
HAL Id: hal-01326911
https://hal.science/hal-01326911

Submitted on 6 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asynchronous Coordination with Constraints and
Preferences

Armando Castañeda, Pierre Fraigniaud, Eli Gafni, Sergio Rajsbaum,
Matthieu Roy

To cite this version:
Armando Castañeda, Pierre Fraigniaud, Eli Gafni, Sergio Rajsbaum, Matthieu Roy. Asyn-
chronous Coordination with Constraints and Preferences. 35th ACM SIGACT-SIGOPS Sympo-
sium on Principles of Distributed Computing (PODC 2016), Jul 2016, Chicago, United States.
�10.1145/2933057.2933081�. �hal-01326911�

https://hal.science/hal-01326911
https://hal.archives-ouvertes.fr

Asynchronous Coordination
with Constraints and Preferences

Armando Castañeda
Instituto de Matemáticas

UNAM
Mexico City, Mexico

castaneda@unam.mx

Pierre Fraigniaud
IRIF, CNRS

University Paris Diderot
Paris, France

fraigniaud@irif.fr

Eli Gafni
CS Dept.

UCLA
Los Angeles, CA, USA

eli@ucla.edu
Sergio Rajsbaum

Instituto de Matemáticas
UNAM

Mexico City, Mexico
rajsbaum@unam.mx

Matthieu Roy
LAAS-CNRS

Université de Toulouse, CNRS
Toulouse, France

roy@laas.fr

ABSTRACT
Adaptive renaming can be viewed as a coordination task in-
volving a set of asynchronous agents, each aiming at grabbing
a single resource out of a set of resources totally ordered by
their desirability. We consider a generalization of adaptive
renaming to take into account scenarios in which resources
are not independent.

We model constraints between resources as an undirected
graph: nodes represent the ressources, and an edge between
two ressources indicates that these two ressources cannot be
used simultaneously. In such a setting, the sets of resources
that processes may use simultaneously form independent sets.
In this note, we focus on this task in a model where such
independent sets are computed by wait-free processes.

1. ASYNCHRONOUS COORDINATION AND
RENAMING

Adaptive Renaming
In distributed computing, several tasks have an adaptive
version in which the quality of the solution must depend only
on the number of processes that participate in a given execu-
tion, and not on the total number of processes that may be
involved in this task (this number may even be unbounded).
A typical example of an adaptive task is adaptive renam-
ing [3]: processes acquire distinct output names in the space
[1, r], where r depends only on the number k of participat-
ing processes. In the asynchronous setting with crash-prone
processes and read/write registers (the wait-free case), the
optimal value for the range is known to be r = 2k − 1 [4, 5].

Interestingly, adaptive renaming can also be viewed as
a task in which name i is preferred to name j whenever

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

PODC’16 July 25-28, 2016, Chicago, IL, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3964-3/16/07.

DOI: http://dx.doi.org/10.1145/2933057.2933081

i < j. Hence, adaptive renaming can be thought as an
abstraction of the problem in which asynchronous agents are
competing for resources totally ordered by their desirability.
In other words, adaptive renaming is an abstraction of a
problem of coordination between agents under preferences.
Coordination between agents under preferences has been
recently investigated in [1, 2] where the musical chairs game
has been formally defined and solved. In this game, a set of
players (modeling the agents) must coordinate so that each
player eventually picks one of the available chairs (modeling
the resources). Each player initially comes with an a priori
preference for one chair. In absence of conflict with other
players, the player can pick the desired chair, otherwise the
conflicting players must coordinate so that they pick different
chairs. It has been proven that the smallest number r of
chairs for which musical chairs with k players has a solution
is r = 2k − 1.

Dealing with Constraints on Resources
We foresee that neither adaptive renaming nor musical chairs
fully capture typical scenarios of agents competing for re-
sources.

It is often the case that resources are not independent: the
literature on scheduling, partitioning or resource allocation —
to cite a few— provide several examples in which resources are
inter-dependent, causing some resource a not being allowed
to be used simultaneously with resource b. That is, using
one possibly resource disables others.

In this work, we consider the case in which constraints are
modeled as an indirected graph whose nodes are resources,
and every edge {a, b} indicates that resources a and b cannot
be both simultaneously acquired, i.e., acquiring a node dis-
ables all its neighbors. In other words, the sets of resources
that are allowed are those which form independent sets in
the constraints graph.

Following this framework, renaming as well as musical
chairs tasks correspond to cases where the constraints graph
is a stable graph (i.e., a graph with no edges). We address
an extension of renaming and musical chairs, targeting an
abstraction of a problem of coordination between agents
under preferences and constraints.

mailto:armando.castaneda@im.unam.mx
mailto:pierre.fraigniaud@irif.fr
mailto:eli@ucla.edu
mailto:rajsbaum@math.unam.mx
mailto:roy@laas.fr
http://dx.doi.org/10.1145/2933057.2933081

Problem Statement
Definition 1. In the coordination with constraints and

preferences task CCP, given an n-node graph G = (V,E)
modeling the constraints between the resources in E,

• an input is a multiset M of k elements in V , represent-
ing the preferences of k processes p1, . . . , pk,

• an output is an independent set I = {u1, . . . , uk} of G,
of size k, representing the fact that process pi acquires
ui, for i = 1, . . . , k.

• if the input is an independent set of k elements in V ,
then every process should output its initial preference.

Seminal papers on renaming [4] and musical chairs [2]
showed that in an asynchronous system in which the processes
are subject to crash failures, the CCP task is not solvable
for k larger than some bound, even for the stable graph G
(the value of the bound on k for the stable graph is roughly
half the number of nodes of the graph n). Indeed, we are
interested in understanding how the addition of constraints
may affect the computability of this task.

More precisely, given a graph G, we want to determine
the largest k for which the coordination with constraints
and preferences task on G is solvable, for any preference
multiset M of size at most k. Regarding the computation
model, we focus here on wait-free systems, in which any
subset of processes may fail by crashing, all processes are
asynchronous, and communication is performed using read
and write operations in shared memory, where each process
has its own private registers.

2. LOWER BOUNDS, ALGORITHMS AND
OPEN PROBLEMS

A Tight Lower Bound for Paths
Let us first consider the problem for an n-node path Pn. This
particular case will enable us to prove a lower bound on the
size of Hamiltonian graphs for which the coordination with
constraints and preferences task is solvable. Interestingly,
this lower bound is almost twice as large as the 2k− 1 bound
without constraints resulting from renaming or musical chairs.
Specifically, we establish the following:

Theorem 1. Let k be a positive integer. The smallest
integer n for which the coordination with constraints and
preferences task in the line of n nodes Pn is solvable for
k processes satisfies n = 4k − 3. As a consequence, if the
coordination with constraints and preferences task in an n-
node Hamiltonian graph G is solvable for k processes then
n ≥ 4k − 3.

The lower bound on n follows from reduction of CCP on
a 4k− 4 line to musical chairs with 2k− 2 chairs, i.e., 2k− 2
renaming with initial preference, which is impossible [2]. As
sketched in Figure 1, the reduction proceeds by assigning one
edge over two to a chair. In the line, each vertex is connected
to exactly one bold edge. Bold edges are labelled 1..2k − 2
and correspond to the vertex labelling of the empty graph,
and arrows represent the reduction.

The upper bound on n comes from a wait-free algorithm,
inspired from the optimal adaptive renaming algorithm in [3],
whose main lines are: (1) fix a maximum independent set

11 22 33 44 ...11 22 2k � 22k � 2

11 22

2k � 32k � 3

...

4k � 4 line

2k � 2 chairs

4k � 44k � 54k � 6

2k � 22k � 3

Figure 1: Reduction of CCP task on a 4k − 4 line to
renaming on 2k − 2 names.

I in Pn, (2) index the vertices of I from 1 to 2k − 1, and
(3) pi checks if there is no conflict with its initial preference;
if pi is not in conflict, the it decides its initial preference,
otherwise it runs an optimal (adaptive) renaming algorithm
on these indexes. This algorithm is static in the sense that
I is predetermined in advance and not during an execution.
Algorithm 1 describes such a generic static algorithm.

From this preliminary result on Pn, one may think that
solving the coordination with constraints and preferences
task in a graph G boils down to classical renaming once a
maximum independent set in G is fixed. We show that this
is not the case. In fact, even for an instance as simple as the
n-node ring Cn, the problem becomes highly non trivial.

Rings: the Case of the Pentagon
Theorem 2. Let k be a positive integer. The smallest n

for which the coordination with constraints and preferences
task in Cn is solvable for k processes satisfies 4k − 3 ≤ n ≤
4k − 2.

The lower bound is a consequence of Theorem 1 since Cn

is Hamiltonian. A quite intriguing fact is that the wait-free
algorithm derived from an adaptation of an optimal algorithm
for classical renaming run on a maximum independent set of
Cn does not match the lower bound, and is off by an additive
factor +1.

decidedecide

smallest (p
1
p
1) lar

ge
st

(p
2p2)

p1, p2

p1 p2

p1 p2

Figure 2: Optimal algorithm for two processes in the
pentagon: rules when two processes are executing

The algorithm for two processes in the pentagon C5 is
depicted on Figure 2, which represents the snapshot of a
process, and the action to take (represented as arrows) based
on this snapshot when 2 processes participate. There are
three cases, depending on whether the two processes are
currently occupying nodes at distance 0, 1, or 2. Notice that if
the snapshot reveals that the process is alone, then it decides
the node that it currently occupies, i.e., its preferred node. If
the snapshot reveals that the two processes occupy the same
node, then the action depends on the ID: going clockwise for
the process with smallest ID, and counterclockwise otherwise.
If the snapshot reveals that the two processes occupy two
neighboring nodes, then the action is: going away from the
other node. Finally, if the snapshot reveals that the two

processes occupy two nodes at distance 2, then the action is
to decide the currently occupied node.

We believe that the difference of 1 between the lower and
upper bounds for Cn is certainly not anecdotal, but is the
witness of a profound phenomenon that is not yet understood,
with potential impact on classical renaming and musical
chairs. The main outcome of this paper is probably the
observation that static algorithms, i.e., algorithms based on
fixed precomputed positions in the graph of constraints, might
be sub-optimal by allocating less resources than the optimal.
The optimal algorithm for coordinating two processes in the
pentagon is not static, and the set of allocated resources
output by this algorithm spans all possible independent sets.
The design of optimal dynamic (i.e., non static) algorithms
for solving the coordination with constraints and preferences
task appears to be a challenge, even in the specific case of
the cycle Cn.

The Inherent Difficulty of the General Case
The inherent difficulty for asynchronous crash-prone pro-
cesses to coordinate under constraints and preferences, even
in graphs with arbitrarily large independent sets, can also
be illustrated by the complete bipartite graph Kx,y with
n = x + y nodes. We show that, although Kx,y has very
large independent sets (of size at least min{x, y}), processes
cannot coordinate at all in this graph.

Theorem 3. Let x, y be positive integers. Coordination
with constraints and preferences in the complete bipartite
graph Kx,y is unsolvable for more than one process.

A Suboptimal Static Algorithm for General Graphs
Finally, on the positive side, given any graph G, we can
design a static algorithm alg solving the coordination with
constraints and preferences task in G —recall that static, in
this case, means that alg is based on a statically defined
independent set I, a priori known to processes.

More precisely, alg requires a k-admissible independent
set: given G = (V,E), an independent set I of G is k-
admissible if for every W ⊆ V of size at most k − 1, we
have |I \N [W]| ≥ |I ∩W |+ 1 where N [W] denotes the set
of nodes at distance at most 1 from a node in W (N [w] =
{w} ∪ {v ∈ V : {v,w} ∈ E}, and N [W] = ∪w∈WN [w]).
Figure 3 provides a sketch of k-admissibility.

I \ N [W]

I \ W

I

W

N [W]

Figure 3: k-admissibility : |I \N [W]| ≥ |I ∩W |+ 1, if
|W | ≤ k − 1

We can prove that among static algorithms, alg is optimal,
which completely closes the problem for static algorithms.

Theorem 4. Let G be a graph, and k be a positive integer.
Let I be a k-admissible independent set in G. Then, alg
instantiated with I solves the coordination with constraints
and preferences task in G with k processes. Moreover, if G
has no (k + 1)-admissible independent set, then no static

algorithm can solve the coordination with constraints and
preferences task in G with more than k processes.

Algorithm 1 G = (V,E) is a graph, and I is an ordered
independent set in G. Code for pi.

function CoordinationConstraints(ui ∈ V : initial preference)

1: curi ← ui

2: loop
3: write(curi)
4: snapshot memory to get view = {curj1 , . . . , curjr}
5: view′ ← view \ {curi} . remove curi from view
6: if view′ ∩N [curi] = ∅ then . check for conflicts
7: return curi . no conflict ⇒ decide curi
8: else . conflict ⇒ compute a new position
9: free← I \N [view′] . rule out conflicts from I

10: `← |{s : curjs ∈ I and js < i}|+ 1 . ranking

11: curi ← `th element in free . next proposal
12: end if
13: end loop

Algorithm 1 is the pseudocode of alg. The algorithm
uses a shared array view, accessed with write and snapshot
operations, where each entry is initially ⊥. The local variable
curi stores the current proposal of process pi. Algorithm 1
is a rewriting of a textbook renaming algorithm for shared
memory [4], adapted to take into account the statically fixed
independent set I and the constraint that no two process
may end up in connected vertices.

Conclusion
In this note, we introduced the coordination with constraints
and preferences task, a task that models a set of processes
competing for interdependent resources. We sketched a lower
bound for Hamiltonian graphs, and provided an optimal
algorithm for 2 processes on a pentagon. If processes agree
beforehand on a given maximal independent set, we describe
a static algorithm for solving this problem. Static algorithms
are in general sub-optimal, as illustrated on the pentagon.

Hence, the design of optimal dynamic algorithms for solv-
ing the coordination with preferences and constraints tasks
in graphs appears to be a challenging open problem, even
for the relatively simple case of rings.

3. REFERENCES
[1] Y. Afek, Y. Babichenko, U. Feige, E. Gafni, N. Linial,

and B. Sudakov. Oblivious collaboration. In D. Peleg,
editor, Distributed Computing, volume 6950 of Lecture
Notes in Computer Science, pages 489–504. Springer
Berlin Heidelberg, 2011.

[2] Y. Afek, Y. Babichenko, U. Feige, E. Gafni, N. Linial,
and B. Sudakov. Musical chairs. SIAM Journal on
Discrete Mathematics, 28(3):1578–1600, 2014.

[3] H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg, and
R. Reischuk. Renaming in an asynchronous environment.
Journal of the ACM, 37(3):524–548, 1990.

[4] H. Attiya and J. Welch. Distributed Computing
Fundamentals, Simulations, and Advanced Topics,
Second Edition. John Wiley and Sons, Inc., 2004.

[5] E. Gafni, A. Mostéfaoui, M. Raynal, and C. Travers.
From adaptive renaming to set agreement. Theoretical
Computer Science, 410(14):1328 – 1335, 2009. Structural
Information and Communication Complexity
(SIROCCO 2007).

	Asynchronous Coordination and Renaming
	Lower Bounds, Algorithms and Open Problems
	References

