
HAL Id: hal-01327088
https://hal.science/hal-01327088

Submitted on 10 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LELIE - An Intelligent Assistant for Improving
Requirement Authoring

Patrick Saint Dizier, Juyeon Kang

To cite this version:
Patrick Saint Dizier, Juyeon Kang. LELIE - An Intelligent Assistant for Improving Requirement
Authoring. International Journal on Requirement Engineering, 2015, 2015-02, pp. 1-9. �hal-01327088�

https://hal.science/hal-01327088
https://hal.archives-ouvertes.fr

To link to this article :
http://re-magazine.ireb.org/issues/2015-2-bridging-the-impossible/lelie/

To cite this version : Saint-Dizier, Patrick and Kang, Juyeon LELIE - An
Intelligent Assistant for Improving Requirement Authoring. (2015)
International Journal on Requirement Engineering, 2015-02. pp. 1-9.

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 15423

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

LELIE: An Intelligent Assistant for Improving Requirement Authoring

1. LELIE project

LELIE1 was funded by the French National Research Agency (ANR) from 2008 till 2013. It is

still a research framework but it is now paired with R&D efforts in order to investigate its

relevance and customization to the industrial world. The LELIE project is a research and

R&D framework, based on natural language processing and artificial intelligence, the aim of

which is to detect and analyze potential risks in technical documents, related to health and

ecology, but also to a number of social and economic dimensions.

Risks emerge from poorly written texts, and from various forms of incoherence. For example,

‘Progressively heat the probe X27’ relies too much on the operator’s knowledge and practice:

what temperature should be reached and in how much time? A wrong interpretation may lead

to accidents of damages. Among technical documents, requirements are a central issue since

they must comply with a high number of constraints of e.g. readability, lack of ambiguity and

implicit data, feasibility, relevance, traceability, and overall cohesion and coherence.

The main aim of LELIE is, given a set of requirements, whatever their domain and type, to

analyze their contents and to annotate them in an appropriate way wherever potential errors

are identified. Errors range from poor writing quality to incoherence between requirements.

Authors are then invited to revise these documents. This requires some domain knowledge for

example: ontology, terminology, and lexical. Requirements are a textual genre dedicated to

action: little space should be left for ambiguities and for personal interpretation.

LELIE is based on three levels of analysis:

• The detection of inappropriate ways of writing requirements: lexical inadequacies (e.g.

fuzzy terms, misuses of business terms), complex constructions (e.g. connectors, conditionals,

stacks of nouns), complex references, inappropriate granularity level, etc.

• The detection of various types of incoherence: incoherence among sets of requirements,

incoherence with respect to domain knowledge or practices (e.g. use of unusual instruments,

equipment, product, or unusual values such as a too low or too high temperature) as e.g.

specified in other technical documents,

• Confrontation of domain safety requirements with procedures to check if the required safety

constraints are met. For example, when manipulating an acid, check that the operator has

protection gloves and glasses, as required.

The LELIE project addresses a large number of problems of controlled natural language. We

concentrate in this document on the first topic: the detection of inappropriate ways of

authoring requirements, which has now reached a good level of maturity. A prototype has

been developed for this first topic for French and English. A kernel of this prototype, without

any fancy interface facility, is available for testing at: http://www.irit.fr/~Patrick.Saint-

Dizier/. The two other topics given have reached a lower level of maturity: they are extremely

complex in general. Investigations are made on a case-based approach.

1 The name LELIE is not an acronym, it is a character from Molière who makes a lot of errors in his everyday

life, hence the name for our project.

The approach in LELIE is not to guide requirement authors to write on the basis of predefined

templates, also called boilerplates, which are not very often strictly followed, but to let

authors express themselves freely and then to make, upon demand, a posteriori controls.

LELIE develops a hybrid approach that is cooperative with the requirement author based on:

(1) The use of error templates to detect errors typical of requirements, which may not be

errors in ordinary language. These errors are defined on the basis of (1) the Controlled natural

Language (CNL) principles (Kuhn 2014) paired with (2) various authoring guidelines

produced by companies, which are in general relatively coherent with CNL principles and

complement them. For each potential error, the system produces alerts with some explanation.

CNL principles are composed of a set of constraints on the structure of sentences, paragraphs,

titles and on the type of vocabulary which can be used.

(2) The association of this first level, based on fixed templates, with an error correction

memory, adds flexibility and context to templates in order to limit noise from the first stage

(e.g. a fuzzy term is fuzzy only in certain contexts). The other goal of this second level is, via

the observation of how authors make corrections or decide that an alert is irrelevant, to induce

types of corrections in order, after validation, to propose them in a later stage. This greatly

reduces writers' workloads and also establishes correction norms over a team of technical

writers, resulting in documents which are much more homogeneous.

Tools controlling the authoring quality of requirements have been developed in the past with

the use of templates or boilerplates meant to guide the technical writer (Arora et al. 2013).

This is most notably the case for the well-known RAT-RQA system (the Reusecompany) and

of the RUBRIC system developed at the University of Luxemburg. Let us also cite two major

CNL-based university prototypes which are of much interest for requirement authoring: ACE

(Fuchs et al. 2008, 2012), which stands for Attempto Controlled English. This system makes

an in-depth language semantic analysis. It was initially designed to control software

specifications, and has been used more recently in the semantic web. PENG (Processable

English (White et al. 2009)) is a computer-processable controlled natural language system

designed for writing unambiguous and precise specifications. These systems make heavy use

of syntactic analysis, which is rather costly. LELIE is based on shallow parsing techniques

and semantic analysis, which makes it more relevant for requirements where the language is

complex and sometimes ill-formed. A synthesis of CNL based systems is developed in (Kuhn

2013, 2014).

2. LELIE systems

2.1 Error detection tool

Let us now concentrate on LELIE as an intelligent assistant tool for requirement

authoring. LELIE is a system based on rules that detect errors of different levels:

syntactic, lexical, semantic, discourse. From the analysis carried out by LELIE, it becomes

easier to measure the quality of a specification, composed of requirements, in terms of its

testability, ambiguity, singularity, consistency, completeness, redundancy and traceability.

The error correction rules have been developed and validated in four steps:

1) First, authoring rules proper to requirements have been collected and summarized

from the IEEE standards, the specific recommendations for requirements authoring like

the guide proposed by INCOSE and the principles of controlled languages like the

Simplified Technical English (STE) defined by the ASD. In these sources, we observed

that the authoring constraints specify the syntax, the semantics together with the style and

the lexicon that the authors have to observe. The generic rules of LELIE have been

identified from this analysis and constitute the basis of our model.

2) Then, we observed local practice in various companies which often have their own

set of authoring recommendations. This was realized essentially via the observation of

technical writers at work and via discussions on their authoring strategies (Barcellini et al.

2012). As a result, the generic rules established at step 1) have been complemented by

these more local rules and the potential inconsistencies that may arise.

3) Next, we analyzed sets of requirements written by various authors, mainly in the

electricity, telecommunication, aeronautics and automobile domains, in order to analyze if

and how these rules were used in concrete situations. This analysis was carried out on the

usual language levels: lexical, syntactic, semantic, and discourse. A requirement normally

consists of a condition, a subject, an action, an object and constraints. The discourse

analysis provides the capability to characterize the semantic relations that hold between

the components of a requirement which are not just subject or objects.

4) Finally, feedback from users (Schriver 1989) were very important to validate,

improve and enrich the rules and the lexicon, such as fuzzy terms, buzz words to avoid,

and, obviously, business terms appropriate to a specific domain.

Table 1 illustrates the main types of errors found in a set of procedures, requirements,

and safety specifications. These documents come from three companies from different

domains of industry: energy, aeronautics and car manufacturing. 60 pages were

considered in this analysis. The error frequency is indicative: it may vary largely

depending on the activity and the type of document.

Types Identified problems/

Error frequency

Examples

Fuzzy terms ambiguity, testability

25%

wherever possible, suitably,

adequately

Complex or ambiguous

coordination

Singularity

8%

X shall ACTION1 and ACTION2

or ACTION3

multiple negation makers

or double negation

Readability

8%

It shall not be possible to do not…

Multiple actions in a

requirement

validity, testability,

traceability

6%

X shall ACTION1 and ACTION2 /

X shall ACTION1 and Y shall

ACTION2

Complex relatives Readability

7%

that x…which…y….

Complex discourse

structures

readability, ambiguity

15%

[SUBJET],-[CONDITION],-

[ACTION]-[OBJECT]

Pronouns with uncertain

reference

Ambiguity

8%

their, them, these, it…

Incorrect references to Not feasible below, above, see…

other chapters 3%

Heterogeneous enumeration Waste of time to

understand, ambiguity

20%

a. system interaction

b. user interface

c. update is not applicable

è non homogeneous with a and b

Table 1. Rule description

The texts of the company S3 have been reviewed by experts of technical document production

before our analysis, however there remain several errors. We observe that the distribution of

the errors depends in particular on the complexity of texts: those of S2 are clearly more

complex than those of S1. Finally, we note that there are on average 15 errors by page, i.e.

approximately an alert every 2 or 3 lines, not counting errors related to the business rules.

This is obviously very large and motivates the use of LELIE.

2.2 The error correction memory

The alerts produced by the LELIE system have been found useful by most requirement

writers that tested the system. However, they feel that:

-false positives, about 40% of the alerts, must be filtered out. This is essentially due to the

lack of context sensitivity of error detection rules, e.g. progressively in shall progressively

close the pipe is judged not to be fuzzy because the action is short, whereas it is fuzzy in shall

progressively decrease the air speed.

-errors which are not detected, about 8% to 25%, should be reduced as much as possible to

guarantee a good performance level. Non-detection originates e.g. from incomplete lexical

resources in the system.

- Error severity levels must be finely tuned so that requirement writers can organize their

revisions, starting e.g. by the most severe errors. Indeed, an error detection system must be

very flexible with respect to the writer's practices.

- Help must be provided in the form of e.g. correction recommendations, whenever possible.

- Corrections should be memorized so that they can benefit others and, in the long term, allow

homogeneous corrections over a whole team of authors. These could also be re-used as a

tutoring system for novices.

In the LELIE project, we develop and test several facets of an error correction memory

system that would, after a period of observation of requirement writers making corrections

from the LELIE alerts, add flexibility and context sensitivity in error detection and correction.

General principles of language processing via a contextual memory are developed in

(Daelemans 2005).

This memory system is based on the following operations:

- Memorize errors which are not or almost never corrected so that they are no longer

displayed as errors in the future: these are called false positives,

- Memorize corrections realized by writers, with their context,

- Automatically induce typical corrections, proper to requirement styles,

- Organize a correction validation process to produce correction recommendations. This is

managed by an administrator or via mediation in a group of writers.

The error correction memory is based on a two level organization:

(1) The development of relatively generic correction patterns, which correspond to a

common correction practice for most types of requirements. These are stable over a

domain, a company or a type of requirement. These patterns are induced from the

general behavior of requirement writers when they make corrections. They often

contain underspecified fields.

(2) The development of accurate contextual correction recommendations, based on

previously memorized and analyzed corrections. Recommendations are induced from

a small set of closely related terms and situations in context. These are paired with the

generic correction patterns: they suggest values for the underspecified fields.

Roughly, after induction (step (1) above), an error correction rule has the following form:

[error pattern] à [correction pattern] – Context.

The “error pattern” describes an incorrect structure, the “correction pattern” is the correction

that should preferably be applied, while “Context” refers to the conceptual environment of the

correction pattern. In LELIE it is realized by memorizing the four closest words (adjectives,

nouns, verbs) occurring before or after the error. The context allows the specification of

precise recommendations.

For example, a correction rule used for fuzzy manner adverbs is.:

[progressively VP(durative)]} à [progressively VP(durative) in X(time)] – Context.

where X(time) is a variable of type time. VP(durative) indicates an action that takes some

time to be realized.

e.g. progressively heat the probe X37 à progressively heat the probe X37 in 10 minutes.

In this example, Context = (Probe X37 heat), VP = heat and X= 10 minutes. X is suggested

by a correction recommendation in relation with the context (heating the X37 probe), the

adverb is kept in order to keep the manner facet which is not fuzzy, since it is the temporal

dimension that is fuzzy. Note that ‘heat’ is here underspecified: the temperature to reach is

not given. This is another type of error detected by LELIE, but not developed in this text.

We noted that correction divergences between technical writers often arise; therefore, a strict

automatic learning process is not totally accurate and achievable. In LELIE, the approach is to

propose to a team of technical writers several possible corrections via simple generalizations

on coherent subsets of corrections and to let them decide on the best solution, via discussion,

mediation, or via a decision made by an administrator.

Let us now concentrate on a few typical cases related to fuzzy terms and negation, which are

frequent errors in requirement authoring. There are several categories of fuzzy lexical items

which involve different correction strategies. They include a number of adverbs (manner,

temporal, location, and modal adverbs), adjectives (adapted, appropriate), determiners (some,

a few), prepositions (near, around), a few verbs (minimize, increase) and nouns. These

categories are not homogeneous in terms of fuzziness, e.g. fuzzy determiners and fuzzy

prepositions are always fuzzy whereas, for example, fuzzy adverbs may be fuzzy only in

certain contexts. The degree of fuzziness is also quite different from one term to another in a

category.

On a small experiment with two technical writers from one of our users, considering 120

alerts concerning fuzzy lexical items in different contexts, 36 have been judged not to be

errors (rate: 30%). Among the other 84 errors, only 62 have been corrected. The remaining 22

have been judged problematic and very difficult to correct. Correcting fuzzy lexical items

indeed often requires domain expertise.

To conclude this section, let us give a few typical error correction patterns that have been

induced, a number of them deal with various forms of implicit quantification:

Error

type

Error

pattern

Correction

pattern

Example

Fuzzy

determiner

[a few Noun] [less than X Noun]

*Adds an upper boundary X

A few minutes -->

Less than 5 minutes

 [most Noun] [more than X Noun]

*Adds a lower boundary X

Most pipes shall ...

àMore than 8 pipes

shall...

Temporal,

iterative

adverbs

[VP(action)

Adverb(iterative)]

*VP(action): action verb

[VP(action) every

X(time)]

The steam pressure

shall be controlled

regularly

àThe steam pressure

shall be controlled

every 10 minutes.

Fuzzy

prepositions

[near

Noun(location)]

[less than X(distance)

from Noun(location)]

*X(distance) depends on

Context

Near the gate à

Less than 100 m from

the gate

Negation on

usages

[(do) not Verb(use)

NP]

*NP: any noun

*Verb(use) any verb

such as 'use'

[Verb(use)

hyperonym(NP) other

than NP]

*Hyperonym(NP) denotes a

more generic term than the

NP, given in a domain

terminology

shall not use hydrogen

àshall use a gas other

than hydrogen

Reverse

synchronization

[do not/never VP

before VP']

*VP and VP' denote two

actions

[VP only after VP'] or

[VP'. Then VP]

*Actions are reversed in the

correction, some persuasion

effects may be lost.

never unplug before the

machine has been

stopped.

àstop the machine.

then unplug it

Table 2. Error patterns and related Correction patterns

3. LELIE system architecture and the prototype

The LELIE prototype is based on the following components:

- An engine, TextCoop, that manages the different parsing and the enforcement of

linguistic constraints. The engine is domain independent. TextCoop is an engine

developed at IRIT2 for text and discourse processing in general (Saint-Dizier

2014)..

- A set of rules that handle the different types of alerts described above. Rules are a

priori domain independent, however some may be tuned or skipped depending on a

user’s needs or company guidelines

- A lexicon in the language considered. Functionally, the lexicon is decomposed into

two units: (1) the main one corresponds to ordinary language - it is generic and is

used in any application (possibly with some minor adjunctions) - and (2) a

secondary one that contains all the terms specific to a domain; in particular the

ontology of business terms is stored in this latter lexicon.

- A set of utilities, I/O facilities, etc., and

- A set of parameters to tune the system, e.g. choosing which rules to apply.

The kernel of the system is the set of rules that consult lexical entries. The lexical entries of

the secondary lexicon must be defined for each domain (e.g. aeronautics, energy, chemistry)

and possibly adapted or tuned for each application. This can be done manually, by

lexicographers, or via the support of a lexical acquisition platform. The kernel is available for

testing.

The LELIE architecture is summarized in Figure 1:

Figure 1. LELIE Architecture

4. Perspectives

LELIE is a project which aims to investigate the different tools that are needed for technical

writers, and in particular requirement writers, to improve the quality of their texts. We have

presented in the previous section the first step: improving the authoring quality of texts, via

alerts and correction patterns. This is the first step in such a project. It is important to note

2 Institut de Recherche en Informatique de Toulouse : www.irit.fr

TextCoop

Engine

Error

Detection

Tool

Generic

Rules/ Lexicon

Domain

Rules/ Lexicon

Acquisition Tool/

Linguist

Input Text Tuning Parameters

Output Text with Error Alerts
Error

correction

memory

that, although there are guidelines for writing requirements, large differences in style and

form have been observed between authors and companies.

Once requirements are relatively well-written, additional quality controls can be carried out.

Let us review here those which seem to be the most crucial from the errors found in large

collections of requirements. Most of them are complex and cover several situations.

Therefore, we feel a case-based approach is appropriate to analyze and develop them

gradually in a sound way. These controls are, in particular:

- The analysis of the cohesion of a set of requirements: lexical, grammatical, and style

cohesion is a plus since it makes long lists of requirements easier to read. Lexical

cohesion requires, e.g. a strict control of the terms used: a concept is always referred

to by the same word or expression.

- The detection of forms of clumsiness, in particular when authors do not write in their

mother tongue, for example, French authors writing in English produce typical clumsy

forms that need to be revised, although they are not errors as such.

- The analysis of forms of redundancy over large sets of requirements: redundancy can

be partial or complete.

- The detection of forms of partial incoherence over sets of requirements. This latter

task is very challenging and may require some form of domain knowledge.

- Finally, concerning security requirements, which are a specific class of requirements,

a useful operation is to check that these requirements are met in related procedures.

For example, the precautions to take when manipulating an acid are specified at the

right place in any procedure that requires the manipulation of such an acid.

5. References

Alred, G.J., Charles T.B., and Walter E.O., Handbook of Technical Writing. St Martin’s Press, New

York, 2012.

Arora, C., Sabetzadeh, M., Briand, L., Zimmer, F., Gnaga, R., Automatic Checking of Conformance

to Requirement Boilerplates via Text Chunking: An Industrial Case Study, 7th ACM/IEEE

International Symposium on Empirical Software Engineering and Measurement (ESEM 2013).

Baltimore, MD, USA 2013.

Barcellini F, Albert, C., Saint-Dizier, P., ‘Risk Analysis and Prevention: LELIE, a Tool dedicated to

Procedure and Requirement Authoring’, Language Resources and Evaluation Conference (LREC),

Istanbul, 2012.

Daelemans, W., van Der Bosch, A., Memory-Based Language Processing, Cambridge, 2005.

Fuchs, N.E., ‘First-Order Reasoning for Attempto Controlled English’, In Proceedings of the Second

International Workshop on Controlled Natural Language (CNL 2010), Springer, 2012.

O Grady, J. System Requirements Analysis, Academic Press, USA, 2006.

Kuhn, T., ‘A Principled Approach to Grammars for Controlled Natural Languages and Predictive

Editors’. ,Journal of Logic, Language and Information, 22(1), 2013

Kuhn, T., ‘A Survey and Classification of Controlled Natural Languages’. Computational Linguistics,

40(1), 2014.

Saint-Dizier P, Challenges of Discourse Processing: the case of technical documents. Cambridge

Scholars, UK, 2014.

Schriver, K. A., ‘Evaluating text quality: The continuum from text-focused to reader- focused

methods’ IEEE Transactions on Professional Communication, 32, 238-255, 1989.

Unwalla, M., AECMA Simplified English, 2004. http://www.techscribe.co.uk/ta/aecma- simplified-

english.pdf.

White, C., Schwitter, R.: An Update on PENG Light. In: Pizzato, L., Schwitter, R. (eds.) Proceedings

of ALTA 2009, Sydney, Australia, pp. 80-88, 2009.

Wyner, A., et ali. On Controlled Natural Languages: Properties and Prospects, University of Aberdeen

report, 2010.

