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Abstract We describe a novel method of heavy tails estimation based on transformed
score (t-score). Based on a new score moment method we derive the t-Hill estimator,
which estimates the extreme value index of a distribution function with regularly
varying tail. t-Hill estimator is distribution sensitive, thus it differs in e.g. Pareto and
log-gamma case. Here, we study both forms of the estimator, i.e. t-Hill and t-lgHill.
For both estimators we prove weak consistency in moving average settings as well as
the asymptotic normality of t-lgHill estimator in iid setting. In cases of contamination
with heavier tails than the tail of original sample, t-Hill outperforms several robust
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tail estimators, especially in small samples. A simulation study emphasizes the fact
that the level of contamination is playing a crucial role. The larger the contamination,
the better are the t-score moment estimates. The reason for this is the bounded t-score
of heavy-tailed distributions (and, consequently, bounded influence functions of the
estimators). We illustrate the developed methodology on a small sample data set of
stake measurements from Guanaco glacier in Chile.

Keywords Point estimation, Asymptotic properties of estimators, t-Hill estimator,
t-lgHill estimator

Mathematics Subject Classification (2000) 62F10 · 62F12

1 Introduction

The aim of this paper is to introduce a novel method of heavy tails estimation based on
transformed score. Especially for small or/and contaminated samples such a method
can be better than standard maximum likelihood, since it relates to the method of
moments for transformed scores (see Fabián (2015); Hosking and Wallis (1987)). Let
us denote RVa the class of regularly varying functions at infinity, with an index of
regular variation equal to a ∈ R, i.e. positive measurable functions g(·) such that for
all x > 0, g(tx)/g(t)→ xa, as t→ ∞.

Here we suppose that X1,X2, . . . ,Xn are possibly dependent copies of X with dis-
tribution function (d.f.) F , upper order statistics

X(1,n) ≤ X(2,n) ≤ ·· · ≤ X(n,n)

and
1−F ∈ RV−α , α > 0. (1)

We define α to be the tail parameter and γ := 1/α to be the extreme value index.
Hill (1975) derived a procedure of Pareto tail estimation by MLE, obtaining the

following Hill estimator

Hkn,n =
1
kn

kn

∑
i=1

log

{
X(n−i+1,n)

X(n−kn,n)

}
, kn = 1,2, . . . ,n−1. (2)

Later on, many authors tried to robustify the Hill estimator, but they still relied
on maximum likelihood method. Alves (2001) has introduced a new lower bound
and Gomes and Oliveira (2003) respectively Li et al. (2010) have introduced pow-
ers of original statistics. However, the influence function of Hill estimator is slowly
increasing but unbounded, thus, the Hill procedure is not robust. Further approaches
of robustifying the original Hill estimator were given in Beran and Schell (2012);
Vandewalle et al. (2007). In Fabián (2001) a new score method of score moment
estimators has been proposed. It appeared that these score moment estimators are
robust for very heavy tailed distributions, see Stehlı́k et al. (2010a). Jordanova and
Pancheva (2012) consider an independent identically distributed (i.i.d.) sample and
find the limit distribution of the t-Hill estimator for a fixed number k of the threshold
order statistics. They prove that a sample of Pareto distributed observations does not
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have to be large in order to receive the corresponding limit distribution for fixed k.
In that case under suitable normalizations and a large sample the t-Hill estimator is
asymptotically normal for k(n)→ ∞. Under the more general conditions, the t-Hill
estimator is asymptotically normal for k(n) = o(n). The Hill estimator procedure with
the score moment estimator has been investigated in Stehlı́k et al. (2012) for optimal
testing for normality against Pareto tail. Recently, nice generalizations of t-Hill have
been published, see Brilhante et al. (2013); Paulauskas and Vaiciulis (2013); Beran
et al. (2014).

Resnick and Starica (1993) generalize the Hill estimator for more general settings
with possibly dependent data. In this paper we continue these investigations, since
dependencies are expected in real data applications. We obtain weak consistency of
the t-Hill estimator for a special class of dependent data, the infinite moving average
model. Moreover, we provide some examples showing that in contrast to the i.i.d.
case the t-Hill and the Hill estimators applied to the moving average model are not
robust with respect to large observations. Under the concept of the Hill estimator we
understand the successive averaging of ordered values up to given k. In this paper
we understand “The Hill estimator” as a specific procedure for studying the tail of
Pareto like distributions. Instead of implementing “The Hill estimator” procedure,
we implement the t-score moment procedure, which can give different estimators
for different families. We illustrate t-Hill and we also quantify the robustness and
compare efficiency with other competitors.

The paper is organized as follows: in the next section we recall the theory of
score function of the distribution introduced firstly by Fabián (2001) and studied later
in series of works. In section 3 we provide asymptotical results (asymptotic con-
sistency and asymptotic normality) for t-Hill estimators for Pareto and log-gamma
distributions, under iid and moving average settings. In section 4 we compare max-
imum likelihood, t-Hill, transformed score moment and Hill estimators.We also in-
troduce t-lgHill estimator, which is a transformed score moment estimator for case
of loggamma distribution. Contamination of underlying data is controlled by the ex-
treme value index, shifting parameter or the means of transformed score variance
of contaminating Pareto distribution. Comparisons show that in cases when the con-
tamination has heavier tail than the original distribution, t-Hill estimator outperforms
Hill estimator and several robust tail estimators (Integrated Squared Error Estimator
(ISE), Partial Density Component (PDC) estimator (Vandewalle et al. (2007)), Least
Squares estimator (LS), moment estimator (ME, see Dekkers et al. (1989)), QQ esti-
mator (Kratz and Resnick (1996)) or Weighted MLE estimator (WMLE, see Dupuis
and Morgenthaler (2002); Dupuis and Victoria-Feser (2006)). We investigate robust-
ness of t-Hill estimator for a particular case of moving average sequence. In section
5 we provide an application of t-Hill in comparison to Hill and Zipf’s estimator for
a small sample data set from Guanaco Glacier. Summary concludes the paper. For
reasons of readability we provide all proofs in the Appendix.
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2 Transformed Score Function and Transformed Score Moment Estimators

Pearson and Filon (1898), Edgeworth (1908a), Edgeworth (1908b), and Fisher (1925)
developed the basic statistical inference function, the so called score function. Their
score is the gradient with respect to parameter θ of the logarithm of the likeli-
hood function S(θ ,X) = ∂

∂θ logL(θ ;X), indicating the sensitivity of L (its deriva-
tive normalized by its value). The variance of the score is the Fisher information
I (θ) = Eθ (S2).

Fabián (2001, 2007, 2010, 2015) has introduced a more general scalar-valued in-
ference function, in this paper called transformed score function (or t-score) of distri-
bution, reflecting main features of continuous probability distributions and enabling
an introduction of their new relevant characteristics.

The t-score of distribution G with support R and unimodal differentiable density
g is a function

SG(y) =−
g′(y)
g(y)

(3)

expressing the relative rate of the change of g. For a distribution Gµ with location
parameter µ ∈ R, that is, with density in the form g(x− µ), the generalized t-score
function equals the Fisher score for µ as

SG(y−µ) =
∂

∂ µ
logg(y−µ).

We consider that t-score in equation (3) is a significant function of parametric distri-
bution Gθ ,θ ∈Θ ⊆ R, and the mode y∗ : SG(y;θ) = 0 its ’central’ point.

Example 1 The t-score of N (µ ,σ) is SN (y) = y−µ
σ2 and y∗ = µ .

In general, the t-score of distribution F with arbitrary interval support X ⊆ R is
defined by the following construction.

Definition 1 Let η : X →R be a strictly increasing smooth mapping. The t-score of
distribution F with interval support X ⊆ R and (almost surely) two-times differen-
tiable density f (x) is

TF(x) =−
1

f (x)
d
dx

[
1

η ′(x)
f (x)

]
. (4)

Supposing that the solution x∗ of equation

TF(x) = 0 (5)

is unique, it is called the t-score mean and function

SF(x) = η ′(x∗)TF(x) (6)

the generalized t-score function of distribution F.



Weak properties and robustness of t-Hill estimators 5

Definition 1 can be explained as follows: F is a transformed distribution F(x) =
G(η(x)), where G(y) is a ’prototype’ with support R. F has density

f (x) = g(η(x))η ′(x) (7)

where η ′(x)= dη(x)/dx is the Jacobian of the transformation. It was shown in Fabián
(2001) that the t-score is actually the transformed generalized t-score function of the
prototype, TF(x) = SG(η(x)). The Jacobian of the transformation does not carry any
information about the distribution. The term in brackets of equation (4) is the density
without the Jacobian.

The justification of expression (6) is the following: consider a location prototype
Gµ with density g(y−µ). The density of the transformed distribution Fτ = Gµ ◦η(x)
is

f (x;τ) = g(η(x)−η(τ))η ′(x),

where τ = η−1(µ) is a so called transformed location parameter. It was proven in
Fabián (2007) that the generalized t-score function with transformed location param-
eter is identical with the Fisher score for this parameter,

SF(x;τ) =
d
dx

log f (x;τ).

Generalized t-score function (6) and its parametric form SF(x;θ) generalize the
concept of the Fisher score for distributions with arbitrary support without a ’central’
parameter or without parameters at all. If the prototype G has mode y∗, the score
mean of the transformed distribution is the transformed mode of the prototype G,
x∗ = η−1(y∗). The generalized t-score function is actually the (generalized) Fisher
score for the score mean, which may not be a parameter of the distribution and is
unique if the prototype is unimodal.

The mapping η(x) occurring in Definition 1 is often the inner part of f (x), so that
η(x) and/or η ′(x) in equation (7) are clearly identifiable. This η is called an innate
mapping; Fabián (2015) discusses how to choose a most suitable innate mapping if it
is not apparent from the density formula.

Let us consider two examples, related to log-gamma and Pareto distributions stud-
ied later in this paper. For other examples, e.g. beta-prime distribution see Fabián
(2015).

Example 2 The log-gamma distribution with support X = (1,∞) has density

f (x) =
αc

Γ (c)
(logx)c−1 1

xα+1 =
αc

Γ (c)
(logx)cx−α 1

x logx
(8)

so that η ′(x) = 1
x logx and the innate mapping is η(x) = log logx. By (4) one obtains

TF(x) =−
1

f (x)
d
dx

[(logx)α x−α ] = α logx− c,

with score mean x∗ = ec/α .
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Example 3 The density
f (x) =

α
xα+1 (9)

of the Pareto distribution with X = (1,∞) does not contain any ’visible’ Jacobian of
any transformation. By using η ′(x) from the foregoing example we would receive

TF(x) =−
1

f (x)
d
dx

[x logx f (x)] = α logx−1,

which is the Fisher score for α . By using η(x) = log(x− 1), η ′(x) = 1/(x− 1), the
t-score (4) is

TF(x) =−
1

f (x)
d
dx

[(x−1) f (x)] = α− (α +1)/x = α(1− x∗/x), (10)

with score mean x∗= (α+1)/α. Since the ’shifted’ Pareto with X =R+ and density
f (x) = α

(x+1)α+1 is the particular case of the beta type II distribution with bounded
generalized t-score, the latter one is to be taken as the t-score of the Pareto distribu-
tion.

The score moments (SM) were introduced for any k ∈N instead of the ordinary
moments by

Mk(θ) = ESk
F(θ) =

∫
X

SF(x;θ)k f (x;θ) dx, (11)

existing only if f satisfies the usual regularity requirements. It appeared that the score
moments are often expressed by elementary functions of parameters. It is easy to see
that M1 = 0. The value M2 = ES2

F of distributions with (transformed) location pa-
rameter is the Fisher information for (transformed) location parameter. Accordingly,
ES2

F is the Fisher information for the t-mean. The reciprocal value

ω2 =
1

ES2
F
, (12)

the t-score variance, appeared to be a measure of the variability (dispersion) of the
distribution even in cases where the usual variance does not exist (see Fabián (2007)).

Notice, that in case of the Pareto distribution ET 2
F = α/(α + 2), ES2

F = (x∗−
1)−2ET 2

F so that

ω2
F =

α +2
α3 . (13)

Let X1, . . . ,Xn be i.i.d. random variables according to some F . Assuming F as a
member of the model family {Fθ ,θ ∈Θ}, Θ ∈ Rm, Fabián (2001, 2010) introduced
the t-score moment estimate θ̂SM as the solution of equations

θ̂SM :
1
n

n

∑
i=1

Sk
F(xi;θ) = ESF

k(θ), k = 1, . . . ,m, (14)

the statistical counterpart of (11). It was shown that θ̂SM is consistent and asymptoti-
cally normal. The score moment estimators take the assumed form of the distribution
into account, similarly as the maximum likelihood (ML) ones. However, since data
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enter into estimation equations only by means of SF(xi;θ), and transformed scores
of heavy-tailed distributions appeared to be bounded, the transformed score moment
estimates of all parameters are protected against outliers in cases of heavy-tailed dis-
tributions. Let us remark that since t-scores and generalized t-score functions differ
only in a constant factor, one can use the t-scores instead of generalized t-score func-
tions in the score moment equations.

The t-score moment equations for log-gamma and Pareto distributions are:

Example 4 Log-gamma distribution: As ET 2
F = c, equations (14) are

n

∑
i=1

(α logxi− c) = 0 (15)

1
n

n

∑
i=1

(α logxi− c)2 = c (16)

with solution α = s1
s2−s2

1
,c = s2

1
s2−s2

1
where s1 =

1
n ∑n

i=1 logxi and s2 =
1
n ∑n

i=1(logxi)
2.

Example 5 Pareto distribution: From the first moment equation ∑n
i=1(1−x∗/xi) = 0

we obtain x̂∗ = x̄H , where

x̄H = n/
n

∑
i=1

1/xi

is the harmonic mean, and
α̂ = 1/(x̄H −1). (17)

We use the same notations of order statistics as in section 1, see (1). Hence, due
to (17), the t-Hill estimator of γ = α−1 was suggested in the form

H∗kn,n =

{
1
kn

kn

∑
i=1

X(n−kn,n)

X(n−i+1,n)

}−1

−1, kn = 1,2, ...,n−1. (18)

This estimator was firstly published in technical report of Fabián and Stehlı́k (2009).
Since it is based on harmonic mean, which is a generalized t-Hill estimator, it is
expected to be resistant to large observations to a certain extent so that it could yield
more realistic values than the ordinary Hill estimator. Further generalizations have
been made by Brilhante et al. (2013); Beran et al. (2014). In particular, the tradeoff
between efficiency and robustness has been studied in Beran et al. (2014), a mean of
order p≥ 0 (MOP) generalization is given by Brilhante et al. (2013).

For the definition of the t-lgHill estimator we use the same notations of order
statistics as in section 1, see (1), and

M( j)
n =

1
kn

kn

∑
i=1

(
log

X(n−i+1,n)

X(n−kn,n)

) j

, j = 1,2, ...

Hence the t-lgHill estimator of γ = α−1 has the form

HL
kn,n =

M(2)
n − (M(1)

n )2

M(1)
n

. (19)



8 P. Jordanova et al.

If we understand the t-Hill estimator as an algorithm depending on the assumed
distribution, the t-Hill for log-gamma distribution is, according to the solution of (15)
and (16)

HL
kn,n =

∑kn
i=1 log2

{
X(n−i+1,n)
X(n−kn,n)

}
∑kn

i=1 log
{

X(n−i+1,n)
X(n−kn,n)

} − 1
kn

kn

∑
i=1

log

{
X(n−i+1,n)

X(n−kn,n)

}
kn = 1,2, ...,n−1. (20)

Let us denote HL
kn,n sequence by t-lgHill. Referring to Section 2, the t-lgHill esti-

mate of the tail index is given by (16) and has a closed-form expression as

HL
kn,n =

s2

s1
− s1.

3 Asymptotical results

3.1 t-Hill Estimator in Case of Moving Average Sequence

Suppose at least one of the real numbers c j, j = 0,1, ... is positive and there exists
δ ∈ (0,1), δ < α such that

∞

∑
j=0
|c j|δ < ∞. (21)

Consider the moving average sequence

Xn =
∞

∑
j=0

c jZn− j, −∞ < n < ∞, (22)

where Zi,−∞ < i < ∞, are non-negative i.i.d. innovations with d.f. G, such that G ∈
RV−α , α > 0. We will use the t-Hill estimator as introduced before and consider the
point measure

µX ,kn,n(·) :=
1
kn

n

∑
i=1

ε

{
Xi

b( n
kn
)
∈ (·)

}
,

as a random element in the space E+ of positive Radon measures on (0,∞] endowed
with the vague topology. Here

b(t) := F←(1− 1
t
) =

(
1
F

)←
(t) (23)

is the tail function of F . Let

kn→ ∞,
kn

n
→ 0. (24)

By Proposition 3.3 of Resnick and Starica (1993)

1
kn

n

∑
i=1

I[ Xi
b( n

kn
)
>0
]ε
{

Xi

b( n
kn
)
∈ (·)

}
⇒µ, n→ ∞,
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in E+, where µ : σ((0,∞])→ [0,∞) and µ(x,∞] = x−α , x > 0.
However, for all n ∈ N, kn = 1,2, ...,n and A ∈ E+

1
kn

n

∑
i=1

I[ Xi
b( n

kn
)
>0
]ε
{

Xi

b( n
kn
)
∈ A

}
=µX ,kn,n(A), (25)

in distribution, therefore

µX ,kn,n⇒µ, n→ ∞, (26)

in E+.
By Proposition 2.1. in Resnick and Starica (1993), having an intermediate se-

quence,

X(n−kn,n)

b
(

n
kn

) P→1 (27)

and by Proposition 2.2. in Resnick and Starica (1993)

µ̂X ,kn,n(·) :=
1
kn

n

∑
i=1

ε

{
Xi

X(n−kn,n)
∈ (·)

}
P→µ(·), n→ ∞, (28)

in E+.
We will use the following Potter’s inequality for distribution functions with regu-

larly varying tails. If a function H is regularly varying with exponent γ ∈ R, then for
ε > 0 there will exist t0(ε), such that for t > t0(ε) and x≥ 1,

(1− ε)xγ−ε ≤ H(tx)
H(t)

≤ (1+ ε)xγ+ε . (29)

Its proof can be found in de Haan (1970).

Lemma 1 Let X1,X2, ... be random variables with d.f. F such that

F(x) ∈ RV−α . (30)

Assume that kn→ ∞, kn/n→ 0 and µX ,kn,n⇒ µ as n→ ∞. Define

Φn =
1
kn

kn

∑
i=1

φ

(
X(n−i+1,n)

X(n−kn,n)

)
,

where φ is a differentiable function on (1,+∞) such that x−α φ(x)→∞ as x→∞ and∫ ∞
t x−α+δ1 |φ ′(x)| dx <+∞, for all t > 1, 0< δ1 <α . Then, Φn is a weakly consistent

estimator of φ(1)+
∫ +∞

1 x−α φ ′(x)dx.

As a consequence of Lemma 1, considering φ(x) = 1/x yields that H∗kn,n, defined
in (18) is a weakly consistent estimator of 1/α .

Now we are ready to prove the weak consistency of the t-Hill estimator in case of
infinite moving average (MA) sequence.
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Proposition 1 Suppose at least one of the real numbers c j, j = 0,1, ... is positive
and there exists δ ∈ (0,1), δ < α such that condition (21) is satisfied. Consider the
moving average sequence (22) where Zi,−∞ < i < ∞, are non-negative i.i.d. innova-
tions with d.f. G, such that G ∈ RV−α , α > 0. If (24), then H∗k,n is a weakly consistent
estimator for α−1.

3.2 t-lgHill Estimator in Case of Moving Average Sequence

Suppose at least one of the real numbers c j, j = 0,1, ... is positive and there exists
δ ∈ (0,1), δ < α such that (21) is satisfied.

Consider the moving average sequence (22), where Zi,−∞ < i < ∞, are non-
negative i.i.d. innovations with d.f. G, such that G ∈ RV−α , c = α > 0.

Assume (24) holds. By weak consistency of Hill estimator we obtain that

M(1)
n

P→ 1
α
.

Now we need to prove that

M(2)
n − (M(1)

n )2 P→ 1
α2 ,

i.e.

M(2)
n

P→ 2
α2 (31)

and then to use Slutsky arguments. Consider the point measure

µX ,kn,n(·) :=
1
kn

n

∑
i=1

ε

{
Xi

b( n
kn
)
∈ (·)

}
,

as a random element in the space E+ of positive Radon measures on (0,∞] endowed
with the vague topology, where b is defined in (23).

In section 3.1 we proved that under these conditions

µX ,kn,n⇒µ, n→ ∞, (32)

in E+ and (26) and (27) are true.
As a consequence of Lemma 1, letting φ(x) = ln(x) entails that M(2)

n is a weakly
consistent estimator for 2/α2.

Proposition 2 Suppose at least one of the real numbers c j, j = 0,1, ... is positive and
there exists δ ∈ (0,1), δ < α such that condition (21) is satisfied. Consider the mov-
ing average sequence (22) where Zi,−∞ < i < ∞, are non-negative i.i.d. innovations
with d.f. G, such that G ∈ RV−α , α > 0. If (24), then

i.) M(2)
n is a weakly consistent estimator for 2α−2;

ii.) t-lgHill estimator HL
k,n is a weakly consistent estimator for α−1.
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3.3 t-lgHill Estimator is Asymptotically Normal in iid case

Definition 2 If the tail function of a non-negative random variable X is F̄ := 1−F
and F̄ : R→ [0;1] satisfies that F̄ ∈ RV−α with α > 0. Then F̄ is said to be of second-
order regular variation with parameter ρ ≤ 0, if there exists a function Q(t) that
ultimately has a constant sign with limt→∞ Q(t) = 0 and a constant c ̸= 0 such that

lim
t→∞

F̄(tx)
F̄(t) − x−α

Q(t)
= Hα,ρ(x) = cx−α

∫ x

1
uρ−1du, x > 0 (33)

Then it is written as F̄ ∈ 2RV−α,ρ and Q(t) is referred to as the auxiliary function of
F̄.

It is known from de Haan and Stadtmüller (1996) or a more relevant form in
Geluk et al. Geluk et al. (1997) that if Hα,ρ(x) is not a multiple of x−α then ρ < 0
implies that there exists a c ̸= 0 such that Hα,ρ(x) = cx−α xρ−1

ρ and |A| ∈ RVρ and
no other choices of ρ are consistent with Q(t)→ 0. There are many distributions
which satisfy the second order RV condition. These are (see e.g. Drees et al. (2000)):
Cauchy γ = 1,ρ = −2, Fréchet(1) γ = 1,ρ = −1, Student t(4) γ = 1/4,ρ = −1/2,
t(10) γ = 1/10,ρ =−1/5 or loggamma γ = 1/3,ρ = 0.

The most seminal results on this topic could be found in de Haan and Ferreira
(2006).

Theorem 1 Let X1,X2, . . . be iid random variables. Suppose that the second order
condition 33 holds with α > 0, and auxiliary function Q. If

√
knQ(n/kn)→ 0 as

n→ ∞ then, √
kn
(
αHL

kn,n−1
) d−→ N(0,8).

4 Empirical study of the effect of contamination on Pareto tail index.

The maximum likelihood estimator α̂ML,n := 1
Hkn ,n

of Pareto tail index is very sensi-
tive to deviations from the theoretical distributions, namely in the heavy-tailed class
of distributions, see Stehlı́k et al. (2010b). It is unbiased, asymptotically consistent
and has smallest variance in the set of all unbiased estimators for α . Its variance is
equal to α2/n. However, it is not robust with respect to large contamination because
its finite sample upper breakdown point is 0. Therefore, we are looking for an esti-
mator α̂n with asymptotic relative efficiency

Var α̂ML,n

Var α̂n
=

α2

nVar α̂n
≤ 1

and close to 1. The latter means that the estimator’s variance should be close to α2/n,
although it will be larger than this value. It seems difficult to theoretically compare
mean values and variances of Hill and t-Hill estimators for all distribution functions
with regularly varying tails. In this section we empirically compare their properties.
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A good discussion of this topic can be found in Finkelstein et al. (2006). First
they make the Pareto probability integral transform of the initial data and then they
use the properties of the Uniform distribution in order to obtain their estimator of
α and to examine its properties. The biggest advantage of their approach is that in
this way “even infinite contamination has a bounded effect on the transformed data”.
Robust methods considering contaminated distributions work much better, but sweep
out the differences among distributions so that they do not use the complete prior
information. The main concepts about the robustness are very well presented e.g. in
Huber and Ronchetti (1981); Rousseeuw and Stahel (1986).

In order to compare the quality of the estimators we calculated the percentage
relative bias of Hill, t-Hill and t-lgHill estimators (RB). It is defined as

RB =
1
m ∑m

i=1(γ̂i− γ)
γ

100,

where γ̂i is correspondingly estimator of γ = 1/α for the i− th simulated sample,
i = 1,2, ...,m.

Another characteristic that we use in order to determine the quality of these esti-
mators is their relative root-mean-square error (RRMSE)

RRMSE =

√
1
m ∑m

i=1(γ̂i− γ)2

γ
100,

see e.g. Brzezinski (2015).
Analogously to the Hill plot we consider the set of points with coordinates(

kn, H∗kn,n
)
, kn ∈ {1,2, ...,n}.

Further on we call this plot ’t-Hill plot’. Similarly for t-lgHill plot. The straight line
represents the true value of γ = 1/α in all following figures in this section.

4.1 Independent observations.

4.1.1 t-Hill versus other robust estimators

In our Monte Carlo simulation we focus on parameter α of the classical (or Type I)
Pareto distribution P(α,δ ), which is defined using cumulative distribution function
as follows:

F(x) = 1−
(

δ
x

)α
, x≥ δ > 0, (34)

where δ is a scale parameter and α > 0 is a shape parameter, generally known as the
Pareto tail index.

The existing literature offers various estimators for the Pareto tail index α . In
our simulation study we focus primarily on the following estimators: Hill estimator
(maximum likelihood estimator introduced by Hill (1975), which we use as a non-
robust benchmark for the Pareto tail index), Integrated Squared Error Estimator (ISE,
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estimator introduced by Vandewalle et al. (2007), which is based on the relative ex-
cesses of observations above a certain treshold), Partial Density Component estimator
(PDC, estimator introduced by Vandewalle et al. (2007), which is also based on the
relative excesses of observations above a certain treshold), Least Squares estimator
(LS), moment estimator (ME, see Dekkers et al. (1989)), QQ estimator (QQ, esti-
mator based on the Quantile-Quantile approach, see Kratz and Resnick (1996)), and
finally Weighted MLE (WMLE, see Dupuis and Morgenthaler (2002); Dupuis and
Victoria-Feser (2006)). For the purpose of comparison we use the percentage relative
bias (RB) and the percentage relative root-mean-square error (RRMSE) as defined in
section 4.

Therefore, the data sets are simulated from Pareto distribution P(α,1), for various
values of α , as well as from contaminated Pareto distribution with function

F = (1− ε)P(α1,1)+ εP(α2,1) (35)

where ε = 0.05,0.10 and α1 = 1,1.7, α2 = 0.3,0.5,1. For all cases we assume the
appropriate sample sizes n.

4.1.2 t-Hill versus Hill and t-lgHill in Pareto sample

Table 1 presents the percentage relative bias (RB) and the percentage relative root-
mean-square error (RRMSE) for the uncontamined Pareto distribution P(α,1). If we
suppose large sample size n = 1000, the results of RB and RRMSE of the t-Hill, the
Hill estimator, ISE estimators are comparable. The largest relative bias as well as
relative root-mean-square error have the ME and WML estimators.

n = 1000
α = 0.5 α = 1 α = 3

RB RRMSE RB RRMSE RB RRMSE
Hill 0.14 3.18 0.10 3.20 0.08 3.20
tHill 0.14 4.27 0.08 3.67 0.06 3.30
t-lgHill 0.43 3.48 0.78 7.03 2.69 21.83
ISE 0.23 5.52 0.16 5.07 0.09 4.72
LS 0.83 4.59 0.79 4.59 0.78 4.54
ME 0.31 3.59 0.48 4.60 1.93 10.73
PDC 1.02 14.07 0.53 9.40 0.25 6.68
QQ -0.90 4.49 -0.94 4.51 -0.95 4.46
WML 3.48 8.30 3.43 8.20 3.35 8.08

Table 1 Results of the percentage relative bias (RB) and the percentage relative root-mean-square error
(RRMSE) for the various estimators of the Pareto tail index α with data drawn from uncontaminated Pareto
distribution P(α,1).

The next investigations refine the conclusions made in Fabián and Stehlı́k (2009).
All estimators are calculated by means of their corresponding values in m = 100 sam-
ples. First we observe samples with size n = 40. The means of the Hill, t-lgHill and
t-Hill estimators, separately for any fixed kn = 1,2, ...,39, together with their aver-
ages are given in Figure 1. They show that both estimators have similar properties for
small samples, although the t-Hill oscillates stronger. The values of RB and RRMSE
are given in Table 2.
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Fig. 1 t-Hill plots (green - -), Hill plots (blue) and t-lgHill (red -.-) for α = 0.3 (left), α = 1(middle) and
α = 1.7 (right), n = 40.

α kn estimator RRMSE RB

0.3
10 Hill 31.62 0.04

tHill 102.44 27.88
t-lgHill 55.89 -18.24

20 Hill 22.38 0.04
tHill 47.02 11.08

t-lgHill 44.12 -9.64

1
10 Hill 31.51 -0.03

tHill 43.11 7.42
t-lgHill 55.37 -18.21

20 Hill 22.29 -0.05
tHill 27.82 3.41

t-lgHill 43.67 -9.54

1.7
10 Hill 31.66 -0.04

tHill 37.46 4.57
t-lgHill 55.37 -18.38

20 Hill 22.35 -0.07
tHill 25.17 2.13

t-lgHill 43.82 -9.61

Table 2 RRMSE and RB of Hill end t-Hill esti-
mators for n = 40 i.i.d. data with Pareto distribu-
tion, for different α and kn.

α kn estimator RRMSE RB

0.3
100 Hill 9.92 -0.07

tHill 16.27 1.78
t-lgHill 21.65 -1.94

200 Hill 7.04 -0.04
tHill 11.35 0.96

t-lgHill 15.59 -1.02

1
100 Hill 9.90 0.05

tHill 11.65 0.73
t-lgHill 21.68 -1.97

200 Hill 7.01 -0.01
tHill 8.14 0.31

t-lgHill 15.48 -0.97

1.7
100 Hill 10.01 0.10

tHill 10.83 0.53
t-lgHill 21.76 -1.74

200 Hill 7.13 0.00
tHill 7.66 0.17

t-lgHill 15.62 -0.78

Table 3 RRMSE and RB of Hill end t-Hill esti-
mators for n = 500 i.i.d. data with Pareto distribu-
tion, for different α and kn.

We also made analogous observations for samples with size n = 500. However,
this figure is not provided here. The same conclusions could be made also from the
values of RB and RRMSE, given in Table 3.

4.1.3 t-Hill versus Hill and t-lgHill for distribution function with regularly varying
tail at a logarithmic rate

Hill, t-lgHill and t-Hill estimators may perform very poorly if the slowly varying
function in the tail is faraway from a constant. In (4.16) of Embrechts et al. (1997)
the authors consider

F←(p) = (1− p)−1/α(− ln(1− p)), p ∈ (0,1), (36)

with respect to the Hill estimator. We simulated samples of n= 10000 observations of
random variables with quantile functions (36), separately for α = 0.3,1,1.7 and plot-
ted the Hill, t-lgHill and the t-Hill plots for kn = 5,6, ...,499. The rate of convergence
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of these estimators can be observed in Figure 2. Notice that the t-lgHill outperforms
both Hill and the t-Hill estimators.
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Fig. 2 t-Hill plots (green - -), Hill plots (blue) and t-lgHill (red -.-) for α = 0.3 (left), α = 1(middle) and
α = 1.7 (right), n = 10000.

Although Hill estimator seems to be slightly closer to the estimated value, it is
clear that three estimators are not good for such c.d.fs, see Table 4, however the t-
lgHill has the best performance.

α kn estimator RRMSE RB

0.3
100 Hill 11.93 5.41

tHill 19.32 8.35
t-lgHill 22.54 1.99

200 Hill 9.62 6.19
tHill 14.86 8.31

t-lgHill 16.39 3.31

1
100 Hill 21.72 18.34

tHill 25.42 20.79
t-lgHill 26.00 11.40

200 Hill 22.61 21.01
tHill 25.78 23.55

t-lgHill 21.64 13.69

1.7
100 Hill 33.49 31.00

tHill 37.00 33.89
t-lgHill 32.02 20.07

200 Hill 36.78 35.62
tHill 40.28 38.82

t- lgHill 29.63 23.59

Table 4 RRMSE and RB of Hill end t-Hill estimators for n = 10000 i.i.d. data with Pareto distribution,
for different α and kn, m = 10000.

4.1.4 t-Hill versus t-lgHill and Hill for log-gamma sample

Figure 3 shows the t-lgHill for different α equal to 0.3, 1, 1.7 and log-gamma distri-
bution (8), c = 1. Green line is for t-Hill, blue is Hill, red is lgHill.
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Fig. 3 t-Hill plots (green - -), Hill plots (blue) and t-lgHill (red -.-) for α = 0.3 (left), α = 1(middle) and
α = 1.7 (right), n = 400.

4.1.5 t-Hill versus Hill for contaminated data from Pareto sample

Practical examples, see Fabián and Stehlı́k (2009) among others, have shown that data
are expected to be contaminated in specific situations. Frequently there are outliers
in the right tail of the distribution. It is known that the Hill estimator is not robust.
This is due to the fact that data are entered by their logarithm in its calculation. But
what about the t-Hill estimator? In (18) data are involved by their reciprocal value.
Therefore, it is not difficult to deduce that these estimators are robust with respect to
large values. They are sensitive to the center of the distribution.

Contamination, governed by α2. t-Hill estimator provides the superior results
with respect to the relative bias (RB) and the relative root-mean-square error (RRMSE)
for the contaminated Pareto distribution with distribution function (35) among all em-
ployed estimators ISE, PDC, LS, ME, QQ and WMLE.

Here we simulated small n = 40 and bigger samples of n = 200 data from con-
taminated Pareto distribution as given in (35) separately for α1 = 0.3,1 or 1.7 and
α2 = 0.5 or 1. The relative part of the contamination is governed by the parameter ε .
We worked with two values 0.1 and 0.05. When considering a sample size with 10%
contamination, this would yield ε = 0.1 . For sample sizes of 40, see Figure 4.

To obtain proper estimations for 1/α1 we need kn to be large and kn < n. When
α1 < 1 and α2 ≥ 1 the Hill estimators are better than the t-Hill estimators. When
α1 < 1 and α2 < 1, or α1 ≥ 1 and α2 > 1 the t-Hill estimators are comparable to
the corresponding Hill estimators. Finally if we observe the means of the estimators
we can conclude that t-Hill estimators are better than Hill estimators for α1 ≥ 1 and
α2 ≤ 1.

The same conclusions could be made on RB and RRMSE basis of both Hill and
t-Hill estimators. They are given in Table 5 for k = 10 or 20 and for k = 100 or 200,
and different values of α1, α2 and ε .

Comparison of maximum likelihood with t-score moment estimators
Let us compare maximum likelihood (ML) estimators with t-score moment (SM)

estimators for two different cases, on the one hand based on a sample of one dis-
tribution and on the other hand in presence of contamination, i.e. distribution of the
form

Fε = (1− ε)F(ω)+ εF(ω1), (37)

where ω1 > ω are score variances.
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Fig. 4 Rate of convergence of the t-Hill (first line) and Hill (second line) estimators with α1 = 1,α2 = 0.5
(left), α1 = 1.7,α2 = 0.5 (middle) and α1 = 1.7,α2 = 1 (right), ε = 0.1 for n = 40.

Note: The score variance of the Pareto distribution is ω2 = (α +2)/α3. If ω = 1,
we have 1/α = 0.657. Pareto distribution with score variance ω2 will be denoted by
Pa(ω).

Random samples were generated from heavy-tailed distributions, with increasing
level ω1 of contamination and α = 1.

Ratios of r(k) = Hkn,n/γ(ω∗)−1 and r∗(k) = H∗kn,n/γ(ω∗)−1 for kn = 100,250
and 900 and n = 1000 are given in Table 6.

The variances of SM estimates are somewhat higher in accordance with the values
of theoretical asymptotic efficiencies, but SM estimates are less biased and thus, do
not seem to be much worse than the ML estimates even for not contaminated samples.

However, when data contamination comes into consideration, i.e. ε = 0.1 of
F(10), the estimation with t-scores gives better results than standard ML-method.
In addition to a smaller bias for very small sample sizes (n ≤ 25), variances are
smaller for SM-method compared with ML-method the smaller the number of ob-
servations. Recall that for the two experiments new simulations have been performed
such that a comparison of the goodness of the results between contaminated and non-
contaminated data is obsolete.

4.1.6 t-Hill versus Hill for data from the log-gamma distribution

It is apparent that both, t-Hill and Hill, show systematic decrease with expecting
heavier Pareto tail. Figure 5 shows paths of averages for Hkn,n,H

∗
kn,n and HL

kn,n from
50 experiments with contaminated log-gamma data from (37) with ω = 5.546 and
ε = 0.05. The values of ω1 in plots in Figure 5 are computed from log-gamma distri-
bution.

Figure 5 shows paths of averages for Hkn,n,H
∗
kn,n and HL

kn,n from 50 experiments
with contaminated log-gamma data from (37) with ω = 5.546 and ε = 0.05. The
values of ω1 in plots in Figure 5 are computed from log-gamma distribution.
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n α1 α2 kn ε estimator RRMSE RB

40

1 0.5

10 0.1 Hill 45.39 18.42
tHill 56.03 22.61

0.05 Hill 37.89 9.33
tHill 47.62 14.63

20 0.1 Hill 31.02 13.800
tHill 34.57 14.14

0.05 Hill 25.96 6.63
tHill 30.74 8.35

1.7

0.5

10 0.1 Hill 41.01 -6.05
tHill 37.50 -14.73

0.05 Hill 39.70 -22.78
tHill 38.87 -26.63

20 0.1 Hill 30.76 -18.69
tHill 32.82 -26.24

0.05 Hill 35.59 -29.53
tHill 37.19 -32.92

1

10 0.1 Hill 40.65 -34.28
tHill 40.47 -32.34

0.05 Hill 42.81 -37.59
tHill 42.26 -35.43

20 0.1 Hill 38.84 -35.80
tHill 38.80 -35.26

0.05 Hill 40.97 -38.44
tHill 40.64 -37.59

201

1 0.5

100 0.1 Hill 18.49 13.80
tHill 16.87 10.51

0.05 Hill 13.34 7.02
tHill 13.61 5.60

200 0.1 Hill 13.00 9.99
tHill 11.57 7.32

0.05 Hill 9.27 5.00
tHill 9.35 3.74

1.7

0.5

100 0.1 Hill 21.55 -18.51
tHill 29.11 -27.88

0.05 Hill 31.16 -29.86
tHill 35.42 -34.63

200 0.1 Hill 27.79 -26.98
tHill 33.56 -33.14

0.05 Hill 34.60 -34.16
tHill 37.54 -37.22

1

100 0.1 Hill 36.46 -35.84
tHill 37.19 -36.53

0.05 Hill 38.94 -38.43
tHill 39.20 -38.62

200 0.1 Hill 37.36 -37.07
tHill 38.01 -37.70

0.05 Hill 39.37 -39.12
tHill 39.66 -39.38

Table 5 RRMSE and RB of Hill end t-Hill estimators for n = 40 and 200 i.i.d. data with contaminated
Pareto distribution, for different α1, α2, kn and ε .

It is apparent from Figure 5 that for small contamination t-lgHill (red) estimates
γ from log-gamma data perform better than both Hill (blue) and t-Hill (green). How-
ever, for larger contamination it is definitely not robust, perhaps due to the squared
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ε ω∗ γ(ω∗) r(100) r∗(100) r(250) r∗(250) r(900) r∗(900)
1.5 0.879 .0363 .0376 .0235 .0187 .0184 .0170

.05 3 1.500 .2027 .1517 .1333 .0982 .0679 .0473
5 2.165 .4982 .3049 .2792 .1573 .1203 .0656
1.5 0.879 .0683 .0707 .0502 1.0458 .0339 .0296

.10 3 1.500 .3842 .2828 .2512 .1799 .1340 .0970
5 2.165 .9298 .6250 .5536 .3352 .2383 .1310

Table 6 Values of r(k) = Hkn,n/γ(ω∗)− 1 and r∗(k) = H∗kn ,n/γ(ω∗)− 1 are computed for contaminated
distributions (Pcont ) with three different ω∗ and ε = 0.05 and 0.1, respectively.

contamination estimate n=12 n=25 n=50 n=75

ε = 0

1/Hkn ,n 1.086 1.041 1.023 1.014
1/HL

kn ,n 1.052 1.028 1.010 1.009
Var (1/Hkn ,n) 0.342 0.215 0.144 0.116
Var (1/HL

kn ,n) 0.371 0.241 0.166 0.135

ε = 0.1

1/Hkn ,n 1.298 1.188 1.129 1.127
1/HL

kn ,n 1.011 1.090 1.198 1.144
Var (1/Hkn ,n) 0.203 0.073 0.030 0.020
Var (1/HL

kn ,n) 0.105 0.061 0.037 0.022

Table 7 Comparison of ML and SM estimators of α (see 8) in addition to their variances with different
sample sizes averaged over 5000 experiments without (rows 1-4) and with contaminated Pareto distribution
(rows 5-8), i.e. ε = 0.1.

Fig. 5 Graphs of averages for Hkn ,n (blue),H∗kn ,n (green) and HL
kn ,n (red) from 50 experiments with con-

taminated log-gamma data and increasing ω1,n = 1000.

logarithmic term. Notice that t-Hill is more robust than the classical Hill even for
non-Pareto data.
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4.2 Infinite moving average process

In this subsection we consider the infinite moving average process with the following
autoregressive form

Xi = 1.3Xi−1−0.7Xi−2 +Zi, i = 1,2, ...,n. (38)

It is discussed in Resnick and Starica (1993) with respect to the Hill estimator. Here
we compare Hill estimator with the corresponding t-Hill estimator.

4.2.1 t-Hill versus Hill and lgHill for Pareto noise

The t-Hill and Hill plots of the averages of the corresponding estimators, calculated
on samples of n = 2000 observations on moving average sequence (38) with noise Zi
that is P(α,1) distributed and kn = 10,11, ...,499 are given on Figure 6. The corre-
sponding values of α are 0.3 in the first column, 1 in the second column and 1.7 in
the third column. At first glance, we see that both estimators have a similar behavior
for a fixed number of upper order statistics. However, the values of RRMSE and RB
in Table 8 show that in this case the t-Hill estimators are better.
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Fig. 6 t-Hill plots (green - -), Hill plots (blue) and t-lgHill (red -.-) for α = 0.3 (left), α = 1(middle) and
α = 1.7 (right), n = 2000.

4.2.2 t-Hill versus Hill for contaminated Pareto noise

Contamination, governed by ε .
Here we contaminated the distribution of the noise component, calculated the

means of the corresponding Hill and t-Hill estimators for kn = 10,11, ...,9999 and
plotted them in Figure 7 and Figure 8 for relative parts on contamination ε = 0.1 and
ε = 0.05. The observations in each sample are n = 10000. More precisely the distri-
bution of the noise component Zi in (38) is (35). The corresponding values of RRMSE
and RB are given in Table 9. Although both estimators give almost the same results,
in most of these cases the t-Hill estimator is slightly better than the Hill estimator.



Weak properties and robustness of t-Hill estimators 21

α kn estimator RRMSE RB

0.3
100 Hill 33.11 -10.26

tHill 33.87 -0.69
t-lgHill 45.93 -35.38

200 Hill 24.45 -4.09
tHill 23.68 3.38

t-lgHill 39.80 -23.62

1
100 Hill 20.52 -2.19

tHill 18.77 0.01
t-lgHill 36.65 -14.47

200 Hill 16.03 -1.11
tHill 15.77 -0.05

t-lgHill 30.49 -7.75

1.7
100 Hill 20.58 -3.69

tHill 18.02 -4.98
t-lgHill 45.27 -1.84

200 Hill 15.25 -6.56
tHill 14.27 -8.15

t-lgHill 37.13 -0.03

Table 8 RRMSE and RB of Hill end t-Hill estimators for n = 10000 moving average data with Pareto
distribution, for different α and kn.
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Fig. 7 Rate of convergence of the t-Hill (first line) and Hill (second line) estimators with α1 = 1,α2 = 0.5
(left), α1 = 1.7,α2 = 0.5 (middle) and α1 = 1.7,α2 = 1 (right), ε = 0.1,n = 10000.

4.3 Conclusions of the Simulations

Having in mind the observations in section 4 we can make the following conclusions:

1. when the contamination has heavier tail than the original distribution, t-Hill es-
timator outperforms Hill estimator and several robust tail estimators (ISE, PDC,
LS, ME, QQ and WMLE). In contaminated i.i.d. case, where the severity of the
contamination is governed by the extremal index, the Hill estimator has more
narrow confidence intervals than t-Hill estimator. When α1 < 1 and α2 ≥ 1 the
Hill estimators are better than the t-Hill estimators. When α1 < 1 and α2 < 1,
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Fig. 8 Rate of convergence of the t-Hill (first line) and Hill (second line) estimators with α1 = 1,α2 = 0.5
(left), α1 = 1.7,α2 = 0.5 (middle) and α1 = 1.7,α2 = 1 (right), ε = 0.05,n = 10000.

α1 α2 kn ε estimator RRMSE RB

1 0.5

2000 0.1 Hill 55.92 54.32
tHill 47.05 46.10

0.05 Hill 32.79 30.88
tHill 25.38 24.30

3000 0.1 Hill 52.85 51.80
tHill 47.37 46.77

0.05 Hill 31.15 29.97
tHill 27.50 26.85

1.7

0.5

2000 0.1 Hill 197.34 195.51
tHill 166.95 165.59

0.05 Hill 120.22 117.81
tHill 79.98 78.63

3000 0.1 Hill 169.79 168.45
tHill 133.34 132.47

0.05 Hill 95.57 93.88
tHill 61.26 60.42

1

2000 0.1 Hill 11.52 9.67
tHill 8.10 6.41

0.05 Hill 5.64 -0.84
tHill 5.31 -2.98

3000 0.1 Hill 11.13 9.96
tHill 9.41 8.50

0.05 Hill 4.47 0.44
tHill 3.67 -0.06

Table 9 RRMSE and RB of Hill end t-Hill estimators for n = 10000 moving average data with contami-
nated Pareto distribution, for different α1, α2, kn and ε .

or α1 ≥ 1 and α2 > 1 the t-Hill estimators are comparable to the corresponding
Hill estimators. Finally we can conclude that t-Hill estimators are better than Hill
estimators for α1 ≥ 1 and α2 ≤ 1. This effect increases for small samples.
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2. Both Hill and t-Hill estimators are asymptotically consistent, however the t-Hill
estimator has bigger variance.

3. The reason that the Hill estimator is not robust seems to be the fact that in its for-
mula the data are entered by their logarithm. But what about the t-Hill estimator?
In (18) data are involved by their reciprocal value. Therefore, it is not difficult
to deduce that these estimators are robust with respect to large values. They are
sensitive to the center of the distribution.

4. When the i.i.d. data contamination comes into consideration, i.e. ε = 0.1 of F(10),
the estimation with t-scores gives better results than standard ML-method. In ad-
dition to a smaller bias for very small sample sizes (n≤ 25), variances are smaller
for SM-method compared with ML-method, especially for small samples.

5. In moving average case without contamination and with Pareto noise and α1 ≤ 1
the t-Hill estimator is better with respect to the unbiasedness when n→ ∞ and
kn/n→ 0, but it has bigger variance than the Hill estimator.

6. In moving average cases with contaminated Pareto noise the t-Hill estimators are
better than Hill only in case α1 ≥ 1 and α2 ≤ 1 and small relative part of con-
tamination. The smaller the relative part of the contamination, the faster the rate
of convergence. Moreover in any cases the estimators converge to 1/min(α1,α2)
for n→ ∞, kn→ ∞ and kn/n→ 0.

7. In case when the observed random variable have log-gamma distribution, the t-
lgHill estimator is more robust that t-Hill and Hill estimators. This is due to the
fact that the t-lgHill estimator is distribution sensitive while the Hill and t-Hill
estimators by construction in this case are useful only due to the information
about the regular variation of the distribution.

8. From all of the charts it visible that the t-lgHill estimator has relatively small
variance. It seems to be almost the same as of the Hill estimator.

9. In Moving Average case with Pareto noise the t-Hill outperforms both Hill and
t-lgHill estimators. When alpha increases, the variance of all three estimator de-
creases.

The larger the number of samples m, e.g. m = 1000, the more visible are the conclu-
sions about Hill, t-lgHill and t-Hill estimators, however computational time is very
large. We shall recall a general consensus that we shall have a multi-criterial approach
in order to estimate the parameters of heavy tail. Consistency is an important property,
but we shall also consider importance of approximation of finite sample distribution
and robustness.

5 Application to a small sample data from Guanaco glacier

A glacier is a solid ice mass which is fed by solid water (snow, hail or hoarfrost),
transforms this solid water in ice and restores it via steam (evaporation/sublimation)
or via liquid (water drained by the runoff stream-flow), see Francou and Pouyaud
(2004). Such gain and loss of mass can be analyzed as a balance (or budget). Gua-
naco glacier is located in the III region of Chile (latitude 29S) in the semi-arid Andes,
it has a surface area of 1.86[km2] and a maximum thickness of 120[m], see Rabatel
et al. (2011), the area contributing water to the Pacific Ocean (included in the above
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calculation of 23%), is only 1.26[km2], in other words, less than 35% of the total ice
area in this zone. The rest of the Guanaco glacier contributes water to the Atlantic
ocean. In this sense, the relative importance of glacier meltwater to the river basin
as a complete unit is very low compared to the snow and rain contributions. Its geo-
graphical location is shown in Figure 9, this glacier (jointly with other minor glaciers
and glacierets in the zone) is highly relevant for studies, because it is an important
water reservoir in a semi-arid zone of Chile, contributing with up to the 23% of the
streamflow in the corresponding valley, see Gascoin et al. (2011). All glaciers in the
Pascua Lama region (3.64 km2) can contribute between 3 and 23 % to the very high
basin area of the Huasco river. The glacier meltwater contribution goes from 100% at
the foot of the glacier, down to near 0 at the sea outlet of this river (Huasco). Given
that this zone is one of the world’s most richly endowed territories of copper, there
is high interest for the occupation of these water resources, resulting in a uneven
mining-agricultural competition for water rights, see Oyarzún and Oyarzún (2011).

Fig. 9 Geographical location of Guanaco glacier and stakes where mass balance was measured in the
period 2011-2014 along with aerial changes of the glacier computed via geodetic methods. Left image by
Abermann et al. (2014), right image courtesy of the Center for Scientific Studies (CECs).

The mass balance observations over the glacier consists of annual records for the
period 2002-2014, the dataset corresponds to the negated mass balance because we
are interested in extremely large losses of volume in the glacier (see Figure 10).

In order to study a threshold model for this data, estimations for the tail in-
dex γ are computed using Hill, t-Hill (as previously defined) and Zipf’s estimator
(see Kratz and Resnick (1996)) which is a form of least square estimator (Schultze
and Steinebach (1996)) of the tail index. It follows the fact that if we suspect that
X1,n ≤ ...≤ Xn,n are the order statistics from a Pareto family, then the plot of

{(
− log

(
1− i

n+1

)
, logXi,n

)
,1≤ i≤ n

}
,
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Fig. 10 Histogram for the dataset of mass balance in Guanaco glacier, n = 12.

should be roughly linear with intercept 0 and slope γ̂ . The Zipf’s estimator is com-
puted for a given kn, as

γ̂zipf(kn) = slope
({
− log

(
1− i

kn +1

)
, logXn−kn+i,n,1≤ i≤ kn

})
.

We used σ̂ = Xn−kn+1,nγ̂ as estimator of the scale parameter. The asymptotic stan-

dard deviation is computed as Hkn,n√
kn

for Hill’s estimator, as γ̂zipf(kn)√
kn/2

for Zipf’s, and for

t-Hill as
H∗kn,n√

kn

 1+H∗kn,n√
1+2H∗kn,n

 .

Zipf’s estimator plot (see Figure 11) shows linear stability up to kn = 7, which
makes this value of kn a good option for further computations.
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Fig. 11 Left: Zipf’s estimator plot for several values of kn. Right: Extreme value index computed over the
dataset using 3 estimators and different values for kn.

Hill and t-Hill estimators were computed along with Zipf’s estimator, taking into
account kn = 6 and kn = 7. The stability of the parameter estimation in a small sample
context was tested using a parametric bootstrap approach, where 1000 samples of
size 10 were generated from GP distribution with shape parameter computed with the
three previously discussed estimators. The results are displayed in form of histograms
in Figure 12.

Table 10 summarizes the information about the EVI obtained from the simulation:



26 P. Jordanova et al.

Tail index estimation, Hill with k= 6
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Fig. 12 Histograms showing stability of the estimated tail index using different estimators, bin-width is
chosen using the Freedman-Diaconis rule. Estimation over the original sample is shown as a vertical red
line. Length of x-axis is fixed.

Estimator Initial Mean Std.Dev. Asymp.sd.

kn = 6

Hill 0.436 0.429 0.171 0.178

t-Hill 0.515 0.541 0.241 0.224

Zipf 0.315 0.401 0.210 0.257

kn = 7

Hill 0.412 0.413 0.153 0.156

t-Hill 0.466 0.485 0.198 0.186

Zipf 0.359 0.441 0.208 0.271

Table 10 The initial value is the obtained using the estimator over the original sample, the mean and
standard deviation accounts for the simulated samples.

Given the results for each estimator, it is clear that kn = 7 is a better choice than
kn = 6 because estimations are less biased and all estimators are more close to each
other, also, Zipf’s estimator should be treated with more care in this context because
it shows an important bias in the parametric bootstrap without an improvement in the
variance. The main advantage of usage of t-Hill estimator is its robustness and good
small sample properties.

In Figure 13 we plot Hill, t-Hill, Zipf and t-lgHill for 40+ data sample of the
Pascualama zone.

In Figure 14 we provide a QQ-plot with assumed theoretical distribution of GPD
with parameters: µ = 0,σ = 1,ξ ∈ {−0.5,−0.25,0.25,0.5}, with cdf defined for
ξ ̸= 0 as G(z) = 1− [1+ξ (z−µ)/σ ]−1/ξ .

6 Summary

In this paper we introduce and study properties of t-score estimator under different
model settings. In particular, we derived asymptotic normality for t-lgHill estimator
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Fig. 13 Hill, t-Hill, Zipf and t-lgHill estimators (right) for 40+ data sample of the Pascualama zone.
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Fig. 14 QQ-Plots with different shapes of -0.5, -0.25, 0.25 and 0.5 plotted from top left to bottom right.

for iid case. We also derived consistency for t-Hill and t-lgHill under i.i.d. and moving
average setup. We can conclude that:

i) The t-score is an unbounded function in cases of light-tailed distributions and
a bounded function when distributions are heavy-tailed. Therefore, it seems to be
extraordinary suitable for the estimation of parameters by the generalized moment
method. It secures robustness ’when it is needed by the assumed distribution’. In this
sense, the suggested estimates are ’naturally’ robust without need of using any further
function of robust statistics. In particular robustness of t-Hill can be well applied in
cases when existence of first or second moment is questionable. Such an application
for LATAM returns, i.e. daily log-returns (in percent) of an equity fund investing in
Latin America (LATAM), can be found in Stehlı́k and Hermann (2015).

ii) It appeared that in cases of very small contamination, the maximum likelihood
and t-moment method give similar results. However, the larger the contamination, the
better are the t-moment estimates.

iii) It is apparent that an introduction of the t-mean and t-variance for distributions
without ordinary mean and variance enables to describe the behavior of the estimates
in a unique way and thus, compares results of the estimation for various assumed
families of distributions having different parameters.

iv) We propose t-Hill estimator for possibly dependent data and investigate its
weak consistency and asymptotic behavior. Particularly we consider the infinite mov-
ing average model. Besides the i.i.d. case there are cases where the t-Hill estimator is
more robust than the Hill estimator. We applied t-Hill for small sample size real data
for Glacier and received satisfactory results despite a small sample size.
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A Proofs

A.1 Proof of Lemma 1

Proof The result is proved analogously to Resnick and Starica (1993). An integration by parts entails

Φn =
∫ ∞

1
φ(x)

{
1
kn

n

∑
i=1

ε

{
Xi

X(n−kn,n)
∈ dx

}}

=
∫ ∞

1
φ(x) µ̂X ,kn ,n (dx) =−

∫ ∞

1
φ(x)d µ̂X ,kn ,n (x,∞]

= lim
x→1

φ(x) µ̂X ,kn ,n (x,∞]− lim
x→∞

φ(x) µ̂X ,kn ,n (x,∞]+
∫ ∞

1
µ̂X ,kn ,n (x,∞]d φ(x).

The positive measures µ̂X ,kn ,n are Radon and the measure µ̂X ,kn ,n converges to µ and α > 0. Therefore, in
view of (28) and the definition of µ , the Hospital rule yields

lim
n→∞

lim
x→∞

φ(x) µ̂X ,kn ,n (x,∞] = lim
x→∞

lim
n→∞

φ(x) µ̂X ,kn ,n (x,∞] = lim
x→∞

φ(x)
xα = 0,

and similarly,
lim
n→∞

lim
x→1

φ(x) µ̂X ,kn ,n (x,∞] = lim
x→1

lim
n→∞

φ(x) µ̂X ,kn ,n (x,∞] = φ(1).

Then, for all t ≥ 1,

lim
n→∞

Φn = lim
n→∞

{∫ t

1
µ̂X ,kn ,n (x,∞]φ ′(x)dx+

∫ ∞

t
µ̂X ,kn ,n (x,∞]φ ′(x)dx

}
.
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Let us first remark that

lim
n→∞

∫ t

1
µ̂X ,kn ,n (x,∞]φ ′(x)dx =

∫ t

1
µ (x,∞]φ ′(x)dx =

∫ t

1
x−α φ ′(x)dx

and therefore,

lim
t→∞

lim
n→∞

∫ t

1
µ̂X ,kn ,n (x,∞]φ ′(x)dx =

∫ +∞

1
x−α φ ′(x)dx.

Second, in order to apply Theorem 4.2. of Billingsley (2013), we have to check that

lim
t→∞

lim
n→∞

P
{∫ ∞

t
µ̂X ,kn ,n (x,∞] |φ ′(x)|dx > ε

}
= 0. (39)

Our aim is to replace µ̂X ,kn ,n with µX ,kn ,n. To this aim, we choose δ > 0 and consider

P
{∫ ∞

t
µ̂X ,kn ,n (x,∞] |φ ′(x)|dx > ε

}
= P

{∫ ∞

t
µX ,kn ,n

(
X(n−kn ,n)

b(n/kn)
x,∞
]
|φ ′(x)|dx > ε

}
= P

{∫ ∞

t
µX ,kn ,n

(
X(n−kn ,n)

b(n/kn)
x,∞
]
|φ ′(x)|dx > ε,

∣∣∣∣X(n−kn ,n)

b(n/kn)
−1
∣∣∣∣< δ

}
+ P

{∫ ∞

t
µX ,kn ,n

(
X(n−kn ,n)

b(n/kn)
x,∞
]
|φ ′(x)|dx > ε,

∣∣∣∣X(n−kn ,n)

b(n/kn)
−1
∣∣∣∣≥ δ

}
.

Clearly,

0 ≤ P
{∫ ∞

t
µX ,kn ,n

(
X(n−kn ,n)

b(n/kn)
x,∞
]
|φ ′(x)|dx > ε,

∣∣∣∣X(n−kn ,n)

b(n/kn)
−1
∣∣∣∣≥ δ

}
≤ P

{∣∣∣∣X(n−kn ,n)

b(n/kn)
−1
∣∣∣∣≥ δ

}
which, from (27), converges to zero when n→ ∞. In view of (27), for any 0 < δ0 < 1+α there exists nδ0
large enough such that for all t > 1 and n > nδ0 ,

P
{∫ ∞

t
µX ,kn ,n

(
X(n−kn ,n)

b(n/kn)
x,∞
]
|φ ′(x)|dx > ε,

∣∣∣∣X(n−kn ,n)

b(n/kn)
−1
∣∣∣∣< δ

}
≤ P

{∫ ∞

t
µX ,kn ,n ((1−δ0)x,∞] |φ ′(x)|dx > ε ,

∣∣∣∣X(n−kn ,n)

b(n/kn)
−1
∣∣∣∣< δ

}
≤ P

{∫ ∞

t
µX ,kn ,n ((1−δ0)x,∞] |φ ′(x)|dx > ε

}
.

Chebishev’s inequality guarantees that

P
{∫ ∞

t
µX ,kn ,n ((1−δ0)x,∞] |φ ′(x)|dx > ε

}
≤ 1

ε
E
∫ ∞

t
µX ,kn ,n ((1−δ0)x,∞] |φ ′(x)|dx.

Since X1,X2, . . . ,Xn are indentically distributed, it follows that

EµX ,kn ,n ((1−δ0)x,∞] =
1
kn

n

∑
i=1

P
{

Xi

b(n/kn)
∈ ((1−δ0)x,∞]

}
=

n
kn

P
{

X1

b(n/kn)
∈ ((1−δ0)x,∞]

}
=

n
kn

F((1−δ0)xb(n/kn))

=
n
kn

F(b(n/kn))
F((1−δ0)xb(n/kn))

F(b(n/kn))
.
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From the definition of b, n/kn→ ∞ implies b(n/kn)→ ∞ and

n
kn

F(b(n/kn))→ 1

as n→∞. Thus, in view of (30) and Potter’s inequality for regularly varying functions, for any 0 < δ1 < α
there exist x0 and nδ1 large enough such that, for all x > max(1,x0) and n > nδ1 ,

EµX ,kn ,n ((1−δ0)x,∞]≤ (1+δ1)((1−δ0)x)−α+δ1 ,

and for all t > 1,∫ ∞

t
EµX ,kn ,n ((1−δ0)x,∞] |φ ′(x)dx≤ (1+δ1)(1−δ0)

−α+δ1

∫ ∞

t
x−α+δ1 |φ ′(x)| dx.

We apply Fubini’s theorem and obtain that for all t > 1 and n > nδ ,

P
{∫ ∞

t
µX ,kn ,n ((1−δ0)x,∞] |φ ′(x)|dx > ε

}
≤ 1

ε

∫ ∞

t
EµX ,kn ,n ((1−δ0)x,∞] |φ ′(x)dx

≤ 1
ε
(1+δ1)(1−δ0)

−α+δ1

∫ ∞

t
x−α+δ1 |φ ′(x)| dx.

As a consequence,

lim
t→∞

lim
n→∞

P
{∫ ∞

t
µX ,kn ,n

(
X(n−kn ,n)

b(n/kn)
x,∞
]
|φ ′(x)|dx > ε,

∣∣∣∣X(n−kn ,n)

b(n/kn)
−1
∣∣∣∣< δ

}
= 0

and (39) is satisfied. �

A.2 Proof of Proposition 1

Proof The random variables Xn, −∞ < n < ∞, are identically distributed. Cline (1983) proves that under
these settings

F(x) = P

(
∞

∑
j=0

c jZ j > x

)
∼

∞

∑
j:c j>0

cα
j G(x) ∈ RV−α .

We use (26), apply the above Lemma 1 and complete the proof. �

A.3 Proof of Proposition 2

Proof i.) The random variables Xn,−∞< n<∞, are identically distributed. Cline (1983) proves that under
these settings

F(x) = P

(
∞

∑
j=0

c jZ j > x

)
∼

∞

∑
j:c j>0

cα
j G(x) ∈ RV−α .

We use (32), apply Lemma 1 and complete the proof.
ii.) We use Slutsky’s arguments and obtain weak consistency of the t-lgHill estimator in case of infinite

moving average (MA) sequence. �
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A.4 Proof of Theorem 1

Proof Recall that the t-lgHill estimator HL
kn ,n of γ = α−1 can be written as

HL
kn ,n =

M(2)
n − (M(1)

n )2

M(1)
n

, (40)

while the Moment estimator is defined as

γ̂M = M(1)
n +1− 1

2

(
1− (M(1)

n )2

M(2)
n

)−1

, (41)

see (3.5.9), p.102, in de Haan and Ferreira (2006), also (1.7) in page 1834 of Dekkers and de Haan (1989)).
The difference between the two estimators appears clearly when comparing (40) and (41). In the following,
we shall also make use of γ̂− := γ̂M−M(1)

n , see Remark 3.5.7 in de Haan and Ferreira (2006)), which is an
estimator of γ− := min(0,γ). It is thus clear that the t-lgHill estimator (40) c an be rewritten as

HL
kn ,n =

M(1)
n

1−2γ̂−
. (42)

Corollary 3.5.6 of de Haan and Ferreira (2006) states that

√
kn

1− 1
2

(
1− (M(1)

n )2

M(2)
n

)−1

− γ−

 d−→ (1−2γ−)(1− γ−)2
{(

1
2
− γ−

)
Q−2P

}
,

where Q,P are Gaussian distributions given in Lemma 3.5.5 of de Haan and Ferreira (2006). Using the
previous notations and remarking that γ− = 0, this result can be simplified as ξn :=

√
kn γ̂− converges in

distribution to 1
2 Q−2P.

Similarly, let ξ ′n :=
√

kn(M
(1)
n −γ+) where γ+ := max(0,γ) = γ = 1/α . It is easily seen that ξ ′n can be

expanded as ξ ′n =
√

kn(γ̂M − γ)−
√

kn γ̂−. The limit distribution of the first term is established in (3.5.24),
page 109 of de Haan and Ferreira (2006):√

kn(γ̂M− γ) d−→ 1
2

Q− (γ−2)P.

The limit distribution of the second term has already been established to be 1
2 Q− 2P and therefore ξ ′n

converges in distribution to γP. Plugging ξn and ξ ′n in (42) yields

HL
kn ,n =

γ + k−1/2
n ξ ′n

1−2k−1/2
n ξn

= (γ + k−1/2
n ξ ′n)(1+2k−1/2

n ξn(1+op(1)))

= γ + k−1/2
n (ξ ′n +2γξn)+op(k

−1/2
n ).

Thus,
√

kn(HL
kn ,n−γ) = ξ ′n +2γξn +op(1)

d−→ γP+2γ( 1
2 Q−2P) = γ(Q−2P). According to Lemma 3.5.5

of de Haan and Ferreira (2006), (P,Q) is a bivariate centered Gaussian random vector with covariance

matrix
(

1 4
4 20

)
The asymptotic variance in such case is var(Q−2P)= var(Q)+4var(P)−4cov(P,Q)= 8.

As a conclusion, we have √
kn

(
HL

kn ,n

γ
−1

)
d−→ N(0,8).

�


