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Abstract

In this work we prove optimal W s,p-approximation estimates (with p P r1,`8s) for el-
liptic projectors on local polynomial spaces. The proof hinges on the classical Dupont–Scott
approximation theory together with two novel abstract lemmas: An approximation result for
bounded projectors, and an Lp-boundedness result for L2-orthogonal projectors on polyno-
mial subspaces. The W s,p-approximation results have general applicability to (standard or
polytopal) numerical methods based on local polynomial spaces. As an illustration, we use
these W s,p-estimates to derive novel error estimates for a Hybrid High-Order discretization of
Leray–Lions elliptic problems whose weak formulation is classically set in W 1,p

pΩq for some
p P p1,`8q. This kind of problems appears, e.g., in the modelling of glacier motion, of in-
compressible turbulent flows, and in airfoil design. Denoting by h the meshsize, we prove

that the approximation error measured in a W 1,p-like norm scales as h
k`1
p´1 when p ě 2 and

as hpk`1qpp´1q when p ă 2.
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1 Introduction

In this work we prove optimal W s,p-approximation properties for elliptic projectors on local poly-
nomial spaces, and use these results to derive novel a priori error estimates for a Hybrid High-Order
discretisation of Leray–Lions elliptic equations.

Let U Ă Rd, d ě 1, be an open bounded set of diameter hU . For all integers s P N and p P r1,`8s,
we denote by W s,ppUq the space of functions having derivatives up to degree s in LppUq with
associated seminorm

|v|W s,ppUq :“
ÿ

αPNd,}α}1“s

}Bαv}LppUq, (1)

where }α}1 :“ α1` . . .`αd and Bα “ Bα1
1 . . . Bαd

d (this choice for the seminorm enables a seamless
treatment of the case p “ `8).

∗This work was partially supported by ANR project HHOMM (ANR-15-CE40-0005)
†daniele.di-pietro@umontpellier.fr
‡jerome.droniou@monash.edu
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Let a polynomial degree l ě 0 be fixed, and denote by PlpUq the space of d-variate polynomials

on U . The elliptic projector π1,l
U : W 1,1pUq Ñ PlpUq is defined as follows: For all v P W 1,1pUq,

π1,l
U v is the unique polynomial in PlpUq that satisfies

ż

U

∇pπ1,l
U v ´ vq¨∇w “ 0 for all w P PlpUq, and

ż

U

pπ1,l
U v ´ vq “ 0. (2)

As a result of the Poincaré–Wirtinger inequality, the quantity π1,l
U v is well-defined. Moreover, we

have the following characterisation:

π1,l
U v “ arg min

wPPlpUq,
ş

U
pw´vq“0

}∇pw ´ vq}2L2pUqd .

The first main result of this work is summarised in the following theorem.

Theorem 1 (W s,p-approximation for π1,l
U ). Assume that U is star-shaped with respect to every

point in a ball of radius %hU for some % ą 0. Let s P t1, . . . , l ` 1u and p P r1,`8s. Then, there
exists a real number C ą 0 depending only on d, %, l, s, and p such that, for all m P t0, . . . , su
and all v PW s,ppUq,

|v ´ π1,l
U v|Wm,ppUq ď Chs´mU |v|W s,ppUq. (3)

The proof of Theorem 1 is based on the classical Dupont–Scott approximation theory [26] (cf. also
[7, Chapter 4]) and hinges on two novel abstract lemmas for projectors on polynomial spaces:
A W s,p-approximation result for projectors that satisfy a suitable boundedness property, and an
Lp-boundedness result for L2-orthogonal projectors on polynomial subspaces. Both results make
use of the reverse Lebesgue and Sobolev embeddings for polynomial functions proved in [13] (cf.,
in particular Lemma 5.1 and Remark A.2 therein). Following similar arguments as in [26, Section
7], the results of Theorem 1 still hold if U is a finite union of domains that are star-shaped with
respect to balls of radius comparable to hU .

The second main result concerns the approximation of traces, and therefore requires more assump-
tions on the domain U .

Theorem 2 (W s,p-approximation of traces for π1,l
U ). Assume that U is a polytope which admits a

partition SU into disjoint simplices S of diameter hS and inradius rS, and that there exists a real
number % ą 0 such that, for all S P SU ,

%2hU ď %hS ď rS .

Let s P t1, . . . , l ` 1u, p P r1,`8s, and denote by FU the set of hyperplanar faces of U . Then,
there exists a real number C depending only on d, %, l, s and p such that, for all m P t0, . . . , s´1u
and all v PW s,ppUq,

h
1
p

U |v ´ π
1,l
U v|Wm,ppFU q ď Chs´mU |v|W s,ppUq. (4)

Here, Wm,ppFU q denotes the set of functions that belong to Wm,ppF q for all F P FU , and
|¨|Wm,ppFU q the corresponding broken seminorm.

The proof of Theorem 2 is obtained combining the results of Theorem 1 with a continuous Lp-trace
inequality.

The approximation results of Theorems 1 and 2 are used to prove novel error estimates for the
Hybrid High-Order (HHO) method of [13] for nonlinear Leray–Lions elliptic problems of the form:
Find a potential u : Ω Ñ R such that

´divpapx,∇uqq “ f in Ω,

u “ 0 on BΩ,
(5)

where Ω is a bounded polytopal subset of Rd with boundary BΩ, while the source term f : Ω Ñ R
and the function a : Ω ˆ Rd Ñ Rd satisfy the requirements detailed in Eq. (20) below. This
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equation, which contains the p-Laplace equation (cf. (21) below), appears in the modelling of
glacier motion [30], of incompressible turbulent flows in porous media [20], and in airfoil design [29].

In the context of conforming Finite Element (FE) approximations of problems which can be traced
back to the general form (5), a priori error estimates were derived in [4, 30]. For nonconforming
(Crouzeix–Raviart) FE approximations, error estimates are proved in [33], with convergence rates
consistent with the ones presented in this work (concerning the link between the HHO method
and nonconforming FE, cf. [18, Remark 1]). Error estimates for a nodal Mimetic Finite Difference
(MFD) method for a particular kind of operator a and with p “ 2 are proved in [2]. Finite volume
methods, on the other hand, are considered in [1], where error estimates similar to the ones
obtained here are derived under the assumption that the source term f vanishes on the boundary
(additional error terms are present when this is not the case). Finally, we also cite here [21], where
the convergence study of a Mixed Finite Volume (MFV) scheme inspired by [22] is carried out
using a compactness argument under minimal regularity assumptions on the exact solution.

The HHO method analysed here is based on meshes composed of general polytopal elements and
its formulation hinges on degrees of freedom (DOFs) that are polynomials of degree k ě 0 on mesh
elements and faces; cf. [14–17] for an introduction to HHO methods and and [9,13] for applications
to nonlinear problems. Based on such DOFs, a gradient reconstruction operator Gk

T of degree k
and a potential reconstruction operator pk`1

T of degree pk`1q are devised by solving local problems

inside each mesh element T . By construction, the composition of the potential reconstruction pk`1
T

with the interpolator on the DOF space coincides with the elliptic projector π1,k`1
T . The gradient

and potential reconstruction operators are then used to formulate a local contribution composed of
a consistent and a stabilisation term. The W s,p-approximation properties for π1,k`1

T play a crucial
role in estimating the error associated with the latter. Denoting by h the meshsize, we prove in
Theorem 7 below that, for smooth enough exact solutions, the approximation error measured in

a discrete W 1,p-like norm converges as h
k`1
p´1 when p ě 2 and as hpk`1qpp´1q when p ă 2.

As noticed in [17], the lowest-order version of the HHO method corresponding to k “ 0 is essentially
analogous (up to equivalent stabilisation) to the SUSHI scheme of [27] when face unknowns are not
eliminated by interpolation. This method, in turn, has been proved in [24] to be equivalent to the
MFV method of [22] and the mixed-hybrid MFD method [8,32] (cf. also [6] for an introduction to
MFD methods). As a consequence, our results extend the analysis conducted in [21], by providing
in particular error estimates for the MFV scheme applied to Leray–Lions equations.

To conclude, it is worth mentioning that the tools of Theorems 1 and 2, alongside the optimum
W s,p-estimates of [13] for L2-projectors on polynomial spaces (see Lemma 13), are potentially of
interest also for the study of other polytopal methods. Elliptic projections on polynomial spaces
appear, e.g., in the conforming and nonconforming Virtual Element Methods (cf. [5, Eq. (4.18)]
and [3, Eqs. (3.18)–(3.20)], respectively). They also play a role in determining the high-order
part of some post-processings of the potential used in the context of Hybridizable Discontinuous
Galerkin methods; cf., e.g., the variation proposed in [10] of the post-processing considered in
[11,12].

The rest of the paper is organised as follows. In Section 2 we provide the proofs of Theorems 1
and 2 preceeded by the required preliminary results. In Section 3 we use these results to derive
error estimates for the Hybrid High-Order discretization of problem 5. Appendix A collects some
useful inequalities for Leray–Lions operators.

2 W s,p-approximation properties of the elliptic projector on
polynomial spaces

This section contains the proofs of Theorems 1 and 2 preceeded by two abstract lemmas for
projectors on polynomials subspaces. Throughout the paper, to alleviate the notation, when
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writing integrals we omit the dependence on the integration variable x as well as the differential
with the exception of those integrals involving the function a (cf. (5)).

2.1 Two abstract results for projectors on polynomial subspaces

Our first lemma is an abstract approximation result valid for any projector on a polynomial space
that satisfies a suitable boundedness property.

Lemma 3 (W s,p-approximation for W -bounded projectors). Assume that U is star-shaped with
respect to every point of a ball of radius %hU for some % ą 0. Let five integers l ě 0, s P
t1, . . . , l ` 1u, p P r1,`8s, and q,m P t0, . . . , su be fixed. Let Πq,l

U : W q,1pUq Ñ PlpUq be a
projector such that there exists a real number C ą 0 depending only on d, %, l, q, and p such that
for all v PW q,ppUq,

If m ă q : |Πq,l
U v|Wm,ppUq ď C

q
ÿ

r“m

hr´mU |v|W r,ppUq, (6a)

If m ě q : |Πq,l
U v|W q,ppUq ď C|v|W q,ppUq, (6b)

Then, there exists a real number C ą 0 depending only on d, %, l, q, m, s, and p such that, for
all v PW s,ppUq,

|v ´Πq,l
U v|Wm,ppUq ď Chs´mU |v|W s,ppUq. (7)

Proof. Here A À B means A ďMB with real number M ą 0 having the same dependencies as C
in (7). Since smooth functions are dense in W s,ppUq, we can assume v P C8pUq XW s,ppUq. We
consider the following representation of v proposed in [7, Chapter 4]:

v “ Qsv `Rsv, (8)

where Qsv P Ps´1pUq Ă PlpUq is the averaged Taylor polynomial, while the remainder Rsv
satisfies, for all r P t0, . . . , su (cf. [7, Lemma 4.3.8]),

|Rsv|W r,ppUq À hs´rU |v|W s,ppUq. (9)

Since Πq,l
U is a projector, it holds Πq,l

U pQ
svq “ Qsv so that, taking the projection of (8), it is

inferred
Πq,l
U v “ Qsv `Πq,l

U pR
svq.

Subtracting this equation from (8), we arrive at v´Πq,l
U v “ Rsv´Πq,l

U pR
svq. Hence, the triangle

inequality yields

|v ´Πq,l
U v|Wm,ppUq ď |R

sv|Wm,ppUq ` |Π
q,l
U pR

svq|Wm,ppUq. (10)

For the first term in the right-hand side, the estimate (9) with r “ m readily yields

|Rsv|Wm,ppUq À hs´mU |v|W s,ppUq. (11)

Let us estimate the second term. If m ă q, using the boundedness assumption (6a) followed by
the estimate (9), it is inferred

|Πq,l
U pR

svq|Wm,ppUq À

q
ÿ

r“m

hr´mU |Rsv|W r,ppUq À

q
ÿ

r“m

hr´mU hs´rU |v|W s,ppUq À hs´mU |v|W s,ppUq.

If, on the other hand, m ě q, using the reverse Sobolev embeddings on polynomial spaces of [13,
Remark A.2] followed by assumption (6b) and the estimate (9) with r “ q, it is inferred that

|Πq,l
U pR

svq|Wm,ppUq À hq´mU |Πq,l
U pR

svq|W q,ppUq À hq´mU |Rsv|W q,ppUq À hs´mU |v|W s,ppUq.
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In conclusion we have, in either case m ă q or m ě q,

|Πq,l
U pR

svq|Wm,ppUq À hs´mU |v|W s,ppUq. (12)

Using (11) and (12) to estimate the first and second term in the right-hand side of (10), respectively,
the conclusion follows.

Our second technical result concerns the Lp-boundedness of L2-orthogonal projectors on polyno-
mial subspaces, and will be central to prove property (6) (with q “ 1) for the elliptic projector

π1,l
U . This result generalises [13, Lemma 3.2], which corresponds to P “ PlpUq.

Lemma 4 (Lp-boundeness of L2-orthogonal projectors on polynomial subspaces). Let two integers
l ě 0 and n ě 1 be fixed, and let P be a subspace of PlpUqn. We consider the L2-orthogonal
projector ΠP : L1pUqn Ñ P such that, for all Φ P L1pUqn,

ż

T

pΠPΦ´ Φq¨Ψ “ 0 for all Ψ P P. (13)

Let p P r1,`8s. Let rU be the inradius of U and assume that there is a real number δ such that

rU
hU

ě δ ą 0.

Then there exists a real number C ą 0 depending only on n, d, δ, l, and p such that

@Φ P LppUqn : }ΠPΦ}LppUqn ď C}Φ}LppUqn . (14)

Proof. We abridge as A À B the inequality A ď MB with real number M ą 0 having the same
dependencies as C. Since ΠP is an L2-orthogonal projector, (14) trivially holds with C “ 1 if
p “ 2. On the other hand, if p ą 2, we have, using the reverse Lebesgue embeddings on polynomial
spaces of [13, Lemma 3.2] followed by (14) for p “ 2,

}ΠPΦ}LppUqn À |U |
1
p´

1
2

d }ΠPΦ}L2pUqn À |U |
1
p´

1
2

d }Φ}L2pUqn .

Here, |U |d is the d-dimensional measure of U . Using the Hölder inequality to infer }Φ}L2pUqn À

|U |
1
2´

1
p

d }Φ}LppUqn concludes the proof for p ą 2. It only remains to treat the case p ă 2. We first
observe that, using the definition (13) of ΠP twice, for all Φ,Ψ P L1pUqn,

ż

U

pΠPΦq¨Ψ “

ż

U

pΠPΦq¨pΠPΨq “

ż

U

Φ¨pΠPΨq.

Hence, with p1 such that 1{p` 1{p1 “ 1, it holds

}ΠPΦ}LppUqn “ sup
ΨPLp1 pUqn,}Ψ}

Lp1 pUqn
“1

ż

U

pΠPΦq¨Ψ

“ sup
ΨPLp1 pUqn,}Ψ}

Lp1 pUqn
“1

ż

U

Φ¨pΠPΨq

ď sup
ΨPLp1 pUqn,}Ψ}

Lp1 pUqn
“1

}Φ}LppUqn}ΠPΨ}Lp1 pUqn ,

(15)

where we have used the Hölder inequality to conclude. Using (14) for p1 ą 2, we have }ΠPΨ}Lp1 pUqn À

}Ψ}Lp1 pUqn “ 1. Plugging this bound into (15) concludes the proof for p ă 2.
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2.2 Proof of the main results

We are now ready to prove Theorems 1 and 2. Inside the proofs, A À B means A ďMB with M
having the same dependencies as the real number C in the corresponding statement.

Proof of Theorem 1. The proof consists in verifying the boundedness property (6), with q “ 1, for
the elliptic projector first with m “ 1 (Step 1) then with m “ 0 (Step 2). The conclusion then

follows applying Lemma 3 to Π1,l
U “ π1,l

U .

Step 1. |¨|W 1,ppUq-boundedness. We start by proving that

@v PW 1,ppUq : |π1,l
U v|W 1,ppUq À |v|W 1,ppUq. (16)

By definition (2) of π1,l
U , it holds, for all v PW 1,1pT q,

∇π1,l
U v “ Π∇PlpUq∇v, (17)

where Π∇PlpUq denotes the L2-orthogonal projector on ∇PlpUq Ă Pl´1pUqd. Then, (16) is proved

observing that, by definition (1) of the |¨|W 1,ppUq-seminorm, and invoking (17) and the pLpqd-

boundedness of Π∇PlpUq resulting from (14) with P “∇PlpUq, we have

|π1,l
U v|W 1,ppUq À }∇π1,l

U v}LppUqd “ }Π∇PlpUq∇v}LppUqd À }∇v}LppUqd À |v|W 1,ppUq.

Step 2. }¨}LppUq-boundedness. We next prove that

@v PW 1,ppUq : }π1,l
U v}LppUq À hU |v|W 1,ppUq ` }v}LppUq. (18)

Let v PW 1,ppUq and denote by v P P0pUq the L2-orthogonal projection of v on P0pUq such that
ż

U

pv ´ vq “ 0, that is, v “
1

|U |d

ż

U

v.

By definition (2) of the elliptic projector, v is also the L2-orthogonal projection on P0pUq of π1,l
U v.

The W s,p-approximation of the L2-projector (63) (applied with m “ 0 and s “ 1 to π1,l
U v instead

of v) therefore gives }π1,l
U v ´ v}LppUq À hU |π

1,l
U v|W 1,ppUq. This yields

}π1,l
U v}LppUq ď }π

1,l
U v ´ v}LppUq ` }v}LppUq

À hU |π
1,l
U v|W 1,ppUq ` }v}LppUq

À hU |v|W 1,ppUq ` }v}LppUq,

where we have introduced ˘v inside the norm and used the triangle inequality in the first line, and
the terms in the second line are have been estimated using (16) for the first one and the Jensen
inequality for the second one.

Proof of Theorem 2. Under the assumptions on U , we have the following Lp-trace inequality
(cf. [13, Lemma 3.6] for a proof): For all w PW 1,ppUq,

h
1
p

U }w}LppBUq À }w}LppUq ` hU }∇w}LppUq. (19)

For m ď s´1, by applying (19) to w “ Bαpv´π1,l
U vq PW 1,ppUq for all α P Nd such that }α}1 “ m,

we find

h
1
p

U |v ´ π
1,l
U v|Wm,ppFU q À |v ´ π

1,l
U v|Wm,ppUq ` hU |v ´ π

1,l
U v|Wm`1,ppUq.

To conclusion follows using (3) for m and m`1 to bound the two terms in the right-hand side.
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3 Error estimates for a Hybrid High-Order discretisation
of Leray–Lions problems

In this section we use the approximation results for the elliptic projector to derive new error esti-
mates for the HHO discretisation of Leray–Lions problems introduced in [13] (where convergence
to minimal regularity solutions is proved using a compactness argument).

3.1 Continuous model

We consider problem (5) under the following assumptions for a fixed p P p1,`8q with p1 :“ p
p´1 :

f P Lp
1

pΩq, (20a)

a : Ωˆ Rd Ñ Rd is a Caratheodory function, (20b)

ap¨,0q P Lp
1

pΩqd and
Dβa P p0,`8q : |apx, ξq ´ apx,0q| ď βa|ξ|

p´1 for a.e. x P Ω, for all ξ P Rd, (20c)

Dλa P p0,`8q : apx, ξq ¨ ξ ě λa|ξ|
p for a.e. x P Ω, for all ξ P Rd, (20d)

Dγa P p0,`8q : |apx, ξq ´ apx,ηq| ď γa|ξ ´ η|p|ξ|
p´2 ` |η|p´2q

for a.e. x P Ω, for all pξ,ηq P Rd ˆ Rd, (20e)

Dζa P p0,`8q : rapx, ξq ´ apx,ηqs ¨ rξ ´ ηs ě ζa|ξ ´ η|
2p|ξ| ` |η|qp´2

for a.e. x P Ω, for all pξ,ηq P Rd ˆ Rd, (20f)

Assumptions (20b)–(20d) are the pillars of Leray–Lions operators and stipulate, respectively, the
regularity for a, its growth, and its coercivity. Assumptions (20e) and (20f) additionally require
the Lipschitz continuity and uniform monotonicity of a in an appropriate form.
Remark 5 (p-Laplacian). A particularly important example of Leray–Lions problem is the p-
Laplace equation, which corresponds to the function

apx, ξq “ |ξ|p´2ξ. (21)

Properties (20b)–(20d) are trivially verified for this choice, which additionally verifies (20e) and
(20f); cf. [4] for a proof of the former and [23] for a proof of both.

As usual, problem (5) is understood in the following weak sense:

Find u PW 1,p
0 pΩq such that, for all v PW 1,p

0 pΩq,

ż

Ω

apx,∇upxqq ¨∇vpxqdx “

ż

Ω

fv, (22)

where W 1,p
0 pΩq is spanned by the elements of W 1,ppΩq that vanish on BΩ in the sense of traces.

3.2 The Hybrid High-Order (HHO) method

We briefly recall here the construction of the HHO method and a few known results that will be
needed in the analysis.
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3.2.1 Mesh and notations

Let us start by the notion of mesh, and some associated notations. A mesh Th is a finite collection
of nonempty disjoint open polytopal elements T such that Ω “

Ť

TPTh
T and h “ maxTPTh

hT ,
with hT standing for the diameter of T . A face F is defined as a hyperplanar closed connected
subset of Ω with positive pd´1q-dimensional Hausdorff measure and such that (i) either there exist
T1, T2 P Th such that F Ă BT1 X BT2 and F is called an interface or (ii) there exists T P Th such
that F Ă BTXBΩ and F is called a boundary face. Interfaces are collected in the set F i

h, boundary
faces in Fb

h , and we let Fh :“ F i
h Y Fb

h . The diameter of a face F P Fh is denoted by hF . For all
T P Th, FT :“ tF P Fh | F Ă BT u denotes the set of faces contained in BT (with BT denoting the
boundary of T ) and, for all F P FT , nTF is the unit normal to F pointing out of T . Throughout
the rest of the paper, we assume the following regularity for Th.

Assumption 6 (Regularity assumption on Th). The mesh Th admits a matching simplicial sub-
mesh Th and there exists a real number % ą 0 such that: (i) For all simplices S P Th of diameter
hS and inradius rS , %hS ď rS , and (ii) for all T P Th, and all S P Th such that S Ă T , %hT ď hS .

When working on refined mesh sequences, all the (explicit or implicit) constants we consider
below remain bounded provided that % remains bounded away from 0 in the refinement process.
Additionally, mesh elements satisfy the geometric regularity assumptions that enable the use of
both Theorems 1 and 2 (as well as Lemma 13 below).

3.2.2 Degrees of freedom and interpolation operators

Let a polynomial degree k ě 0 and an element T P Th be fixed. The local space of degrees of
freedom (DOFs) is

UkT :“ PkpT q ˆ

˜

ą

FPFT

PkpF q

¸

, (23)

where PkpF q denotes the set of pd´ 1q-variate polynomials on F . We use the underlined notation
vT “ pvT , pvF qFPFT

q for a generic element vT P UkT . If U “ T P Th or U “ F P Fh, we define the

L2-projector π0,l
U : L1pUq Ñ PlpUq such that, for any v P L1pUq, π0,l

U v is the unique element of
PlpUq satisfying

@w P PlpUq :

ż

U

pπ0,l
U v ´ vq w “ 0. (24)

When applied to vector-valued function, it is understood that π0,l
U acts component-wise. The local

interpolation operator IkT : W 1,1pT q Ñ UkT is then given by

@v PW 1,1pT q : IkT v :“ pπ0,k
T v, pπ0,k

F vqFPFT
q. (25)

Local DOFs are collected in the following global space obtained by patching interface values:

Ukh :“

˜

ą

TPTh

PkpT q

¸

ˆ

˜

ą

FPFh

PkpF q

¸

.

A generic element of Ukh is denoted by vh “ ppvT qTPTh
, pvF qFPFh

q and, for all T P Th, vT “

pvT , pvF qFPFT
q is its restriction to T . We also introduce the notation vh for the broken polynomial

function in PkpThq :“
 

v P L1pΩq : v|T P PkpT q @T P Th
(

obtained from element-based DOFs by

setting vh|T “ vT for all T P Th. The global interpolation operator Ikh : W 1,1pΩq Ñ Ukh is such that

@v PW 1,1pΩq : Ikhv :“ ppπ0,k
T vqTPTh

, pπ0,k
F vqFPFh

q. (26)
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3.2.3 Gradient and potential reconstructions

For U “ T P Th or U “ F P Fh, we denote henceforth by p¨, ¨qU the L2- or pL2qd-inner product
on U . The HHO method hinges on the local discrete gradient operator Gk

T : UkT Ñ PkpT qd such
that, for all vT “ pvT , pvF qFPFT

q P UkT , Gk
T vT is the unique solution of the following problem: For

all φ P PkpT qd,
pGk

T vT ,φqT :“ ´pvT ,divφqT `
ÿ

FPFT

pvF ,φ¨nTF qF . (27)

In (27), the right-hand side mimicks an integration by parts formula where the role of the scalar
function inside volumetric and boundary integrals is played by element-based and face-based
DOFs, respectively. This recipe for the gradient reconstruction is justified observing that, as
a consequence of the definitions (25) of IkT and (24) of the L2-projector, we have the following
commuting property: For all v PW 1,1pT q,

Gk
T I
k
T v “ π0,k

T p∇vq. (28)

For further use, we note the following formula inferred from (27) integrating by parts the first
term in the right-hand side: For all vT P U

k
T and all φ P PkpT qd,

pGk
T vT ,φqT “ p∇vT ,φqT `

ÿ

FPFT

pvF ´ vT ,φ¨nTF qF . (29)

We also define the local potential reconstruction operator pk`1
T : UkT Ñ Pk`1pT q such that, for all

vT P U
k
T ,

ż

T

p∇pk`1
T vT ´G

k
T vT q¨∇w “ 0 for all w P Pk`1pT q and

ż

T

ppk`1
T vT ´ vT q “ 0. (30)

As already noticed in [17] (cf., in particular, Eq. (17) therein), we have the following relation
which establishes a link between the potential reconstruction pk`1

T composed with the interpolation

operator IkT defined by (25) and the elliptic projector π1,k`1
T defined by (2):

pk`1
T ˝ IkT “ π1,k`1

T . (31)

The local gradient and potential reconstructions give rise to the global gradient operator Gk
h :

Ukh Ñ PkpThqd and potential reconstruction pk`1
h : Ukh Ñ Pk`1pThq such that, for all vh P U

k
h,

pGk
hvhq|T “ G

k
T vT and ppk`1

h vhq|T “ pk`1
T vT for all T P Th. (32)

3.2.4 Discrete problem

For all T P Th, we define the local function AT : UkT ˆ UkT Ñ R such that

AT puT , vT q :“

ż

T

apx,Gk
T uT pxqq ¨G

k
T vT pxqdx` sT puT , vT q, (33a)

with sT : UkT ˆ UkT Ñ R stabilisation term such that

sT puT , vT q :“
ÿ

FPFT

h1´p
F

ż

F

ˇ

ˇδkTF uT
ˇ

ˇ

p´2
δkTF uT δkTF vT , (33b)

where the scaling factor h1´p
F ensures the dimensional homogeneity of the terms composing AT ,

and the face-based residual operator δkTF : UkT Ñ PkpF q is defined such that, for all vT P U
k
T ,

δkTF vT :“ π0,k
F pvF ´ p

k`1
T vT q ´ π

0,k
T pvT ´ p

k`1
T vT q. (33c)

9



A global function Ah : Ukh ˆ Ukh Ñ R is assembled element-wise from local contributions setting

Ahpuh, vhq :“
ÿ

TPTh

AT puT , vT q. (33d)

Boundary conditions are strongly enforced by considering the following subspace of Ukh:

Ukh,0 :“
!

vh P U
k
h | vF “ 0 @F P Fb

h

)

. (33e)

The HHO approximation of problem (22) reads:

Find uh P U
k
h,0 such that, for all vh P U

k
h,0, Ahpuh, vhq “

ż

Ω

fvh. (33f)

For a discussion on the existence and uniqueness of a solution to (33) we refer the reader to [13,
Theorem 4.5 and Remark 4.7].

3.3 Error estimates

We state in this section an error estimate in terms of the following discrete W 1,p-seminorm on Ukh:

}vh}1,p,h :“

˜

ÿ

TPTh

}vT }
p
1,p,T

¸
1
p

, where }vT }1,p,T :“
´

}∇pk`1
T vT }

p
LppT qd

` sT pvT , vT q
¯

1
p

. (34)

It is a simple matter to realise that the map }¨}1,p,h defines a norm on Ukh,0. The regularity
assumptions on the exact solution are expressed in terms of the broken W s,p-spaces defined by

W s,ppThq :“ tv P LppΩq : @T P Th , v PW s,ppT qu,

which we endow with the norm

}v}W s,ppThq
:“

˜

ÿ

TPTh

}v}pW s,ppT q

¸
1
p

.

Notice that, if v P W s,ppThq for a certain mesh Th, then }v}W s,ppThq depends only on v, not
on Th. Our main result is summarised in the following theorem, whose proof makes use of the
approximation results for the elliptic projector stated in Theorems 1 and 2; cf. Remark 12 for
further insight into their role.

Theorem 7 (Error estimate). Let the assumptions in (20) hold, and let u solve (22). Let a
polynomial degree k ě 0 and a mesh Th be fixed, and let uh solve (33). Assume the additional
regularity u P W k`2,ppThq and ap¨,∇uq P W k`1,p1pThqd (with p1 “ p

p´1), and define the quantity

Ehpuq as follows:

• If p ě 2,

Ehpuq :“ hk`1|u|Wk`2,ppThq
` h

k`1
p´1

´

|u|
1

p´1

Wk`2,ppThq
` |ap¨,∇uq|

1
p´1

Wk`1,p1 pThq
d

¯

; (35a)

• If p ă 2,
Ehpuq :“ hpk`1qpp´1q|u|p´1

Wk`2,ppThq
` hk`1|ap¨,∇uq|Wk`1,p1 pThq

d . (35b)

Then, there exists a real number C ą 0 depending only on Ω, k, the mesh regularity parameter %
defined in Assumption 6, the coefficients p, βa, λa, γa, ζa defined in (20), and an upper bound of
}f}Lp1 pΩq such that

}Ikhu´ uh}1,p,h ď CEhpuq. (36)
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Proof. See Section 3.4.

Some remarks are of order.
Remark 8 (Order of convergence). From (36), it is inferred that the approximation error in the

discrete W 1,p-norm scales as the dominant terms in Eh, namely h
k`1
p´1 if p ě 2 and hpk`1qpp´1q if

p ă 2.
Remark 9 (Role of the various terms). There is a nice parallel between the various error terms
in (35) and the error estimate obtained for gradient schemes in [23]. In the gradient schemes
framework [25, 28], the accuracy of a scheme is essentially assessed through two quantities: a
measure WD of the default of conformity of the scheme, and a measure SD of the consistency of
the scheme. In (35), the terms involving |ap¨,∇uq|Wk`1,p1 pThq

d estimate the contribution to the

error of the default of conformity of the method, and the terms involving |u|Wk`2,ppThq
come from

the consistency error of the method.

From the convergence result in Theorem 7, we can infer an error estimate on the potential recon-
struction pk`1

h uh and on its jumps measured through the stabilisation function sT .

Corollary 10 (Convergence of the potential reconstruction). Under the notations and assump-
tions in Theorem 7, and denoting by ∇h the broken gradient on Th, we have

˜

}∇hpu´ p
k`1
h uhq}

p
LppΩqd

`
ÿ

TPTh

sT puT , uT q

¸1{p

ď C
`

Ehpuq ` h
k`1|u|Wk`2,ppThq

˘

, (37)

where C has the same dependencies as in Theorem 7.

Proof. See Section 3.4.

Remark 11 (Variations). Following [13, Remark 4.4], variations of the HHO scheme (33) are
obtained replacing the space UkT defined by (23) by

Ul,kT :“ PlpT q ˆ

˜

ą

FPFh

PkpF q

¸

,

for k ě 0 and l P tk ´ 1, k, k ` 1u. For the sake of simplicity, we consider the case l “ k ´ 1
only when k ě 1 (technical modifications, not detailed here, are required for k “ 0 and l “ k ´ 1
owing to the absence of element DOFs). The interpolant IkT naturally has to be replaced with

Il,kT v :“ pπ0,l
T v, pπ0,k

F vqFPFT
q. The definitions (27) of Gk

T and (30) of pk`1
T remain formally the

same (only the domain of the operators changes), and a close inspection shows that both key
properties (28) and (31) remain valid for all the proposed choices for l –replacing, of course, IkT
with Il,kT in (31). In the expression (33b) of the penalization bilinear form sT , we replace the

face-based residual δkTF defined by (33c) with a new operator δl,kTF : Ul,kT Ñ PkpF q such that, for

all vT P U
l,k
T ,

δl,kTF vT :“ π0,k
F

´

vF ´ p
k`1
T vT ´ π

0,l
T pvT ´ p

k`1
T vT q

¯

.

Up to minor modifications, the proof of Theorem 7 remains valid, and therefore so is the case for
the error estimates (36) and (37).

3.4 Proof of the error estimates

In this section, we write A À B for A ď MB with M having the same dependencies as C in
Theorem 7. The notation A « B means A À B and B À A.
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Proof of Theorem 7. The proof is split into several steps. In Step 1 we obtain an initial estimate
involving, on the left-hand side, a and sT , and, on the right-hand side, a sum of four terms. In Step
2 we prove that the left-hand side of this estimate provides an upper bound of the approximation
error }Ikhu ´ uh}1,p,h. Then, in Steps 3–5, we estimate each of the four terms in the right-hand
side of the original estimate. Combined with the result of Step 2, these estimates prove (36).

Throughout the proof, to alleviate the notation, we write OpXq for a quantity that satisfies
|OpXq| À X, and we abridge Ikhu into puh.

We will need the following equivalence of local seminorms, established in [13, Lemma 5.2]: For all
vT P U

k
T ,

}vT }1,p,T «

ˆ

}∇vT }
p
LppT qd

`
ÿ

FPFT

h1´p
F }vF ´ vT }

p
LppF q

˙
1
p

«

ˆ

}Gk
T vT }

p
LppT qd

` sT pvT , vT q

˙
1
p

. (38)

Step 1. Initial estimate. Let vh be a generic element of Ukh,0, and denote by vT P U
k
T its restriction

to a generic mesh element T P Th. In this step, we estimate the error made when using puh, instead
of uh, in the scheme, namely

Ehpvhq :“
ÿ

TPTh

ż

T

”

apx,Gk
TpuT q ´ apx,Gk

T uT q
ı

¨Gk
T vT `

ÿ

TPTh

psT ppuT , vT q ´ sT puT , vT qq. (39)

Let T P Th be fixed. Setting

T1,T :“ }ap¨,Gk
TpuT q ´ ap¨,∇uq}Lp1 pT qd , (40)

by the Hölder inequality we infer

ż

T

apx,Gk
TpuT pxqq¨G

k
T vT pxqdx “

ż

T

apx,∇upxqq¨Gk
T vT pxqdx`OpT1,T q}G

k
T vT }LppT qd .

To benefit from the definition (29) of Gk
T vT , we approximate ap¨,∇uq by its L2-orthogonal proje-

tion on the polynomial space PkpT qd. We therefore introduce

T2,T :“ }ap¨,∇uq ´ π0,k
T ap¨,∇uq}Lp1 pT qd , (41)

and we have

ż

T

apx,Gk
TpuT pxqq¨G

k
T vT pxqdx “

ż

T

π0,k
T apx,∇upxqq¨Gk

T vT pxqdx`OpT1,T ` T2,T q}G
k
T vT }LppT qd . (42)

Using (29) with φ “ π0,k
T ap¨,∇uq, the first term in the right-hand side rewrites

ż

T

π0,k
T apx,∇upxqq¨Gk

T vT pxqdx “ pπ0,k
T ap¨,∇uq,∇vT qT `

ÿ

FPFT

pπ0,k
T ap¨,∇uq¨nTF , vF ´ vT qF .

We now want to eliminate the projectors π0,k
T , in order to utilise the fact that u is a solution to (5).

In the first term, the projector π0,k
T can be cancelled simply by observing that ∇vT P Pk´1pT qd Ă

PkpT qd, whereas for the second term we introduce an error controlled by

T3,T :“

˜

ÿ

FPFT

hF }ap¨,∇uq ´ π0,k
T ap¨,∇uq}p

1

Lp1 pF q

¸
1
p1

(43)
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(this quantity is well defined since ap¨,∇uq PW 1,p1pT qd by assumption). We therefore have, using
the Hölder inequality,

ż

T

π0,k
T apx,∇upxqq¨Gk

T vT pxqdx “ pap¨,∇uq,∇vT qT `
ÿ

FPFT

pap¨,∇uq¨nTF , vF ´ vT qF

`OpT3,T q

˜

ÿ

FPFT

h1´p
F }vF ´ vT }

p
LppF q

¸
1
p

.

We plug this expression into (42) and use the equivalence of seminorms (38) to obtain

ż

T

apx,Gk
TpuT pxqq¨G

k
T vT pxqdx “ pap¨,∇uq,∇vT qT `

ÿ

FPFT

pap¨,∇uq¨nTF , vF ´ vT qF

`OpT1,T ` T2,T ` T3,T q}vT }1,p,T .

Integrating by parts the first term in the right-hand side and writing ´divpap¨,∇uqq “ f in T ,
we arrive at

ż

T

apx,Gk
TpuT pxqq¨G

k
T vT pxqdx “

pf, vT qT `
ÿ

FPFT

pap¨,∇uq¨nTF , vF qF `OpT1,T ` T2,T ` T3,T q}vT }1,p,T .

We then sum over T P Th, use ap¨,∇uq¨nT1F “ ´ap¨,∇uq¨nT2F on F whenever F P FT1
X FT2

(this is because ´ divpap¨,∇uqq P Lp
1

pΩq) together with vF “ 0 whenever F P Fb
h to infer

ÿ

TPTh

ÿ

FPFT

pap¨,∇uq¨nTF , vF qF “ 0,

invoke the scheme (33), and use the Hölder inequality on the O terms to write

ÿ

TPTh

ż

T

”

apx,Gk
TpuT pxqq ´ apx,Gk

T uT pxqq
ı

¨Gk
T vT pxqdx´

ÿ

TPTh

sT puT , vT q

“ OpT1 ` T2 ` T3q}vh}1,p,h

where, for i P t1, 2, 3u, we have set

Ti :“

˜

ÿ

TPTh

Tp
1

i,T

¸
1
p1

. (44)

Finally, introducing the last error term

T4 :“ sup
vhPU

k
h,vh‰0h

ř

TPTh
sT ppuT , vT q

}vh}1,p,h
, (45)

we have
Ehpvhq “ OpT1 ` T2 ` T3 ` T4q}vh}1,p,h. (46)

Step 2. Lower bound for Ehppuh ´ uhq.

Let, for the sake of conciseness, eh :“ puh ´ uh. The goal of this step is to find a lower bound for
Ehpehq in terms of the error measure }eh}1,p,h. To this end, we let vh “ eh in the definition (39)
of Eh and distinguish two cases.
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Case p ě 2: Using for all T P Th the bound (70) below with ξ “ Gk
TpuT and η “ Gk

T uT for the first
term in the right-hand side of (39), the definition (33b) of sT and, for all F P FT , the bound (72)
below with t “ δkTFpuT and r “ δkTF uT for the second, and concluding by the norm equivalence
(38), we have

Ehpehq Á
ÿ

TPTh

˜

}Gk
T eT }

p
LppT qd

`
ÿ

FPFT

h1´p
F }δkTF eT }

p
LppF q

¸

Á }eh}
p
1,p,h. (47)

Case p ă 2: Let an element T P Th be fixed. Applying (69) below to ξ “ Gk
TpuT and η “ Gk

T uT ,

integrating over T and using the Hölder inequality with exponents 2
p and 2

2´p , we get

}Gk
T eT }

p
LppT qd

À

ˆ
ż

T

rapx,Gk
TpuT pxqq ´ apx,Gk

T uT pxqqs¨G
k
T eT pxqdx

˙

p
2

ˆ

´

}Gk
TpuT }

p
LppT qd

` }Gk
T uT }

p
LppT qd

¯

2´p
2

.

Summing over T P Th and using the discrete Hölder inequality, we obtain

}Gk
heh}

p
LppΩqd

À Ehpehq
p
2 ˆ

´

}Gk
hpuh}

p
LppΩqd

` }Gk
huh}

p
LppΩqd

¯

2´p
2

. (48)

A similar reasoning starting from (71) with t “ h
1´p
p

F δkTFpuT and r “ h
1´p
p

F δkTF uT , integrating over
F , summing over F P FT and using the Hölder inequality gives

sT peT , eT q À psT ppuT , eT q ´ sT puT , eT qq
p
2 psT ppuT ,puT q ` sT puT , uT qq

2´p
2 .

Summing over T P Th and using the discrete Hölder inequality, we get

ÿ

TPTh

sT peT , eT q À Ehpehq
p
2 ˆ

˜

ÿ

TPTh

sT ppuT ,puT q `
ÿ

TPTh

sT puT , uT q

¸

2´p
2

. (49)

Combining (48) and (49), and using the seminorm equivalence (38) leads to

}eh}
p
1,p,h À Ehpehq

p
2 ˆ

´

}puh}
p
1,p,h ` }uh}

p
1,p,h

¯

2´p
2

.

From the W 1,p-boundedness of IkT and the a priori bound on }uh}1,p,h proved in [13, Proposition
7.1 and Proposition 6.1], respectively, we infer that

}puh}1,p,h À }u}W 1,ppΩq À 1 and }uh}1,p,h À }f}
1{pp´1q

Lp1 pΩq
À 1, (50)

so that
}eh}

2
1,p,h À Ehpehq. (51)

In conclusion, combining the initial estimate (46) with vh “ eh with the bounds (47) (if p ě 2)
and (51) (if p ă 2), we obtain

If p ě 2 : }eh}1,p,h À O
ˆ

T
1

p´1

1 ` T
1

p´1

2 ` T
1

p´1

3 ` T
1

p´1

4

˙

,

If p ă 2 : }eh}1,p,h À O pT1 ` T2 ` T3 ` T4q .

(52)
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Step 3. Estimate of T1.

Recall that, by (44) and (40),

T1 “

˜

ÿ

TPTh

}ap¨,Gk
TpuT q ´ ap¨,∇uq}p

1

Lp1 pT qd

¸
1
p1

.

Notice also that, by (28), Gk
TpuT “ G

k
T I
k
Tu “ π0,k

T p∇uq. Thus, using the approximation properties

of π0,k
T summarised in Lemma 13 below (with v “ Biu for i “ 1, . . . , d), we infer

}Gk
TpuT ´∇u}LppT qd À hk`1

T |u|Wk`2,ppT q. (53)

Case p ě 2: Assume first p ą 2. Recalling (20e), and using the generalised Hölder inequality with

exponents pp1, p, rq such that 1
p1 “

1
p `

1
r (that is r “ p

p´2 ) together with (53) yields, for all T P Th,

}ap¨,Gk
TpuT q ´ ap¨,∇uq}Lp1 pT qd À }G

k
TpuT ´∇u}LppT qd

´

}Gk
TpuT }

p´2
LppT qd

` }∇u}p´2
LppT qd

¯

À hk`1
T |u|Wk`2,ppT q

´

}Gk
TpuT }

p´2
LppT qd

` }∇u}p´2
LppT qd

¯

.

This relation is obviously also valid if p “ 2. We then sum over T P Th and use, as before, the
generalised Hölder inequality, and (50) to infer

T1 À hk`1|u|Wk`2,ppThq

´

}Gk
hpuh}

p´2
LppΩqd

` }u}p´2
W 1,ppΩq

¯

À hk`1|u|Wk`2,ppThq
.

Case p ă 2: By (66) below, }ap¨,Gk
TpuT q ´ ap¨,∇uq}Lp1 pT qd À }G

k
TpuT ´∇u}p´1

LppT qd
. Use then (53)

and sum over T P Th to obtain T1 À hpk`1qpp´1q|u|p´1
Wk`2,ppThq

.

In conclusion, we obtain the following estimates on T1:

If p ě 2 : T1 À hk`1|u|Wk`2,ppThq
,

If p ă 2 : T1 À hpk`1qpp´1q|u|p´1
Wk`2,ppThq

.
(54)

Step 4. Estimate of T2 ` T3. Owing to (44) together with the definitions (41) and (43) of T2,T

and T3,T , we have

Tp
1

2 `T
p1

3 “
ÿ

TPTh

˜

}ap¨,∇uq ´ π0,k
T pap¨,∇uqq}p

1

Lp1 pT qd
`

ÿ

FPFT

hF }ap¨,∇uq ´ π0,k
T pap¨,∇uqq}p

1

Lp1 pF qd

¸

.

Using the approximation properties (63) and (64) of π0,k
T with v replaced by the components of

ap¨,∇uq, p1 instead of p, and m “ 0, s “ k ` 1, we get

Tp
1

2 ` Tp
1

3 À hpk`1qp1 |ap¨,∇uq|p
1

Wk`1,p1 pThq
d .

Taking the power 1{p1 of this inequality and using pa` bq
1
p1 ď 2

1
p1 a

1
p1 ` 2

1
p1 b

1
p1 leads to

T2 ` T3 À hk`1|ap¨,∇uq|Wk`1,p1 pThq
d . (55)
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Step 5. Estimate of T4.

Recall that T4 is defined by (45). Using the Hölder inequality, we have for all T P Th,

sT ppuT , vT q À sT ppuT ,puT q
1
p1 sT pvT , vT q

1
p .

Hence, using again the Hölder inequality, since
ř

TPTh
sT pvT , vT q ď }vh}

p
1,p,h,

T4 À

˜

ÿ

TPTh

sT ppuT ,puT q

¸
1
p1

. (56)

We proceed in a similar way as in [17, Lemma 4] to estimate sT ppuT ,puT q. Let F P FT . We use the
definition (33c) of the face-based residual operator δkTF together with the triangle inequality, the

relation π0,k
F π0,k

T “ π0,k
T , the LppF q-boundedness (65) of π0,k

F , the equality pk`1
T puT “ pk`1

T IkTu “

π1,k`1
T u (cf. (31)), the trace inequality (19), and the LppT q- and W 1,ppT q-boundedness (65) of π0,k

T

to write

}δkTFpuT }LppF q

ď }π0,k
F pu´ pk`1

T puT q}LppF q ` }π
0,k
T pu´ pk`1

T puT q}LppF q

ď }u´ π1,k`1
T u}LppF q ` h

´ 1
p

T }π0,k
T pu´ π1,k`1

T uq}LppT q ` h
1´ 1

p

T |π0,k
T pu´ π1,k`1

T uq|W 1,ppT q

ď }u´ π1,k`1
T u}LppF q ` h

´ 1
p

T }u´ π1,k`1
T u}LppT q ` h

1´ 1
p

T |u´ π1,k`1
T u|W 1,ppT q.

(57)

The optimal W s,p-estimates on the elliptic projector (3) and (4) therefore give, for all F P FT ,

}δkTFpuT }LppF q À h
k`2´ 1

p

T |u|Wk`2,ppT q.

Raise this inequality to the power p, multiply by h1´p
F , use h1´p

F h
pk`2qp´1
T À h

1´p`pk`2qp´1
F “

h
pk`1qp
F À hpk`1qp, and sum over F P FT to obtain

sT ppuT ,puT q À hpk`1qp|u|p
Wk`2,ppT q

. (58)

Substituted into (56), this gives

T4 À hpk`1qpp´1q|u|p´1
Wk`2,ppThq

. (59)

Conclusion. Use (54), (55) and (59) in (52).

Remark 12 (Role of Theorems 1 and 2). Theorems 1 and 2 are used in Step 5 of the proof of
Theorem 7 below to derive a bound on the stabilisation term sT when its arguments are the
interpolate of the exact solution.

Proof of Corollary 10. Let an element T P Th be fixed and set, as in the proof of Theorem 7,
puT :“ IkTu. Recalling the definition (33b) of sT , and using the inequality

pa` bqp ď 2p´1ap ` 2p´1bp, (60)

it is inferred

sT puT , uT q “
ÿ

FPFT

h1´p
F

ż

F

|δkTF uT |
p “

ÿ

FPFT

h1´p
F

ż

F

|δkTFpuT ` δ
k
TF puT ´ puT q|

p

À sT ppuT ,puT q ` sT puT ´ puT , uT ´ puT q.

(61)

16



On the other hand, inserting pk`1
T puT ´ π

1,k`1
T u “ 0 (cf. (31)), and using again (60), we have

}∇pu´ pk`1
T uT q}

p
LppT qd

À }∇pu´ π1,k`1
T uq}p

LppT qd
` }∇pk`1

T ppuT ´ uT q}
p
LppT qd

. (62)

Summing (61) and (62), and recalling the definition (34) of }¨}1,p,T , we obtain

}∇pu´ pk`1
T uT q}

p
LppT qd

` sT puT , uT q À }∇pu´ π
1,k`1
T uq}p

LppT qd
` sT ppuT ,puT q ` }puT ´ uT }

p
1,p,T .

The result follows by summing this estimate over T P Th and invoking Theorem 1 for the first
term in the right-hand side, (58) for the second, and (36) for the third.

The following optimal approximation properties for the L2-orthogonal projector were used in Step
4 of the proof of Theorem 7 with U “ T P Th.

Lemma 13 (W s,p-approximation for π0,l
U ). Let U be as in Theorem 2. Let s P t0, . . . , l ` 1u and

p P r1,`8s. Then, there exists C depending only on d, %, l, s and p such that, for all v PW s,ppUq,

@m P t0, . . . , su : |v ´ π0,l
U v|Wm,ppUq ď Chs´mU |v|W s,ppUq (63)

and, if s ě 1,

@m P t0, . . . , s´ 1u : h
1
p

U |v ´ π
0,l
U v|Wm,ppFU q ď Chs´mU |v|W s,ppUq, (64)

with FU , Wm,ppFU q and corresponding seminorm as in Theorem 2.

Proof. This result is a combination of [13, Lemmas 3.4 and 3.6]. We give here an alternative proof
based on the abstract results of Section 2.1. By Lemma 4 with P “ PlpUq, we have the following

boundedness property for π0,l
U : For all v P L1pUq, }π0,l

U v}LppUq ď C}v}LppUq with real number
C ą 0 depending only on d, %, and l. The estimate (63) is then an immediate consequence of

Lemma 3 with q “ 0 and Π0,l
U “ π0,l

U . To prove (64), proceed as in Theorem 2 using (63) in place
of (3).

Corollary 14 (W s,p-boundedness of π0,l
U ). With the same notation as in Theorem 13, it holds,

for all v PW s,ppUq,

|π0,l
U v|W s,ppUq ď C|v|W s,ppUq. (65)

Proof. Use the triangle inequality to write |π0,l
U v|W s,ppUq ď |π0,l

U v ´ v|W s,ppUq ` |v|W s,ppUq and
conclude using (63) with m “ s for the first term.

3.5 Numerical examples

For the sake of completeness, we present here some new numerical examples that demonstrate the
orders of convergence achieved by the HHO method in practice. The test were run using the hho
software platform1. We solve on the unit square domain Ω “ p0, 1q2 the homogeneous p-Laplace
Dirichlet problem corresponding to the exact solution

upxq “ sinpπx1q sinpπx2q,

with p P t2, 3, 4u and source term inferred from u (cf. (21) for the expression of a in this case).
We consider the matching triangular, Cartesian, locally refined, and (predominantly) hexagonal
mesh families depicted in Figure 1 and polynomial degrees ranging from 0 to 3. The three former
mesh families are taken from the FVCA5 benchmark [31], whereas the latter is taken from [19].
The local refinement in the third mesh family has no specific meaning for the problem considered
here: its purpose is to demonstrate the seamless treatment of nonconforming interfaces.

1Agence pour la Protection des Programmes deposit number IDDN.FR.001.220005.000.S.P.2016.000.10800
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Figure 1: Matching triangular, Cartesian, locally refined and hexagonal mesh families used in the
numerical examples of Section 3.5.

We report in Figure 2 the error }Ikhu´ uh}1,p,h versus the meshsize h. From the leftmost column,
we see that the error estimates are sharp for p “ 2, which confirms the results of [17] (a known
superconvergence phenomenon is observed on the Cartesian mesh for k “ 0). For p “ 3, 4,
better orders of convergence than the asymptotic ones (cf. Remark 8) are observed in most of
the cases. One possible explanation is that the lowest-order terms in the right-hand side of (36)
are not yet dominant for the specific problem data and mesh at hand. Another possibility is
that compensations occur among lowest-order terms that are separately estimated in the proof
of Theorem 7. For k “ 3 and p “ 3, the observed orders of convergence in the last refinement
steps are inferior to the predicted value for smooth solutions, which can likely be ascribed to the
violation of the regularity assumption on ap¨,∇uq (cf. Theorem 7), due to the lack of smoothness
of a for that p.

A Inequalities involving the Leray–Lions operator

This section collects inequalities involving the Leray–Lions operator adapted from [23].

Lemma 15. Assume (20c), (20e), and p ď 2. Then, for a.e. x P Ω and all pξ,ηq P Rd ˆ Rd,

|apx, ξq ´ apx,ηq| ď p2γa ` 2p´1βa ` βaq|ξ ´ η|
p´1. (66)

Proof. Let r ą 0. If |ξ| ě r and |η| ě r then, using (20e) and p´ 2 ď 0, we have

|apx, ξq ´ apx,ηq| ď γa|ξ ´ η|p|ξ|
p´2 ` |η|p´2q ď 2γar

p´2|ξ ´ η|. (67)

Otherwise, assume for example that |η| ă r. Then |ξ| ď |ξ ´ η| ` r and thus, owing to (20c),

|apx, ξq ´ apx,ηq| ď |apx, ξq ´ apx,0q| ` |apx,0q ´ apx,ηq|

ď βap|ξ|
p´1 ` |η|p´1q

ď βap|ξ ´ η| ` rq
p´1 ` βar

p´1. (68)

Combining (67) and (68) shows that, in either case,

|apx, ξq ´ apx,ηq| ď 2γar
p´2|ξ ´ η| ` βap|ξ ´ η| ` rq

p´1 ` βar
p´1.

Taking r “ |ξ ´ η| concludes the proof of (66).

Lemma 16. Under Assumption (20f) we have, for a.e. x P Ω and all pξ,ηq P Rd ˆ Rd,

• If p ă 2,

|ξ ´ η|p ď ζ
´

p
2

a 2pp´1q 2´p
2

´

rapx, ξq ´ apx,ηqs ¨ rξ ´ ηs
¯

p
2
´

|ξ|p ` |η|p
¯

2´p
2

; (69)
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(j) Hexagonal, p “ 2
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(l) Hexagonal, p “ 4

Figure 2: }Ikhu´uh}1,p,h versus h for the mesh families of Figure 1. The slopes represent the orders
of convergence expected from Theorem 7, i.e. k`1

p´1 for k P t0, . . . , 3u and p P t2, 3, 4u.
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• If p ě 2,
|ξ ´ η|p ď ζ´1

a rapx, ξq ´ apx,ηqs ¨ rξ ´ ηs. (70)

Proof. Estimate (69) is obtained by raising (20f) to the power p{2 and using p|ξ| ` |η|qp ď
2p´1p|ξ|p ` |η|pq. To prove (70), we simply write |ξ ´ η|p ď |ξ ´ η|2p|ξ| ` |η|qp´2.

Remark 17. The (real-valued) mapping a : t ÞÑ |t|p´2t corresponds to the p-Laplace operator in
dimension 1, and it therefore satisfies (20f). Hence, by Lemma 16,

If p ă 2: |t´ r|p ď C
`“

|t|p´2t´ |r|p´2r
‰

rt´ rs
˘

p
2 p|t|p ` |r|pq

2´p
p , (71)

If p ě 2: |t´ r|p ď C
“

|t|p´2t´ |r|p´2r
‰

rt´ rs, (72)

where C depends only on p.
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[24] J. Droniou, R. Eymard, T. Gallouët, and R. Herbin. A unified approach to mimetic finite difference, hybrid
finite volume and mixed finite volume methods. Math. Models Methods Appl. Sci. (M3AS), 20(2):1–31, 2010.

[25] J. Droniou, R. Eymard, T. Gallouet, and R. Herbin. Gradient schemes: a generic framework for the discreti-
sation of linear, nonlinear and nonlocal elliptic and parabolic equations. Math. Models Methods Appl. Sci.
(M3AS), 23(13):2395–2432, 2013.

[26] T. Dupont and R. Scott. Polynomial approximation of functions in Sobolev spaces. Math. Comp., 34(150):441–
463, 1980.
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