
HAL Id: hal-01327149
https://hal.science/hal-01327149

Submitted on 6 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ShareX3D, a scientific collaborative 3D viewer over
HTTP

Sébastien Jourdain, Julien Forest, Christophe Mouton, Bernard Nouailhas,
Gérard Moniot, Franck Kolb, Sophie Chabridon, Michel Simatic, Zied Abid,

Laurent Mallet

To cite this version:
Sébastien Jourdain, Julien Forest, Christophe Mouton, Bernard Nouailhas, Gérard Moniot, et al..
ShareX3D, a scientific collaborative 3D viewer over HTTP. WEB3D 2008 : 13th International Sym-
posium on 3D Web Technology, Aug 2008, Los Angeles, California, United States. pp.35 - 41,
�10.1145/1394209.1394220�. �hal-01327149�

https://hal.science/hal-01327149
https://hal.archives-ouvertes.fr


ShareX3D, a scientific collaborative 3D viewer over HTTP

Sebastien Jourdain
Julien Forest

Artenum∗

Christophe Mouton
Bernard Nouailhas

Gerard Moniot
Franck Kolb
EDF R&D†

Sophie Chabridon
Michel Simatic

Zied Abid
Institut TELECOM;

TELECOM & Management SudParis‡

Laurent Mallet
Oxalya§

Abstract

In scientific visualization data are becoming more and more com-
plex and implies cooperative effort for their post-processing anal-
ysis as well as high performance processing resources. Moreover
experts are frequently geographically distributed and existing post-
processing tools do not provide high performance capability with
collaborative features. To solve this limitation, a prospective action
has been recently initiated in the frame of the ANR SCOS project,
with the development of a web based post-processing framework
called V3D. SCOS/V3D is based on two innovating concepts: the
sharing of the processing results via the transfer of a X3D data file
corresponding to the final virtual reality scene and communications
based on HTTP to by-pass standard proxies and firewalls limita-
tions. To test this approach, a proof of concept prototype, called
shareX3D, has been developed, especially focusing on the events
notification, with an implementation of the long polling technique.
The architecture of ShareX3D and first tests are presented and dis-
cussed.

CR Categories: J.2 [Computer Applications]: Physical Sci-
ences and Engineering—Physics; D.1.1 [Software]: Programming
Techniques—Applicative (Functional) Programming D.1.3 [Soft-
ware]: Programming Techniques—Concurrent Programming - Dis-
tributed programming

Keywords: X3D, Web3D, collaboration, web networking, post-
processing, scientific visualization

1 Introduction

1.1 3D scientific visualisation and post-processing:
new issues and challenges

The continuous improvement of computer performance over the
last decades and the progressive generalization of the High Per-
formance Computing (HPC) in 3D modelling enables to perform
simulations on constantly increasing grid size. Systems modelled
with more than 109 cells and taking into account many tens of vari-
ables are becoming common nowadays. The size of such mod-
els presents a real challenge for data post-processing and visual-
isation, because they become too heavy to be processed on local

∗e-mail: jourdain,j.forest@artenum.com
†e-mail:christophe.mouton,bernard.nouailhas,gerard.moniot,franck.kolb@edf.fr
‡e-mail: Sophie.Chabridon,Michel.Simatic,Zied.Abid@it-sudparis.eu
§e-mail: laurent.mallet@oxalya.com

post-processing workstations. In addition with the progressive in-
troduction of multi-physics models, the data analysis requires more
and more complex treatments, combining an increasing number of
basic filters. The global CPU cost is consequently prohibitive and
classic approaches based on local post-processing tools are not pos-
sible anymore. To address this issue, one solution currently ex-
plored is the migration toward a client-server approach [Henderson
and Ahrens 2004; Jean M. Favre, Sathya Krishnamurthy and Swiss
Center for Scientific Computing 2000; Ahrens et al. 2001; LLNL
2003]. In such design, the data filters are processed on remote
high performance computers, using parallelized pipelines, before
the final output is returned to the client, generally as a set of 2D
views. However, such approach presents several structural limita-
tions. Each action requested by the client leads to large data trans-
fers thru the network. A simple change of the point of view may
quickly introduce a significant latency between the action and the
rendering of the results in a web context. Most of these solutions
are also based on specific network protocols, poorly adapted to the
modern security constraints like NAT, firewalls or restrictions to the
HTTP protocol only, limiting their deployment in an Extranet con-
text.

Finally, the generalisation of multi-physics models and the in-
creasing complexity of the simulations require more and more co-
expertise. This co-expertise implies collaboration between research
and expertise areas. Therefore, remote teams have to work together
on the same data and share their analysis at the same time. Such
needs require an evolution in post-processing tools towards collab-
oration. For those reasons, existing post-processing tools are not
adapted anymore and new approaches have to be explored.

1.2 The SCOS/V3D Project

The aim of the ANR/SCOS [SCOS-project 2006] project is the
standardization and the normalisation of scientific software plat-
forms in order to improve the global competitiveness of R&D aca-
demics and industrials.The V3D project, initiated by EDF R&D
in January 2007 and gathering more than 12 partners in the frame
of the SCOS project aims to developed a lightweight Web-based
and high-performance 3D visualization framework. This develop-
ment will include advanced collaborative capabilities and aware-
ness for multi-users data processing and 3D visualization. The main
concept of SCOS/V3D is based on a lightweight client-server ap-
proach, easy to deploy in an Extranet context as well as a capability
to process large data remotely on high performance clusters. A first
quantitative objective is to be able to process data sets up-to 109

cells and visualise the result on common desktop computers with a
3D rendering client.

To reduce the constraints due to the client-server link, the key part is
to transfer the output 3D virtual reality scene, as an X3D/X3Db file,
in place of images or video streams. Such model distribution have
been done with VRML in [Clifton G.M. Presser 2005]. Thanks
to the performances of modern video cards, the final 2D rendering
is performed locally and only the 3D navigation operations such as
rotation or zooming will be transferred on the network during the
analysis time. The 3D virtual scene itself is computed and trans-



ferred only when a new data treatment is required, for instance
when a cutting plane is requested. Once the data processing is done,
only the new 3D objects are sent. Thanks to this approach, it is ex-
pected to significantly reduce the network usage as well as improv-
ing the global reactivity of the application with a lower latency in
the scene interaction.

The second innovation is to offer a visualisation service on the Web,
via a web portal and a Java based visualization client with collab-
orative capabilities. This approach should simplify the deployment
of the solution and enable distributed experts to work together at
the same time on the same post-processing data analysis. The ob-
jective is also to provide an application that can be deployed on the
Internet with high networking constraints imposed by proxies and
firewalls. Therefore, all the networking communication has to be
done with HTTP or HTTPS protocol.

2 The ShareX3D demonstrator

A first phase of the SCOS/V3D project was dedicated to the de-
velopment of a set of demonstrators and proofs of concept in order
to identify technological bottlenecks and validate the relevance of
chosen designs and selected technologies. Another issue was to ex-
plore the new possibilities offered by such tools, especially in the
domain of the collaboration, and specify the final user requirements
during the prototyping phase.

One of these proofs of concept is ShareX3D, a client-server appli-
cation that allow groups of users to create and share a visualization
study. A name and a virtual reality scene define a visualization
study. Once a study is created, the web portal enables users to
participate to it in order to share the same point of view with the
same virtual reality scene. ShareX3D makes possible the creation
and the execution of several studies in parallel, enabling collabo-
rative groups to work on distinct 3D scenes at the same time. The
ShareX3D viewer was developed on the XJ3D browser and uses the
Java Web Start technology [Sun 2005] to simplify its deployment
on most platforms. Practically, the ShareX3D client can only view
the 3D scene and share the rotation and zooming actions. Studies
can be either dynamic or static, in the sense that the 3D scene can
be dynamically updated during the collaboration of a group. This
feature will not be discussed in this paper but refers to the goal of
SCOS/V3D architecture where the 3D scene is dynamically pro-
duced by a distributed post-processing engine deployed on a visu-
alization cluster.

2.1 Goals and issues to overcome

The role of ShareX3D is to validate the global approach based on
the transfer of a 3D scene, and identify and test solutions for an
asynchronous event based architecture with HTTP protocol. Be-
hind this technical issue, another target is the better understanding
of constraints related to a collaborative usage.

ShareX3D remains a proof-of-concept, and does not attempt to be
directly reused in operational tools. Regarding the detailed techni-
cal issues, ShareX3D focuses on:

3D scene transfer: The first issue is to validate the feasibility to
transfer the result under the form of a X3D/X3Db file and
more especially to check if the cost of this transfer remains
reasonable in time and bandwidth.

Events synchronisation over HTTP: ShareX3D requires an
event-driven or server-push technique to offer a low-latency
notification, especially from the server to the client. The
standard HTTP usage implies synchronous calls from the
client to the server and not the other way round. Therefore,

we developed a specific asynchronous interaction based on
the Comet long polling technique [Russell 2006], which is
described below.

Proxy: Another issue is the HTTP proxy compatibility. Proxy
can interfere in the communication between the client and
the server especially in an asynchronous web architecture.
ShareX3D should support and provide a way to configure an
HTTP proxy with and without authentication in order to vali-
date the client behaviour in a proxy context.

Simple web deployment: One of the key requirements from the
user was a simplified deployment for the client side. The vi-
sualization client should be available from the web without
any specific skills for its installation and use. The Java Web
Start technique was chosen because it is able to install rich
applications by a simple click on a Web page and makes pos-
sible the usage of native libraries in a transparent manner with
automatic system and architecture detection.

Web portal: A web portal was mandatory for the deployment of
the 3D viewer, but another notion in the collaboration was
needed: the notion of groups of people working together on
the same data, that we call a study.

Collaborative post-processing: From the user point of view, one
of the goals of ShareX3D is also to explore how a visualisation
tool can be used in a collaborative manner.

3 HTTP events notification and network
strategy

As introduced above, the main difficulty was the need of an ef-
ficient event base notification system over HTTP, especially for
server-to-client or client-to-server-to-client notification. A specific
implementation was developed on the basis of techniques described
in [Russell 2006; Engin Bozdag and van Deursen 2007], and more
especially the strategy called long polling for the viewpoint notifi-
cation.

In our implementation of the notification service with the long
polling strategy, the client performs a request to the server. If no
new event is present on this one, the server locks and maintains
open the connection till a new event is available. If a new event
is present, the client using the opened-connection directly retrieves
it. As soon as the current connection is closed, a new one is open
for a new cycle. Such technique presents the advantage to avoid
the dependency on an arbitrary period of time, which is the case in
standard polling system. For this reason, the server is able to send
new information to the 3D viewer with a lower latency. The only
drawback of this technique is in case of a high event rate, during
3D navigation for instance; long polling may then produce a signif-
icant computational overhead due to the cost of the establishment
of a new connection for each new viewpoint. Therefore some test-
ing has been done to quantify this overhead in terms of latency and
event rate in the Sec. 5.

The other Comet [Russell 2006] strategy, named Streaming, can
eliminate this overhead. In this approach, the client opens a single
persistent connection to the server for all events. The client handles
this connection incrementally. Each time the server sends a new
event, the client interprets the message, but the connection is main-
tained open and is never closed. Generally speaking, the stream-
ing technique has better performance, because it eliminates much
of the per-message overhead. This Comet strategy seems more in-
teresting than the long polling one regarding our usage but one of
its drawbacks is when the client is behind a Proxy that caches the



networking payload. In such case, the expected low latency might
become high.

For these reasons, the streaming strategy has not been tested yet in
the frame of ShareX3D and the focus was put on the long polling
technique as a first step.

In practice, the user requirements of SCOS/V3D have shown that
a latency below 600 ms and an event rate higher than 6 events/s
were enough to have an application fluid enough to be practically
used. Those values have been reached by the long polling tech-
nique.

Finally, the best approach would be to enable the client to choose
one of the two strategies depending on its network environment.

4 Architecture and design

As introduced above, ShareX3D is a client-server application.
Fig. 1 shows the global design of Share3XD. The central com-
ponent is the collaborative server, which maintains the consis-
tency of the whole system inside studies (viewpoint and 3D scene).
ShareX3D provides two different clients: the ShareX3D Client, de-
tailed below, and a post-processing client, which can update the 3D
scene by a dynamic post-processing generated 3D scene. Regarding
this specific point, the design of ShareX3D differs deeply from the
architecture of V3D, where the processing engine will be deployed
on the server side cluster.

Xj3D Browser

Viewpoint 
API

M
ou

se
Li

st
en

er

Viewpoint 
API

HTTP client

Viewpoint
Servlet

3D scene
Servlet

HTTP

Ti
m

es
ta

m
p

M
an

ag
er

Ti
m

es
ta

m
p

M
an

ag
er

Vi
ew

Po
in

t 
M

an
ag

er

3D
 S

ce
ne

 
M

an
ag

er

Sh
ar

eX
3D

 
vie

we
r

Ne
tw

or
k

co
nn

ec
to

r
W

eb
 p

or
ta

l

3D scene

Figure 1: Component architecture

4.1 ShareX3D visualization client

Fig. 2 shows a screenshot of the ShareX3D Client. The ShareX3D
Client is based on the Xj3D browser [Xj3D-team ], which provides
the 3D rendering. As the default navigation available in Xj3D did
not fit the needs in post-processing data analysis, a new navigation
mode based on SAI manipulation of the viewpoint node and a Java
mouse listener has been developed and submitted as contribution to
the Xj3D developer team. Moreover, for our needs, we had to pro-
vide a specific simple viewpoint API enabling viewpoint listening
and setting.

The standard ShareX3D Client is a passive client, which does not
process data nor generate a 3D scene. It focuses on the 3D ren-
dering and viewpoint sharing. We developed a network connector
between the central web server and the client in order to distribute
the viewpoint and the 3D scene. Figure 3 illustrates both the net-
work connector and the 3D viewer application listening each other
for a global viewpoint sharing. When a navigation action (e.g. ro-
tation) occurs in the 3D scene, the network connector is notified by
the application. The network connector sends this new viewpoint
to the web portal for a global distribution. Reciprocally, when the
network connector receives a new viewpoint from the web portal,
the corresponding viewer is notified and updates its viewpoint.

Figure 2: View of the Share3D Client, based on XJ3D. This client
can be launched by a simple link on a Web page using the Java Web
Start technology. All exchanges with the ShareX3D Server are done
through the HTTP protocol and pass firewalls and proxies.

Web portal

Network - Connector

notifyViewPointChange(viewPoint)

Network - Connector

notifyViewPointChange(viewPoint)

Figure 3: Viewpoint listener architecture

4.2 ShareX3D Server side

The server side of ShareX3D includes a Web portal and a collabora-
tion service.The web portal enables the user to reserve collaboration
space where people can meet and share their 3D scene as well as
their navigation experience. Fig.4 gives a view of the Web portal
with a launched client. The Web portal offers all the lifecycle man-
agement features, like creation, suppression and participation to a
study.

Regarding the collaboration service, the first approach was to use
an XMPP server with an HTTP binding such as Bosh [Ian Pater-
son, Dave Smith and Peter Saint-André 2007]. Some XMPP [IETF
2002-2004; Jabber-community 1999] servers were providing this



Figure 4: View of the Share3D Web Portal with a client launched.
The left panel shows the access to the various studies and the links
to launch the various clients.

support but none of the Java clients was implementing this XMPP
extension. Therefore, we look at the specification of Bosh [Ian Pa-
terson, Dave Smith and Peter Saint-André 2007] and we roughly
implemented it through simple Java objects such as servlet and
HttpURLConnection to avoid heavy external libraries on client
side. Moreover, we have chosen a REST [M. zur Muehlen, J. V.
Nickerson and K. D. Swenson 2004] architecture regarding our
needs of simplicity and efficiency. Three controllers were devel-
oped as servlets for this service:

1. The ActionServlet manages the study’s actions such as cre-
ation and suppression.

2. The SceneServlet manages the update and the access to the
latest 3D scene available for a study.

3. The ViewPointServlet manages the broadcast of viewpoints.
The corresponding source code is given in Fig. 5 and 6.

void doGet(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {

if (manager == null)
manager = SessionManager.getInstance();

// Extract infos from the request
String sessionId = getSessionId(req);
long localTimestamp = getTimestamp(req);

// wait for the next time-stamp
manager.getViewPointTimestampManager()

.waitForNews(sessionId, localTimestamp);
PrintWriter writer = resp.getWriter();
ViewPointBean tmp = manager.getViewPointManager()

.getViewPoint(sessionId);
// Write viewpoint
if (tmp == null) {

DEFAULT_VIEW_POINT.writeViewPoint(writer);
} else {

tmp.writeViewPoint(writer);
}

// Write time stamp
writer.write(

Long.toString(manager.getViewPointTimestampManager()
.getSessionTimestamp(sessionId)));

writer.write("\n");
writer.flush();

}

Figure 5: Servlet method used for Server to Client viewpoint noti-
fication

The viewpoint synchronisation uses four components to implement

void doPost(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {

if (manager == null)
manager = SessionManager.getInstance();

// Extract infos from the request
String sessionId = getSessionId(req);

// Read the sended data
BufferedReader reader = req.getReader();
ViewPointBean vp = new ViewPointBean();
vp.readViewPoint(reader);
reader.close();
manager.getViewPointManager().setViewPoint(sessionId, vp);
manager.getViewPointTimestampManager()
.nextTimeStamp(sessionId);

}

Figure 6: Servlet method used for Client to Server viewpoint noti-
fication

the long polling technique presented in Sec. 3:

1. The ViewPointServlet is the HTTP connector of the server
that uses the following components.

2. The Session manager centralizes the access to each compo-
nent of the application.

3. The ViewPoint Manager stores the last available viewpoint for
a given study.

4. The TimeStamp Manager keeps track of the last timestamp
of a viewpoint for a given study. It is used in the View-
PointServlet to wait till a new point of view is available.

4.3 Collaboration sequence

A concrete collaboration sequence based on the technique de-
scribed in Sec. 3 can be summarized as follows. This scenario is
described in Fig. 7. Each point of view is labelled with a times-
tamp in order to determine which client has the latest point of view.
The server incrementally updates theses timestamps after each new
viewpoint submission. Therefore, when a client participates to a
study, it asks the server for a new viewpoint regarding its local
timestamp and study. The study name and the local timestamp are
given to the server by the request URL following the REST phi-
losophy. When the server receives this request, the servlet asks to
the TimeStamp manager if it has a timestamp equal to the client’s
one. In such case, the client is up-to-date and should wait for a
new viewpoint, so the TimeStamp manager stops the servlet thread.
Otherwise, if the timestamp manager has a higher timestamp, the
servlet is not stopped and asks for the last stored viewpoint in the
ViewPointManager. Both viewpoint and timestamp are then writ-
ten on the response to the client. The client can then update its
viewpoint and its local timestamp.

When a 3D viewer sends its viewpoint to the server, only the study
name is needed. Once a viewpoint is received by the server, it is
stored in the ViewPoint Manager. The TimeStamp Manager incre-
ments its timestamp and wakes up all the waiting servlet threads.

Please notice that a viewpoint is simply defined by the camera ori-
entation, which is a simple quaternion, its position, the centre of
rotation (i.e both vectors of dimension 3) and an identifier to track
the origin of a viewpoint. Therefore, the weight of the message
transferred on the network remains very light. The update of the
3D scene is made exactly the same way with an open connection,
which is locked until a new 3D scene is dropped on the server. The
3D scene is then downloaded by the connected clients and displayed
locally.



3D viewer 
B ViewPointServlet SessionManager ViewPointManager TimeStampManager

3D viewer 
A

getViewPoint
waitNewViewPointsetViewPoint

saveViewPoint

updateTimestamp

getViewPoint

viewPoint / timeStamp

waitNewViewPoint
getViewPoint

Figure 7: Networking sequence diagram for a viewpoint sharing.

Finally by sharing the point of view, every 3D viewer is sharing the
same view even if they do not share the same application size or
screen resolution.

5 First tests and results

A first benchmark was performed in order to evaluate the global
performances of the selected approach from a user point of view.
More precisely, three aspects were studied in details: the download
time for the 3D scene, the general latency of the system regarding
the events dispatching and the event rate, i.e. the maximum number
of events that can be transferred to a client per second.
The download time of the 3D scene corresponds to the time needed
by the client to download the 3D scene that is provided by the
server. This time can be crucial for the usability of the system where
the post-processing will be done during a collaboration session on
the server side.
The latency of the event propagation is especially critical in co-
expert mode, where the discussion is related to a specific viewpoint
and not the previous one. Viewpoints as well as collaborative events
have to be synchronized in line with the analysis talk or at most
desynchronized with a small latency.
The event rate directly characterizes the fluidity of the navigation or
the interaction, for instance during the remote rendering of a rota-
tion in the 3D scene. In some way, this point can be seen as a frame
rate.

In order to be close to a real operational environment, benchmarks
have been done on standard hardware (server and local computer).
The server side was deployed on a simple Tomcat Web server, with-
out specific settings or optimization. Two different environments
where tested in order to determine the boundaries of the system.
The first evaluation was done in poor network conditions (i.e. la-
tency, weak bandwidth) where a simple public ADSL connection
was used and the server side was behind an Apache reverse proxy.
In this evaluation, it is important to notice that the server and the
clients were distant of several hundreds of kilometers.
The second benchmark was done on a local network loop of a com-
puter. This local network has been tested the same manner as the
remote one. The table 1 summarizes both the local and the remote
networks characteristics on which the tests have been performed.
All the tests and performance analysis have been done with the
same computer with specific testing applications, using multi-
threading technology to simulate several concurrent clients. Those
threads were behaving like a 3D viewer regarding the network op-
erations. All the values given in figure 8 and 9 are average values
computed on 100 testing events and among the whole connected
clients.

localhost forge.oscos.org
Ping 0,1 ms 51± 1 ms

Download 35.44 MB/s 260,75 kB/s
Upload 35.44 MB/s 17 kB/s

Table 1: Network testing environment

5.1 Reactivity and fluidity

The figure 8 displays the latency versus the number of connected
clients for event transmission from one client to another, in lo-
cal and remote contexts. Events have been generated by a unique
thread sending as many possible events per second. That latency
has been computed by the difference between the emission and the
reception time by the clients. The displayed value corresponds to
the average for all the receiving clients on 100 testing events. The
error bars are based on the standard deviation of the test case. One
should notice that in the present implementation of event broadcast-
ing, an event may be masked by a more recent one if the receiver
did not have the time to download the previous event before the new
one is available. The measured latency does not take into account
the possible loss of events between two received events and only fo-
cuses on the events received on the client side. The influence of the
message size was not studied, regarding that this implementation
was limited to viewpoint events.

0 5 10 15 20 25 30
number of clients

0

50

100

150

200

250

300

350

400

450

500

la
te

nc
y 

(m
s)

local
remote

Figure 8: Latency versus number of connected clients.

In local mode, this test has been done with one hundred clients and
even with that case, the latency remains below the 80 ms. This
test gives us a first idea of the scaling capability of a centralised
architecture like the proposed one in a corporate context. Due to
the level of expertise required to use scientific visualisation tools, it
is not expected to have more than ten clients working on the same
study at the same time. However, in a large company or research
centre and in an Intranet context, one can easily imagine a quite
large number of users working at the same time on various studies.
The future SCOS/V3D server should support such load and be able
to maintain a global reactivity for a large group of users. This first
result confirms that the proposed design may address this issue.

In remote mode, the cost of the network is visible with an average
latency rising up to 300 ms for 20 concurrent clients. However,
the testing was made on the same computer with the same network
connection to the remote server. Therefore, each client connection
was sharing with others their poor networking connection which



could explain the drop of efficiency which was not highlight by the
local testing. Actually, the latency is mainly critical in co-expertise
mode, where different users have to react in real time to their re-
ciprocal actions. It seems difficult to imagine such mode with more
than three or four connected clients. In this case, the latency re-
mains good with values below 150 ms.

The figure 9 shows the events rate for remote server condition in
both sending and receiving mode. The event rate illustrates the flu-
idity of the collaborative interaction. Like in the latency test, the set
of events was generated by a single thread sending as many as pos-
sible events per second. In such case, for instance, the similitude
with the frame rate on the remote scene is quite straightforward.

0 2 4 6 8 10 12 14 16 18 20
number of clients

0

2

4

6

8

10

12

ev
en

ts
 r

at
e 

(e
v

en
ts

/s
)

receiptTion rate

sending rate

Figure 9: Event rate: The lowest curve gives the practical event
rate, as felt by the user. Up to six clients, the event rate remains high
enough (5 events/s) to give an impression of fluidity in continuous
actions on the 3D scene.

The difference between the sending and the receiving event rates
is difficult to explain especially in the remote case. No hazardous
explanation will be given in this paper, and we will focus on the re-
sulting values. Therefore only the limiting factor, which is the low-
est rate, should be taken into account to evaluate the global event
rate.

The reception rate curve shows that up to five connected clients,
the application remains fluid enough, with more than 4 events/s,
for a continuous and smooth rendering, which is mostly critical in
co-expert mode. Up to 10 connected clients, the event rate reaches
2 events/s, which can be seen as insufficient in first reading but
the latency in that case is still lower than a 1/4 s which allows the
client to follow the same view as the master one with few jerks.

Moreover, the present implementation is not optimised and should
be seen as a worst implementation case. For instance, the connec-
tion cost on the receiving connection is still currently prohibitive. A
better management of connections and/or the implementation of a
streaming approach may induce a significant speed-up with a global
event rate close to the sending rate curve and even a bit higher.

These results should also be compared to the performances of more
standard architectures such as ”remote display”, where the data ex-
change is based on image streaming. Some tests made in a study of
EDF R&D on an Image Streaming system have shown an average
of 20 MB/s of consumed bandwidth on a local network during 3D
scene rotation with a frame rate of 20 fps with only one connected
client. This frame rate linearly decreases regarding the number of
connected clients. With four connected clients, an Image Stream-
ing system would provide only 5 frames per second with the same

consumed bandwidth. Regarding those results, a technology based
on 2D image transfer is not possible in collaborative context even
on a local and high performance network.

Number of clients localhost forge.oscos.org
2 clients 333± 110 e/s 6 e/s
3 clients - 5 e/s
4 clients - 4 e/s
5 clients 166± 63 e/s 3 e/s

10 clients 90± 35 e/s 2± 1 e/s
15 clients 62± 22 e/s 1± 1 e/s
20 clients 47± 15 e/s 1± 1 e/s

100 clients 12± 3 e/s -

Table 2: Event rate: Number of events that can be received in 1
second

If we compare an Image Streaming system with ShareX3D on a
local network with the same networking configuration, the Image
Streaming system is able to serve one remote client with a frame
rate of 20 frames per second whereas ShareX3D, after an initial
download, will serve 50 clients with the same frame rate. Moreover
an Image Streaming system will be able to serve 20 clients with 1
frame per second on a local network of 1Gbits/s where ShareX3D
will be able to serve 20 clients with the same frame rate on the
Internet with a 2Mbits/s ADSL connection. In the case of 3D ro-
tation, ShareX3D requires 500 times less bandwidth than an Image
Streaming system.

5.2 Data transfer and 3D scene update

Another important point is the initial downloading time of the 3D
scene, which could be crucial, especially on an Extranet. On a lo-
cal network, the worst case given in the table 3, with a X3D file
of 11.9MBytes corresponding to an original data size of 8.106

elements, will only take 336 ms to download. However, on an Ex-
tranet, the same file will require 46 s on a 2 Mbits/s ADSL con-
nection. Such time could be seen as prohibitive for an operational
use, but this requires a deeper analysis. First of all, table 3 shows
that the size of the final X3D file depends on the complexity of the
scene. For simple scenes, like a cutting plane as in case A, the fi-
nal X3D file may be 6 times smaller than the most complex one
and 65 times smaller than the initial data set. By such approach
the compression is done without any loss of relevant information.
The tests have voluntary been performed on a very poor network.
Speed-up of a factor ten can be expected nowadays and it does not
seem impossible to download scenes of tens of MBytes in less than
20s.

Another point regarding limit cases is the fact that the complex
scenes are composed of several 3D objects, progressively com-
puted through several requests during the collaboration period. This
means that with an incremental update mechanism, as provided in
V3D, each Internet client will have to wait less than a few seconds
after each new post-processing action. Moreover, with partial up-
date, a 3D scene transfer based approach becomes fully acceptable
in an extranet context.

It is also important to notice that the protocol used in ShareX3D is
HTTP and not a UDP or TCP optimised connection and the scene is
still currently basic. Works on direct compression of the 3D struc-
ture are pending in the frame of SCOS/V3D and are very promising.



A B

C D

Figure 10: Sample of 3D scene for file size comparison

Number of hexahedron 128.103 1.106 8.106

Initial numerical data size 8,84 MB 70,2 MB 559 MB
Scene A 128 kB 540 kB 2,30 MB
Scene B 331 kB 1,40 MB 5,85 MB
Scene C 620 kB 2,71 MB 11,2 MB
Scene D 630 kB 2,86 MB 11,9 MB

Table 3: Post-processing X3Db file size

6 Conclusion

ShareX3D is a first implementation of a collaborative 3D viewer
based on HTTP communication. It aims to validate architectural
choices made in the specification of V3D and removing technical
issues. ShareX3D has proven that collaboration over HTTP is pos-
sible with high network constraints in terms of bandwidth and se-
curity. Firsts tests have also shown that the long polling technique
provides enough fluidity and reactivity for collaborative scientific
visualisation. X3D files download tests have shown that very large
scenes remain costly to update in one piece. However, ShareX3D
has confirmed the global approach and presented interesting per-
formances in respect to a classic image transfer architecture. The
observed limitations might be pushed back by a partial update of
the 3D scene and by introducing data steaming and compression,
as expected in V3D. Moreover the tests made around ShareX3D
have clarified the needs in terms of collaboration and interactivity
for V3D. ShareX3D has also opened new possibilities for scientific
collaborative visualization tools over HTTP.

Acknowledgements

This work was partially founded by the French National Research
Agency (ANR) in the frame of the RNTL SCOS project and an
internal R&D effort of each actor. We would like also to thanks
all members of this project and the ANR/Part@ge project for their
support and the fruitful technical exchanges and discussions.

References

AHRENS, J., BRISLAWN, K., MARTIN, K., GEVECI, B., LAW,
C., AND PAPKA, M. 2001. Large-scale data visualization using
parallel data streaming. Computer Graphics and Applications,
IEEE 21 (Jul/Aug), 34–41.

CLIFTON G.M. PRESSER. 2005. A java web application for al-
lowing multiuser collaboration and exploration of existing vrml
worlds. Web3D symposium, 10 (March), 85–92.

ENGIN BOZDAG, A. M., AND VAN DEURSEN, A., 2007. A com-
parison of push and pull techniques for ajax. Delft University
of Technology Software Engineering Research Group Technical
Report.

HENDERSON, A., AND AHRENS, J. 2004. The ParaView Guide.
Kitware.

IAN PATERSON, DAVE SMITH AND PETER SAINT-ANDRÉ, 2007.
Bidirectional-streams over synchronous http (bosh). XMPP
Standards Foundation, XEP-0124, February.

IETF, 2002-2004. Xmpp standards foundation.
http://www.xmpp.org/.

JABBER-COMMUNITY, 1999. Open instant messaging and pres-
ence. http://www.jabber.org/.

JEAN M. FAVRE, SATHYA KRISHNAMURTHY AND SWISS CEN-
TER FOR SCIENTIFIC COMPUTING. 2000. Visualization tools
and environments for very large data. EPFL Supercomputing
review, 12 (November), 9–12.

KITWARE. VTK File formats. http://www.vtk.org/pdf/file-
formats.pdf.

LLNL, 2003. Visit getting started man-
ual - lawrence livermore national laboratory.
https://wci.llnl.gov/codes/visit/1.1/GettingStarted.pdf, February.

M. ZUR MUEHLEN, J. V. NICKERSON AND K. D. SWENSON,
2004. Developing web services choreography standardsthe case
of rest vs. soap. Decision Support Systems.

RUSSELL, A., 2006. Comet: Low latency data for
browsers. O’Reilly Emerging Technology Conference presen-
tation, March.

SCHROEDER W. J., MARTIN K. M. AND LORENSE W. E., 1996.
The design and implementation of an object-oriented toolkit for
3d graphics and visualization. Proceedings of the 7th conference
on Visualization 96, IEEE Computer Society Press, Los Alami-
tos, CA, USA, 93ff.

SCOS-PROJECT, 2006. Scos project’s web portal.
http://www.oscos.org/.

SUN, 2005. Java web start overview. White Paper, May.

WEB3D-CONSORTIUM, 2005. Extensible 3D
(X3D) encodings. ISO/IEC 19776:2005,
http://www.web3d.org/x3d/specifications/.

WEB3D-CONSORTIUM, 2006. Extensible 3d (x3d) - part 1: Archi-
tecture and base components. ISO/IEC 19775:2004/Am1:2006,
http://www.web3d.org/x3d/specifications/.

XJ3D-TEAM. Xj3d open source vrml/x3d toolkit.
http://www.web3d.org/TaskGroups/source/xj3d.html.


