation*}
$$

For a plane wave (4.27), the condition (4.29) means that it is (in modulus) non increasing in time, and even exponentially decreasing as soon as $\operatorname{Im} \omega_{j}(\mathbf{k}, \sigma)>0$. Since in practice one wants stability for all $\sigma \geq 0$, we shall adopt a slightly more general notion of stability:

Definition 4.4. The family of PML models (4.18) is uniformly stable if, for all $\sigma \geq 0$, for all $j \in\left\{1, \ldots, m_{a}\right\}$ and for all $\mathbf{k} \in \mathbb{R}^{2}$, one has

$$
\begin{equation*}
\omega_{j}(\mathbf{k}, \sigma) \in \mathbb{C}^{+} \tag{4.30}
\end{equation*}
$$

4.3.2 Reduction of the analysis

Given $\mathbf{k} \in \mathbb{R}^{2}$ and writing

$$
\begin{equation*}
\widehat{\mathbf{U}}_{a}=\left(\widehat{\mathbf{U}}, \widehat{\mathbf{D}}, \widehat{\mathbf{U}}_{1}, \ldots, \widehat{\mathbf{U}}_{N}, \widehat{\mathbf{V}}_{1}, \ldots, \widehat{\mathbf{V}}_{N}\right)^{\mathrm{T}} \tag{4.31}
\end{equation*}
$$

it is easy to see that, after elimination of $\left(\widehat{\mathbf{V}}_{1}, \ldots, \widehat{\mathbf{V}}_{N}\right)$, we are reduced to looking for values of $\omega \in \mathbb{C}$ for which there exists $\left(\widehat{\mathbf{U}}, \widehat{\mathbf{D}}, \widehat{\mathbf{U}}_{1}, \ldots, \widehat{\mathbf{U}}_{N}\right) \neq 0$ such that

$$
\left\{\begin{align*}
& i \omega \widehat{\mathbf{U}}+B(\widehat{\mathbf{U}}+\widehat{\mathbf{D}})+\sigma\left(\widehat{\mathbf{U}}+\sum_{\ell=1}^{N} b_{\ell} \widehat{\mathbf{U}}_{\ell}\right) \tag{4.32}\\
&+i k_{x} A_{x} \widehat{\mathbf{U}}+i k_{y} A_{y}(\widehat{\mathbf{U}}+\widehat{\mathbf{D}})=0 \\
& i \omega \widehat{\mathbf{D}}-\sigma\left(\widehat{\mathbf{U}}+\sum_{\ell=1}^{N} b_{\ell} \widehat{\mathbf{U}}_{\ell}\right)=0 \\
&-\omega^{2} \widehat{\mathbf{U}}_{\ell}+a_{\ell}^{2} \widehat{\mathbf{U}}_{\ell}=\widehat{\mathbf{U}}, \quad(\ell=1, \ldots, N)
\end{align*}\right.
$$

Let us denote

$$
\begin{equation*}
\Omega(\mathbf{k}, \sigma):=\left\{\omega_{j}(\mathbf{k}, \sigma), 1 \leq j \leq m_{a}\right\} \tag{4.33}
\end{equation*}
$$

This is also the set of values of ω for which (4.32) has a non-trivial solution. We now describe the structure of $\Omega(\mathbf{k}, \sigma)$ and give a new form of the stability criterion (4.30) that will help us to decompose the stability analysis into several steps

First we need to introduce several sets: $\mathcal{A}:=\left\{ \pm a_{1}, \ldots, \pm a_{N}\right\}$ the set of the poles of $\chi, \Omega_{c}(\sigma)$ the set of critical frequencies defined as

$$
\begin{equation*}
\Omega_{c}(\sigma):=\left\{\omega \in \mathbb{C}^{*} \backslash \mathcal{A}: f(\omega):=1+\frac{\sigma \chi(\omega)}{i \omega}=0\right\} \tag{4.34}
\end{equation*}
$$

and finally $\Omega_{\mathrm{PML}}(\mathbf{k}, \sigma)$ the set of the solutions $\omega \notin \mathcal{A} \cup \Omega_{c}(\sigma)$ of the so-called PML dispersion relation defined by

$$
\begin{equation*}
(\omega, \mathbf{k}) \in \Omega_{\mathrm{PML}}(\mathbf{k}, \sigma) \Longleftrightarrow F_{\mathrm{PML}}(\omega, \mathbf{k}, \sigma)=0 \tag{4.35}
\end{equation*}
$$

where $F_{\text {PML }}$ is defined by

$$
\begin{align*}
F_{\mathrm{PML}}(\omega, \mathbf{k}, \sigma) & :=F\left(\omega, k_{x} f(\omega)^{-1}, k_{y}\right) \\
& =\operatorname{det}\left(i \omega I+B+i k_{x} f(\omega)^{-1} A_{x}+i k_{y} A_{y}\right) \tag{4.36}
\end{align*}
$$

with F given by (4.6) (coming from the dispersion relation (4.5) of the original system (4.1)) and f is defined in (4.34).

Lemma 4.5. The set $\Omega(\mathbf{k}, \sigma)$ can be decomposed as the disjoin union

$$
\Omega(\mathbf{k}, \sigma)= \begin{cases}\Omega_{\mathrm{PML}}(\mathbf{k}, \sigma) \cup \Omega_{c}(\sigma) \cup \mathcal{E}(\mathbf{k}) & \text { if } \operatorname{Ker} k_{x} A_{x} \neq\{0\} \tag{4.37}\\ \Omega_{\mathrm{PML}}(\mathbf{k}, \sigma) \cup \mathcal{E}(\mathbf{k}) & \text { if } \operatorname{Ker} k_{x} A_{x}=\{0\}\end{cases}
$$

where $\Omega_{\mathrm{PML}}(\mathbf{k}, \sigma)$ and $\Omega_{c}(\sigma)$ are defined by (4.35) and (4.34), and where $\mathcal{E}(\mathbf{k}) \subset \mathbb{R}$ is a set of real additional modes (described in the proof).
Proof. Adding the first two equations of (4.32) leads to the equivalent system:

$$
\left\{\begin{array}{l}
(i \omega+B)(\widehat{\mathbf{U}}+\widehat{\mathbf{D}})+i k_{x} A_{x} \widehat{\mathbf{U}}+i k_{y} A_{y} \widehat{\mathbf{U}}+i k_{y} A_{y} \widehat{\mathbf{D}}=0 \tag{4.38}\\
i \omega \widehat{\mathbf{D}}-\sigma\left(\widehat{\mathbf{U}}+\sum_{\ell=1}^{N} b_{\ell} \widehat{\mathbf{U}}_{\ell}\right)=0 \\
-\omega^{2} \widehat{\mathbf{U}}_{\ell}+a_{\ell}^{2} \widehat{\mathbf{U}}_{\ell}=\widehat{\mathbf{U}}, \quad(\ell=1, \ldots, N)
\end{array}\right.
$$

We next distinguish three cases:

1. $\omega \notin \mathcal{A} \cup\{0\}$. The last two equations of (4.38) give $\widehat{\mathbf{U}}_{\ell}=\widehat{\mathbf{U}} /\left(a_{\ell}^{2}-\omega^{2}\right)$ and $i \omega \widehat{\mathbf{D}}=\sigma \chi(\omega) \widehat{\mathbf{U}}$. Substituting this into the first equation of (4.38), we obtain using $f(\omega)$ defined in (4.34)

$$
\begin{equation*}
(i \omega+B) f(\omega) \widehat{\mathbf{U}}+i k_{x} A_{x} \widehat{\mathbf{U}}+i k_{y} f(\omega) A_{y} \widehat{\mathbf{U}}=0 \tag{4.39}
\end{equation*}
$$

Since we look for non trivial solutions, $\widehat{\mathbf{U}} \neq 0$. If $\omega \notin \Omega_{c}(\sigma), f(\omega) \neq 0$ thus $(i \omega+B) \widehat{\mathbf{U}}=$ $-i k_{x} f(\omega)^{-1} A_{x} \widehat{\mathbf{U}}-i k_{y} A_{y} \widehat{\mathbf{U}}$, i.e. $\omega \in \Omega_{\mathrm{PML}}(\mathbf{k}, \sigma)$. Now if $\omega \in \Omega_{c}(\sigma)$, then $k_{x} A_{x} \widehat{\mathbf{U}}=0$, i.e. $\operatorname{Ker} k_{x} A_{x} \neq\{0\}$.
2. $\omega \in \mathcal{A}: \omega^{2}=a_{\ell}^{2}$ for one $\ell \in\{1, \ldots, N\}$. One easily checks from (4.38) that $\widehat{\mathbf{U}}=0$, $\widehat{\mathbf{U}}_{k}=0$ for $k \neq \ell$ and

$$
\begin{equation*}
\left(\pm a_{\ell} I+i B-k_{y} A_{y}\right) \widehat{\mathbf{D}}=0, \quad \widehat{\mathbf{U}}_{\ell}=\frac{ \pm i a_{\ell}}{\sigma b_{\ell}} \widehat{\mathbf{D}} \tag{4.40}
\end{equation*}
$$

This is possible only if $\pm a_{\ell}$ is an eigenvalue of $i B-k_{y} A_{y}$ (otherwise $\widehat{\mathbf{D}}=\widehat{\mathbf{U}}_{\ell}=0$). In this case, $\pm a_{\ell} \in \mathcal{E}(\mathbf{k}) \neq \emptyset$.
3. $\omega^{2}=0$. From (4.38), $\widehat{\mathbf{U}}_{\ell}=\widehat{\mathbf{U}} / a_{\ell}^{2}$ thus

$$
\begin{equation*}
\chi(0) \widehat{\mathbf{U}}=\left(1+\sum_{\ell=1}^{N} \frac{b_{\ell}}{a_{\ell}^{2}}\right) \widehat{\mathbf{U}}=0 \tag{4.41}
\end{equation*}
$$

If $\chi(0) \neq 0$, then $\widehat{\mathbf{U}}=0$ and we get a non trivial solution only if $\operatorname{ker}\left(B+i k_{y} A_{y}\right) \neq\{0\}$ (so in this case $0 \in \mathcal{E}(\mathbf{k})$). If now $\chi(0)=0$, then the second equation of (4.38) is just $0=0$ and the first equation reads

$$
\begin{equation*}
B(\widehat{\mathbf{U}}+\widehat{\mathbf{D}})+i k_{x} A_{x} \widehat{\mathbf{U}}+i k_{y} A_{y} \widehat{\mathbf{U}}+i k_{y} A_{y} \widehat{\mathbf{D}}=0 \tag{4.42}
\end{equation*}
$$

So if this equation has non trivial solutions, then $0 \in \mathcal{E}(\mathbf{k}) \neq \emptyset$.
For the application to the dispersive models considered in Section 2, the reader will easily check that we are in the case $\operatorname{Ker} A_{x} \neq\{0\}$, so the set $\Omega_{c}(\sigma)$ has to be taken into account. We will restrict ourselves to this case in the following. Since $\mathcal{E}(\mathbf{k}) \subset \mathbb{R}$, according to Lemma 4.5 and Definition 4.4, the analysis can be reduced to the following criterion: the family of PML models (4.18)) is uniformly stable, if and only if, for all $\sigma \geq 0$ one has

$$
\begin{equation*}
\Omega_{c}(\sigma) \cup \Omega_{\mathrm{PML}}(\sigma) \subset \mathbb{C}^{+} \tag{4.43}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega_{\mathrm{PML}}(\sigma):=\bigcup_{\mathbf{k} \in \mathbb{R}^{2}} \Omega_{\mathrm{PML}}(\mathbf{k}, \sigma) \tag{4.44}
\end{equation*}
$$

4.3.3 Guideline for the stability analysis

Before going into details of the analysis of these sets, we first describe the type of arguments that will be used several times in the rest of the paper. Each branch $\omega(\mathbf{k}, \sigma)$ of solutions of the augmented dispersion relation (4.28) composing the sets of (4.43) is continuous with respect to σ and verifies $\omega(\mathbf{k}, 0) \in \mathbb{R}$ for all $\mathbf{k} \in \mathbb{R}^{2}$. In order to prove uniform stability, we aim to show one of the following assertions holds:

1. $\omega(\mathbf{k}, \sigma) \in \mathbb{R}$ for all $\mathbf{k} \in \mathbb{R}^{2}$ and for all $\sigma \geq 0$ (therefore it belongs to \mathbb{C}^{+});
2. $\omega(\cdot, \sigma)$ is not real for $\sigma>0$ and belongs to \mathbb{C}^{+}for small $\sigma>0$.

In the last case, since the imaginary part of $\omega(\cdot, \sigma)$ cannot change sign because of the continuity of $\omega(\cdot, \sigma)$ with respect to σ, we can conclude that $\omega(\mathbf{k}, \sigma) \in \mathbb{C}^{+}$for all $\mathbf{k} \in \mathbb{R}^{2}$ and for all $\sigma \geq 0$.

4.3.4 Study of the set $\Omega_{c}(\sigma)$

The set $\Omega_{c}(\sigma)$ is completely independent of the original physical domain and only depends on $\chi(\omega)$. We now look for the necessary and sufficient condition for the inclusion $\Omega_{c}(\sigma) \subset \mathbb{C}^{+}$. The first thing to notice is that Definition (4.34) of $\Omega_{c}(\sigma)$ can be rewritten, using the expression (4.16) of χ, as a polynomial equation in ω of degree $2 N+1$, namely

$$
\begin{equation*}
(i \omega+\sigma) Q_{\chi}(\omega)+\sigma P_{\chi}(\omega)=0 \tag{4.45}
\end{equation*}
$$

It admits $2 N+1$ solutions, denoted by $\omega_{\ell}^{c}(\sigma)(\ell=-N, \ldots, N)$, that are smooth (in particular continuous) functions of σ. We now follow the guideline of Section 4.3.3.

Lemma 4.6. For $\sigma>0$, the solutions of (4.45) cannot be real, except for the case $\chi(0)=0$ for which $\omega=0$ is the only real root of multiplicity 1 .

Proof. Assume that $(i \omega+\sigma) Q_{\chi}(\omega)+\sigma P_{\chi}(\omega)$ has a real root ω. Then, since P_{χ} and Q_{χ} have real coefficients, taking the imaginary part leads to $\omega Q_{\chi}(\omega)=0$, so $\omega=0$ or $Q_{\chi}(\omega)=0$ (note that $Q_{\chi}(0) \neq 0$ since the a_{ℓ} do not vanish). Now taking the real part gives $\left(Q_{\chi}+P_{\chi}\right)(\omega)=0$. If $Q_{\chi}(\omega)=0$, then $\omega=a_{\ell}$ or $-a_{\ell}$ for one $\ell \in\{1, \ldots, N\}$, but $P_{\chi}\left(\pm a_{\ell}\right) \neq 0$, which contradicts $\left(Q_{\chi}+P_{\chi}\right)(\omega)=0$. If now $\omega=0$, then $\left(Q_{\chi}+P_{\chi}\right)(0)=0$ that can be written, since $Q_{\chi}(0) \neq 0$, as $Q_{\chi}(0)\left[1+P_{\chi}(0) / Q_{\chi}(0)\right]=Q_{\chi}(0) \chi(0)=0$. So this is absurd, except when $\chi(0)=0$. But in this case it is easy to see that the constant term of $(i \omega+\sigma) Q_{\chi}(\omega)+\sigma P_{\chi}(\omega)$ is $\sigma Q_{\chi}(0) \chi(0)=0$ and the first order term in ω is $i Q_{\chi}(0) \neq 0$, i.e. $\omega=0$ is a root of multiplicity 1 .

It is then sufficient to study the sign of the imaginary part of the $\omega_{\ell}^{c}(\sigma), \ell=-N, \ldots, N$, for small $\sigma>0$ to conclude.

Proposition 4.7 (necessary and sufficient condition for $\Omega_{c}(\sigma) \subset \mathbb{C}^{+}$). The two following statements are equivalent:

1. for all $\sigma>0$, one has $\Omega_{c}(\sigma) \subset \mathbb{C}^{+}$;
2. the function χ defined by (4.15) verifies

$$
\begin{equation*}
\chi(0)=1+\sum_{\ell=1}^{N} \frac{b_{\ell}}{a_{\ell}^{2}} \geq 0, \quad \text { and } \quad b_{\ell}<0 \text { for all } \ell \in\{1, \ldots, N\} . \tag{4.46}
\end{equation*}
$$

Proof. For $\sigma=0,(4.45)$ becomes $i \omega Q_{\chi}(\omega)=0$ whose solutions are $\omega=0$ and $\omega= \pm a_{\ell}, 1 \leq \ell \leq N$. By continuity, it implies that we can number the ω_{ℓ}^{c} such that

$$
\begin{equation*}
\lim _{\sigma \searrow 0} \omega_{0}^{c}(\sigma)=0 \quad \text { and } \quad \lim _{\sigma \searrow 0} \omega_{ \pm \ell}^{c}(\sigma)= \pm a_{\ell} \tag{4.47}
\end{equation*}
$$

For each branch of solution $\omega^{c}(\sigma)$ (we omit here the subscript), using a Taylor expansion and denoting $\omega_{*}:=\omega^{c}(0) \in \mathbb{R}$, one gets

$$
\begin{equation*}
\left.\omega^{c}(\sigma)=\omega_{*}+\left[\omega^{c}\right)^{\prime}(0)\right] \sigma+\mathcal{O}\left(\sigma^{2}\right) \tag{4.48}
\end{equation*}
$$

which implies that $\operatorname{Im} \omega^{c}(\sigma)=\sigma \operatorname{Im}\left(\omega^{c}\right)^{\prime}(0)+\mathcal{O}\left(\sigma^{2}\right)$. Injecting (4.48) into (4.45) and using $i \omega_{*} Q_{\chi}\left(\omega_{*}\right)=0$ leads, by identifying the first order term in σ, to

$$
\begin{equation*}
\left(i \omega_{*} Q_{\chi}^{\prime}\left(\omega_{*}\right)+i Q_{\chi}\left(\omega_{*}\right)\right)\left(\omega^{c}\right)^{\prime}(0)+P_{\chi}\left(\omega_{*}\right)+Q_{\chi}\left(\omega_{*}\right)=0 \tag{4.49}
\end{equation*}
$$

- For $\omega^{c}(\sigma)=\omega_{\ell}^{c}(\sigma), \ell \neq 0$, one has $\omega_{*}= \pm a_{\ell}$, therefore $Q_{\chi}\left(\omega_{*}\right)=0$ and (4.49) gives

$$
\begin{equation*}
\left(\omega_{\ell}^{c}\right)^{\prime}(0)=\frac{-P_{\chi}\left(\pm a_{\ell}\right)}{ \pm i a_{\ell} Q_{\chi}^{\prime}\left(\pm a_{\ell}\right)}=-i \frac{b_{\ell}}{2 a_{\ell}^{2}} \tag{4.50}
\end{equation*}
$$

whose imaginary part is positive, if and only if, $b_{\ell}<0$.

- For $\omega^{c}(\sigma)=\omega_{0}^{c}(\sigma)$ one has $\omega_{*}=0$ so, since $Q_{\chi}(0) \neq 0,(4.49)$ becomes $\left(\omega_{0}^{c}\right)^{\prime}(0)=i(1+$ $\left.P_{\chi}(0) / Q_{\chi}(0)\right)=i \chi(0)$. If $\chi(0) \neq 0$, it is clear that $\operatorname{Im} \omega_{j}^{\prime}(0)>0$ if, and only if, $\chi(0)>0$. If $\chi(0)=0$, Lemma 4.6 showed that $\omega_{0}(\sigma)=0 \in \mathbb{C}^{+}$for all $\sigma \geq 0$.

4.3.5 Study of the set $\Omega_{\mathrm{PML}}(\sigma)$

We are now interested in the set $\Omega_{\mathrm{PML}}(\sigma)$, i.e. the solutions of (4.35). More precisely we will study a particular subset of $\Omega_{\mathrm{PML}}(\sigma)$: observing that, for fixed $\omega \notin \Omega_{c}(\sigma)$ and $\mathbf{k} \in \mathbb{R}^{2}$, $F_{\mathrm{PML}}(\omega, \mathbf{k}, \sigma)$ tends to $F\left(\omega, k_{x}, k_{y}\right)$ when σ tends to 0 (where F is defined by (4.6) and F_{PML} by (4.35)). By continuity, there exists m branches of solutions of (4.35), let us say by convention the m first ones $\omega_{j}(\mathbf{k}, \sigma), 1 \leq j \leq m$, the so-called "physical branches", such that

$$
\begin{equation*}
\lim _{\sigma \searrow 0} \omega_{j}(\mathbf{k}, \sigma)=\omega_{j}(\mathbf{k}), \quad 1 \leq j \leq m \tag{4.51}
\end{equation*}
$$

where the $\omega_{j}(\cdot)$ are the solutions of the original dispersion relation (4.5). In what follows we make the assumption that these are simple:

$$
\begin{equation*}
\omega_{j}(\mathbf{k}) \neq \omega_{m}(\mathbf{k}), \quad \text { for all } m \neq j \text { and for all } \mathbf{k} \in \mathbb{R}^{2} \tag{4.52}
\end{equation*}
$$

However, we think that the following result remains valid without this assumption.
Proposition 4.8. Under assumption (4.52), a necessary condition for $\Omega_{\mathrm{PML}}(\sigma) \subset \mathbb{C}^{+}$for all $\sigma>0$ (thus for the uniform stability of the PML model (4.18)) is that for all $j \in\{1, \ldots, m\}$ and for all $\mathbf{k} \in \mathbb{R}^{2}$, one has

$$
\begin{equation*}
\mathbf{v}_{g, x}\left(\omega_{j}(\mathbf{k})\right) \mathbf{v}_{p, x}\left(\omega_{j}(\mathbf{k})\right) \chi\left(\omega_{j}(\mathbf{k})\right) \geq 0 \tag{4.53}
\end{equation*}
$$

where $\mathbf{v}_{p}\left(\omega_{j}(\mathbf{k})\right)$ and $\mathbf{v}_{g}\left(\omega_{j}(\mathbf{k})\right)$ are the phase and group velocities (4.7) and the subscript x refers to their x component.

Proof. We work with any branch $\omega_{j}(\mathbf{k}, \sigma)$ satisfying (4.51). Using $\omega_{j}(\mathbf{k}, 0)=\omega_{j}(\mathbf{k}) \in \mathbb{R}$ and the Taylor expansion for small values of $\sigma>0$

$$
\begin{equation*}
\omega_{j}(\mathbf{k}, \sigma)=\omega_{j}(\mathbf{k}, 0)+\sigma \frac{\partial \omega_{j}}{\partial \sigma}(\mathbf{k}, 0)+\mathcal{O}\left(\sigma^{2}\right) \tag{4.54}
\end{equation*}
$$

the uniform stability condition (4.30) implies in particular that

$$
\begin{equation*}
\operatorname{Im} \frac{\partial \omega_{I}}{\partial \sigma}(\mathbf{k}, 0) \geq 0, \quad \text { for all } \mathbf{k} \in \mathbb{R}^{2} \tag{4.55}
\end{equation*}
$$

The quantity $\partial \omega_{j} / \partial \sigma$ can be computed using the implicit function theorem. More precisely, injecting (4.54) into (4.35), using $F\left(\omega_{j}(\mathbf{k}), \mathbf{k}\right)=0$ and looking at the $\mathcal{O}(\sigma)$ term leads to

$$
\begin{equation*}
\frac{\partial \omega_{j}}{\partial \sigma}(\mathbf{k}, 0) \frac{\partial F}{\partial \omega}\left(\omega_{j}(\mathbf{k}), \mathbf{k}\right)+\frac{i k_{x} \chi\left(\omega_{j}(\mathbf{k})\right)}{\omega_{j}(\mathbf{k})} \frac{\partial F}{\partial k_{x}}\left(\omega_{j}(\mathbf{k}), \mathbf{k}\right)=0 \tag{4.56}
\end{equation*}
$$

that is to say

$$
\begin{equation*}
\frac{\partial \omega_{j}}{\partial \sigma}(\mathbf{k}, 0)=-i\left(\frac{\partial F}{\partial \omega}\left(\omega_{j}(\mathbf{k}), \mathbf{k}\right)\right)^{-1} \frac{k_{x} \chi\left(\omega_{j}(\mathbf{k})\right)}{\omega_{j}(\mathbf{k})} \frac{\partial F}{\partial k_{x}}\left(\omega_{j}(\mathbf{k}), \mathbf{k}\right) \tag{4.57}
\end{equation*}
$$

By definition of the phase and group velocities (4.7), we have

$$
\begin{equation*}
\mathbf{v}_{p, x}\left(\omega_{j}(\mathbf{k})\right)=\frac{k_{x}}{|\mathbf{k}|} \frac{\omega_{j}(\mathbf{k})}{|\mathbf{k}|} \tag{4.58}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{v}_{g, x}\left(\omega_{j}(\mathbf{k})\right)=-\left(\frac{\partial F}{\partial \omega}\left(\omega_{j}(\mathbf{k}), \mathbf{k}\right)\right)^{-1} \frac{\partial F}{\partial k_{x}}\left(\omega_{j}(\mathbf{k}), \mathbf{k}\right) \tag{4.59}
\end{equation*}
$$

where the second identity is obtained by using the implicit function theorem to the dispersion relation (4.5) seen as an equation in ω. Finally, we obtain

$$
\begin{equation*}
\frac{\partial \omega_{j}}{\partial \sigma}(\mathbf{k}, 0)=i v_{p, x}\left(\omega_{j}(\mathbf{k})\right) v_{g, x}\left(\omega_{j}(\mathbf{k})\right) \chi\left(\omega_{j}(\mathbf{k})\right) \frac{|\mathbf{k}|^{2}}{\omega_{j}(\mathbf{k})^{2}} \tag{4.60}
\end{equation*}
$$

from which it is easy to conclude.
For classical PMLs corresponding to $\chi(\omega)=1$, Proposition 4.8 can be interpreted through a directional version of the notion of backward mode (that differs from the Definition 2.15 only for anisotropic media):

Definition 4.9. For a given vector $\mathbf{n} \in \mathbb{R}^{2}$, a mode $\omega(\mathbf{k}) \in \mathbb{R}$ is a forward mode in the direction \mathbf{n} if $\left(\mathbf{v}_{\mathbf{p}}(\omega(\mathbf{k})) \cdot \mathbf{n}\right)\left(\mathbf{v}_{\mathbf{g}}(\omega(\mathbf{k})) \cdot \mathbf{n}\right)>0$ and a backward mode in the direction \mathbf{n} if $\left(\mathbf{v}_{\mathbf{p}}(\omega(\mathbf{k})) \cdot \mathbf{n}\right)\left(\mathbf{v}_{\mathbf{g}}(\omega(\mathbf{k}))\right.$. $\mathbf{n})<0$.

Thus classical PML models can be uniformly stable only if the original model does not support backward modes in the direction x. This generalizes the result of [1] to dispersive media. In particular, classical PMLs can not be stable for the Drude model.
Remark 4.10. The reader will easily realize that, when $|\mathbf{k}|$ tends to $+\infty$, one recovers the stability criterion of classical PMLs for the non dispersive hyperbolic system corresponding to $B=0$. In other words, the introduction of the function $\chi(\omega)$ cannot produce a stable PML when the classical PML for the non dispersive system already fails to be stable, due to particular anisotropy effects as it occurs for instance in elastodynamics [1]. It may help to only solve the stability problems due to dispersive effects (i.e. the presence of B).

4.3.6 Summary of the results

Let us now recap the stability results that we obtained:

1. a necessary and sufficient condition for the uniform stability of the PML system (4.18) is that $\Omega_{c}(\sigma) \cup \Omega_{\mathrm{PML}}(\sigma) \subset \mathbb{C}^{+}$for all $\sigma \geq 0$;
2. the condition $\Omega_{c}(\sigma) \subset \mathbb{C}^{+}$is equivalent to (4.46);
3. a necessary condition to ensure that $\Omega_{\mathrm{PML}}(\sigma) \subset \mathbb{C}^{+}$is given by (4.53).

It is now natural to look for sufficient conditions to ensure that $\Omega_{\mathrm{PML}}(\sigma) \subset \mathbb{C}^{+}$. This is possible in the case of isotropic dispersive Maxwell equations, which was our original motivation (see Section $2)$ and is precisely the object of the next section.

5 Application to isotropic dispersive Maxwell equations

In this section, we pursue our analysis of the generalised PML models introduced in Section 4.2 in the particular case of isotropic dispersive Maxwell equations of the Section 2 that enter the framework of Section 4.1. We have seen in Section 4.3 that (4.46) is a necessary and sufficient condition for $\Omega_{c}(\sigma) \subset \mathbb{C}^{+}$. According to (4.43), it remains to seek for the conditions to ensure $\Omega_{\mathrm{PML}}(\sigma) \subset \mathbb{C}^{+}$. Proposition 4.8 gives a necessary condition (4.53) for $\Omega_{\mathrm{PML}}(\sigma) \subset \mathbb{C}^{+}$, by analysing a particular subset of $\Omega_{\mathrm{PML}}(\sigma)$, the m "physical" branches $\omega_{j}(\mathbf{k}, \sigma)$, for small values of σ (see Section 4.3.5). In order to obtain a necessary and sufficient stability condition, it remains to:

1. describe all the branches $\omega_{j}(\mathbf{k}, \sigma)$ of $\Omega_{\mathrm{PML}}(\sigma)$, for $j \in\left\{1, \ldots, m_{a}\right\}$ (in particular for $j \in$ $\left.\left\{m+1, \ldots, m_{a}\right\}\right)$
2. show that each branch $\omega_{j}(\mathbf{k}, \sigma)$ for $j \in\left\{1, \ldots, m_{a}\right\}$, stays in the upper complex plane \mathbb{C}^{+} for all values of σ (not only small).
In the two next Sections 5.1 and 5.2 , we describe the set $\Omega_{\mathrm{PML}}(\sigma)$ and express the necessary stability condition obtained in Section 4.2 in this context. In Subsection 5.3, we establish necessary and sufficient conditions for the uniform stability of PMLs in the case of isotropic dispersive Maxwell models satisfying the growing property (2.21). We finally extend in Subsection 5.4 the necessary and sufficient conditions to general isotropic dispersive Maxwell models.

5.1 Description of the set $\Omega_{\text {PML }}(\sigma)$.

We start here by identifying the m_{a} branches $\omega_{j}(\mathbf{k}, \sigma)$ of $\Omega_{\mathrm{PML}}(\sigma)$, for $j \in\left\{1, \ldots, m_{a}\right\}$ and $\mathbf{k} \in \mathbb{R}^{2}$. According to (4.36), the PML dispersion equation is obtained from the one of the original system (2.27), as follows:

$$
\begin{equation*}
\omega \varepsilon(\omega)\left(\omega^{2} \varepsilon(\omega) \mu(\omega)-\left(1+\frac{\sigma \chi(\omega)}{i \omega}\right)^{-2} k_{x}^{2}-k_{y}^{2}\right)=0 \tag{5.1}
\end{equation*}
$$

First note that the size of the original Maxwell system is $m=2 M_{m}+4 M_{e}+3$ (see remark 2.9), corresponding to $M=2\left(M_{e}+M_{m}+1\right):=2 \widetilde{M}$ solutions of the dispersion relation (2.28) and $2 M_{e}+1$ non-propagative modes corresponding to the zeros of $\omega \varepsilon(\omega)$ (labelled as $\omega_{j}, M+1 \leq j \leq m$). We can easily see that these last modes do not play any role since they do not depend on \mathbf{k} and they are not changed by the presence of the PML. Therefore, there remains the branches satisfying

$$
\begin{equation*}
(\sigma \chi(\omega)+i \omega)^{2}\left(\omega^{2} \varepsilon(\omega) \mu(\omega)-k_{y}^{2}\right)=-\omega^{2} k_{x}^{2} \tag{5.2}
\end{equation*}
$$

This last equation must be read as a polynomial equation: indeed remind that $\varepsilon(\omega)=P_{e}(\omega) / Q_{e}(\omega)$, $\mu(\omega)=P_{m}(\omega) / Q_{m}(\omega)$ and $\chi(\omega)=1+P_{\chi}(\omega) / Q_{\chi}(\omega)$ are rational fractions, using $P_{e m}=P_{e} P_{m}$, $Q_{e m}=Q_{e} Q_{m}$, then (5.2) can be rewritten as

$$
\left.\left.\begin{array}{rl}
{[} & \left.\sigma\left(P_{\chi}+Q_{\chi}\right)(\omega)+i \omega Q_{\chi}(\omega)\right]^{2}
\end{array}\right] \omega^{2} P_{e m}(\omega)-k_{y}^{2} Q_{e m}(\omega)\right]\left[\begin{array}{l}
+\omega^{2} k_{x}^{2} Q_{\chi}^{2} Q_{e m}(\omega)=0 \tag{5.3}
\end{array}\right.
$$

This is a polynomial equation in ω of degree $2(\widetilde{M}+2 N+1)$. Seen as a polynomial equation in $i \omega$ (remember that $\varepsilon(\omega), \mu(\omega)$ and $\chi(\omega)$ are even functions of ω), (5.3) has real coefficients so ω is a solution of (5.3) if, and only if, $-\bar{\omega}$ is a solution of (5.3). When σ tends to $0,(5.3)$ becomes

$$
\begin{equation*}
\omega^{2} Q_{\chi}^{2}(\omega)\left[\omega^{2} P_{e m}(\omega)-Q_{e m}(\omega)\left(k_{x}^{2}+k_{y}^{2}\right)\right)=0 \tag{5.4}
\end{equation*}
$$

that we can write formally under the form

$$
\begin{equation*}
\omega^{2} Q_{\chi}^{2}(\omega)\left(\omega^{2} \varepsilon(\omega) \mu(\omega)-|\mathbf{k}|^{2}\right)=0 \tag{5.5}
\end{equation*}
$$

where one recognizes the dispersion relation (2.28) of the original equation. These two equations (5.4) and (5.5) show that the $2(\widetilde{M}+2 N+1)$ branches of solutions of (5.3) can be labelled as follows:

- We first denote $\omega_{j}(\mathbf{k}, \sigma)$ and $-\overline{\omega_{j}(\mathbf{k}, \sigma)}$ where $1 \leq j \leq \widetilde{M}$ the $M=2 \widetilde{M}$ "physical" branches of solutions such that

$$
\begin{equation*}
\lim _{\sigma \searrow 0} \omega_{j}(\mathbf{k}, \sigma)=\lim _{\sigma \searrow 0} \overline{\omega_{j}(\mathbf{k}, \sigma)}=\omega_{j}(\mathbf{k}), \quad(1 \leq j \leq \widetilde{M}) \tag{5.6}
\end{equation*}
$$

where $\pm \omega_{j}(\mathbf{k}), 1 \leq j \leq \widetilde{M}$ are the M solutions of the reduced dispersion relation (2.28).

- We denote by $\widetilde{\omega}_{ \pm \ell}(\mathbf{k}, \sigma)$ and $-\widetilde{\omega}_{ \pm \ell}(\mathbf{k}, \sigma)$, where $1 \leq \ell \leq N$, the $4 N$ branches such that:

$$
\begin{equation*}
\lim _{\sigma \searrow 0} \widetilde{\omega}_{ \pm \ell}(\mathbf{k}, \sigma)=\lim _{\sigma \searrow 0} \overline{\widetilde{\omega}_{ \pm \ell}(\mathbf{k}, \sigma)}= \pm a_{\ell}, \quad(1 \leq \ell \leq N) . \tag{5.7}
\end{equation*}
$$

- The 2 remaining branches are denoted $\widetilde{\omega}_{0}(\mathbf{k}, \sigma)$ and $-\overline{\widetilde{\omega}_{0}(\mathbf{k}, \sigma)}$; they verify

$$
\begin{equation*}
\lim _{\sigma \searrow 0} \widetilde{\omega}_{0}(\mathbf{k}, \sigma)=\lim _{\sigma \searrow 0} \overline{\widetilde{\omega}_{0}(\mathbf{k}, \sigma)}=0 . \tag{5.8}
\end{equation*}
$$

Using the fact that z and $-\bar{z}$ have the same imaginary part, proving that $\Omega_{\mathrm{PML}}(\sigma) \subset \mathbb{C}^{+}$amounts to proving that $\forall \sigma>0$
(1) $\omega_{j}(\mathbf{k}, \sigma) \in \mathbb{C}^{+}$for all $\mathbf{k} \in \mathbb{R}^{2}$ and for all $j \in\{1, \ldots, \widetilde{M}\}$;
(2) $\widetilde{\omega}_{ \pm \ell}(\mathbf{k}, \sigma) \in \mathbb{C}^{+}$for all $\mathbf{k} \in \mathbb{R}^{2}$ and for all $\ell \in\{1, \ldots, N\}$;
(3) $\widetilde{\omega}_{0}(\mathbf{k}, \sigma) \in \mathbb{C}^{+}$.

5.2 Reinterpretation of the necessary condition (4.53) for isotropic dispersive Maxwell models satisfying the growing property

From now on we assume the growing property (2.21) to be satisfied unless otherwise specified. The necessary condition (4.53) is equivalent to say that the m branches of solutions $\omega_{j}(\mathbf{k}, \sigma)$ go to \mathbb{C}^{+}for small $\sigma>0$, for $j=1, \ldots, m$. Since the non-propagative modes do not play any role, this is equivalent to restrict this condition to $j=1, \ldots, M$ (or to $j=1, \ldots, \widetilde{M}$, see the previous section).

Proposition 5.1. For isotropic dispersive Maxwell models satisfying the growing property (2.21), the necessary stability condition (4.53) is equivalent to

$$
\begin{equation*}
\mathfrak{D}(\omega) \chi(\omega)>0, \quad \text { for all } \omega \in \mathcal{S} . \tag{5.10}
\end{equation*}
$$

Proof. First notice that, as a consequence of (2.46) where the growing property (2.21) is used, $\mathfrak{D}(\omega) \neq 0$ for all $\omega \in \mathcal{S}$. Therefore, from (2.37), the necessary condition (4.53) is equivalent to

$$
\begin{equation*}
k_{x}^{2} \mathfrak{D}\left(\omega_{j}(\mathbf{k})\right) \chi\left(\omega_{j}(\mathbf{k})\right) \geq 0 \tag{5.11}
\end{equation*}
$$

for all $j=1, \ldots, \widetilde{M}$. We can show in the following lemma 5.2 that in the case $k_{x}=0$, the M physical branches are real for all σ and does not play any role in the necessary stability condition. Therefore (5.11) becomes equivalent to

$$
\begin{equation*}
\mathfrak{D}(\omega) \chi(\omega) \geq 0, \quad \text { for all } \omega \in \mathcal{S} \tag{5.12}
\end{equation*}
$$

Since $\mathfrak{D}(\omega) \neq 0$, the left hand side could vanish only if χ could have a zero in \mathcal{S}. We use Lemma 5.3 to show that this is not possible and conclude the proof.

We now give and prove the two lemmas used in the previous proof.
Lemma 5.2. In the case $k_{x}=0$, the solutions of equation (5.3) for all $k_{y} \in \mathbb{R}$ and $\sigma>0$, are given by:

1. $\omega_{j}\left(0, k_{y}, \sigma\right)=\omega_{j}\left(0, k_{y}\right) \in \mathbb{R}$ for all $j \in\{1, \ldots, \widetilde{M}\}$, where the $\pm \omega_{j}$ are the solutions of the original dispersion relation (2.28);
2. $\widetilde{\omega}_{\ell}\left(0, k_{y}, \sigma\right)=\omega_{\ell}^{c}(\sigma) \in \Omega_{c}(\sigma)$ for all $\ell \in\{-N, \ldots, N\}$, where the $\omega_{\ell}^{c}(\sigma)$ are the elements of set $\Omega_{c}(\sigma)$ defined by (4.34) and these solutions are in \mathbb{C}^{+}if and only if (4.46) holds.

Proof. For $k_{x}=0,(5.3)$ is equivalent to

$$
\begin{equation*}
\text { (i) } \omega^{2} \varepsilon(\omega) \mu(\omega)-k_{y}^{2}=0 \text { or }(i i)\left((i \omega+\sigma) Q_{\chi}(\omega)+\sigma P_{\chi}(\omega)\right)^{2}=0 \tag{5.13}
\end{equation*}
$$

The equation (i) clearly corresponds to the original dispersion relation for $k_{x}=0$, whose solutions are real (this gives (1)). We recognize in the equation (ii) the characterization (4.45) of $\Omega_{c}(\sigma)$ whose solutions are the $\omega_{\ell}^{c}(\sigma)$. We conclude using Proposition 4.7 (this gives (2)).

Lemma 5.3. We assume the growing property (2.21) to be satisfied. If (5.10) holds then all the zeros and poles of χ are in the gap:

$$
\begin{equation*}
\pm a_{\ell} \in \mathcal{G} \text { and } \pm z_{\ell} \in \mathcal{G} \quad \text { for all } \ell \in\{1, \ldots, N\} \tag{5.14}
\end{equation*}
$$

Proof. We first notice that \mathcal{S} is an open set of \mathbb{R} composed of the union of open intervals I_{j} of \mathbb{R}. On each of them, (2.46) (satisfied since we assume (2.21)) shows that ε, μ and \mathfrak{D} have the same constant sign. In particular, \mathfrak{D} does not change sign in each I_{j}. Since all the zeros and poles of χ are simple, if one of them was inside one of the I_{j}, it would mean that χ changes sign inside this interval, which contradicts (5.10).

5.3 Necessary and sufficient stability conditions for isotropic dispersive Maxwell models satisfying the growing property

We are able to establish necessary and sufficient stability conditions for the PMLs introduced in Section 4.2. This is the main result of this section:

Theorem 5.4. For the isotropic dispersive Maxwell model of Section 2 satisfying the growing property (2.21), a necessary and sufficient condition for the uniform stability (Definition 4.4) of the PML model (4.18) associated to the function $\chi(\omega)$ given by (4.15) is

$$
\begin{align*}
& \mathfrak{D}(\omega) \chi(\omega)>0 \quad \text { for all } \omega \in \mathcal{S} \tag{5.15a}\\
& \chi(0) \geq 0 \quad \text { and } \quad b_{\ell}<0 \text { for all } \ell \in\{1, \ldots, N\} \tag{5.15b}
\end{align*}
$$

We already know that $(5.15 b)$ is a necessary and sufficient condition to ensure $\Omega_{c}(\sigma) \subset \mathbb{C}^{+}$ (Section 4.3.4) for all $\sigma \geq 0$. Moreover in Section 5.2 we saw that (5.15a) is a necessary condition. Thus it remains to show that (5.15a)-(5.15b) are sufficient.

In the rest of this section, we assume that (2.21), (5.15a) and (5.15b) hold. The proof reduces to show that all the branches of $\Omega_{\mathrm{PML}}(\sigma)$ have a positive imaginary part. To do so, we want to follow
the guideline given in Section 4.3.3 but as we will see the cases $k_{x}=0$ and $k_{y}=0$ play particular roles. We will do the analysis for \mathbf{k} belonging to each of the four quadrants $\Lambda_{ \pm}^{ \pm}:=\mathbb{R}_{ \pm}^{*} \times \mathbb{R}_{ \pm}^{*}$ delimited by $k_{x}=0$ and $k_{y}=0$. More precisely we will follow these steps:
(step 1) we seek for real solutions when $\sigma>0$ (Lemma 5.5): it cannot happens except when $k_{x} k_{y}=0$ or $\chi(0) Q_{e m}(0)=0$;
(step 2) we show that for all $\sigma>0$ and for all \mathbf{k} in each of the four quadrants $\Lambda_{ \pm}^{ \pm}$, either a branch $\omega(\mathbf{k}, \sigma)$ is equal to zero (corresponding to the case $\left.\chi(0) Q_{e m}(0)=0\right)$ or $\operatorname{Im} \omega(\mathbf{k}, \sigma) \neq 0$ and keeps a constant sign (Lemma 5.6);
(step 3) an asymptotic analysis (Lemmas 5.7 and 5.8) shows that $\operatorname{Im} \omega(\mathbf{k}, \sigma)$ is actually positive for small $\sigma \geq 0$ and for all \mathbf{k} in each of the four quadrants $\Lambda_{ \pm}^{ \pm}$;
(step 4) we conclude by a continuity argument: since the imaginary parts of the all the branches $\omega(\mathbf{k}, \sigma)$ are positive for all $\sigma \geq 0$ and for all \mathbf{k} in each of the four quadrants $\Lambda_{ \pm}^{ \pm}$, by continuity with respect to \mathbf{k}, it implies that these are positive for all $\sigma \geq 0$ and for all $\mathbf{k} \in \mathbb{R}^{2}$.
We start by seeking the real solutions of (5.3) (step 1):
Lemma 5.5. Let $\sigma>0$ be fixed. Then (5.3) has a real solution if and only if $k_{y} Q_{e m}(0) \chi(0)=0$ (that corresponds to the solution $\omega=0$) or $k_{x}=0$.

Proof. First, we start to check if $\omega=0$ can be a solution of (5.3). Taking $\omega=0$ directly gives $-\sigma^{2} k_{y}^{2}\left(P_{\chi}+Q_{\chi}\right)(0) Q_{e m}(0)$. Since $\sigma \neq 0$ and $Q_{\chi}(0) \neq 0$ (because the a_{ℓ} are not zero), it shows that $\omega=0$ is a solution only if $Q_{e m}(0)=0, k_{y}=0$ or $\chi(0)=Q_{\chi}(0)^{-1}\left(P_{\chi}+Q_{\chi}\right)(0)=0$. Now, assume that $\omega \in \mathbb{R}$ is a real solution of (5.3). Since all the polynomials involved have real coefficients, identifying real and imaginary part leads to

$$
\begin{gather*}
\left(\omega^{2} P_{e m}(\omega)-k_{y}^{2} Q_{e m}(\omega)\right)\left[\sigma^{2}\left(P_{\chi}+Q_{\chi}\right)^{2}(\omega)-\omega^{2} Q_{\chi}^{2}(\omega)\right] \tag{5.16}\\
+\omega^{2} k_{x}^{2} Q_{\chi}^{2} Q_{e m}(\omega)=0
\end{gather*}
$$

and

$$
\begin{equation*}
\omega Q_{\chi}(\omega)\left(\omega^{2} P_{e m}(\omega)-k_{y}^{2} Q_{e m}(\omega)\right)\left[Q_{\chi}(\omega)+P_{\chi}(\omega)\right]=0 \tag{5.17}
\end{equation*}
$$

We need to distinguish two cases:
(a) $\omega^{2} k_{x}^{2} Q_{\chi}^{2} Q_{e m}(\omega) \neq 0$. Then (5.16) implies $\omega^{2} P_{e m}(\omega)-k_{y}^{2} Q_{e m}(\omega) \neq 0$. From (5.17) one has $Q_{\chi}(\omega)+P_{\chi}(\omega)=0$, because $\omega Q_{\chi}(\omega) \neq 0$. This means that $\chi(\omega)=0$, therefore Lemma 5.3 implies that $\omega \in \mathcal{G}$. On the other hand, (5.16) implies in this case $\omega^{2} P_{e m}(\omega)-Q_{e m}(\omega)\left[k_{y}^{2}+\right.$ $\left.k_{y}^{2}\right]=0$, i.e. $\omega \in \mathcal{S}$. This case is thus impossible, since $\mathcal{G} \cap \mathcal{S}=\emptyset$.
(b) $\omega^{2} k_{x}^{2} Q_{\chi}^{2}(\omega) Q_{e m}(\omega)=0$. Then either (i) $k_{x}=0$, (ii) $\omega=0$ (which is possible only if $k_{y} Q_{e m}(0) \chi(0)=0$) or (iii) $Q_{\chi}^{2}(\omega) Q_{e m}(\omega)=0$. It is easy to check (using the same kind of arguments than in (a)) that the last case (iii) is impossible.

Thanks to this results, we can deduce that the imaginary parts of the solutions do not change sign on each of the four quadrants $\Lambda_{ \pm}^{ \pm}$for all $\sigma>0$, thus the sign is given by an asymptotic analysis for small $\sigma>0$ (step 2):

Lemma 5.6. Let $\mathbf{k} \mapsto \omega(\mathbf{k}, \sigma)$ be any branches of solution of (5.3). Then, for all $\sigma>0$ and for all \mathbf{k} in one of the four quadrants $\Lambda_{ \pm}^{ \pm}$, either $\omega(\mathbf{k}, \sigma)=0$ (possible only if $\chi(0) Q_{\text {em }}(0)=0$) or $\operatorname{Im} \omega(\mathbf{k}, \sigma)$ keeps a non-zero constant sign.

Proof. By continuity of $\omega(\mathbf{k}, \sigma)$ with respect to \mathbf{k} and σ, if its imaginary part changes sign on one of the $\Lambda_{ \pm}^{ \pm}$it means that there exists $\mathbf{k}^{\star} \in \Lambda_{ \pm}^{ \pm}$and σ^{\star} such that $\omega\left(\mathbf{k}^{\star}, \sigma^{\star}\right) \in \mathbb{R}$. From Lemma 5.5, this is possible only if $Q_{e m}(0) \chi(0)=0$. If $Q_{e m}(0) \chi(0) \neq 0$, we immediately deduce that $\operatorname{Im} \omega(\mathbf{k}, \sigma)$ keeps a non-zero constant sign. Assume now that $Q_{\text {em }}(0) \chi(0)=0$. Actually, we detail the proof for $\chi(0)=0$, the proof being similar for $Q_{e m}(0)=0$. Since χ only depends on ω^{2}, one can factorise $\chi(\omega)=\omega^{2} \widetilde{\chi}(\omega)$ and we assume that $\widetilde{\chi}(0) \neq 0$. It is easy to show in this case that if ω satisfies (5.3), then it cannot be a zero of Q_{χ} : from Lemma 5.3 it would imply that $\omega \in \mathcal{G}$, on the other hand (5.3) would imply $\omega^{2} P_{e m}(\omega)-k_{y}^{2} Q_{e m}(\omega)=0$ which implies that $\omega \in \mathcal{S}$. But $\omega \in \mathcal{S} \cap \mathcal{G}=\emptyset$ is impossible. Therefore, we can divide by $Q_{\chi}(\omega)$ in (5.3):

$$
\begin{equation*}
\omega^{2}\left([\sigma \omega \widetilde{\chi}(\omega)+i]^{2}\left[\omega^{2} P_{e m}(\omega)-k_{y}^{2} Q_{e m}(\omega)\right]+k_{x}^{2} Q_{e m}(\omega)\right)=0 \tag{5.18}
\end{equation*}
$$

We deduce that $\omega(\mathbf{k}, \sigma)=0$ is a solution of order 2 . The other branches satisfy

$$
\begin{equation*}
[\sigma \omega \widetilde{\chi}(\omega)+i]^{2}\left[\omega^{2} P_{e m}(\omega)-k_{y}^{2} Q_{e m}(\omega)\right]+k_{x}^{2} Q_{e m}(\omega)=0 \tag{5.19}
\end{equation*}
$$

With similar arguments that used in the proof of Lemma 5.5, we can easily show that this equation cannot have real solution, therefore the other branches do not cross the real axis.

We then have to perform an asymptotic analysis for small σ to conclude (step 3). We already know from Proposition 5.1 that (5.15a) ensures that the "physical " branches (5.9)-(1) have a positive imaginary part for small $\sigma>0$. Thus it remains to analyse the other branches (5.9)-(2) and (5.9)-(3), this is the object of the two following lemmas.

Lemma 5.7. Assume (5.15b). Then for small values of $\sigma>0$ and for all \mathbf{k} in one of the four quadrants $\Lambda_{ \pm}^{ \pm}$, one has $\widetilde{\omega}_{0}(\mathbf{k}, \sigma) \in \mathbb{C}^{+}$.

Proof. First notice that, according to the proof of Lemma 5.6, if $\chi(0)=0$, we have $\widetilde{\omega}_{0}(\mathbf{k}, \sigma)=0$ for all $\mathbf{k} \in \mathbb{R}^{2}$ and $\sigma>0$. We assume now that $\chi(0) \neq 0$. Injecting the Taylor expansion

$$
\begin{equation*}
\widetilde{\omega}_{0}(\mathbf{k}, \sigma)=\underbrace{\widetilde{\omega}_{0}(\mathbf{k}, \sigma)}_{=0}+\sigma \frac{\partial \widetilde{\omega}_{0}}{\partial \sigma}(\mathbf{k}, 0)+\mathcal{O}\left(\sigma^{2}\right) \tag{5.20}
\end{equation*}
$$

for small values of $\sigma>0$ into (5.3) gives (after easy computation)

$$
\begin{equation*}
\frac{\partial \widetilde{\omega}_{0}}{\partial \sigma}(\mathbf{k}, 0)=\frac{\chi(0) k_{y}}{|\mathbf{k}|^{2}}\left(i k_{y} \pm k_{x}\right) \tag{5.21}
\end{equation*}
$$

Notice that $|\mathbf{k}| \neq 0$ on $\Lambda_{ \pm}^{ \pm}$. We deduce

$$
\begin{equation*}
\operatorname{Im} \widetilde{\omega}_{0}(\mathbf{k}, \sigma) \underset{\sigma \rightarrow 0}{\sim} \sigma \frac{k_{y}^{2} \chi(0)}{|\mathbf{k}|^{2}} \tag{5.22}
\end{equation*}
$$

which is clearly a positive quantity since $k_{y} \neq 0$ and (5.15b) is satisfied.
Lemma 5.8. Assume (5.15b). Then for small values of $\sigma>0$ and for all \mathbf{k} in one of the four quadrants $\Lambda_{ \pm}^{ \pm}$, one has $\widetilde{\omega}_{ \pm \ell}(\mathbf{k}, \sigma) \in \mathbb{C}^{+}$for all $\ell \in\{1, \ldots, N\}$.

Proof. We only treat the case where $\widetilde{\omega}_{\ell}(\mathbf{k}, \sigma)$ tends to a_{ℓ} when $\sigma \rightarrow 0$, the case where it tends to $a_{-\ell}$ is similar. From Lemma 5.6, we know that, for $\sigma>0, \widetilde{\omega}_{ \pm \ell}(\mathbf{k}, \sigma)$ is not real, thus this is not a pole of $\chi(\omega)$ or $\varepsilon(\omega) \mu(\omega)$: we can work with (5.2) instead of (5.3). The idea is then to get an approximation of this equation when ω is close to a_{ℓ}, and to deduce from this approximate equation the behaviour of $\widetilde{\omega}_{\ell}(\mathbf{k}, \sigma)$ when σ is small. When ω tends to $a_{\ell}, \omega^{2} \varepsilon(\omega) \mu(\omega)$ tends to $D_{\ell}:=a_{\ell}^{2} \varepsilon\left(a_{\ell}\right) \mu\left(a_{\ell}\right)$ and $\chi(\omega) \sim b_{\ell} / 2 a_{\ell}\left(a_{\ell}-\omega\right)$. As a consequence, an approximate equation for (5.2) is

$$
\begin{equation*}
\left(\sigma \frac{b_{\ell}}{2 a_{\ell}\left(a_{\ell}-\omega\right)}+i a_{\ell}\right)^{2}\left(D_{\ell}-k_{y}^{2}\right)+a_{\ell}^{2} k_{x}^{2}=0 \tag{5.23}
\end{equation*}
$$

If (5.15b) holds then $a_{\ell} \in \mathcal{G}$ (using Lemma 5.3) i.e. $\varepsilon\left(a_{\ell}\right) \mu\left(a_{\ell}\right) \leq 0$ or equivalently $D_{\ell} \leq 0$. Since $D_{\ell}-k_{y}^{2}<0$ (because $k_{y} \neq 0$), we get

$$
\begin{equation*}
\left(\sigma \frac{b_{\ell}}{2 a_{\ell}\left(a_{\ell}-\omega\right)}+i a_{\ell}\right)= \pm X_{\ell} \quad \text { with } \quad X_{\ell}=\sqrt{\frac{a_{\ell}^{2} k_{x}^{2}}{k_{y}^{2}-D_{\ell}}} \tag{5.24}
\end{equation*}
$$

that is to say

$$
\begin{equation*}
\omega=a_{\ell}-\frac{\sigma b_{\ell}}{2 a_{\ell}\left(\pm X_{\ell}-i a_{\ell}\right)} \tag{5.25}
\end{equation*}
$$

In particular, since X_{ℓ} is real we have

$$
\begin{equation*}
\operatorname{Im} \omega \underset{\omega \rightarrow a_{\ell}}{\sim}-\frac{\sigma b_{\ell}}{2\left(X_{\ell}^{2}+a_{\ell}^{2}\right)} \tag{5.26}
\end{equation*}
$$

Then we conclude that $\operatorname{Im} \omega>0$ for small $\sigma>0$ since $b_{\ell}<0$.
We can now conclude the proof of Theorem 5.4 (step 4). Combining Lemma 5.6 with Proposition 5.1 and Lemmas $5.7-5.8$ shows that the imaginary parts of the branches $\omega(\mathbf{k}, \sigma)$ of solutions of (5.3) are positive for all $\sigma \geq 0$ and for all \mathbf{k} in each of the four quadrants $\Lambda_{ \pm}^{ \pm}$. By continuity, this implies that these are positive for all $\sigma \geq 0$ and for all $\mathbf{k} \in \mathbb{R}^{2}$. Theorem 5.4 is proven.

5.4 Extension of the necessary and sufficient stability conditions for general isotropic dispersive Maxwell models

We will now discuss briefly what happens to Theorem 5.4 when the growing property (2.21) is not satisfied any more. Two of the key points of the previous proof are Lemma 5.3 and the fact that $\mathfrak{D}(\omega) \neq 0$ for all $\omega \in \mathcal{S}$. If the growing property does not hold, these two might not be true any more so one must add additional assumptions to ensure stability. Doing so, we have the following result that extends Theorem 5.4:

Theorem 5.9. Consider an isotropic dispersive Maxwell model of Section 2 such that $\mathfrak{D}(\omega) \neq 0$ for all $\omega \in \mathcal{S} \backslash \mathcal{A}$. A necessary and sufficient condition for the uniform stability (Definition 4.4) of the PML model (4.18) associated to the function $\chi(\omega)$ given by (4.15) is

$$
\begin{align*}
& \mathfrak{D}(\omega) \chi(\omega)>0 \quad \text { for all } \omega \in \mathcal{S} \backslash \mathcal{A} \tag{5.27a}\\
& a_{ \pm \ell} \in \mathcal{G} \quad \text { for all } \ell \in\{1, \ldots, N\} \tag{5.27b}\\
& z_{ \pm \ell} \in \mathcal{G} \quad \text { for all } \ell \in\{1, \ldots, N\} \tag{5.27c}\\
& \chi(0) \geq 0 \quad \text { and } \quad b_{\ell}<0 \quad \text { for all } \ell \in\{1, \ldots, N\} . \tag{5.27~d}
\end{align*}
$$

Notice that we recover Theorem 5.4 if the growing property (2.21) holds, because in this case $\mathfrak{D}(\omega) \neq 0$ for all $\omega \in \mathcal{O}$ and (5.27a) implies (5.27b)-(5.27c) using Lemma 5.3.

The additional conditions (5.27b)-(5.27c) allow us to "bypass" Lemma 5.3. Doing so, we can follow exactly the same steps of the proof of Theorem 5.4, using (5.27b)-(5.27c) instead of Lemma 5.3 when needed. That shows that the four conditions (5.27) are sufficient and the conditions (5.27a) $-(5.27 \mathrm{~d})$ are necessary. It remains to show that $(5.27 \mathrm{~b})-(5.27 \mathrm{c})$ are necessary. This is the object of the two following lemmas that conclude the proof of Theorem 5.9.

Lemma 5.10. If it exists $\ell \in\{1, \ldots, N\}$ such that $a_{\ell} \notin \mathcal{G}$, then the imaginary part of one of the corresponding branches $\widetilde{\omega}_{ \pm \ell}\left(k_{x}, k_{y}, \sigma\right)$ has the sign of b_{ℓ} for all \mathbf{k} in each quadrant $\Lambda_{ \pm}^{ \pm}$with k_{y} small enough and $\sigma>0$ small enough. In particular, it is negative if (5.27d) holds.

Proof. The beginning of the proof is the same as in the proof of Lemma 5.8. In particular, (5.23) still holds. Now if $a_{\ell} \notin \mathcal{G}$, it means that $\varepsilon\left(a_{\ell}\right) \mu\left(a_{\ell}\right)>0$, i.e. $D_{\ell}>0$. Taking k_{y} small enough such that $D_{\ell}-k_{y}^{2}>0,(5.24)$ becomes

$$
\begin{equation*}
X_{\ell}=i \widetilde{X}_{\ell}, \quad \widetilde{X}_{\ell}=\frac{\left|k_{x} a_{\ell}\right|}{\left(D_{\ell}-k_{y}^{2}\right)^{\frac{1}{2}}} \tag{5.28}
\end{equation*}
$$

At the end, we obtain the equivalent of (5.26) in our case:

$$
\begin{equation*}
\operatorname{Im} \omega \underset{\omega \rightarrow a_{\ell}}{\sim}-\frac{\sigma b_{\ell}}{2 a_{\ell}\left(a_{\ell} \pm \widetilde{X}_{\ell}\right)} \tag{5.29}
\end{equation*}
$$

Since $a_{\ell}<\widetilde{X}_{\ell}$, one of the two last quantities has the same sign of b_{ℓ}.
Lemma 5.11. Let $\sigma>0$ be fixed. If there exists $\ell \in\{1, \ldots, N\}$ such that $z_{\ell} \notin \mathcal{G}$, then there exists $j \in\{1, \ldots, M\}$ such that the imaginary part of $\omega_{j}(\cdot, \sigma)$ changes sign.

Proof. Recall that $z_{\ell} \notin \mathcal{G}$ means that $\varepsilon\left(z_{\ell}\right) \mu\left(z_{\ell}\right)>0$. We only treat the case $z_{\ell} \neq 0$, the case $z_{\ell}=0$ is similar. Setting $k_{x}^{*}=z_{\ell} \sqrt{\varepsilon\left(z_{\ell}\right) \mu\left(z_{\ell}\right)}$, we have $z_{\ell}^{2} \varepsilon\left(z_{\ell}\right) \mu\left(z_{\ell}\right)=k_{x}^{*}$. It shows that z_{ℓ} is a solution of (5.3) (since $\chi\left(z_{\ell}\right)=0$) for $\mathbf{k}^{*}=\left(k_{x}^{*}, 0\right)$. In particular, there exists $j \in\{1, \ldots, M\}$ such that $\omega_{j}\left(\mathbf{k}^{*}, \sigma\right)=z_{\ell}$. Let study the behaviour of $\omega\left(k_{x}\right):=\omega_{j}\left(k_{x}, 0, \sigma\right)$ near k_{x}^{*} (we omit the dependence in j and σ). One has

$$
\begin{equation*}
\omega\left(k_{x}\right)=z_{\ell}+\frac{\mathrm{d} \omega}{\mathrm{~d} k_{x}}\left(k_{x}^{*}\right)\left(k_{x}-k_{x}^{*}\right)+\mathcal{O}\left[\left(k_{x}-k_{x}^{*}\right)^{2}\right] . \tag{5.30}
\end{equation*}
$$

To show that the imaginary part of ω changes sign when $k_{x}-k_{x}^{*}$ does, it is sufficient to show that $\operatorname{Im}\left(\mathrm{d} \omega / \mathrm{d} k_{x}\right)\left(k_{x}^{*}\right) \neq 0$. Injecting the above expansion into (5.3) and using $\chi\left(z_{\ell}\right)=0$ and $z_{\ell}^{2} \varepsilon\left(z_{\ell}\right) \mu\left(z_{\ell}\right)=k_{x}^{*}$ gives, after some computations,

$$
\begin{equation*}
\operatorname{Im} \frac{\mathrm{d} \omega}{\mathrm{~d} k_{x}}\left(k_{x}^{*}\right)=2 \sigma \frac{\chi^{\prime}\left(z_{\ell}\right)}{z_{\ell}} \frac{\left(k_{x}^{*}\right)^{3}}{\left|Z\left(z_{\ell}\right)\right|^{2}} \tag{5.31}
\end{equation*}
$$

where

$$
\begin{equation*}
Z(\omega):=\omega \mathfrak{D}(\omega)-2 i \sigma\left(k_{x}^{*}\right)^{2} \frac{\chi^{\prime}(\omega)}{\omega} \tag{5.32}
\end{equation*}
$$

Since $z_{\ell} \neq 0$, one has $k_{x}^{*}=z_{\ell}^{2} \varepsilon\left(z_{\ell}\right) \mu\left(z_{\ell}\right) \neq 0$. Moreover, since the zeros of χ are simple (in the case $\left.z_{\ell} \neq 0\right), \chi^{\prime}\left(z_{\ell}\right) \neq 0$. So $\left|Z\left(z_{\ell}\right)\right| \neq 0$ and $\operatorname{Im}\left(\mathrm{d} \omega / \mathrm{d} k_{x}\right)\left(k_{x}^{*}\right) \neq 0$.

6 Design of Stable PMLs for isotropic dispersive media

We consider in this last section the construction of a function $\chi(\omega)$ fulfilling (5.15) (or (5.27)). Such a function is certainly non unique, as we shall see, and one should privilege, for computational reasons, the ones that minimize N in (4.15), that is to say the number of additional unknowns.

6.1 The case of the Drude model

The Drude model is a particular case of an isotropic dispersive Maxwell model satisfying the growing property (2.21). According to the Theorem 5.4, we propose to construct a stable PML by choosing a function χ satisfying $\mathfrak{D}(\omega) \chi(\omega)>0$ for all $\omega \in \mathcal{S}$, where we have seen that

$$
\begin{equation*}
\mathcal{S}=\mathcal{S}_{+} \cup \mathcal{S}_{-}, \quad \mathcal{S}_{-}=\left[-\omega_{-}, \omega_{-}\right], \quad \mathcal{S}_{+}=\mathbb{R} \backslash\left(-\omega_{+}, \omega_{+}\right) \tag{6.1}
\end{equation*}
$$

For the Drude model, $\mathfrak{D}(\omega)$, given by (2.44) satisfies $\mathfrak{D}(\omega)>0$ in \mathcal{S}_{+}and $\mathfrak{D}(\omega)<0$ in \mathcal{S}_{-}. We thus need $\chi(\omega)>0$ in \mathcal{S}_{+}and $\chi(\omega)<0$ in \mathcal{S}_{-}which is achieved by picking $\omega_{*} \in\left[\omega_{-}, \omega_{+}\right]$and taking

$$
\begin{equation*}
\chi(\omega)=\left(1-\frac{\omega_{*}^{2}}{\omega^{2}}\right)^{-1} \tag{6.2}
\end{equation*}
$$

Finally, we simply have to check (5.15b): one has $\chi(\omega)=1-\omega_{*}^{2} /\left(\omega_{*}^{2}-\omega^{2}\right)$ that corresponds to (4.15) with $N=1, a_{1}=\omega_{*}$ and $b_{1}=-\omega_{*}^{2}<0$. Notice that we are in the limit case $\chi(0)=0$.

Remark 6.1. One particular choice consists in choosing $\omega_{*}=\omega_{e}$ or $\omega_{*}=\omega_{m}$ which amounts to take $\chi(\omega)=\varepsilon_{0} / \varepsilon(\omega)$ or $\chi(\omega)=\mu_{0} / \mu(\omega)$ (this choice is used for instance in [11, 14, 25]). This is in fact a particular case of a more general result (see Section 6.2). Such a choice is imposed automatically when $\omega_{e}=\omega_{m}$.

We performed a numerical simulation to illustrate the stability of the new PML. More precisely, we reproduced exactly the same experiment as in Section 3.2 (same parameters, same source, etc.) and choose here $\omega_{*}=\omega_{e}$ (however the same conclusions as below were also observed with other choices of ω_{*} between ω_{e} and $\left.\omega_{m}\right)$. As expected, and contrary to what was observed in Section 3.2, the solution does not blow up stable during the whole computation with a final time of $T=250 \mathrm{~s}$. The stability is confirmed by the Figure 8 where we show the evolution of the energy $\mathcal{E}_{e}+\mathcal{E}_{m}$ defined by (2.20). The Figure 7 shows some snapshots of the field H at different times which the shows that the PMLs works well: both forward and backward waves are well absorbed. This is confirmed by a comparison with numerical computations done with a larger computational domain.

6.2 The case of generalised Lorentz materials

The following result is a generalization of the Remark 6.1 for generalised Lorentz materials.
Theorem 6.2. For generalised Lorentz materials (2.16), the following two natural choices lead to a stable PML:

$$
\begin{equation*}
\chi(\omega)=\varepsilon_{0} / \varepsilon(\omega) \quad \text { or } \quad \chi(\omega)=\mu_{0} / \mu(\omega) \tag{6.3}
\end{equation*}
$$

Proof. First, notice that the generalised Lorentz model model is an isotropic dispersive Maxwell model satisfying the growing property (2.21). We leave as an exercise for the reader to prove that the functions χ given by (6.3) are of the form (4.15) with $N=M_{e}$ for the first choice, $N=M_{e}$ for the second one. Obviously (5.15a) holds. It also satisfies the criterion (5.15b): the key point is to remark that all poles and zeroes of $\varepsilon(\omega)$ or $\mu(\omega)$ are real and interlace along the real axis.

Figure 7 - Some snapshots of the field H at different times t for the case $\omega_{e}=\omega_{m}$.

Figure 8 - the energy $\mathcal{E}_{e}+\mathcal{E}_{m}$ defined by (2.20). As soon as the waves reach the PML, they are well absorbed and the energy is decaying, both for forward and backward waves.

Between, the two possibilities offered by (6.3), one should obviously choose the one that minimizes N, that is to say the number of additional unknown functions for the time domain PML model. Moreover, there is no reason a priori to state that one of the two choices (6.3) is optimal in terms of the minimization the number N; it is even not so difficult, by applying the construction process that we describe in the next section, to find particular examples for which an optimal choice is none of them.
Remark 6.3. Noticing that the set of rational functions χ of the form (4.15) satisfying (5.15) is convex, a stable PML is also obtained with

$$
\begin{equation*}
\chi(\omega)=\theta \frac{\varepsilon_{0}}{\varepsilon(\omega)}+(1-\theta) \frac{\mu_{0}}{\mu(\omega)}, \quad \text { for any } \theta \in[0,1] \tag{6.4}
\end{equation*}
$$

6.3 A general construction process for optimal stable PMLs

We propose a procedure for the construction of a stable PML for a general dispersive medium based on the properties of the function $\mathfrak{D}(\omega)$, in the sense that χ verifies (5.27). This construction is moreover supposed to be minimal in the sense that the number of poles $2 N$ of the rational function χ is minimal.

6.3.1 Case where the number of changes of sign of $\mathfrak{D}(\omega)$ in $\mathcal{S} \cap \mathbb{R}^{+}$is even.

We suppose that the number of changes of sign of $\mathfrak{D}(\omega)$ inside the set $\mathcal{S} \cap \mathbb{R}^{+}$is equal to $2 M$. Since $\mathfrak{D}(\omega)>0$ for large ω, we assume that there exists $2 M$ numbers $0<\omega_{1}<\cdots<\omega_{2 M}$ such that (with the convention $\omega_{0}=0$ and $\omega_{2 M+1}=+\infty$)

$$
\begin{equation*}
(-1)^{\ell} \mathfrak{D}(\omega)>0 \quad \text { in } \quad\left(\omega_{\ell}^{2}, \omega_{\ell+1}^{2}\right) \cap \mathcal{S}, \quad(0 \leq \ell \leq 2 M) \tag{6.5}
\end{equation*}
$$

The reader will easily realize if the number M is fixed, there may exist some flexibility in the choice of the ω_{ℓ} if there are spectral $\operatorname{gaps}(\mathcal{G} \neq \emptyset)$. A good choice for the function $\chi(\omega)$ is then:

$$
\begin{equation*}
\chi(\omega)=\prod_{\ell=1}^{M}\left(1-\frac{\omega_{2 \ell-1}^{2}}{\omega^{2}}\right) \prod_{\ell=1}^{M}\left(1-\frac{\omega_{2 \ell}^{2}}{\omega^{2}}\right)^{-1} \tag{6.6}
\end{equation*}
$$

By construction χ satisfies (5.27a). It is a rational fraction in ω^{2}, with M simple zeros (the $\left.\omega_{2 \ell-1}^{2}\right)$ and M simple poles $\left(\omega_{2 \ell}^{2}\right)$. Moreover it tends to 1 at infinity. Consequently, it admits a decomposition of the form

$$
\begin{equation*}
\chi(\omega)=1+\sum_{\ell=1}^{M} \frac{b_{\ell}}{\omega_{2 \ell}^{2}-\omega^{2}} \tag{6.7}
\end{equation*}
$$

i.e. $a_{\ell}=\omega_{2 \ell}$ referring to (4.15). The stability conditions (5.27d) is satisfied, since

$$
\begin{equation*}
\chi(0)^{-1}=\left(\prod_{\ell=1}^{M} \omega_{2 \ell-1}^{2}\right)\left(\prod_{\ell=1}^{M} \omega_{2 \ell}^{2}\right)^{-1}>0 \tag{6.8}
\end{equation*}
$$

Finally, we observe that

$$
\begin{equation*}
b_{\ell}=\lim _{\omega^{2} \rightarrow \omega_{2 \ell}^{2}}\left(\omega_{2 \ell}^{2}-\omega^{2}\right) \chi(\omega)=-\prod_{p=1}^{M}\left(\omega_{2 \ell}^{2}-\omega_{2 p-1}^{2}\right) \prod_{p \neq \ell}\left(\omega_{2 \ell}^{2}-\omega_{2 p}^{2}\right)^{-1} \tag{6.9}
\end{equation*}
$$

which allows us to conclude that $b_{\ell}<0$ since

$$
\begin{equation*}
\#\left\{k: \omega_{2 \ell}^{2}<\omega_{2 k-1}^{2}\right\}=M-\ell \quad \text { and } \quad \#\left\{k: \omega_{2 \ell}^{2}<\omega_{2 k}^{2}\right\}=M-\ell \tag{6.10}
\end{equation*}
$$

It also shows that (5.27b) is satisfied. The remaining condition (5.27c) is less obvious. That is why we shall restrict ourselves to the following result:

Theorem 6.4. Assume that the $\omega_{\ell}, 1<\ell<2 M$, are chosen in such a way that (6.5) is satisfied. If in addition $\varepsilon\left(\omega_{2 \ell}\right) \mu\left(\omega_{2 \ell}\right) \leq 0,1 \leq \ell \leq M$, the PML model associated to the function $\chi(\omega)$ given by (4.15) is stable. Moreover, this additional condition is automatically satisfied for materials possessing the growing property (2.21).

6.3.2 Case where the number of changes of sign of $\mathfrak{D}(\omega)$ in $\mathcal{S} \cap \mathbb{R}^{+}$is odd.

In this case, there exists $2 M+1$ numbers $0<\omega_{1}<\cdots<\omega_{2 M+1}$ such that (with the convention $\omega_{0}=0$ and $\left.\omega_{2 M+2}=+\infty\right)$

$$
\begin{equation*}
(-1)^{(\ell+1)} \mathfrak{D}(\omega)>0 \quad \text { in } \quad\left(\omega_{\ell}^{2}, \omega_{\ell+1}^{2}\right) \cap \mathcal{S}, \quad(0 \leq \ell \leq 2 M+1) \tag{6.11}
\end{equation*}
$$

Then, the reader will easily check that a good choice, in the sense that a result similar to the Theorem 6.4 still holds, for the function $\chi(\omega)$ is then :

$$
\begin{equation*}
\chi(\omega)=\prod_{\ell=1}^{M}\left(1-\frac{\omega_{2 \ell}^{2}}{\omega^{2}}\right) \prod_{\ell=0}^{M}\left(1-\frac{\omega_{2 \ell+1}^{2}}{\omega^{2}}\right)^{-1} \tag{6.12}
\end{equation*}
$$

References

[1] Eliane Bécache, Sandrine Fauqueux, and Patrick Joly, Stability of perfectly matched layers, group velocities and anisotropic waves, Journal of Computational Physics 188 (2003), no. 2, 399-433.
[2] Eliane Bécache and Patrick Joly, On the analysis of berenger's perfectly matched layers for maxwell's equations, ESAIM: Mathematical Modelling and Numerical Analysis 36 (2002), no. 01, 87-119.
[3] Eliane Bécache, Patrick Joly, Maryna Kachanovska, and Valentin Vinoles, Perfectly matched layers in negative index metamaterials and plasmas, ESAIM: Proceedings and Surveys 50 (2015), 113-132.
[4] Jean-Pierre Bérenger, A perfectly matched layer for the absorption of electromagnetic waves, Journal of computational physics 114 (1994), no. 2, 185-200.
[5] Brigitte Bidégaray-Fesquet, Stability of fd-td schemes for maxwell-debye and maxwell-lorentz equations, SIAM Journal on Numerical Analysis 46 (2008), no. 5, 2551-2566.
[6] Guy Bouchitté, Christophe Bourel, and Didier Felbacq, Homogenization of the 3d maxwell system near resonances and artificial magnetism, Comptes Rendus Mathematique $\mathbf{3 4 7}$ (2009), no. 9, 571-576.
[7] Guy Bouchitté and Ben Schweizer, Homogenization of maxwell's equations in a split ring geometry, Multiscale Modeling \& Simulation 8 (2010), no. 3, 717-750.
[8] Weng Cho Chew and William H Weedon, A 3d perfectly matched medium from modified maxwell's equations with stretched coordinates, Microwave and optical technology letters 7 (1994), no. 13, 599-604.
[9] Davi Correia and Jian-Ming Jin, 3d-fdtd-pml analysis of left-handed metamaterials, Microwave and optical technology letters 40 (2004), no. 3, 201-205.
[10] Tie Jun Cui, David R Smith, and Ruopeng Liu, Metamaterials: theory, design, and applications, Springer, 2010.
[11] Steven A Cummer, Perfectly matched layer behavior in negative refractive index materials, Antennas and Wireless Propagation Letters, IEEE 3 (2004), no. 1, 172-175.
[12] Edouard Demaldent and Sébastien Imperiale, Perfectly matched transmission problem with absorbing layers: Application to anisotropic acoustics in convex polygonal domains, International Journal for Numerical Methods in Engineering 96 (2013), no. 11, 689-711.
[13] Julien Diaz and Patrick Joly, A time domain analysis of pml models in acoustics, Computer methods in applied mechanics and engineering 195 (2006), no. 29, 3820-3853.
[14] XT Dong, XS Rao, YB Gan, B Guo, and WY Yin, Perfectly matched layer-absorbing boundary condition for left-handed materials, Microwave and Wireless Components Letters, IEEE 14 (2004), no. 6, 301-303.
[15] Lawrence C Evans, Partial differential equations. graduate studies in mathematics, American mathematical society 2 (1998).
[16] John D Jackson, Classical electrodynamics, third ed., John Wiley \& Sons: New York, 1998.
[17] Patrick Joly, An elementary introduction to the construction and the analysis of perfectly matched layers for time domain wave propagation, SeMA Journal 57 (2012), no. 1, 5-48.
[18] Tosio Kato, Perturbation theory for linear operators, vol. 132, Springer Science \& Business Media, 1995.
[19] Heinz-Otto Kreiss and Jens Lorenz, Initial-boundary value problems and the navier-stokes equations, vol. 47, Siam, 1989.
[20] Jichun Li and Aihua Wood, Finite element analysis for wave propagation in double negative metamaterials, Journal of Scientific Computing 32 (2007), no. 2, 263-286.
[21] Po-Ru Loh, Ardavan F Oskooi, Mihai Ibanescu, Maksim Skorobogatiy, and Steven G Johnson, Fundamental relation between phase and group velocity, and application to the failure of perfectly matched layers in backward-wave structures, Physical Review E 79 (2009), no. 6, 065601.
[22] Stephen O'Brien and John B Pendry, Photonic band-gap effects and magnetic activity in dielectric composites, Journal of Physics: Condensed Matter 14 (2002), no. 15, 4035.
[23] John Brian Pendry, Negative refraction makes a perfect lens, Physical review letters 85 (2000), no. 18, 3966.
[24] Peter G Petropoulos, Stability and phase error analysis of fd-td in dispersive dielectrics, Antennas and Propagation, IEEE Transactions on 42 (1994), no. 1, 62-69.
[25] Yan Shi, Yun Li, and Chang-Hong Liang, Perfectly matched layer absorbing boundary condition for truncating the boundary of the left-handed medium, Microwave and optical technology letters 48 (2006), no. 1, 57-63.
[26] DR Smith, JB Pendry, and MCK Wiltshire, Metamaterials and negative refractive index, Science 305 (2004), no. 5685, 788-792.
[27] A Tip, Linear dispersive dielectrics as limits of drude-lorentz systems., Physical review. E, Statistical, nonlinear, and soft matter physics 69 (2004), no. 1 Pt 2, 016610-016610.
[28] Viktor G Veselago, The electrodynamics of substances with simultaneously negative values epsilon and $m u$, Soviet physics uspekhi 10 (1968), no. 4, 509.
[29] Richard W Ziolkowski and Ehud Heyman, Wave propagation in media having negative permittivity and permeability, Physical review E 64 (2001), no. 5, 056625.

[^0]: *The third author was partially supported by the ANR project METAMATH (ANR-11-MONU-0016)

