Divergence de Kullback-Leibler en grande dimension pour la classification des prairies à partir de séries temporelles d'images satellite à haute résolution
Abstract
Les nouvelles missions satellite offrent des séries temporelles d'images à haute résolution spatiale. Des outils statistiques appropriés sont requis afin de gérer la grande dimension des données face au faible nombre d'échantillons de référence. L'objectif de cette étude est de construire un modèle permettant la classification d'objets non-homogènes du paysage, les prairies, à partir d'une série temporelle d'un indice de végétation spectral. La méthode proposée utilise la divergence de Kullback-Leibler adaptée à la grande dimension pour calculer la distance entre chaque paire de prairies. Elle permettra la classification à l'échelle de l'objet avec un échantillon de petite taille et un nombre de variables elevé.
Origin | Files produced by the author(s) |
---|
Loading...