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Abstract

In this paper, we generalize the upper bound in Varadhan’s Lemma. The standard formulation of

Varadhan’s Lemma contains two important elements, namely an upper semicontinuous integrand

and a rate function with compact sublevel sets. However, motivated by results from queueing

theory, in this paper we do not assume that rate functions have compact sublevel sets. Moreover,

we drop the assumption that the integrand is upper semicontinuous and replace it by a weaker

condition. We prove that the upper bound in Varadhan’s Lemma still holds under these weaker

conditions. Additionally, we show that only measurability of the integrand is required when the

rate function is continuous.
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1 Introduction

Exponential integrals often play an important role in the proofs of large deviations principles (LDPs).

Varadhan’s Lemma is a powerful generalization of Laplace’s method to find bounds for the logarithmic

asymptotics of exponential integrals. Especially the upper bound provided in this lemma turns out to

be a very useful tool for proving large deviations upper bounds. However, the result is stated under

somewhat restrictive conditions, which rule out many interesting cases. In particular, certain rate

functions arising in queueing theory do not satisfy the conditions of Varadhan’s Lemma. Motivated

by this observation, we will loosen the conditions under which the upper bound is known to hold.

2 Main result

Let X be a topological space and let B be a σ-algebra on X . Equip [−∞,∞] with the standard Borel

σ-algebra. For ε > 0, let µε be a probability measure defined on B and let φ : X → [−∞,∞] be a

measurable function. Additionally, let φ(ε) : X → [−∞,∞] be a measurable function for each ε > 0.

We will say that the family of probability measures {µε | ε > 0} satisfies a large deviations upper bound

(LDUB) with rate function J if

lim sup
ε→0

ε logµε(F ) ≤ − inf
x∈clF

J(x) (1)

for any F ∈ B, where J : X → [0,∞] is a function and clA denotes the closure of a set A.

Varadhan’s Lemma provides sufficient conditions such that the inequality

lim sup
ε→0

ε log

∫
X

exp
[
1
εφ

(ε)(x)
]
µε(dx) ≤ sup

x∈X
[φ(x)− J(x)] (2)

holds. The original conditions for the upper bound in Varadhan’s Lemma are given in the following

lemma (cf. [6, Th. 3.1] and [7, Th. 2.3]).

Lemma 2.1. Suppose that µε satisfies (1) for some function J : X → [0,∞] and assume that the

following conditions hold.
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a. The space X is a regular topological space and B contains its Borel σ-algebra.

b. The function J is lower semicontinuous.

c. The function J has compact sublevel sets.

d. For each δ > 0 and x ∈ {J <∞} there exists an open neighborhood O of x and some ε∗ > 0

such that φ(ε)(y) ≤ φ(x) + δ for all y ∈ O and all ε ∈ (0, ε∗).

e. The functions φ(ε) satisfy

lim
M→∞

lim sup
ε→0

ε log

∫
X

exp
[
1
εφ

(ε)(x)
]
1{φ(ε)(x)>M} µε(dx) = −∞.

f. The function φ takes values in [−∞,∞).

Then (2) holds.

Condition d essentially requires that φ is upper semicontinuous. Indeed, this is often assumed in

advance (cf. [2], [3] and [7]). However, in queueing theory one encounters functions φ that are not

upper semicontinuous (cf. Example 3.3). Moreover, one also encounters rate functions J that do not

have compact level sets (cf. [4, Ex. 4.8]). Therefore, we would like to weaken the assumptions and

generalize the upper bound in Varadhan’s Lemma.

Our strategy is as follows. In the proof of Lemma 2.2, we will provide some elementary conditions

under which Varadhan’s upper bound holds. Then we will show that the set of conditions in the

original statement imply the elementary conditions. Next, we will show that some other novel sets of

conditions also imply the elementary conditions. In particular, these novel sets of conditions do not

require compact sublevel sets of J nor upper semicontinuity of φ. Importantly, this will shed some

light on the role of the original assumptions in Varadhan’s Lemma. The proof of Lemma 2.2 is inspired

by the proof of Varadhan’s Lemma in [3].

As is customary, we define exp(−∞) = 0, log(0) = −∞, exp(∞) = log(∞) =∞ and 0 ·∞ = 0. For

b ∈ [−∞,∞], we define fb = f ∧ b = min{f, b} for a function f : X → [−∞,∞].

Lemma 2.2. Suppose that µε satisfies (1) for some function J : X → [0,∞] and define B :=

limM→∞ supx∈X [φM (x)− J(x)].
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Consider the following sets of conditions. We will refer to condition y of C.x by C.x.y. Condition

C.2.b and C.3.b are identical.

C.1 The conditions a, b, c and d of Lemma 2.1 hold.

C.2 a. The superlevel set φ−1([w,∞]) is closed for every w ∈ R satisfying the inequality w ≥ B.

b. For each δ > 0 there exists ε∗ > 0 such that φ(ε) ≤ φ+δ on the set {φ > B} and φ(ε) ≤ B+δ

on {φ ≤ B} for all ε ∈ (0, ε∗).

C.3 a. The function J is continuous.

b. For each δ > 0 there exists ε∗ > 0 such that φ(ε) ≤ φ+δ on the set {φ > B} and φ(ε) ≤ B+δ

on {φ ≤ B} for all ε ∈ (0, ε∗).

Suppose that the conditions of at least one of the sets C.1, C.2 or C.3 are satisfied. Then it holds that

lim sup
ε→0

ε log

∫
X

exp
[
1
εφ

(ε)(x)
]
µε(dx) ≤ lim

M→∞
sup
x∈X

[φM (x)− J(x)] (3)

if and only if

lim
M→∞

lim sup
ε→0

ε log

∫
X

exp
[
1
εφ

(ε)(x)
]
1{φ(ε)(x)>M}µε(dx) ≤ lim

M→∞
sup
x∈X

[φM (x)− J(x)]. (4)

Proof. The statement of the lemma is trivial if B = ∞, so in the remainder of this proof we assume

that B <∞.

First, observe the following. If the functions φ and φ(ε) satisfy one of the sets of assumptions, then

the functions φb and φ
(ε)
b satisfy the same set of assumptions for each b ∈ [−∞,∞]. Moreover, for each
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b > 0 it holds that

lim sup
ε→0

ε log

∫
X

exp
[
1
εφ

(ε)(x)
]
µε(dx)

= lim sup
ε→0

ε log

(∫
X

exp
[
1
εφ

(ε)
b (x)

]
1{φ(ε)(x)≤b} µε(dx)

+

∫
X

exp
[
1
εφ

(ε)(x)
]
1{φ(ε)(x)>b}µε(dx)

)

= max

{
lim sup
ε→0

ε log

∫
X

exp
[
1
εφ

(ε)
b (x)

]
1{φ(ε)(x)≤b} µε(dx),

lim sup
ε→0

ε log

∫
X

exp
[
1
εφ

(ε)(x)
]
1{φ(ε)(x)>b}µε(dx)

}
.

Suppose that for each fixed b > 0 equation (2) holds with φ(ε) and φ replaced by φ
(ε)
b and φb, respec-

tively. Then the first term in the maximum above is bounded above by supx∈X [φb(x)− J(x)] and thus

by supx∈X [φ(x)− J(x)] for each b > 0.

Hence, to prove the lemma, it suffices to show that if the functions φ and φ(ε) satisfy the conditions

of C.1, C.2 or C.3, then for each b > 0 equation (2) holds with φ(ε) and φ replaced by φ
(ε)
b and φb,

respectively.

Suppose that for each fixed b > 0 the following holds. For each δ > 0 and w ∈ (−∞, b] such that

w ≥ supx∈X [φb(x)− J(x)], there exists some nδ ∈ N and measurable sets Hδ,0, Hδ,1, . . . ,Hδ,nδ such

that X = ∪nδk=0Hδ,k and

lim sup
ε→0

sup
x∈Hδ,k

φ
(ε)
b (x)− inf

x∈clHδ,k
J(x) ≤ w + δ. (5)

Then it follows that

lim sup
ε→0

ε log

∫
X

exp
[
1
εφ

(ε)
b (x)

]
µε(dx) ≤ max

k=0,...,nδ
lim sup
ε→0

ε log

∫
Hδ,k

exp
[
1
εφ

(ε)
b (x)

]
µε(dx)

≤ max
k=0,...,nδ

{
lim sup
ε→0

sup
x∈Hδ,k

φ
(ε)
b (x)− inf

x∈clHδ,k
J(x)

}

≤ w + δ,
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where the first inequality is an immediate application of [2, Lem. 1.2.15] and the second inequality

follows from an easy estimate of the integral combined with the LDUB (1).

Hence, to prove the lemma, it suffices to construct for each b > 0 and each δ > 0 a finite number

of measurable sets Hδ,0, Hδ,1, . . . ,Hδ,nδ such that (5) holds, given that the functions φ and φ(ε) satisfy

one of the sets of assumptions.

From now on, we fix b > 0 and δ > 0. The proof is trivial if {φb > B} is empty or supx∈X [φb(x)− J(x)] =

b, so we assume that this is not the case. Fix any w ∈ (−∞, b) such that w > supx∈X [φb(x)− J(x)].

• Proof for C.1. Suppose that the functions φ and φ(ε) satisfy the conditions of C.1, i.e., the

conditions of [6, Th. 3.1]. We will show that the proof of [6, Th. 3.1] fits into the framework

described above.

By assumption C.1.b and C.1.d, for each x ∈ {J <∞} there exist an open neighborhood Ox of

x and some ε∗x > 0 such that φ(ε)(y) ≤ φ(x) + δ/2 and J(y) ≥ J(x)− δ/2 for all y ∈ Ox and all

ε ∈ (0, ε∗x). In addition, for each x ∈ {J <∞} there exists an open neighborhood O∗x of x such

that clO∗x ⊂ Ox, due to X being regular (C.1.a).

Pick any Z ∈ R such that Z ≥ b − w. Clearly, {J ≤ Z} ⊂ ∪x∈{J≤Z}O∗x. Since {J ≤ Z} is

compact by assumption C.1.c, there exists a finite subcover. Then there exist nδ ∈ N and

x1, . . . , xnδ ∈ {J ≤ Z} such that {J ≤ Z} ⊂ ∪nδk=1O∗xk .

Take Hδ,0 = X \ ∪nδk=1O∗xk and Hδ,k = O∗xk for k = 1, . . . , nδ. These sets are measurable due to

C.1.a. Moreover,

lim sup
ε→0

sup
x∈Hδ,k

φ
(ε)
b (x)− inf

x∈clHδ,k
J(x) ≤ lim sup

ε→0
sup
x∈Oxk

φ
(ε)
b (x)− inf

x∈Oxk
J(x)

≤ φb(xk) + δ/2− J(xk) + δ/2

≤ w + δ

for k = 1, . . . , nδ. Since Hδ,0 is closed and Hδ,0 ⊂ {J > Z}, we also get

lim sup
ε→0

sup
x∈Hδ,0

φ
(ε)
b (x)− inf

x∈clHδ,0
J(x) ≤ b− inf

x∈Hδ,0
J(x) ≤ b− (b− w) = w.
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Hence, X = ∪nδk=0Hδ,k and (5) is satisfied.

• Proof for C.2 and C.3. Suppose that the functions φ and φ(ε) satisfy the conditions of C.2 or

C.3. Conditions C.2.b and C.3.b are the same and imply that φ(ε) ≤ B + δ < w + δ on the set

{φ ≤ B} and φ(ε) ≤ φ + δ < w + δ on the set {B < φ < w} for all ε ∈ (0, ε∗), for some ε∗ > 0.

Hence, we may take Hδ,0 = {φ < w}, which is clearly measurable.

For k ∈ N, define the measurable sets

Lki = φ−1b
([
cki−1, c

k
i

])
for i = 1, . . . , k, where

cki = w +
i

k
(b− w)

for i = 0, . . . , k. Observe that cki −cki−1 = b−w
k and that {φ ≥ w} = {φb ≥ w} = ∪ki=1L

k
i for every

k ∈ N.

C.2. Suppose that second set of assumptions holds. Then we have clLki ⊂ clφ−1b
([
cki−1, b

])
and

φ−1b
([
cki−1, b

])
= φ−1

([
cki−1,∞

])
is closed by assumption (C.3.a), so clLki ⊂ φ−1b

([
cki−1, b

])
.

But cki−1 = cki − b−w
k , so cki ≤ φb(x) + b−w

k for all x ∈ Lki . Hence, we get

sup
x∈clLki

[
cki − J(x)

]
≤ sup
x∈clLki

[
φb(x) +

b− w
k
− J(x)

]
≤ sup
x∈X

[φb(x)− J(x)] +
b− w
k

.

C.3. Suppose that the third set of assumptions holds. Then

sup
x∈clLki

[
cki − J(x)

]
= sup
x∈Lki

[
cki − J(x)

]
,

7



by continuity of J (C.2.a). We get cki ≤ φb(x) + b−w
k for all x ∈ clLki and

sup
x∈Lki

[
cki − J(x)

]
≤ sup
x∈Lki

[
φb(x) +

b− w
k
− J(x)

]
≤ sup
x∈X

[φb(x)− J(x)] +
b− w
k

.

It does not matter which of the two sets of conditions holds: we get the same inequality in both

cases. Now take nδ ∈ N such that b−w
nδ
≤ δ and define Hδ,i = Lnδi for i = 1, . . . , nδ. Then

lim sup
ε→0

sup
x∈Hδ,i

φ
(ε)
b (x)− inf

x∈clHδ,i
J(x) ≤ sup

x∈Hδ,i
φb(x)− inf

x∈clHδ,i
J(x)

≤ cnδi − inf
x∈clHδ,i

J(x)

≤ sup
x∈X

[φb(x)− J(x)] + δ

≤ w + δ

for each i = 1, . . . , nδ. Hence, X = ∪nδi=0Hδ,i and (5) is satisfied.

Assuming that φ is real-valued and taking φ(ε) = φ in the previous lemma (so that conditions C.2.b

and C.3.b are void), we obtain the following corollary. Note that only measurability of φ is required

when J is continuous.

Corollary 2.3. Suppose that φ takes values in R and that µε satisfies (1) for some function J : X →

[0,∞]. Define B = supx∈X [φ(x)− J(x)] and assume that at least one of the following sets of conditions

holds.

1. The conditions a, b, c and d of Lemma 2.1 hold.

2. The superlevel set φ−1([w,∞]) is closed for every w ∈ R satisfying the inequality w ≥ B.

3. The function J is continuous.
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Then (2) holds if and only if

lim
M→∞

lim sup
ε→0

ε log

∫
X

exp
[
1
εφ(x)

]
1{φ(x)>M}µε(dx) ≤ sup

x∈X
[φ(x)− J(x)]. (6)

Note that (6) automatically holds if φ is bounded above. Indeed, if φ is bounded above by some

C ∈ R, then the integral on the left-hand side of (6) equals 0 for all M ≥ C.

As remarked before, condition d of Lemma 2.1 essentially requires that φ is upper semicontinuous.

The corollary shows that this is sufficient to obtain the upper bound if φ(ε) = φ, so that conditions a,

b, c, e and f of Lemma 2.1 are not needed in this case.

In particular, compactness of the sublevel sets of J is not required to obtain the upper bound if

φ(ε) = φ. A better look at the proof of Lemma 2.2 shows that compactness of the sublevel sets of J

is used to control the convergence of the functions φ(ε), which is not necessary if φ(ε) = φ. Hence, the

compactness requirement in [2, Lem. 4.3.6] may be dropped. This observation is useful in queueing

theory, because one often encounters rate functions that do not have compact level sets (cf. [4, Ex. 4.8]).

3 Examples

In the upcoming examples we show why our generalization of Varadhan’s Lemma is useful. The first

example describes a family of functions that does not satisfy the original assumptions of Varadhan’s

Lemma (cf. Lemma 2.1). Indeed, the functions increase to infinity at some point, so that condition

f is not satisfied and condition e of Lemma 2.1 does not necessarily hold. However, the family does

satisfy conditions C.1, C.2 and C.3, so Lemma 2.2 is applicable. The example also shows that the tail

condition in (4) is nontrivial, in the sense that the left-hand side of (4) may take any value in [−∞,∞].

Example 3.1. Let X = {0, 1, 2} and let its topology be given by the power set of X . For ε ∈ (0, 1],

define the probability measure µε via µε({2}) = 1
2 exp

(
1− ε−2

)
, µε({1}) = 1

2 exp(−z/ε) for some z > 0

and µε({0}) = 1−µε({1})−µε({2}). Then µε satisfies an LDP with rate function J given by J(0) = 0,

J(1) = z and J(2) =∞.

For ε ∈ (0, 1], define the function φ(ε) via φ(ε)(0) = −∞, φ(ε)(1) = f(ε) and φ(ε)(2) = g(ε), where

f(ε) ↑ y for some y ∈ R and g(ε) ↑ ∞ as ε→ 0.
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The only reasonable choice for the function φ is taking φ(0) = −∞, φ(1) = y and φ(2) = ∞.

Observe that all three sets of conditions in Lemma 2.2 are satisfied and that

lim
M→∞

sup
x∈X

[φM (x)− J(x)] = y − z ∈ R.

But it holds that

lim
M→∞

lim sup
ε→0

ε log

∫
X

exp
[
1
εφ

(ε)(x)
]
1{φ(ε)(x)>M}µε(dx)

= lim sup
ε→0

ε log
(
1
2 exp

[
1
ε g(ε)

]
exp
[
1− ε−2

])
= lim sup

ε→0

[
g(ε)− 1

ε

]
,

so

lim sup
ε→0

ε log

∫
X

exp
[
1
εφ

(ε)(x)
]
µε(dx) ≤ lim

M→∞
sup
x∈X

[φM (x)− J(x)]

if and only if

lim sup
ε→0

[
g(ε)− 1

ε

]
≤ y − z.

Note that lim supε→0

[
g(ε)− 1

ε

]
may take any value in [−∞,∞], depending on how fast g(ε) increases

to ∞ as ε→ 0.

As illustrated in the previous example, the conditions e and f in Lemma 2.1 are not necessary to

obtain an upper bound. Moreover, if J is continuous and the measures µε are absolutely continuous,

then we may obtain an even tighter upper bound than in the standard formulation of Varadhan’s

Lemma. This is shown in the next example.

Example 3.2. Let X = R and let φ : X → [−∞,∞] be a bounded Lebesgue measurable function. Let

N ⊂ X be any measurable null set and define the Lebesgue measurable function φ∗ : X → [−∞,∞]

via φ∗ = φ on X \N and φ∗ = −∞ on N . Let {µε} be a family of probability measures on X that are

absolutely continuous with respect to Lebesgue measure. Suppose that this family satisfies an LDUB
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with continuous rate function J . Since N is a null set, we obtain

∫
X

exp
[
1
εφ(x)

]
µε(dx) =

∫
X

exp
[
1
εφ
∗(x)

]
µε(dx)

for every ε > 0. Since J is continuous and φ∗ is bounded above, Corollary 2.3 implies that

lim sup
ε→0

ε log

∫
X

exp
[
1
εφ
∗(x)

]
µε(dx) ≤ sup

x∈X
[φ∗(x)− J(x)] = sup

x∈X\N
[φ(x)− J(x)].

Since N was an arbitrary null set, it follows that

lim sup
ε→0

ε log

∫
X

exp
[
1
εφ(x)

]
µε(dx) ≤ ess sup(φ− J),

where the essential supremum is taken with respect to Lebesgue measure.

To see that this is indeed a sharper upper bound, consider the following simple example. Let

X = [0, 1], φ(x) = 1{x=1/2} and µε = µ, where µ is the uniform distribution on [0, 1]. Then J ≡ 0 on

X and

lim sup
ε→0

ε log

∫
X

exp
[
1
εφ(x)

]
µε(dx) = ess sup(φ− J) = 0 < 1 = sup

x∈X
[φ(x)− J(x)].

The last example provides an LDUB for observations of a modulated Poisson process. These

processes are important in queueing theory to model arrival processes whose parameters depend on a

random environment (see for instance [1] and [5]). The example shows that in this context we may

obtain functions that are not upper semicontinuous, so that the original version of Varadhan’s Lemma

does not apply to this case. However, under the assumption that the rate function is continuous we

may invoke Corollary 2.3 to prove an LDUB in this case.

Example 3.3. Let M be a Poisson process with arrival intensity λ > 0 that is modulated by a

stochastic ON/OFF switch, i.e., M is modulated by a stochastic process Z with state space {0, 1}.

This means that M has arrival intensity zλ while Z is in state z ∈ {0, 1}. For simplicity, assume that

Z has càdlàg paths.

11



Fix some time t > 0. We would like to count the number of jobs in the system at time t (i.e., the

number of jobs that have arrived in the time interval [0, t]), but we only count them if the switch has

been ON for at least t1 time units but less than t2 time units, where 0 < t1 < t2 < t. Hence, the

number of jobs that we count at time t is given by L(t) = 1{t1≤∫ t0 Z(s)ds<t2}M(t).

We scale the arrival intensity via λ 7→ nλ and the background process via Z 7→ Zn in such a

way that the probability measure µn induced by
∫ t
0
Zn(s)ds satisfies an LDUB with continuous rate

function J . We denote the resulting modulated Poisson process by Mn.

We would like to prove an LDUB for Ln(t) = 1{t1≤∫ t0 Zn(s)ds<t2}Mn(t) using a Chernoff bound

under this scaling. It is well known that Mn(t) has a Poisson distribution with random parameter

nλ
∫ t
0
Zn(s)ds (cf. [4, Lem. A.1]). For γ ≥ 0, we let P0(γ), P1(γ), . . . denote a sequence of independent

random variables with a Poisson distribution with parameter γ. Fix a closed set F ⊂ R and write

lim sup
n→∞

1

n
logP

(
1

n
Ln(t) ∈ F

)
= lim sup

n→∞

1

n
log

∫
[0,t]

P
(
1{t1≤x<t2}

1

n
P0(nλx) ∈ F

)
µn(dx)

= lim sup
n→∞

1

n
log

∫
[0,t]

P

(
1{t1≤x<t2}

1

n

n∑
k=1

Pk(λx) ∈ F

)
µn(dx)

≤ lim sup
n→∞

1

n
log

∫
[0,t]

exp

(
n

(
− inf
a∈F

I(x; a)

))
µn(dx),

where I(x; ·) = `
(
1{t1≤x<t2}λx; ·

)
and `(y; ·) is the rate function corresponding to a Poisson distribution

with parameter y ≥ 0. More specifically, the function ` is given by `(y; a) =∞ for a < 0, `(y; 0) = y,

`(0; a) =∞ for a > 0 and `(y; a) = a log(a/y)− a+ y for y > 0 and a > 0.

The map x 7→ − infa∈F I(x; a) fails to be upper semicontinuous for certain closed sets F . Indeed,

taking F = {0} and using that `(y; 0) = y, we get

− inf
a∈F

I(x; a) =


0 0 ≤ x < t1;

−λx t1 ≤ x < t2;

0 t2 ≤ x ≤ t.

Since this map is not upper semicontinuous, the standard version of Varadhan’s Lemma does not apply

to this case. However, it is easy to see that the map x 7→ − infa∈F I(x; a) is measurable for each closed

12



set F . Because the sequence of measures µn satisfies an LDUB with continuous rate function J and

the map x 7→ − infa∈F I(x; a) is bounded above by 0, we may invoke Corollary 2.3 to obtain

lim sup
n→∞

1

n
log

∫
[0,t]

exp

(
n

(
− inf
a∈F

I(x; a)

))
µn(dx) ≤ sup

x∈[0,t]

[
− inf
a∈F

I(x; a)− J(x)

]
,

so that

lim sup
n→∞

1

n
logP

(
1

n
Ln(t) ∈ F

)
≤ − inf

a∈F
inf

x∈[0,t]
[I(x; a) + J(x)]

for every closed set F .
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