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Abstract

The paper is devoted to the problem of exact controllability for a wide class of neutral
and mixed time-delay systems. We consider an equivalent operator model in Hilbert space
and formulate steering conditions of controllable states as a vector moment problem. The
existence of a basis of eigenvectors of the system operator enables the form of the moment
problem to be substantially simplified. A change in control by a feedback law modifies the
system structure to guarantee the existence of a basis of eigenvectors of the corresponding
operator. We prove a criterion of exact controllability and ascertain the precise critical
time of controllability.

AmnoTarris

Pobora npucsstuena BUPIIEeHHIO 380411 TOYHOT KEPOBAHOCTI JIJIsT JOCUTH IITIPOKOTO KJIa-
Cy CHCTEM 3 3alli3HEHHAM HeATpaJIbHOrO Ta 3MilaHoro Tuilis. Posrisiiaodn eKBiBaJeHTHY
OIIEPATOPHY MOJEIb B TiJIbOEPTOBOMY IPOCTOPi, MU (POPMYIIOEMO YMOBH KEPOBAHOCTI y
BUIVISII JIEKOl BEKTOPHOI IpobJieMu MOMEHTIB. Buj mamol 1mpobjeMu MOMEHTIB iCTOTHO
CIIPOIIYETHCS IIPU HASBHOCTI 0A3WMCy IMPOCTOPY 3 BJIACHUX BEKTOPIB OIlEpATOpa CUCTEMU
3 3ali3HEeHHAM. 3aMiHa KepyBaHHsI JI03BOJISIE IEPETBOPUTU CTPYKTYPY CHUCTEMH, 1 TapaH-
TYBaTH iCHyBaHHs 0a3uCy 3 BJIACHUX BEKTOPIB BijmoijHOro omneparopa. Mwu joBojumo
KPUTEPiii TOYHOT KEPOBAHOCTI i BCTAHOBJIIOEMO TOYHUN Yac KEpPyBaHHS.

AnaHoTanusa

Jlamaast paboTa IMOCBAIIEHA, PEIIEHUIO 38191 TOIHON yIIPABISEMOCTH JJIs JIOCTATOIHO
IIIPOKOT0 KJIACCA CUCTEM C 3alla3bIBaHuEM HEHTPAJILHOIO U CMEITaHHOro Tunos. Paccma-
TpHUBasi SKBUBAJECHTHYIO OIIEPATOPHYIO MOIE/b B TMILOEPTOBOM IIPOCTPAHCTBE, MBI (POPMY-
JINPYEM YCJIOBHUS YIIPABJISEMOCTH B BUJIE HEKOTOPO BEKTOPHOiT ITpoOIeMbl MOMEHTOB. Bui
JaHHON TTPOOJIEMBI MOMEHTOB CYIIECTBEHHO YIIPOIIAETC IIPU HAJIUYINN Oa3uca IPOCTPAHC-
TBa U3 COOCTBEHHBIX BEKTOPOB OIIEPATOPA CUCTEMBI C 3aI1a3/IbIBAHUEM. 3aMEHa yIIPABJICHUS
[IO3BOJISIET MIPeodPa30BAThL CTPYKTYPY CUCTEMbI, U FAPAHTUPOBATL CYIIECTBOBAHUE Dasuca
13 COOCTBEHHBIX BEKTOPOB COOTBETCTBYIOIIETO oleparopa. Mbl JoKa3biBaeM KpUTepHil To-
YHOU yIPaBJIIEMOCTH U YCTAHABJIUBAEM TOYHOE BpeMs YIIPaBJICHUS.



1 Introduction

The controllability problem for linear time-delay systems has quite a long history (see, e.g.
[4, 2, 6, 9, 11, 12] and references therein). In this paper we consider the problem of exact
controllability for a large class of neutral type systems given by the following equation:

S(t)= A i(t— 1)+ Lz + Bu, >0, (1.1)

where A_; € R™" B € R™ " are constant matrices, z; : [—1,0] — C" is the history of z defined
by z:(s) = z(t + s), the delay operator L is given by

0

Lf:/_lAg(G)%f(G) d9+/ A(0)£(6) do,
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and As, A3 are n X n-matrices whose elements belong to Ly([—1, 0], C); control function u also
belongs to Ly(0,7;C").

The representation of delay systems as systems in some functional space has proved to be
one of the most productive approaches. Namely, it is possible to associate the delay system
with the following infinite-dimensional model:

t=Arx+Bu, x¢€H, (1.2)

where H is a Hilbert space and the linear operator A is the generator of a Cy-semigroup.

For finite-dimensional linear control systems of the form (1.2), Kalman’s controllability
concept is well-known: the reachability set from zero at time T coincides with the whole phase
space (Rr = H) for some T' > 0. Moreover, if there are no constraints on control, then the
controllability time 7" may be chosen arbitrarily. However, if the phase space H is infinite-
dimensional, then the described property does not hold, in general. For delay systems, the
reachability set is always a subset of the domain D(A) of the operator A, thus, it is natural
to pose the question of reaching the whole set D(A). Besides, for delay systems the minimal
controllability time cannot be arbitrarily small, which leads to the problem of finding this
minimal time of transfer from 0 to an arbitrary state of D(A). The following criterion of exact
controllability has been obtained by the co-authors of the present paper [14].

Theorem 1.1 The neutral type system (1.1) is exactly controllable if and only if the following
conditions are verified:

(i) there are no A € C and y € C"\{0}, such that (A4(\))"y =0 and B*y = 0, where

0 0
AgN) =M — Xe ™A — )\/ e Ay(s)ds —/ e As(s)ds, (1.3)
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or equivalently, rank(A4(N) B) =n for any A € C.

(i) there are no u € o(A_1) and y € C"\{0}, such that A*y = fy and B*y = 0, or
equivalently, rank(B A_|B --- A"]'B) = n.

Moreover, if the conditions (1) and (ii) hold, then the system is exactly controllable at any time
T > ny and not exactly controllable at any time T < ny, where ny is the first controllability
index of the pair (A_1, B).

If the mazimal delay is equal to h, then the critical time of controllability is T = nqh.



We note that (1.1) is a system with distributed delay for which, in contrast to systems
with several discrete delays (see [2, 9, 3, 10, 13, 20] and references therein), the explicit form of
the semigroup is unknown, in general, which makes the analysis much more complicated. We
also note, that an important advantage of the theorem is that it gives the exact critical time
of controllability.

Besides, we can note that for linear retarded systems (A_; = 0), the conditions of exact
controllability imply rank B = n, which is a very strong condition. This means that exact
controllability is more typical for neutral type systems.

To study the exact controllability we use the moment problem approach: steering condi-
tions of controllable states are represented as a vectorial trigonometric moment problem with
respect to a special Riesz basis. We analyze the solvability of the non-Fourier moment problem
obtained using methods developed in [1] (see also [24]).

The existence of a basis of the state space consisting of eigenvectors (or generalized eigen-
vectors) essentially simplifies the expression of the moment problem (see [18] and [22]). In our
case, the existence of a basis of eigenvectors is determined by the form of the matrix A_; of
the neutral term of the system (1.1), and, in general, such basis does not exist (see [15, 16]).
This makes the procedure of the choice of a Riesz basis and further manipulations with it quite
sophisticated in the general case ([14]).

However, by means of a change in control in the initial system, it is possible to pass to
an equivalent controllability problem for a system with a matrix A_; of simple structure. This
structure guarantees the existence of a Riesz basis of eigenvectors for the state space. The form
of the corresponding moment problem becomes simpler, which makes the constructions and the
proofs of the main results both clear and illustrative.

In this paper, we provide proof of Theorem 1.1 for the system (1.1) with A_; of a special
form and show that this fact implies the proof for a system with an arbitrary matrix A_;.
Besides, we consider the controllability problem for so-called mixed retarded-neutral type sys-
tems (see also [19]), which was considered in [14], and prove that if the neutral term is singular
(det A_; = 0) and the pair (A_;, B) is uncontrollable, then the system (1.1) is uncontrollable
as well.

The paper is organized as follows. In Section 2, we introduce the abstract equation and
discuss how we can consider, without loss of generality, that the system has a special form with
a Riesz basis of eigenvectors. In Section 3, using spectral Riesz bases, we represent the steering
conditions as a vectorial moment problem. Section 4 is devoted to proving the necessity of
controllability conditions and in Sections 5 and 6 we prove the sufficiency of these conditions
for the cases of one-dimensional and multi-dimensional controls. Finally, in Section 7 we give
an example illustrating the obtained results.

2 Equivalent systems

We consider the operator model of time-delay systems introduced in [5] (see also [8]). The
state space is My(—1,0;C") = C™ x Ly(—1,0;C"), in short M,, and the equation (1.1) may be
rewritten in the following form:

#(t) = Ax(t) + Bu(t), A:(g %),5:(103), (2.4)
where the domain of the operator A is

D(A) ={(y.2(-)) € My: 2 € H'(=1,0;C"),y = 2(0) — A_12(=1)}



and H' is the Sobolev space of functions with derivative from L.
The reachability set from the initial state 0 at time 7" is defined by

Ry = {x x = /OT MBu(t) dt, wu(-) € Ly(0,T; (C’“)} :

Further it is shown that Ry C D(A) for all T > 0.

Definition 2.1 We say that the system (2.4) is exactly controllable from zero by controls from
Lo, if there is a time Ty (critical time), such that for all T > Ty one has

Rr =D(A),
and for all T < Ty: Rr # D(A).

The given definition means that for some 7" > 0 the set of solutions {z(t) : t € [T'— 1,7} of
the system (1.1) coincides with space H*(T — 1,T;C").

Lemma 2.2 [f the system (1.1) is exactly controllable at time T, then for any matriz P € C"*"
the perturbed system

2(t) = (A1 + BP)%(t — 1) + Lz + Bu (2.5)
15 exactly controllable at the same time T'.

Proof. Assume that the system(1.1) is controllable at time 7". This means that for any function
f(t) € HY(T — 1,T;C") there is a control u(t) € Ly(0,T;C"), such that the solution of the
equation

2(t) = A_12(t — 1) + Lz, + Bu(t), (2.6)
with the initial condition z(t) = 0, t € [—1, 0] satisfies the relation z(t) = f(t), t € [T — 1,T7.
Let us rewrite (2.6) in the form

2(t) = (A1 + BP)Z(t — 1) + Lz; + Bo(t),

where v(t) = u(t)— Pz(t—1),t € [0,T]. Since z(t—1) € H'(0,T;C"), then v(t) € Lo(0,T;C").
Therefore, the control v(t) transfers the state z(t) = 0, t € [—1,0] to the state z(t) = f(t),
t € [T — 1,T] by virtue of the system (2.5). This means that (2.5) is also exactly controllable
at the time 7' |

We have also equivalence in the conditions of exact controllability in Theorem 1.1.

Lemma 2.3 If the system (1.1) satisfies the conditions (i) and (ii) of Theorem 1.1, then a
perturbed system (2.5) with an arbitrary matriz P satisfies the same conditions.

The proof follows from the relation A%(A)y = [A%(A) — Ae*P*B*ly = 0, where A is the
operator corresponding to the system (2.5), and from the fact that the property of controllability
of a pair (A, B) is invariant with respect to feedback changes in control (see, e.g. [23]).

Corollary 2.4 Therefore, if we prove Theorem 1.1 for the system (1.1) with a pair (A_y, B),

then we also prove this theorem for all systems with a pair of matrices (A_q, B), where A_;
A1+ BP.



If the pair (A, B) is controllable, then (see, e.g. [23]) for any set S = {u1,...,u,} C C, there
is matrix P € C™™ such that the set S is the spectrum of o(A + BP) = S. Thus, if we fix n
distinct real numbers

{Mlaal’bn}CR7 ﬂl%uwl#]a Mz€{071}7 (27)

we can find a change in control u(t) = PZ(t — 1) +v(t), P € C™", and a transformation of the
state z = C'w, which reduce the system to the following form

W(t) = A_ji(t — 1) + /0 Ay(0)i(t + ) df + /0 As(0)w(t + ) df + B, (2.8)

1 -1

where A_; = C~Y(A_, + BP)C, /All(Q) = C1A,(6)C, B = C~'B, satisfy the following condi-

tions:
(a) the spectrum of A is O'(A\_l) ={pm " _1;

(b) the pair (A_y, B) is in the Frobenius normal form (see [23]), i.c.

0 1 0 0
o 0 1 - 0
Ay =diag{Fy,....F}, Fi=| i 1 © . (2.9)
o 0 0 - 1
ajy ay ay - ag

and B = diag{gi, ..., 9.}, where g; = (0, 0,...,1)T € C*.
From these considerations we obtain the following lemma.

Lemma 2.5 The proof of sufficiency of Theorem 1.1 for the family of systems (2.8), verifying
conditions (a)-(b), implies the sufficiency of these condition for arbitrary systems of type (1.1).

Remark 2.6 In the proof of Theorem 1.1 for the case of one-dimensional control (r = 1)
it is enough to assume only condition (a). However, in the proof of the general case (multi-
dimensional control), both conditions (a) and (b) are needed.

In the paper [14] the necessity of condition (ii) is proved with the assumption that the
matrix A_; is non-singular. In the present paper, we complete the proof: if the pair (A_y, B)
is not controllable, then the system (1.1) is also not controllable (Theorem 4.6).

Furthermore, without loss of generality, we may assume that the conditions (a) and (b)
hold for the pair (A_;, B). Due to this construction, we have det A_; # 0 and we denote by
{em} _; the basis of the normed eigenvectors of A_;.

3 Riesz basis and the moment problem

Let us denote by A the operator A in the case Ay(6) = A3(f) = 0. The eigenvalues of A are of
the form (see [16]):

a(j() :{anzln|um|+2k7ri, m=1,...,n, k€ Z}U{0},



where {1, ..., .} = 0(A_1). Since all eigenvalues of A_; are simple, then the operator A
- T
possesses simple eigenvalues only, and only one eigenvector ¢, = (O,e’\fntcm> corresponds

to each eigenvalue X’,jl and there are no root-vectors. Moreover, the following estimates hold

0 < inf || @kl < sup [[@mkl < +oo.
kEZ keZ

The spectrum of A is of the following form (see [16]):
o(A) = {ln || + 2kri+ O /k), m=1,...,n,k € Z}.

There exists N € N such that for all m = 1,...,n and for all k : |k| > N the total multiplicity of
the eigenvalues of A, contained in the circles L* (r*)) equals 1, where L (r®)) = Lk are circles

with radii 7*) centered at ijl, and the relation Y (r*)? < oo is satisfied ([17, Theorem 4]).
kEZ

We denote these eigenvalues of the operator A as A\* and the corresponding eigenvectors as
Omp, m=1,...,n, |[k| > N.

Assume that the vectors ¢, are normed such that Pr(f )cﬁm,k = ©mpi, Where Pr(nk) =

= fLﬁff) R(\, A)dA\ are spectral projectors and R(\,.A) is the resolvent of A.

The families {pmr} and {$m )} are quadratically close: Y. > [lomr — Pmill? < 0o,
k[>N m=1
which, in particular, implies the following estimates

0 < inf |lomill < sup ||@mrll < +oo. (3.10)
|k[>N |k|>N

T
The explicit form of eigenvectors of A is ¢y, = ((I — e’\'an,l)xmk, emea:mk) , where @, €
KerA4(\F).

Outside the circles L*  |k| > N, m = 1,...,n, there is only a finite number of eigenvalues

of A, which we denote by A\, s = 1,...,fy counted with multiplicities. We denote by @, the
corresponding generalized eigenvectors of the operator A. The family

{o} = {omr} U{®:} (3.11)

forms a Riesz basis of the space My ([16]).
We denote by

{0} = (W} U {0} (3.12)

the family of eigenvectors of the adjoint operator A*, which is biorthogonal to {¢}. Here
A = N bk, m=1,...,n, |k| > N. The explicit form of the eigenvectors of the adjoint
operator A* is

T

__ 0 __ _
s = (s W 500 25000+ [ PR (5000 + T A50)) 05| ) (313)

0

where 9, € KerA%(\F).
The family (3.12) forms a Riesz basis of the space M. The proofs of the propositions
mentioned in this section may be found in [15, 16, 17].

Let us pose the controllability problem as a moment problem. To do this, we expand the

T
steering condition zp = ( yr ) = [e*MBu(t) dt with respect to the biorthogonal bases {¢}
0

z7(+)
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and {¢} given by (3.11) and (3.12). A state xp € M, is reachable at a time 7T if and only if

Z xp, ) @ = Z/ AtBu >dt-gp.

pe{p} pe{p}

Here, we denote by (-, ) the scalar product in the space My: (-, ), .
Let {b1,...,b.} be an arbitrary basis of the image of the matrix B and by = (bq, 0)T € My,
d=1,...,r. Then the steering condition is equivalent to the following system of equalities:

) = [(eBult), v)
_ iofT<Atbd,¢)>ud(t) dt

where ¢ € {¢}, u(-) € L2(0,7;C"). Using the representation (3.13) for eigenvectors ¢ = ¢y, k,
m=1,...,n, |k| > N, we obtain the following identity:

<eAtbd7 wm,k>M2 = e)\ﬁnt <bd7 Zﬂm,lc>]\/[2 = e/\fnt <bd7 ym,k>(cn ) (315)

[en]

(3.14)

where y,, 1 € KerA;(g). Let us introduce the notation:

q;in,k =k <bd7 wm,k>M2 . (316)

Due to (3.15), the equalities (3.14) corresponding to ¥ € {tyx, |k| > Nym =1,...,n}
take the form:

k{xr, Ymr) Z/ A mtqd wua(t) dt. (3.17)

Besides, for generalized eigenvectors ¢ = ¢8, s=1,...,0y, the following relations hold:

<eAtbd, ¢> = <bd,e“4*t1/)> _ Z]\g(t)eXSt,

where g%(t) are polynomials of appropriate degrees. Therefore, the equalities (3.14) correspond-
ing to ¢ € {15} take the form:

<xT,ws Z / Ntad (P (t) dt. (3.18)

Thus, a state xr € M is reachable from 0 at time 7" > 0 if and only if for some controls
uq() € La(0,T), d=1,...,r the equalities (3.17) and (3.18) hold.

The moment problem obtained (3.17)—(3.18) is the main object of our further analysis. We
conclude this section by two estimates which are important for the further analysis.

Lemma 3.1 There is a constant 6; > 0 such that
gl <61, m=1,...nlkl>Nd=1,...r (3.19)

Lemma 3.2 There is a sequence {ay}, > ai < 400, such that for allm =1,...,n, |k| > N,
|k|>N

d=1,...,r and t € [0,T] the following estimate holds:

ay,

< T (3.20)

N (B Vi) ag, = O (b i)

The proofs of these propositions may be found in [14].

7



4 Necessary conditions of controllability

Let us investigate the solvability of the equations (3.17)—(3.18). The following well-known result
is a consequence of the Bari theorem (see [7],[24]).

Lemma 4.1 Consider the following moment problem:
T
o = / gt dt, T>0, k€N, (4.21)
0

where gi(-) € La(0,T) for all k € N. The following statements are equivalent:
(1) For the sequence {sk}ren the problem (4.21) has a solution u(-) € Lo(0,T) if and only if
{si} € by, i.e. D 82 < 4005
keN

(i) the family {gx(t)}ren, t € [0,T] forms a Riesz basis in the closure of its linear span

ClLin{g,(t), k € N}.

The following propositions on the solvability of the moment problem were proved in [14].

Lemma 4.2 Let us suppose that for some Ty > 0 the functions {gi(t) }ren, defined on [0,T1],
form a Riesz basis in ClLin{gy(t), k € N} C L9(0,73) and codim ClLin{g(t), k € N} < +ooc.
Then for any T: 0 < T < Ty, there is an infinite-dimensional subspace by C lo, such that the
moment problem (4.21) is unsolvable on [0,T] for {sx} € £r\{0}.

Lemma 4.3 Let us consider the moment problem
T T
Sk=) / gl(t)uq(t) dt, k€N, (4.22)
d=1"0

assuming that fOT lgd(t)|> dt < +o0 foralld=1,...,r.
keN

Then the set Sor of sequences {si} for which the problem (4.22) is solvable is a nontrivial
submanifold of Uy, i.e. Sor # lo.

The following proposition (see [14]) shows that the reachability set Ry is always a subset
of D(A) (see also [8]).

Lemma 4.4 If the state xp = ( zy:(F) ) is reachable from 0 by the system (2.4), then it
(-

satisfies the following equivalent conditions:

0 £ Ee((2)):om)] <=
©) = mi:l k2 || PO ( e ) "

(C3) ( ZyT) ) € D(A).

(-

Let us prove the necessity of the conditions (i) and (ii) of Theorem 1.1 for controllability.
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Theorem 4.5 If the condition (i) of Theorem 1.1 is not verified, i.e. there is A\ € C and
y € C"\{0}, such that A% (N)y = 0 and B*y = 0, then the system (1.1) is not controllable at
any time T > 0.

Proof. The condition (i) may be reformulated as follows: there is no eigenvector g of the oper-
ator A* belonging to Ker B*. This assertion follows from the explicit form (3.13) of eigenvectors
of A*.

Assume that there is a vector g # 0 such that A*g = A\g and g € KerB*. For an arbitrary
state x7 € Rp the following equality holds:

(x7, 9) —/0 (u(t), B*etg) dt = 0.

This means that for any 7" > 0 the reachability set Rr is not dense in M, and, therefore, is not
equal to D(A) which is dense in M, since A is an infinitesimal generator. Thus, the system is
not controllable. |

Further we show that the controllability of the pair (A_;, B) is a necessary condition of
the controllability of the system (1.1). We prove this assertion in two situations: a singular
and a nonsingular matrix A_;.

Theorem 4.6 If the condition (ii) of Theorem 1.1 is not verified, i.e. the pair (A_1, B) is not
controllable, then the system (1.1) is also not controllable.

Proof. If the pair (A_;, B) is not controllable then there is po € 0(A_1) and vy € C*\{0} such
that A* vy = ligvy and B*vg = 0.
We begin with the case when py = 0 is an uncontrollable eigenvalue of A_1, i.e.

A* v =0 and B*vy = 0. (4.23)

Let us premultiply the equation (1.1) by the vector vg:

0
V2 (t) = vg A1 2(t—1) + / [vgA2(0)2(t + 6) + v5A3(0)z(t + 6)] df + v Bu.
-1
Taking into account the relations (4.23), we obtain the following equality:
0
vg2(t) = / [v5A2(0)2(t + 6) + viAs(0)z(t + )] do. (4.24)

-1

If we suppose that the system (1.1) is controllable at a time 7' > 0 then the set of its solutions
under different controls should coincide with the space H!(T'—1,T;C"). The latter means that

(0i3(t), t € [T — 1,T)} = Lo(T — 1,T; C).

On the other hand, the operator Q(z) = ffl [v5A2(0)2(t + 0) + v5As(0)z(t + 6)] dO, which
acts from HY (T — 2,T;C") to Ly(T — 1,T;C), is a Fredholm operator. Indeed, changing the
time variable 7 =t + #, we obtain

Qz) = /t_1 [vgAo(T — t)2(T) + vy As(T — t)z(7)] dT.

Hence, the operator ) is compact and, thus, its image does not coincide with the whole space
Lo(T — 1, T;C). This contradiction proves the theorem in the case po = 0.
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Now let us consider the case when only nonzero eigenvalues of A_; are uncontrollable.
Without loss of generality we may assume that det A_; # 0. Indeed, since 0 € o(A_;) is a
controllable eigenvalue, there is a matrix P such that the matrix A_; + BP is nonsingular
(see [23]). Obviously, the pair (A_; + BP, B) remains uncontrollable. Then, using a change
in control, we obtain an equivalent controllability problem for the system with the neutral
nonsingular matrix A_; + BP.

Since A_; is nonsingular, then the moment equalities (3.17)—(3.18) hold. Consider an
uncontrollable eigenvalue fi,,, of A_y (A" 09 = [imyvo, B*vg = 0,79 # 0) and the subset of
(3.17) which corresponds to m = my:

T T
Sk =k (@r, Ymok) = Y / Amolqld ua(t) dt, k| > N, (4.25)
d=1"0

where ¢l 1 = k (b, Ym.k) - Let us show that there are sequences {s;} € f, for which the
moment problem (4.25) is unsolvable.

~ ~ [ T
For m = my, the eigenvectors of A are of the form ), = (vo, )\’fnoe_)‘ﬁ@oovo> , wWhich

implies that <bd,$m0,k>M = (bg,vo)en = O for all d = 1,...,r and |k| > N. Applying

2
Lemma 3.2, we obtain the following estimate:

T T 9
> k22/ ‘ew <bd7¢m,k>M2‘ dt < +oo. (4.26)
1 0

|k|>N d=

It follows from Lemma 4.3 that the solvability set for the system (4.25) is a nontrivial linear
manifold ¢y C ly, 1 # {5 for any time 7" > 0. In other words, there are sequences {s} x>~ for
which the system of equalities (4.25) is not solvable. This means that there are states x7 that
satisfy the condition (C1), but which are not reachable from 0 by virtue of the system (1.1).
Thus, Ry # D(A) for any T > 0. This contradiction completes the proof of the theorem. R

5 Sufficiency in the case of one-dimensional control

In the case of systems with one-dimensional control (r = 1, B = b € C"*!) the moment problem
(3.17)—(3.18) takes the following form:

T
i fortme) = [ ()t (K> Nom =1, (5.27)

0

T _
<xT,¢s>= / MG (ult) dt, s=1,..., 0, (5.28)
0

where N is big enough, the family (5.27) is infinite, g; are polynomials, the family (5.28) is
finite, and o = ((b,d)m,wMQ)fl, b = (b,0)T.

From Lemma 3.1 and the explicit form of the basis {1} of the operator A* it follows that
forallm=1,...,n and k : |k| > N the following estimate holds:

O<Clé §02<+OO

1
g Qo

Our next objective is to find the conditions for the families {e*n!} and {eXsté\s(t)} to form
a Riesz basis of the closure of its linear span.
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Let 61,...,6, be different, modulus 27i, complex numbers, and let N € N be natural
integer, and let the set {e,,, |k| > N,m =1,...,n} C C" be such that Y |e,,x]* < +00. We
m,k

denote by Ey the following (infinite) family of functions:
En = {e(6m+27l'ik+57n,k)t’ ’k’ >Nm=1,... ’n} )

Next, let €1,...,&, be another collection of different complex numbers such that ; # d,, +
2mik 4+ emp, j=1,...,r,m=1,...,n, k| > N, and let m{, ..., m. be some positive integers.
Let us denote by & the following (finite) family of functions

& = {eajt, tefit .. ,tmé"lesft}
and by £ the set of functions & = Ey U &.

Theorem 5.1 (i) If Z m} = (2N + 1)n, then the family € forms a Riesz basis in Ly(0,n).

(i) If T > n, then independently of the number of elements in & the family € forms a
Riesz basis of the closure of its linear span in the space Ly(0,T).

The proof of this theorem, based on the results of [1], may be found in [14].
Let us prove the sufficiency of the controllability conditions (i) and (ii) of Theorem 1.1.

Theorem 5.2 Let u € C (r =1) and the conditions (i) and (ii) of Theorem 1.1 hold. Then
(1) the system (1.1) is controllable at any time T' > n;

(2) the estimation of the critical time of controllability is exact, i.e. the system (1.1) is
uncontrollable at any time T < n.

Proof. Let us note that the dimensions of all the eigenspaces (corresponding to different
eigenvalues) of A* are equal to 1. Indeed, otherwise there is an eigenvector g of the operator
A*, such that (b, g)u, = 0. Since g = (y, 2(6))”, where y: A% (Xo)y =0, Ao € o(A*), and since
(b, g)rr, = (b, y)cn, we obtain a contradiction with condition (i).

Let us consider the problem (5.27)-(5.28). From condition (i) it follows that (b, ¥ k), 7
0 for all m and k. Moreover, all polynomial {g,(t)}, s = 1,...,¢y are nontrivial. By the
moment problem we construct the following families of functions:

o, = LMt |k > N, mzl,...,n},
= {MG(D), s=1,... ).
Due to Theorem 5.1 for T" > n and for big enough N, the family
® = o

constitutes a Riesz basis in C1Lin ® C Ly(0,7). Thus, due to Lemma 4.1, the moment prob-
lem (5.27)—(5.28) is solvable if and only if the right-hand side is an element of {5, or, equivalently
the condition (C1) from Lemma 4.4 holds. Since (C1) is equivalent to (C3) we conclude that
for T > n the moment problem is solvable if and only if 7 € D(A), i.e. Ry = D(A).

To prove assertion (2) we recall that the number of elements in family ®, is equal to
ln = (2N 4 2)n. On the other hand, it follows from Theorem 5.1 that in Ls(0,n) one has

codim ClLin ®; = (2N + 1)n.

11



Thus, the family ® = ®; U &, contains n functions, which can be represented as linear combi-
nation of other functions from this family. This means that the codimension R in D(A) is not
equal to zero: codim Ry = n. Hence, the reachability set Ry for T' = n is not equal to D(.A)
and the system is not controllable. For T' < n it follows from Lemma 4.2 that the codimension
of the set Ry in D(A) is infinite. |

6 Sufficient conditions: the multivariable case

Consider the case dim B = r > 1. Without loss of generality we assume that the pair (A_;, B)
is in the Frobenius normal form, i.e. A_; = diag{F1,...,F.}, dim F; = s;, and F; are of the
form (2.9); B = diag{gi, ..., 9.}, where g; = (0, 0,...,1)T € C*. It is well-known that

max dim F; = nq, (6.29)
where n; is the first controllability index of the pair (A_y, B), i.e. n; is the minimal integer v
satisfying the relation rank (B, A_B, ..., A“]'B) = n.
According to the representation in the Frobenius form, we rewrite the infinite part (3.17)
of the moment problem as follows:

T
kA{xr, Ymp) = fe*fntq;%kul dt + > feAmtqd rua(t) dt, m e Sy,

0 d#1 0

T
k(xr, Ymy) = fe)‘fntqzl pua(t) dt+ > fe’\mtqd ua(t) dt,  m € S,

0 ’ d#2 0 (6.30)

T
k{xr, bmi) = fe’\mtqfn LU (t) dt+ > fe’\mtqd Jt)dt, mesS,,
0 d#r 0
where S; = {1,...,s1}, So={s1+1,...,81+ 82}, ..., S, ={s1+...,81+1,...,n}
Next we apply Theorem 5.1 to the family of functions from (6.30). Let us fix d € {1,...,r}
and choose an arbitrary subset of L C {1,...,n}.

Theorem 6.1 For arbitrary d, L, and for all T > n' = |L| the set
o, = { Matgl |k > N; me L}

constitutes a Riesz basis of the closure of its linear span ClLin®; in Ly(0,T).
If T =n/, then codim ClLin®; = (2N + 1)n’ in the space Ly(0,n').

Proof. Let us consider the linear operator 7 : Lin ®; — Lin ®; defined on elements of ®; by

the following relations .
T(e’\mtqfn y=eMt |kl > N,me L.

Due to Lemma 3.1 the family {qm7 i} is uniformly bounded. Thus, from Theorem 5.1 we obtain
that the operator 7 is bounded in the sense of Ly(0,7") and its extension to L = ClLin ®; is a
bounded one-to-one operator from L to L.

Hence, since due to Theorem 5.1 the images of the elements of ®; form a Riesz basis of L,
then @, is also a Riesz basis of L in Ly(0, 7). |

We also need the following result (see [14, Theorem 5.5]).
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Theorem 6.2 Consider the system (2.4) and suppose that there is an integer N and a time
To > 0 such that the moment problem (3.17) is solvable for T = Ty and for all sequences

{k <xTa ¢m,k>}\k\>N7 satzsfymg (Cl)
Then, from condition (1) of Theorem 1.1 it follows that Ry = D(A) for T > Ty.

Now we prove the main result of this section.

Theorem 6.3 Let the conditions (i) and (ii) of Theorem 1.1 hold for a system of the form (1.1).
Then the system (1.1) is controllable and, moreover, the critical time of controllability is Ty =
ny, where ny is the first controllability index of the pair (A_y1, B).

Proof. We assume that the pair (A_;, B) is in the Frobenius normal form. Then for all
i=1,...,r,m€S;, d#1iand for all |k| > N the following relation holds:

(Do), = (buscuben =0, (6:31)

where ¢,,: A_1¢ = pmCm. Thus for all  =1,... r and m € S; the following equality holds

T
ot g (o peson - i),
d#i ) d#t

For any N € N the moment problem (6.30) may be written in operator form

{Smrt = Znu(-) + Qnul-),
where {S,, 1} = {k (1, ¥m )} and the operators Zy, Qn : Ly(0,T;C") — {5 are of the form

) ug(t) dt.  (6.32)

Mo

Zyu() = {fe’\mtq’ pui(t) dt, k| > N}

Qnu(-) {Z Ik ( (Ba, Yimke) s, f”t<bdﬂzm,k>M2> ug(t) dt, |k| > N} :

d#i 0

Due to Theorem 6.1, for a big enough N and for T" > ny, the operator Zy is surjective, i.e.
its image of the space L9(0,7;C") is the whole space ¢;. From Lemma 3.2, it follows that for
big enough N the operator @)y is compact, and, moreover, ||Qy| — 0 when N — +o0.

Let us show that there is Ny € N such that for all N > N, one has:

Im[ZN + QN] = 62.

Since ImZy = {5, then there is a constant vy > 0 such that || Zyz| > v z| for all z € 4y
(see, e.g. [21, Theorem 4.13]). For N > N, we introduce the notation 3" = {{Smx}x>n :
D> [sk? < +oo}. Thus, we have Zy = PZy,, where projectors P : (Yo — ¢ are defined
as follows:

P{Sm k3 ri>No) = {Smk}pi>n
Therefore, Z3, = Z, P* and ||P*x|| = ||z[|, which gives

1Z5z| = 1Zx P ]| = v, |-
The latter means that for all N > Ny and x € {5 the inequality ||Zxx| > v||z| holds, where
7 = Y. Since ||@n|| — 0 when N — +o0, then by choosing an appropriate N we obtain the
estimate ||[Zy — (Zy + Qn)|| = [|@n| < 3. Thus
125 + Qxlzll = | Zyall = l@nall 2 Allzll = Zllell = Sl]l-
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Therefore, the operator Zy + Q) is surjective and its image is equal to /5.

Thus, the moment problem (6.30) is solvable for 7" > n; and big enough N € N. Applying
Theorem 6.2, we obtain that Ry = D(A) for T' > n;.

Arguing as in the proof of Theorem 5.2, we show that the codimension R,, in D(A) is
finite and no less than ny, which means that the system (1.1) is uncontrollable at time 7" = n;.
For T' < ny, the codimension of Ry in D(A) is infinite. |

7 Example

Consider a three-dimensional (n = 3) system given by the equation (1.1) with the following
coefficients:

4 6 —4 11
A,=| 02 -2 |, B= 10 |,
-3 3 2 11

and the matrices As(6), A3(#) are such that rank(A4(\) B) =n for all A € C.
We apply the change in control and state variables u(t) = Pz(t — 1)+ v(t), w = Cz, where

1 -1 1
- (ba ) e 00)
-1 01
and obtain the following system:
() = A_yin(t —1) /‘AQ t+9d8+/‘A3 Vo(t + 0) 40 + B, (7.33)
where ;1\_1 and B are of the form
R 2 00 R 10
A;=10011], B=100 | =(b,bo). (7.34)
0 3 2 0 1

Let the operator A with eigenvalues AE corresponds to the perturbed system (7.33)—(7.34),
and the operator A with eigenvalues A corresponds to the system 1 (t) = A_j(t — 1). Since
the pair (A 1, B) is in the Frobenius normal form, then the eigenvectors wm  of the operator
A* satisfy the relations

whgw»zo, m =23
(ba, Ym k) =0, =1, b;=(b,0) € M.

Since quk = k(bg, Ym.k), where ¢, , are eigenvectors of the operator A*, then the infinite part
of the moment problem (3.17) reads as

T T
k(rr, Yip) = fe/\]ftQil,km(t) dt + [ f7(t)usa(t) dt,
0
T
k xTa ka fe/\ tQ% k:u? dt + ffg,k(t)ul(t) dtu
0
T
k{vr, sr) = feA fqs pua(t) At + [ f5,(Dwi(t) dt,  |k] > N,
0
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where the functions fZ , are of the form

gl,k(t) =k (em%bd, Y k) — exf’l%bd, TZmIJ)

and, due to Lemma 3.2, they satisfy the estimate | f? , (t)] < ag, >, af < +o0.

The first controllability index n; of the pair (121\_1, E) (or (A_y, B)) equals 2. The
conditions (i) and (ii) of Theorem 1.1 are satisfied and thus, the system is controllable with the
critical controllability time Ty = 2.

Conclusion

A new approach to the problem of exact controllability by the moment problem method is
proposed. The difficulty of the choosing the basis is overcome by a change in the control and
phase coordinates, which enables a more direct proof of the criterion of exact controllability.
The proposed approach offers a new challenge for controllability and stabilizability problems
for a more general class of systems with a neutral operator of the form Kf = 3" | Ay, f(hi),
h; € [—1, 0]
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