Pavlina Jordanova 
  
Zdeněk Fabián 
  
Philipp Hermann 
  
Lubos Strelec 
  
Andrés Rivera 
  
Stéphane Girard 
  
Sebastián Torres 
  
Milan Stehlík 
email: mlnstehlik@gmail.com
  
Luboš Střelec 
  
  
  
  
  
  
  
  
  
Weak properties and robustness of t-Hill estimators

Keywords: Point estimation, Asymptotic properties of estimators, t-Hill estimator, t-lgHill estimator Mathematics Subject Classification (2000) 62F10, 62F12

à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

The aim of this paper is to introduce a novel method of heavy tails estimation based on transformed score. Especially for small or/and contaminated samples such a method can be better than standard maximum likelihood, since it relates to the method of moments for transformed scores (see [START_REF] Fabián | Score function of distribution and revival of the moment method[END_REF]; [START_REF] Hosking | Parameter and quantile estimation for the generalized pareto distribution[END_REF]). Let us denote RV a the class of regularly varying functions at infinity, with an index of regular variation equal to a ∈ R, i.e. positive measurable functions g(•) such that for all x > 0, g(tx)/g(t) → x a , as t → ∞.

Here we suppose that X 1 , X 2 , . . . , X n are possibly dependent copies of X with distribution function (d.f.) F, upper order statistics

X (1,n) ≤ X (2,n) ≤ • • • ≤ X (n,n) and 1 -F ∈ RV -α , α > 0. (1) 
We define α to be the tail parameter and γ := 1/α to be the extreme value index. [START_REF] Hill | A simple general approach to inference about the tail of a distribution[END_REF] derived a procedure of Pareto tail estimation by MLE, obtaining the following Hill estimator

H k n ,n = 1 k n k n ∑ i=1 log { X (n-i+1,n) X (n-k n ,n) } , k n = 1, 2, . . . , n -1. ( 2 
)
Later on, many authors tried to robustify the Hill estimator, but they still relied on maximum likelihood method. [START_REF] Alves | A location invariant hill-type estimator[END_REF] has introduced a new lower bound and [START_REF] Gomes | Censoring estimators of a positive tail index[END_REF] respectively [START_REF] Li | Asymptotic normality of location invariant heavy tail index estimator[END_REF] have introduced powers of original statistics. However, the influence function of Hill estimator is slowly increasing but unbounded, thus, the Hill procedure is not robust. Further approaches of robustifying the original Hill estimator were given in [START_REF] Beran | On robust tail index estimation[END_REF]; Vandewalle et al. (2007). In [START_REF] Fabián | Induced cores and their use in robust parametric estimation[END_REF] a new score method of score moment estimators has been proposed. It appeared that these score moment estimators are robust for very heavy tailed distributions, see Stehlík et al. (2010a). [START_REF] Jordanova | Weak asymptotic results for t-hill estimator[END_REF] consider an independent identically distributed (i.i.d.) sample and find the limit distribution of the t-Hill estimator for a fixed number k of the threshold order statistics. They prove that a sample of Pareto distributed observations does not have to be large in order to receive the corresponding limit distribution for fixed k. In that case under suitable normalizations and a large sample the t-Hill estimator is asymptotically normal for k(n) → ∞. Under the more general conditions, the t-Hill estimator is asymptotically normal for k(n) = o(n). The Hill estimator procedure with the score moment estimator has been investigated in Stehlík et al. (2012) for optimal testing for normality against Pareto tail. Recently, nice generalizations of t-Hill have been published, see [START_REF] Billingsley | A simple generalization of the hill estimator[END_REF]; [START_REF] Paulauskas | On the improvement of hill and some other estimators[END_REF]; [START_REF] Beran | The harmonic moment tail index estimator: asymptotic distribution and robustness[END_REF]. Resnick and Starica (1993) generalize the Hill estimator for more general settings with possibly dependent data. In this paper we continue these investigations, since dependencies are expected in real data applications. We obtain weak consistency of the t-Hill estimator for a special class of dependent data, the infinite moving average model. Moreover, we provide some examples showing that in contrast to the i.i.d. case the t-Hill and the Hill estimators applied to the moving average model are not robust with respect to large observations. Under the concept of the Hill estimator we understand the successive averaging of ordered values up to given k. In this paper we understand "The Hill estimator" as a specific procedure for studying the tail of Pareto like distributions. Instead of implementing "The Hill estimator" procedure, we implement the t-score moment procedure, which can give different estimators for different families. We illustrate t-Hill and we also quantify the robustness and compare efficiency with other competitors.

The paper is organized as follows: in the next section we recall the theory of score function of the distribution introduced firstly by [START_REF] Fabián | Induced cores and their use in robust parametric estimation[END_REF] and studied later in series of works. In section 3 we provide asymptotical results (asymptotic consistency and asymptotic normality) for t-Hill estimators for Pareto and log-gamma distributions, under iid and moving average settings. In section 4 we compare maximum likelihood, t-Hill, transformed score moment and Hill estimators.We also introduce t-lgHill estimator, which is a transformed score moment estimator for case of loggamma distribution. Contamination of underlying data is controlled by the extreme value index, shifting parameter or the means of transformed score variance of contaminating Pareto distribution. Comparisons show that in cases when the contamination has heavier tail than the original distribution, t-Hill estimator outperforms Hill estimator and several robust tail estimators (Integrated Squared Error Estimator (ISE), Partial Density Component (PDC) estimator (Vandewalle et al. (2007)), Least Squares estimator (LS), moment estimator (ME, see Dekkers et al. (1989)), QQ estimator [START_REF] Kratz | The qq-estimator and heavy tails[END_REF]) or Weighted MLE estimator (WMLE, see [START_REF] Dupuis | Robust weighted likelihood estimators with an application to bivariate extreme value problems[END_REF]; [START_REF] Dupuis | A robust prediction error criterion for pareto modelling of upper tails[END_REF]). We investigate robustness of t-Hill estimator for a particular case of moving average sequence. In section 5 we provide an application of t-Hill in comparison to Hill and Zipf's estimator for a small sample data set from Guanaco Glacier. Summary concludes the paper. For reasons of readability we provide all proofs in the Appendix.

2 Transformed Score Function and Transformed Score Moment Estimators [START_REF] Pearson | of frequency constants and on the influence of random se[END_REF], Edgeworth (1908a), Edgeworth (1908b), and[START_REF] Fisher | Statistical Methods For Research Workers. Cosmo study guides[END_REF] developed the basic statistical inference function, the so called score function. Their score is the gradient with respect to parameter θ of the logarithm of the likelihood function S(θ , X) = ∂ ∂ θ log L(θ ; X), indicating the sensitivity of L (its derivative normalized by its value). The variance of the score is the Fisher information

I (θ ) = E θ (S 2 ).
Fabián (2001,2007,2010,2015) has introduced a more general scalar-valued inference function, in this paper called transformed score function (or t-score) of distribution, reflecting main features of continuous probability distributions and enabling an introduction of their new relevant characteristics.

The t-score of distribution G with support R and unimodal differentiable density g is a function

S G (y) = - g ′ (y) g(y) (3)
expressing the relative rate of the change of g. For a distribution G µ with location parameter µ ∈ R, that is, with density in the form g(x -µ), the generalized t-score function equals the Fisher score for µ as

S G (y -µ) = ∂ ∂ µ log g(y -µ).
We consider that t-score in equation ( 3) is a significant function of parametric distribution G θ , θ ∈ Θ ⊆ R, and the mode y * : S G (y; θ ) = 0 its 'central' point.

Example 1 The t-score of N (µ, σ ) is S N (y) = y-µ σ 2 and y * = µ.

In general, the t-score of distribution F with arbitrary interval support X ⊆ R is defined by the following construction.

Definition 1 Let η : X → R be a strictly increasing smooth mapping. The t-score of distribution F with interval support X ⊆ R and (almost surely) two-times differentiable density f (x) is

T F (x) = - 1 f (x) d dx [ 1 η ′ (x) f (x) ] . ( 4 
)
Supposing that the solution x * of equation

T F (x) = 0 (5)
is unique, it is called the t-score mean and function

S F (x) = η ′ (x * )T F (x) (6)
the generalized t-score function of distribution F.

Definition 1 can be explained as follows:

F is a transformed distribution F(x) = G(η(x)), where G(y) is a 'prototype' with support R. F has density f (x) = g(η(x))η ′ (x) (7) 
where η ′ (x) = dη(x)/dx is the Jacobian of the transformation. It was shown in [START_REF] Fabián | Induced cores and their use in robust parametric estimation[END_REF] that the t-score is actually the transformed generalized t-score function of the prototype, T F (x) = S G (η(x)). The Jacobian of the transformation does not carry any information about the distribution. The term in brackets of equation ( 4) is the density without the Jacobian. The justification of expression ( 6) is the following: consider a location prototype G µ with density g(y -µ). The density of the transformed distribution

F τ = G µ • η(x) is f (x; τ) = g(η(x) -η(τ))η ′ (x),
where τ = η -1 (µ) is a so called transformed location parameter. It was proven in [START_REF] Fabián | Estimation of simple characteristics of samples from skewed and heavy-tailed distribution[END_REF] that the generalized t-score function with transformed location parameter is identical with the Fisher score for this parameter,

S F (x; τ) = d dx log f (x; τ).
Generalized t-score function ( 6) and its parametric form S F (x; θ ) generalize the concept of the Fisher score for distributions with arbitrary support without a 'central' parameter or without parameters at all. If the prototype G has mode y * , the score mean of the transformed distribution is the transformed mode of the prototype G, x * = η -1 (y * ). The generalized t-score function is actually the (generalized) Fisher score for the score mean, which may not be a parameter of the distribution and is unique if the prototype is unimodal.

The mapping η(x) occurring in Definition 1 is often the inner part of f (x), so that η(x) and/or η ′ (x) in equation ( 7) are clearly identifiable. This η is called an innate mapping; [START_REF] Fabián | Score function of distribution and revival of the moment method[END_REF] discusses how to choose a most suitable innate mapping if it is not apparent from the density formula.

Let us consider two examples, related to log-gamma and Pareto distributions studied later in this paper. For other examples, e.g. beta-prime distribution see [START_REF] Fabián | Score function of distribution and revival of the moment method[END_REF].

Example 2 The log-gamma distribution with support

X = (1, ∞) has density f (x) = α c Γ (c) (log x) c-1 1 x α+1 = α c Γ (c) (log x) c x -α 1 x log x (8) so that η ′ (x) = 1
x log x and the innate mapping is η(x) = log log x. By (4) one obtains

T F (x) = - 1 f (x) d dx [(log x) α x -α ] = α log x -c, with score mean x * = e c/α . Example 3 The density f (x) = α x α+1 (9)
of the Pareto distribution with X = (1, ∞) does not contain any 'visible' Jacobian of any transformation. By using η ′ (x) from the foregoing example we would receive

T F (x) = - 1 f (x) d dx [x log x f (x)] = α log x -1,
which is the Fisher score for α. By using η(x) = log(x -1), η ′ (x) = 1/(x -1), the t-score ( 4) is

T F (x) = - 1 f (x) d dx [(x -1) f (x)] = α -(α + 1)/x = α(1 -x * /x), ( 10 
)
with score mean x * = (α +1)/α. Since the 'shifted' Pareto with X = R + and density f (x) = α (x+1) α+1 is the particular case of the beta type II distribution with bounded generalized t-score, the latter one is to be taken as the t-score of the Pareto distribution.

The score moments (SM) were introduced for any k ∈ N instead of the ordinary moments by

M k (θ ) = ES k F (θ ) = ∫ X S F (x; θ ) k f (x; θ ) dx, ( 11 
)
existing only if f satisfies the usual regularity requirements. It appeared that the score moments are often expressed by elementary functions of parameters. It is easy to see that M 1 = 0. The value M 2 = ES 2 F of distributions with (transformed) location parameter is the Fisher information for (transformed) location parameter. Accordingly, ES 2 F is the Fisher information for the t-mean. The reciprocal value

ω 2 = 1 ES 2 F , ( 12 
)
the t-score variance, appeared to be a measure of the variability (dispersion) of the distribution even in cases where the usual variance does not exist (see [START_REF] Fabián | Estimation of simple characteristics of samples from skewed and heavy-tailed distribution[END_REF]). Notice, that in case of the Pareto distribution

ET 2 F = α/(α + 2), ES 2 F = (x * - 1) -2 ET 2 F so that ω 2 F = α + 2 α 3 . ( 13 
)
Let X 1 , . . . , X n be i.i.d. random variables according to some F. Assuming F as a member of the model family [START_REF] Fabián | Induced cores and their use in robust parametric estimation[END_REF][START_REF] Fabián | Score moment estimators[END_REF] introduced the t-score moment estimate θSM as the solution of equations θSM :

{F θ , θ ∈ Θ }, Θ ∈ R m ,
1

n n ∑ i=1 S k F (x i ; θ ) = ES F k (θ ), k = 1, . . . , m, (14) 
the statistical counterpart of (11 

∑ i=1 (α log x i -c) = 0 (15) 1 n n ∑ i=1 (α log x i -c) 2 = c ( 16 
)
with solution α = s 1 s 2 -s 2 1 , c = s 2 1 s 2 -s 2 1 where s 1 = 1 n ∑ n i=1 log x i and s 2 = 1 n ∑ n i=1 (log x i ) 2 .
Example 5 Pareto distribution: From the first moment equation

∑ n i=1 (1 -x * /x i ) = 0 we obtain x * = xH , where xH = n/ n ∑ i=1 1/x i
is the harmonic mean, and

α = 1/( xH -1). ( 17 
)
We use the same notations of order statistics as in section 1, see (1). Hence, due to (17), the t-Hill estimator of γ = α -1 was suggested in the form

H * k n ,n = { 1 k n k n ∑ i=1 X (n-k n ,n) X (n-i+1,n) } -1 -1, k n = 1, 2, ..., n -1. ( 18 
)
This estimator was firstly published in technical report of [START_REF] Fabián | On robust and distribution sensitive hill like method[END_REF].

Since it is based on harmonic mean, which is a generalized t-Hill estimator, it is expected to be resistant to large observations to a certain extent so that it could yield more realistic values than the ordinary Hill estimator. Further generalizations have been made by [START_REF] Billingsley | A simple generalization of the hill estimator[END_REF]; [START_REF] Beran | The harmonic moment tail index estimator: asymptotic distribution and robustness[END_REF]. In particular, the tradeoff between efficiency and robustness has been studied in [START_REF] Beran | The harmonic moment tail index estimator: asymptotic distribution and robustness[END_REF], a mean of order p ≥ 0 (MOP) generalization is given by [START_REF] Billingsley | A simple generalization of the hill estimator[END_REF].

For the definition of the t-lgHill estimator we use the same notations of order statistics as in section 1, see (1), and

M ( j) n = 1 k n k n ∑ i=1 ( log X (n-i+1,n) X (n-k n ,n) ) j , j = 1, 2, ...
Hence the t-lgHill estimator of γ = α -1 has the form

H L k n ,n = M (2) n -(M (1) n ) 2 M (1) n . ( 19 
)
If we understand the t-Hill estimator as an algorithm depending on the assumed distribution, the t-Hill for log-gamma distribution is, according to the solution of ( 15) and ( 16)

H L k n ,n = ∑ k n i=1 log 2 { X (n-i+1,n) X (n-kn,n) } ∑ k n i=1 log { X (n-i+1,n) X (n-kn,n) } - 1 k n k n ∑ i=1 log { X (n-i+1,n) X (n-k n ,n) } k n = 1, 2, ..., n -1. ( 20 
)
Let us denote H L k n ,n sequence by t-lgHill. Referring to Section 2, the t-lgHill estimate of the tail index is given by ( 16) and has a closed-form expression as

H L k n ,n = s 2 s 1 -s 1 .
3 Asymptotical results

t-Hill Estimator in Case of Moving Average Sequence

Suppose at least one of the real numbers c j , j = 0, 1, ... is positive and there exists δ ∈ (0, 1), δ < α such that

∞ ∑ j=0 |c j | δ < ∞. ( 21 
)
Consider the moving average sequence

X n = ∞ ∑ j=0 c j Z n-j , -∞ < n < ∞, (22) 
where Z i , -∞ < i < ∞, are non-negative i.i.d. innovations with d.f. G, such that G ∈ RV -α , α > 0. We will use the t-Hill estimator as introduced before and consider the point measure

µ X,k n ,n (•) := 1 k n n ∑ i=1 ε { X i b( n k n ) ∈ (•) } ,
as a random element in the space E + of positive Radon measures on (0, ∞] endowed with the vague topology. Here

b(t) := F ← (1 - 1 t ) = ( 1 F ) ← (t) (23) 
is the tail function of F. Let

k n → ∞, k n n → 0. ( 24 
)
By Proposition 3.3 of Resnick and Starica (1993)

1 k n n ∑ i=1 I [ X i b( n kn ) >0 ] ε { X i b( n k n ) ∈ (•) } ⇒µ, n → ∞, in E + , where µ : σ ((0, ∞]) → [0, ∞) and µ(x, ∞] = x -α , x > 0. However, for all n ∈ N, k n = 1, 2, ..., n and A ∈ E + 1 k n n ∑ i=1 I [ X i b( n kn ) >0 ] ε { X i b( n k n ) ∈ A } =µ X,k n ,n (A), (25) in distribution, therefore µ X,k n ,n ⇒µ, n → ∞, (26) 
in E + . By Proposition 2.1. in Resnick and Starica (1993), having an intermediate sequence,

X (n-k n ,n) b ( n k n ) P →1 ( 27 
)
and by Proposition 2.2. in Resnick and Starica (1993)

µ X,k n ,n (•) := 1 k n n ∑ i=1 ε { X i X (n-k n ,n) ∈ (•) } P →µ(•), n → ∞, (28) 
in E + . We will use the following Potter's inequality for distribution functions with regularly varying tails. If a function H is regularly varying with exponent γ ∈ R, then for ε > 0 there will exist t 0 (ε), such that for t > t 0 (ε) and x ≥ 1,

(1 -ε)x γ-ε ≤ H(tx) H(t) ≤ (1 + ε)x γ+ε . ( 29 
)
Its proof can be found in de [START_REF] De Haan | On regular variation and its application to the weak convergence of sample extremes[END_REF].

Lemma 1 Let X 1 , X 2 , ... be random variables with d.f. F such that

F(x) ∈ RV -α . ( 30 
) Assume that k n → ∞, k n /n → 0 and µ X,k n ,n ⇒ µ as n → ∞. Define Φ n = 1 k n k n ∑ i=1 φ ( X (n-i+1,n) X (n-k n ,n) ) , where φ is a differentiable function on (1, +∞) such that x -α φ(x) → ∞ as x → ∞ and ∫ ∞ t x -α+δ 1 |φ ′ (x)| dx < +∞, for all t > 1, 0 < δ 1 < α. Then, Φ n is a weakly consistent estimator of φ(1) + ∫ +∞ 1 x -α φ ′ (x)dx.
As a consequence of Lemma 1, considering φ(x) = 1/x yields that H * k n ,n , defined in ( 18) is a weakly consistent estimator of 1/α. Now we are ready to prove the weak consistency of the t-Hill estimator in case of infinite moving average (MA) sequence.

Proposition 1 Suppose at least one of the real numbers c j , j = 0, 1, ... is positive and there exists δ ∈ (0, 1), δ < α such that condition ( 21) is satisfied. Consider the moving average sequence ( 22) where Z 24), then H * k,n is a weakly consistent estimator for α -1 .

i , -∞ < i < ∞, are non-negative i.i.d. innova- tions with d.f. G, such that G ∈ RV -α , α > 0. If (

t-lgHill Estimator in Case of Moving Average Sequence

Suppose at least one of the real numbers c j , j = 0, 1, ... is positive and there exists δ ∈ (0, 1), δ < α such that ( 21) is satisfied.

Consider the moving average sequence ( 22), where

Z i , -∞ < i < ∞, are non- negative i.i.d. innovations with d.f. G, such that G ∈ RV -α , c = α > 0.
Assume (24) holds. By weak consistency of Hill estimator we obtain that

M (1) n P → 1 α . Now we need to prove that M (2) n -(M (1) n ) 2 P → 1 α 2 , i.e. M (2) n P → 2 α 2 (31)
and then to use Slutsky arguments. Consider the point measure

µ X,k n ,n (•) := 1 k n n ∑ i=1 ε { X i b( n k n ) ∈ (•) } ,
as a random element in the space E + of positive Radon measures on (0, ∞] endowed with the vague topology, where b is defined in (23).

In section 3.1 we proved that under these conditions

µ X,k n ,n ⇒µ, n → ∞, (32) 
in E + and ( 26) and ( 27) are true. As a consequence of Lemma 1, letting φ(x) = ln(x) entails that M

(2)

n is a weakly consistent estimator for 2/α 2 .

Proposition 2 Suppose at least one of the real numbers c j , j = 0, 1, ... is positive and there exists δ ∈ (0, 1), δ < α such that condition ( 21) is satisfied. Consider the moving average sequence ( 22

) where Z i , -∞ < i < ∞, are non-negative i.i.d. innovations with d.f. G, such that G ∈ RV -α , α > 0. If (24), then i.) M (2)
n is a weakly consistent estimator for 2α -2 ; ii.) t-lgHill estimator H L k,n is a weakly consistent estimator for α -1 .

t-lgHill Estimator is Asymptotically Normal in iid case

Definition 2 If the tail function of a non-negative random variable X is F := 1 -F and F : R → [0; 1] satisfies that F ∈ RV -α with α > 0. Then F is said to be of secondorder regular variation with parameter ρ ≤ 0, if there exists a function Q(t) that ultimately has a constant sign with lim t→∞ Q(t) = 0 and a constant c ̸ = 0 such that

lim t→∞ F(tx) F(t) -x -α Q(t) = H α,ρ (x) = cx -α ∫ x 1 u ρ-1 du, x > 0 ( 33 
)
Then it is written as F ∈ 2RV -α,ρ and Q(t) is referred to as the auxiliary function of F.

It is known from de [START_REF] De Haan | Generalized regular variation of second order[END_REF] or a more relevant form in Geluk et al. [START_REF] Geluk | Second-order regular variation, convolution and the central limit theorem[END_REF] 

that if H α,ρ (x) is not a multiple of x -α then ρ < 0 implies that there exists a c ̸ = 0 such that H α,ρ (x) = cx -α x ρ -1 ρ
and |A| ∈ RV ρ and no other choices of ρ are consistent with Q(t) → 0. There are many distributions which satisfy the second order RV condition. These are (see e.g. [START_REF] Drees | How to make a hill plot[END_REF]):

Cauchy γ = 1, ρ = -2, Fréchet(1) γ = 1, ρ = -1, Student t(4) γ = 1/4, ρ = -1/2, t(10) γ = 1/10, ρ = -1/5 or loggamma γ = 1/3, ρ = 0.
The most seminal results on this topic could be found in de Haan and Ferreira (2006).

Theorem 1 Let X 1 , X 2 , . . . be iid random variables. Suppose that the second order condition 33 holds with α > 0, and auxiliary function

Q. If √ k n Q(n/k n ) → 0 as n → ∞ then, √ k n ( αH L k n ,n -1 ) d - → N(0, 8).
4 Empirical study of the effect of contamination on Pareto tail index.

The maximum likelihood estimator αML,n := 1

H kn,n
of Pareto tail index is very sensitive to deviations from the theoretical distributions, namely in the heavy-tailed class of distributions, see Stehlík et al. (2010b). It is unbiased, asymptotically consistent and has smallest variance in the set of all unbiased estimators for α. Its variance is equal to α 2 /n. However, it is not robust with respect to large contamination because its finite sample upper breakdown point is 0. Therefore, we are looking for an estimator αn with asymptotic relative efficiency

Var αML,n

Var αn = α 2 nVar αn ≤ 1

and close to 1. The latter means that the estimator's variance should be close to α 2 /n, although it will be larger than this value. It seems difficult to theoretically compare mean values and variances of Hill and t-Hill estimators for all distribution functions with regularly varying tails. In this section we empirically compare their properties.

A good discussion of this topic can be found in [START_REF] Finkelstein | Pareto tail index estimation revisited[END_REF]. First they make the Pareto probability integral transform of the initial data and then they use the properties of the Uniform distribution in order to obtain their estimator of α and to examine its properties. The biggest advantage of their approach is that in this way "even infinite contamination has a bounded effect on the transformed data". Robust methods considering contaminated distributions work much better, but sweep out the differences among distributions so that they do not use the complete prior information. The main concepts about the robustness are very well presented e.g. in [START_REF] Huber | Robust statistics, series in probability and mathematical statistics[END_REF]; Rousseeuw and Stahel (1986).

In order to compare the quality of the estimators we calculated the percentage relative bias of Hill, t-Hill and t-lgHill estimators (RB). It is defined as

RB = 1 m ∑ m i=1 ( γi -γ) γ 100,
where γi is correspondingly estimator of γ = 1/α for the ith simulated sample, i = 1, 2, ..., m.

Another characteristic that we use in order to determine the quality of these estimators is their relative root-mean-square error (RRMSE) [START_REF] Brzezinski | Robust estimation of the pareto tail index: a monte carlo analysis[END_REF].

RRMSE = √ 1 m ∑ m i=1 ( γi -γ) 2 γ 100, see e.g.
Analogously to the Hill plot we consider the set of points with coordinates

( k n , H * k n ,n ) , k n ∈ {1, 2, ..., n}.
Further on we call this plot 't-Hill plot'. Similarly for t-lgHill plot. The straight line represents the true value of γ = 1/α in all following figures in this section.

4.1 Independent observations.

t-Hill versus other robust estimators

In our Monte Carlo simulation we focus on parameter α of the classical (or Type I) Pareto distribution P(α, δ ), which is defined using cumulative distribution function as follows:

F(x) = 1 - ( δ x ) α , x ≥ δ > 0, ( 34 
)
where δ is a scale parameter and α > 0 is a shape parameter, generally known as the Pareto tail index.

The existing literature offers various estimators for the Pareto tail index α. In our simulation study we focus primarily on the following estimators: Hill estimator (maximum likelihood estimator introduced by [START_REF] Hill | A simple general approach to inference about the tail of a distribution[END_REF], which we use as a nonrobust benchmark for the Pareto tail index), Integrated Squared Error Estimator (ISE, estimator introduced by Vandewalle et al. (2007), which is based on the relative excesses of observations above a certain treshold), Partial Density Component estimator (PDC, estimator introduced by Vandewalle et al. (2007), which is also based on the relative excesses of observations above a certain treshold), Least Squares estimator (LS), moment estimator (ME, see Dekkers et al. (1989)), QQ estimator (QQ, estimator based on the Quantile-Quantile approach, see [START_REF] Kratz | The qq-estimator and heavy tails[END_REF]), and finally Weighted MLE (WMLE, see [START_REF] Dupuis | Robust weighted likelihood estimators with an application to bivariate extreme value problems[END_REF]; [START_REF] Dupuis | A robust prediction error criterion for pareto modelling of upper tails[END_REF]). For the purpose of comparison we use the percentage relative bias (RB) and the percentage relative root-mean-square error (RRMSE) as defined in section 4.

Therefore, the data sets are simulated from Pareto distribution P(α, 1), for various values of α, as well as from contaminated Pareto distribution with function

F = (1 -ε)P(α 1 , 1) + εP(α 2 , 1) (35) 
where ε = 0.05, 0.10 and α 1 = 1, 1.7, α 2 = 0.3, 0.5, 1. For all cases we assume the appropriate sample sizes n. The next investigations refine the conclusions made in [START_REF] Fabián | On robust and distribution sensitive hill like method[END_REF]. All estimators are calculated by means of their corresponding values in m = 100 samples. First we observe samples with size n = 40. The means of the Hill, t-lgHill and t-Hill estimators, separately for any fixed k n = 1, 2, ..., 39, together with their averages are given in Figure 1. They show that both estimators have similar properties for small samples, although the t-Hill oscillates stronger. The values of RB and RRMSE are given in Table 2. We also made analogous observations for samples with size n = 500. However, this figure is not provided here. The same conclusions could be made also from the values of RB and RRMSE, given in Table 3.

t-Hill versus Hill and t-lgHill in Pareto sample

t-Hill versus Hill and t-lgHill for distribution function with regularly varying tail at a logarithmic rate

Hill, t-lgHill and t-Hill estimators may perform very poorly if the slowly varying function in the tail is faraway from a constant. In (4.16) of [START_REF] Embrechts | Modeling extremal events for insurance and finance[END_REF] the authors consider

F ← (p) = (1 -p) -1/α (-ln(1 -p)), p ∈ (0, 1), ( 36 
)
with respect to the Hill estimator. We simulated samples of n = 10000 observations of random variables with quantile functions (36), separately for α = 0.3, 1, 1.7 and plotted the Hill, t-lgHill and the t-Hill plots for k n = 5, 6, ..., 499. The rate of convergence of these estimators can be observed in Figure 2. Notice that the t-lgHill outperforms both Hill and the t-Hill estimators. Although Hill estimator seems to be slightly closer to the estimated value, it is clear that three estimators are not good for such c.d.fs, see 

t-Hill versus t-lgHill and Hill for log-gamma sample

Figure 3 shows the t-lgHill for different α equal to 0.3, 1, 1.7 and log-gamma distribution (8), c = 1. Green line is for t-Hill, blue is Hill, red is lgHill. 

t-Hill versus Hill for contaminated data from Pareto sample

Practical examples, see [START_REF] Fabián | On robust and distribution sensitive hill like method[END_REF] among others, have shown that data are expected to be contaminated in specific situations. Frequently there are outliers in the right tail of the distribution. It is known that the Hill estimator is not robust. This is due to the fact that data are entered by their logarithm in its calculation. But what about the t-Hill estimator? In (18) data are involved by their reciprocal value. Therefore, it is not difficult to deduce that these estimators are robust with respect to large values. They are sensitive to the center of the distribution.

Contamination, governed by α 2 . t-Hill estimator provides the superior results with respect to the relative bias (RB) and the relative root-mean-square error (RRMSE) for the contaminated Pareto distribution with distribution function ( 35) among all employed estimators ISE, PDC, LS, ME, QQ and WMLE.

Here we simulated small n = 40 and bigger samples of n = 200 data from contaminated Pareto distribution as given in (35) separately for α 1 = 0.3, 1 or 1.7 and α 2 = 0.5 or 1. The relative part of the contamination is governed by the parameter ε. We worked with two values 0.1 and 0.05. When considering a sample size with 10% contamination, this would yield ε = 0.1 . For sample sizes of 40, see Figure 4.

To obtain proper estimations for 1/α 1 we need k n to be large and k n < n. When α 1 < 1 and α 2 ≥ 1 the Hill estimators are better than the t-Hill estimators. When α 1 < 1 and α 2 < 1, or α 1 ≥ 1 and α 2 > 1 the t-Hill estimators are comparable to the corresponding Hill estimators. Finally if we observe the means of the estimators we can conclude that t-Hill estimators are better than Hill estimators for α 1 ≥ 1 and α 2 ≤ 1.

The same conclusions could be made on RB and RRMSE basis of both Hill and t-Hill estimators. They are given in Table 5 for k = 10 or 20 and for k = 100 or 200, and different values of α 1 , α 2 and ε.

Comparison of maximum likelihood with t-score moment estimators Let us compare maximum likelihood (ML) estimators with t-score moment (SM) estimators for two different cases, on the one hand based on a sample of one distribution and on the other hand in presence of contamination, i.e. distribution of the form

F ε = (1 -ε)F(ω) + εF(ω 1 ), (37) 
where ω 1 > ω are score variances. Note: The score variance of the Pareto distribution is ω 2 = (α + 2)/α 3 . If ω = 1, we have 1/α = 0.657. Pareto distribution with score variance ω 2 will be denoted by Pa(ω).

Random samples were generated from heavy-tailed distributions, with increasing level ω 1 of contamination and α = 1.

Ratios of r(k) = H k n ,n /γ(ω * ) -1 and r * (k) = H * k n ,n /γ(ω * ) -1 for k n = 100, 250 and 900 and n = 1000 are given in Table 6.

The variances of SM estimates are somewhat higher in accordance with the values of theoretical asymptotic efficiencies, but SM estimates are less biased and thus, do not seem to be much worse than the ML estimates even for not contaminated samples.

However, when data contamination comes into consideration, i.e. ε = 0.1 of F( 10), the estimation with t-scores gives better results than standard ML-method. In addition to a smaller bias for very small sample sizes (n ≤ 25), variances are smaller for SM-method compared with ML-method the smaller the number of observations. Recall that for the two experiments new simulations have been performed such that a comparison of the goodness of the results between contaminated and noncontaminated data is obsolete.

t-Hill versus Hill for data from the log-gamma distribution

It is apparent that both, t-Hill and Hill, show systematic decrease with expecting heavier Pareto tail. Figure 5 shows paths of averages for H k n ,n , H * k n ,n and H L k n ,n from 50 experiments with contaminated log-gamma data from (37) with ω = 5.546 and ε = 0.05. The values of ω 1 in plots in Figure 5 are computed from log-gamma distri- bution.

Figure 5 shows paths of averages for H k n ,n , H * k n ,n and H L k n ,n from 50 experiments with contaminated log-gamma data from (37) with ω = 5.546 and ε = 0.05. The values of ω 1 in plots in Figure 5 It is apparent from Figure 5 that for small contamination t-lgHill (red) estimates γ from log-gamma data perform better than both Hill (blue) and t-Hill (green). However, for larger contamination it is definitely not robust, perhaps due to the squared 

Infinite moving average process

In this subsection we consider the infinite moving average process with the following autoregressive form

X i = 1.3X i-1 -0.7X i-2 + Z i , i = 1, 2, ..., n. ( 38 
)
It is discussed in Resnick and Starica (1993) with respect to the Hill estimator. Here we compare Hill estimator with the corresponding t-Hill estimator.

t-Hill versus Hill and lgHill for Pareto noise

The t-Hill and Hill plots of the averages of the corresponding estimators, calculated on samples of n = 2000 observations on moving average sequence (38) with noise Z i that is P(α, 1) distributed and k n = 10, 11, ..., 499 are given on Figure 6. The corresponding values of α are 0.3 in the first column, 1 in the second column and 1.7 in the third column. At first glance, we see that both estimators have a similar behavior for a fixed number of upper order statistics. However, the values of RRMSE and RB in Table 8 show that in this case the t-Hill estimators are better. 

t-Hill versus Hill for contaminated Pareto noise

Contamination, governed by ε.

Here we contaminated the distribution of the noise component, calculated the means of the corresponding Hill and t-Hill estimators for k n = 10, 11, ..., 9999 and plotted them in Figure 7 and Figure 8 for relative parts on contamination ε = 0.1 and ε = 0.05. The observations in each sample are n = 10000. More precisely the distribution of the noise component Z i in ( 38) is ( 35). The corresponding values of RRMSE and RB are given in Table 9. Although both estimators give almost the same results, in most of these cases the t-Hill estimator is slightly better than the Hill estimator. 

Conclusions of the Simulations

Having in mind the observations in section 4 we can make the following conclusions:

1. when the contamination has heavier tail than the original distribution, t-Hill estimator outperforms Hill estimator and several robust tail estimators (ISE, PDC, LS, ME, QQ and WMLE). In contaminated i.i.d. case, where the severity of the contamination is governed by the extremal index, the Hill estimator has more narrow confidence intervals than t-Hill estimator. When α 1 < 1 and α 2 ≥ 1 the Hill estimators are better than the t-Hill estimators. When α 1 < 1 and α 2 < 1, or α 1 ≥ 1 and α 2 > 1 the t-Hill estimators are comparable to the corresponding Hill estimators. Finally we can conclude that t-Hill estimators are better than Hill estimators for α 1 ≥ 1 and α 2 ≤ 1. This effect increases for small samples.

2. Both Hill and t-Hill estimators are asymptotically consistent, however the t-Hill estimator has bigger variance. 3. The reason that the Hill estimator is not robust seems to be the fact that in its formula the data are entered by their logarithm. But what about the t-Hill estimator? In (18) data are involved by their reciprocal value. Therefore, it is not difficult to deduce that these estimators are robust with respect to large values. They are sensitive to the center of the distribution. 4. When the i.i.d. data contamination comes into consideration, i.e. ε = 0.1 of F( 10), the estimation with t-scores gives better results than standard ML-method. In addition to a smaller bias for very small sample sizes (n ≤ 25), variances are smaller for SM-method compared with ML-method, especially for small samples. 5. In moving average case without contamination and with Pareto noise and α 1 ≤ 1 the t-Hill estimator is better with respect to the unbiasedness when n → ∞ and k n /n → 0, but it has bigger variance than the Hill estimator. 6. In moving average cases with contaminated Pareto noise the t-Hill estimators are better than Hill only in case α 1 ≥ 1 and α 2 ≤ 1 and small relative part of contamination. The smaller the relative part of the contamination, the faster the rate of convergence. Moreover in any cases the estimators converge to 1/min(α 1 , α 2 ) for n → ∞, k n → ∞ and k n /n → 0. 7. In case when the observed random variable have log-gamma distribution, the t-lgHill estimator is more robust that t-Hill and Hill estimators. This is due to the fact that the t-lgHill estimator is distribution sensitive while the Hill and t-Hill estimators by construction in this case are useful only due to the information about the regular variation of the distribution. 8. From all of the charts it visible that the t-lgHill estimator has relatively small variance. It seems to be almost the same as of the Hill estimator. 9. In Moving Average case with Pareto noise the t-Hill outperforms both Hill and t-lgHill estimators. When alpha increases, the variance of all three estimator decreases.

The larger the number of samples m, e.g. m = 1000, the more visible are the conclusions about Hill, t-lgHill and t-Hill estimators, however computational time is very large. We shall recall a general consensus that we shall have a multi-criterial approach in order to estimate the parameters of heavy tail. Consistency is an important property, but we shall also consider importance of approximation of finite sample distribution and robustness.

5 Application to a small sample data from Guanaco glacier A glacier is a solid ice mass which is fed by solid water (snow, hail or hoarfrost), transforms this solid water in ice and restores it via steam (evaporation/sublimation) or via liquid (water drained by the runoff stream-flow), see [START_REF] Francou | Métodos de observación de glaciares en los Andes tropicales, mediciones de campo y procesamiento de datos. Versión 1. Great-Ice, IRD Gascoin S[END_REF]. Such gain and loss of mass can be analyzed as a balance (or budget). Guanaco glacier is located in the III region of Chile (latitude 29S) in the semi-arid Andes, it has a surface area of 1.86[km 2 ] and a maximum thickness of 120[m], see [START_REF] Francou | Métodos de observación de glaciares en los Andes tropicales, mediciones de campo y procesamiento de datos. Versión 1. Great-Ice, IRD Gascoin S[END_REF], the area contributing water to the Pacific Ocean (included in the above calculation of 23%), is only 1.26[km 2 ], in other words, less than 35% of the total ice area in this zone. The rest of the Guanaco glacier contributes water to the Atlantic ocean. In this sense, the relative importance of glacier meltwater to the river basin as a complete unit is very low compared to the snow and rain contributions. Its geographical location is shown in Figure 9, this glacier (jointly with other minor glaciers and glacierets in the zone) is highly relevant for studies, because it is an important water reservoir in a semi-arid zone of Chile, contributing with up to the 23% of the streamflow in the corresponding valley, see Gascoin et al. (2011). All glaciers in the Pascua Lama region (3.64 km2) can contribute between 3 and 23 % to the very high basin area of the Huasco river. The glacier meltwater contribution goes from 100% at the foot of the glacier, down to near 0 at the sea outlet of this river (Huasco). Given that this zone is one of the world's most richly endowed territories of copper, there is high interest for the occupation of these water resources, resulting in a uneven mining-agricultural competition for water rights, see [START_REF] Oyarzún | Sustainable development threats, inter-sector conflicts and environmental policy requirements in the arid, mining rich, northern chile territory[END_REF]. The mass balance observations over the glacier consists of annual records for the period 2002-2014, the dataset corresponds to the negated mass balance because we are interested in extremely large losses of volume in the glacier (see Figure 10).

In order to study a threshold model for this data, estimations for the tail index γ are computed using Hill, t-Hill (as previously defined) and Zipf's estimator (see [START_REF] Kratz | The qq-estimator and heavy tails[END_REF]) which is a form of least square estimator (Schultze and Steinebach (1996)) of the tail index. It follows the fact that if we suspect that X 1,n ≤ ... ≤ X n,n are the order statistics from a Pareto family, then the plot of should be roughly linear with intercept 0 and slope γ. The Zipf's estimator is computed for a given k n , as

{( -log ( 1 - i n + 1 ) , log X i,n ) , 1 ≤ i ≤ n } ,
γzipf (k n ) = slope ({ -log ( 1 - i k n + 1 ) , log X n-k n +i,n , 1 ≤ i ≤ k n }) .
We used σ = X n-k n +1,n γ as estimator of the scale parameter. The asymptotic standard deviation is computed as

H kn,n √ k n for Hill's estimator, as γzipf (k n ) √ k n /2
for Zipf's, and for t-Hill as

H * k n ,n √ k n   1 + H * k n ,n √ 1 + 2H * k n ,n   .
Zipf's estimator plot (see Figure 11) shows linear stability up to k n = 7, which makes this value of k n a good option for further computations. Hill and t-Hill estimators were computed along with Zipf's estimator, taking into account k n = 6 and k n = 7. The stability of the parameter estimation in a small sample context was tested using a parametric bootstrap approach, where 1000 samples of size 10 were generated from GP distribution with shape parameter computed with the three previously discussed estimators. The results are displayed in form of histograms in Figure 12.

Table 10 summarizes the information about the EVI obtained from the simulation: 10 The initial value is the obtained using the estimator over the original sample, the mean and standard deviation accounts for the simulated samples.

Given the results for each estimator, it is clear that k n = 7 is a better choice than k n = 6 because estimations are less biased and all estimators are more close to each other, also, Zipf's estimator should be treated with more care in this context because it shows an important bias in the parametric bootstrap without an improvement in the variance. The main advantage of usage of t-Hill estimator is its robustness and good small sample properties.

In Figure 13 we plot Hill, t-Hill, Zipf and t-lgHill for 40+ data sample of the Pascualama zone.

In Figure 14 we provide a QQ-plot with assumed theoretical distribution of GPD with parameters: µ = 0, σ = 1, ξ ∈ {-0.5, -0.25, 0.25, 0.5}, with cdf defined for ξ

̸ = 0 as G(z) = 1 -[1 + ξ (z -µ)/σ ] -1/ξ .

Summary

In this paper we introduce and study properties of t-score estimator under different model settings. In particular, we derived asymptotic normality for t-lgHill estimator for iid case. We also derived consistency for t-Hill and t-lgHill under i.i.d. and moving average setup. We can conclude that:

i) The t-score is an unbounded function in cases of light-tailed distributions and a bounded function when distributions are heavy-tailed. Therefore, it seems to be extraordinary suitable for the estimation of parameters by the generalized moment method. It secures robustness 'when it is needed by the assumed distribution'. In this sense, the suggested estimates are 'naturally' robust without need of using any further function of robust statistics. In particular robustness of t-Hill can be well applied in cases when existence of first or second moment is questionable. Such an application for LATAM returns, i.e. daily log-returns (in percent) of an equity fund investing in Latin America (LATAM), can be found in Stehlík and Hermann (2015).

ii) It appeared that in cases of very small contamination, the maximum likelihood and t-moment method give similar results. However, the larger the contamination, the better are the t-moment estimates.

iii) It is apparent that an introduction of the t-mean and t-variance for distributions without ordinary mean and variance enables to describe the behavior of the estimates in a unique way and thus, compares results of the estimation for various assumed families of distributions having different parameters. iv) We propose t-Hill estimator for possibly dependent data and investigate its weak consistency and asymptotic behavior. Particularly we consider the infinite moving average model. Besides the i.i.d. case there are cases where the t-Hill estimator is more robust than the Hill estimator. We applied t-Hill for small sample size real data for Glacier and received satisfactory results despite a small sample size. Proof The result is proved analogously to Resnick and Starica (1993). An integration by parts entails The positive measures µ X,kn,n are Radon and the measure µ X,kn,n converges to µ and α > 0. Therefore, in view of (28) and the definition of µ, the Hospital rule yields Then, for all t ≥ 1,

Φ n = ∫ ∞ 1 φ(x) { 1 k n n ∑ i=1 ε { X i X (n-kn,n) ∈ dx }} = ∫ ∞ 1 φ(x) µ X,
lim n→∞ Φ n = lim n→∞ { ∫ t 1 µ X,kn,n (x, ∞] φ ′ (x) dx + ∫ ∞ t µ X,kn,n (x, ∞] φ ′ (x) dx } .
From the definition of b, n/k n → ∞ implies b(n/k n ) → ∞ and

n k n F(b(n/k n )) → 1
as n → ∞. Thus, in view of (30) and Potter's inequality for regularly varying functions, for any 0 < δ 1 < α there exist x 0 and n δ 1 large enough such that, for all x > max(1, x 0 ) and n > n δ 1 , Eµ X,kn,n ((1 -δ 0 )x, ∞] ≤ (1 + δ 1 )((1 -δ 0 )x) -α+δ 1 , and for all t > 1,

∫ ∞ t Eµ X,kn,n ((1 -δ 0 )x, ∞] |φ ′ (x) dx ≤ (1 + δ 1 )(1 -δ 0 ) -α+δ 1 ∫ ∞ t x -α+δ 1 |φ ′ (x)| dx.
We apply Fubini's theorem and obtain that for all t > 1 and n > n δ ,

P { ∫ ∞ t µ X,kn,n ((1 -δ 0 )x, ∞] |φ ′ (x)| dx > ε } ≤ 1 ε ∫ ∞ t Eµ X,kn,n ((1 -δ 0 )x, ∞] |φ ′ (x) dx ≤ 1 ε (1 + δ 1 )(1 -δ 0 ) -α+δ 1 ∫ ∞ t x -α+δ 1 |φ ′ (x)| dx.
As a consequence,

lim t→∞ lim n→∞ P { ∫ ∞ t µ X,kn,n ( X (n-kn,n) b(n/k n ) x, ∞ ] |φ ′ (x)| dx > ε, X (n-kn,n) b(n/k n ) -1 < δ } = 0
and (39) is satisfied.

A.2 Proof of Proposition 1

Proof The random variables X n , -∞ < n < ∞, are identically distributed. [START_REF] Cline | Infinite series of random variables with regularly varying tails[END_REF] proves that under these settings

F(x) = P ( ∞ ∑ j=0 c j Z j > x ) ∼ ∞ ∑ j:c j >0 c α j G(x) ∈ RV -α .
We use (26), apply the above Lemma 1 and complete the proof.

A.3 Proof of Proposition 2

Proof i.) The random variables X n , -∞ < n < ∞, are identically distributed. [START_REF] Cline | Infinite series of random variables with regularly varying tails[END_REF] proves that under these settings

F(x) = P ( ∞ ∑ j=0 c j Z j > x ) ∼ ∞ ∑ j:c j >0 c α j G(x) ∈ RV -α .
We use (32), apply Lemma 1 and complete the proof.

ii.) We use Slutsky's arguments and obtain weak consistency of the t-lgHill estimator in case of infinite moving average (MA) sequence.

  Fig. 1 t-Hill plots (green --), Hill plots (blue) and t-lgHill (red -.-) for α = 0.3 (left), α = 1(middle) and α = 1.7 (right), n = 40.

  Fig. 2 t-Hill plots (green --), Hill plots (blue) and t-lgHill (red -.-) for α = 0.3 (left), α = 1(middle) and α = 1.7 (right), n = 10000.

  Fig.3t-Hill plots (green --), Hill plots (blue) and t-lgHill (red -.-) for α = 0.3 (left), α = 1(middle) and α = 1.7 (right), n = 400.

Fig. 4

 4 Fig.4Rate of convergence of the t-Hill (first line) and Hill (second line) estimators with α 1 = 1, α 2 = 0.5 (left), α 1 = 1.7, α 2 = 0.5 (middle) and α 1 = 1.7, α 2 = 1 (right), ε = 0.1 for n = 40.

  α (see 8) in addition to their variances with different sample sizes averaged over 5000 experiments without (rows 1-4) and with contaminated Pareto distribution (rows 5-8), i.e. ε = 0.1.

Fig. 5

 5 Fig. 5 Graphs of averages for H kn,n (blue), H * kn,n (green) and H L kn,n (red) from 50 experiments with contaminated log-gamma data and increasing ω 1 , n = 1000.

  logarithmic term. Notice that t-Hill is more robust than the classical Hill even for non-Pareto data.

  Fig. 6 t-Hill plots (green --), Hill plots (blue) and t-lgHill (red -.-) for α = 0.3 (left), α = 1(middle) and α = 1.7 (right), n = 2000.

Fig. 7

 7 Fig.7Rate of convergence of the t-Hill (first line) and Hill (second line) estimators with α 1 = 1, α 2 = 0.5 (left), α 1 = 1.7, α 2 = 0.5 (middle) and α 1 = 1.7, α 2 = 1 (right), ε = 0.1, n = 10000.

Fig. 8

 8 Fig.8Rate of convergence of the t-Hill (first line) and Hill (second line) estimators with α 1 = 1, α 2 = 0.5 (left), α 1 = 1.7, α 2 = 0.5 (middle) and α 1 = 1.7, α 2 = 1 (right), ε = 0.05, n = 10000.

Fig. 9

 9 Fig. 9 Geographical location of Guanaco glacier and stakes where mass balance was measured in the period 2011-2014 along with aerial changes of the glacier computed via geodetic methods. Left image by Abermann et al. (2014), right image courtesy of the Center for Scientific Studies (CECs).

Fig. 10

 10 Fig. 10 Histogram for the dataset of mass balance in Guanaco glacier, n = 12.

Fig. 11

 11 Fig. 11 Left: Zipf's estimator plot for several values of k n . Right: Extreme value index computed over the dataset using 3 estimators and different values for k n .

Fig. 12

 12 Fig.12Histograms showing stability of the estimated tail index using different estimators, bin-width is chosen using the Freedman-Diaconis rule. Estimation over the original sample is shown as a vertical red line. Length of x-axis is fixed.

Fig. 13

 13 Fig. 13 Hill, t-Hill, Zipf and t-lgHill estimators (right) for 40+ data sample of the Pascualama zone.
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  kn,n (dx) = -∫ ∞ 1 φ(x) d µ X,kn,n (x, ∞] = lim x→1 φ(x) µ X,kn,n (x, ∞]lim x→∞ φ(x) µ X,kn,n (x, ∞] + ∫ ∞ 1 µ X,kn,n (x, ∞] d φ(x).

  µ X,kn,n (x, ∞] = lim x→1 lim n→∞ φ(x) µ X,kn,n (x, ∞] = φ(1).

Table 1

 1 

				n = 1000		
		α = 0.5		α = 1		α = 3
		RB	RRMSE	RB	RRMSE	RB	RRMSE
	Hill	0.14	3.18	0.10	3.20	0.08	3.20
	tHill	0.14	4.27	0.08	3.67	0.06	3.30
	t-lgHill	0.43	3.48	0.78	7.03	2.69	21.83
	ISE	0.23	5.52	0.16	5.07	0.09	4.72
	LS	0.83	4.59	0.79	4.59	0.78	4.54
	ME	0.31	3.59	0.48	4.60	1.93	10.73
	PDC	1.02	14.07	0.53	9.40	0.25	6.68
	QQ	-0.90	4.49	-0.94	4.51	-0.95	4.46
	WML	3.48	8.30	3.43	8.20	3.35	8.08

presents the percentage relative bias (RB) and the percentage relative rootmean-square error (RRMSE) for the uncontamined Pareto distribution P(α, 1). If we suppose large sample size n = 1000, the results of RB and RRMSE of the t-Hill, the Hill estimator, ISE estimators are comparable. The largest relative bias as well as relative root-mean-square error have the ME and WML estimators.

Table 1

 1 Results of the percentage relative bias (RB) and the percentage relative root-mean-square error (RRMSE) for the various estimators of the Pareto tail index α with data drawn from uncontaminated Pareto distribution P(α, 1).

Table 2

 2 RRMSE and RB of Hill end t-Hill estimators for n = 40 i.i.d. data with Pareto distribution, for different α and k n .

	α	k n	estimator RRMSE	RB
	0.3	100	Hill tHill t-lgHill	9.92 16.27 21.65	-0.07 1.78 -1.94
		200	Hill tHill	7.04 11.35	-0.04 0.96
			t-lgHill	15.59	-1.02
	1	100	Hill tHill t-lgHill	9.90 11.65 21.68	0.05 0.73 -1.97
		200	Hill tHill	7.01 8.14	-0.01 0.31
			t-lgHill	15.48	-0.97
	1.7	100	Hill tHill t-lgHill	10.01 10.83 21.76	0.10 0.53 -1.74
		200	Hill tHill	7.13 7.66	0.00 0.17
			t-lgHill	15.62	-0.78

Table 3

 3 

RRMSE and RB of Hill end t-Hill estimators for n = 500 i.i.d. data with Pareto distribution, for different α and k n .

Table 4

 4 , however the t-lgHill has the best performance.

	α	k n	estimator	RRMSE	RB
	0.3	100	Hill tHill t-lgHill	11.93 19.32 22.54	5.41 8.35 1.99
		200	Hill tHill	9.62 14.86	6.19 8.31
			t-lgHill	16.39	3.31
	1	100	Hill tHill t-lgHill	21.72 25.42 26.00	18.34 20.79 11.40
		200	Hill tHill	22.61 25.78	21.01 23.55
			t-lgHill	21.64	13.69
	1.7	100	Hill tHill t-lgHill	33.49 37.00 32.02	31.00 33.89 20.07
		200	Hill tHill	36.78 40.28	35.62 38.82
			t-lgHill	29.63	23.59

Table 4

 4 

RRMSE and RB of Hill end t-Hill estimators for n = 10000 i.i.d. data with Pareto distribution, for different α and k n , m = 10000.

Table 5

 5 are computed from log-gamma distribution. RRMSE and RB of Hill end t-Hill estimators for n = 40 and 200 i.i.d. data with contaminated Pareto distribution, for different α 1 , α 2 , k n and ε.

	n	α 1	α 2	k n	ε	estimator	RRMSE	RB
				10	0.1	Hill tHill	45.39 56.03	18.42 22.61
					0.05	Hill	37.89	9.33
		1	0.5	20	0.1	tHill Hill tHill	47.62 31.02 34.57	14.63 13.800 14.14
					0.05	Hill	25.96	6.63
						tHill	30.74	8.35
				10	0.1	Hill tHill	41.01 37.50	-6.05 -14.73
					0.05	Hill	39.70	-22.78
	40		0.5	20	0.1	tHill Hill tHill	38.87 30.76 32.82	-26.63 -18.69 -26.24
					0.05	Hill	35.59	-29.53
		1.7		10	0.1	tHill Hill tHill	37.19 40.65 40.47	-32.92 -34.28 -32.34
					0.05	Hill	42.81	-37.59
			1	20	0.1	tHill Hill tHill	42.26 38.84 38.80	-35.43 -35.80 -35.26
					0.05	Hill	40.97	-38.44
						tHill	40.64	-37.59
				100	0.1	Hill tHill	18.49 16.87	13.80 10.51
					0.05	Hill	13.34	7.02
		1	0.5	200	0.1	tHill Hill tHill	13.61 13.00 11.57	5.60 9.99 7.32
					0.05	Hill	9.27	5.00
						tHill	9.35	3.74
				100	0.1	Hill tHill	21.55 29.11	-18.51 -27.88
					0.05	Hill	31.16	-29.86
	201		0.5	200	0.1	tHill Hill tHill	35.42 27.79 33.56	-34.63 -26.98 -33.14
					0.05	Hill	34.60	-34.16
		1.7		100	0.1	tHill Hill tHill	37.54 36.46 37.19	-37.22 -35.84 -36.53
					0.05	Hill	38.94	-38.43
			1	200	0.1	tHill Hill tHill	39.20 37.36 38.01	-38.62 -37.07 -37.70
					0.05	Hill	39.37	-39.12
						tHill	39.66	-39.38

Table 6

 6 Values of r(k) = H kn,n /γ(ω * ) -1 and r * (k) = H * kn,n /γ(ω * ) -1 are computed for contaminated distributions (P cont ) with three different ω * and ε = 0.05 and 0.1, respectively.

	ε	ω * γ(ω * ) r(100) r * (100) r(250) r * (250) r(900) r * (900)
		1.5	0.879	.0363	.0376	.0235	.0187	.0184	.0170
	.05 3	1.500	.2027	.1517	.1333	.0982	.0679	.0473
		5	2.165	.4982	.3049	.2792	.1573	.1203	.0656
		1.5	0.879	.0683	.0707	.0502	1.0458	.0339	.0296
	.10 3	1.500	.3842	.2828	.2512	.1799	.1340	.0970
		5	2.165	.9298	.6250	.5536	.3352	.2383	.1310
		contamination estimate		n=12	n=25	n=50	n=75
				1/H kn,n		1.086	1.041 1.023 1.014
		ε = 0		1/H L kn,n Var (1/H kn,n ) 0.342 1.052	1.028 1.010 1.009 0.215 0.144 0.116
				Var (1/H L kn,n ) 0.371 0.241	0.166	0.135
				1/H kn,n		1.298	1.188 1.129 1.127
		ε = 0.1	1/H L kn,n Var (1/H kn,n ) 0.203 1.011	1.090 1.198 1.144 0.073 0.030 0.020
				Var (1/H L kn,n ) 0.105 0.061	0.037	0.022

Table 7

 7 Comparison of ML and SM estimators of

Table 8

 8 RRMSE and RB of Hill end t-Hill estimators for n = 10000 moving average data with Pareto distribution, for different α and k n .

	α	k n	estimator	RRMSE	RB
	0.3	100	Hill tHill t-lgHill	33.11 33.87 45.93	-10.26 -0.69 -35.38
		200	Hill tHill	24.45 23.68	-4.09 3.38
			t-lgHill	39.80	-23.62
	1	100	Hill tHill t-lgHill	20.52 18.77 36.65	-2.19 0.01 -14.47
		200	Hill tHill	16.03 15.77	-1.11 -0.05
			t-lgHill	30.49	-7.75
	1.7	100	Hill tHill t-lgHill	20.58 18.02 45.27	-3.69 -4.98 -1.84
		200	Hill tHill	15.25 14.27	-6.56 -8.15
			t-lgHill	37.13	-0.03

Table 9

 9 RRMSE and RB of Hill end t-Hill estimators for n = 10000 moving average data with contaminated Pareto distribution, for different α 1 , α 2 , k n and ε.

	α 1	α 2	k n	ε	estimator	RRMSE	RB
			2000	0.1	Hill tHill	55.92 47.05	54.32 46.10
				0.05	Hill	32.79	30.88
	1	0.5	3000	0.1	tHill Hill tHill	25.38 52.85 47.37	24.30 51.80 46.77
				0.05	Hill	31.15	29.97
					tHill	27.50	26.85
			2000	0.1	Hill tHill	197.34 166.95	195.51 165.59
				0.05	Hill	120.22	117.81
		0.5	3000	0.1	tHill Hill tHill	79.98 169.79 133.34	78.63 168.45 132.47
				0.05	Hill	95.57	93.88
	1.7		2000	0.1	tHill Hill tHill	61.26 11.52 8.10	60.42 9.67 6.41
				0.05	Hill	5.64	-0.84
		1	3000	0.1	tHill Hill tHill	5.31 11.13 9.41	-2.98 9.96 8.50
				0.05	Hill	4.47	0.44
					tHill	3.67	-0.06

  Estimation over the original sample is shown as a vertical red line. Length of x-axis is fixed.

		Estimator Initial Mean Std.Dev. Asymp.sd.
		Hill	0.436	0.429	0.171	0.178
	k n = 6	t-Hill	0.515	0.541	0.241	0.224
		Zipf	0.315	0.401	0.210	0.257
		Hill	0.412	0.413	0.153	0.156
	k n = 7	t-Hill	0.466	0.485	0.198	0.186
		Zipf	0.359	0.441	0.208	0.271
	Table					
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Let us first remark that

Second, in order to apply Theorem 4.2. of [START_REF] Billingsley | A simple generalization of the hill estimator[END_REF], we have to check that lim t→∞

Our aim is to replace µ X,kn,n with µ X,kn,n . To this aim, we choose δ > 0 and consider

Clearly,

, converges to zero when n → ∞. In view of ( 27), for any 0 < δ 0 < 1 + α there exists n δ 0 large enough such that for all t > 1 and n > n δ 0 ,

Chebishev's inequality guarantees that

A.4 Proof of Theorem 1

Proof Recall that the t-lgHill estimator H L kn,n of γ = α -1 can be written as

while the Moment estimator is defined as

see (3.5.9), p.102, in de Haan and Ferreira (2006), also (1.7) in page 1834 of Dekkers and de Haan (1989)).

The difference between the two estimators appears clearly when comparing ( 40) and ( 41). In the following, we shall also make use of γ -:= γ M -M

(1) n , see Remark 3.5.7 in de Haan and Ferreira ( 2006)), which is an estimator of γ -:= min(0, γ). It is thus clear that the t-lgHill estimator (40) c an be rewritten as

Corollary 3.5.6 of de Haan and Ferreira (2006) states that

where Q, P are Gaussian distributions given in Lemma 3.5.5 of de Haan and Ferreira (2006). Using the previous notations and remarking that γ -= 0, this result can be simplified as

n -γ + ) where γ + := max(0, γ) = γ = 1/α. It is easily seen that ξ ′ n can be expanded as ξ

The limit distribution of the first term is established in (3.5.24), page 109 of de Haan and Ferreira (2006):

The limit distribution of the second term has already been established to be 1 2 Q -2P and therefore ξ ′ n converges in distribution to γP. Plugging ξ n and ξ ′ n in (42) yields

). According to Lemma 3.5.5 of de Haan and Ferreira (2006)