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Abstract

In this work we prove optimal W*P-approximation estimates (with p € [1, +o0]) for el-
liptic projectors on local polynomial spaces. The proof hinges on the classical Dupont—Scott
approximation theory together with two novel abstract lemmas: An approximation result for
bounded projectors, and an LP-boundedness result for L?-orthogonal projectors on polyno-
mial subspaces. The W?®P-approximation results have general applicability to (standard or
polytopal) numerical methods based on local polynomial spaces. As an illustration, we use
these W*P-estimates to derive novel error estimates for a Hybrid High-Order discretization of
Leray-Lions elliptic problems whose weak formulation is classically set in W (Q) for some
p € (1,400). This kind of problems appears, e.g., in the modelling of glacier motion, of in-
compressible turbulent flows, and in airfoil design. Denoting by h the meshsize, we prove
that the approximation error measured in a W'P-like norm scales as h% when p > 2 and
as hFDE=D when p < 2.

2010 Mathematics Subject Classification: 65N08, 656N30, 656N12
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1 Introduction

In this work we prove optimal W#P-approximation properties for elliptic projectors on local poly-
nomial spaces, and use these results to derive novel a priori error estimates for a Hybrid High-Order
discretisation of Leray—Lions elliptic equations.

Let U « R, d > 1, be an open bounded set of diameter hy;. For all integers s € N and p € [1, +0],
we denote by W#P(U) the space of functions having derivatives up to degree s in LP(U) with
associated seminorm

Plwer@y == >, 0% e, (1)

aeN?, a1 =s

where |af; := a1+ ...+ ag and 0% = 97" ... 05" (this choice for the seminorm enables a seamless
treatment of the case p = +00).
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Let a polynomial degree [ = 0 be fixed, and denote by P!(U) the space of d-variate polynomials
on U. The elliptic projector 7rU : WHL(U) — PYU) is defined as follows: For all v € WH1(U),
Wlljlv is the unique polynomial in P!(U) that satisfies

j V(g 'v —v)-Vw = 0 for all w e P{(U), andJ (W#lv —v) =0. (2)
U

As a result of the Poincaré—Wirtinger inequality, the quantity 77[1]’[11 is well-defined. Moreover, we
have the following characterisation:

gt = arg min [V (w =) 2y
weP! (U). J,, (w—v)=0

The first main result of this work is summarised in the following theorem.

Theorem 1 (W*P-approximation for ﬂlljl). Assume that U is star-shaped with respect to every
point in a ball of radius ohy for some o > 0. Let se€ {1,...,l+ 1} and p € [1,+o]. Then, there
exists a real number C > 0 depending only on d, o, l, s, and p such that, for all m € {0,..., s}
and all ve WP (U),

v — 7 vl @y < Chy ™ vlwenw)- (3)

The proof of Theorem [1|is based on the classical Dupont—Scott approximation theory [26] (cf. also
|7, Chapter 4]) and hinges on two novel abstract lemmas for projectors on polynomial spaces:
A W#P-approximation result for projectors that satisfy a suitable boundedness property, and an
LP-boundedness result for L2-orthogonal projectors on polynomial subspaces. Both results make
use of the reverse Lebesgue and Sobolev embeddings for polynomial functions proved in |13] (cf.,
in particular Lemma 5.1 and Remark A.2 therein). Following similar arguments as in [26, Section
7], the results of Theorem [1] still hold if U is a finite union of domains that are star-shaped with
respect to balls of radius comparable to hy .

The second main result concerns the approximation of traces, and therefore requires more assump-
tions on the domain U.

Theorem 2 (W*P-approximation of traces for 7rU ) Assume that U is a polytope which admits a
partition Sy into disjoint simplices S of diameter hg and inradius rg, and that there exists a real
number o > 0 such that, for all S € Sy,

thU < ohg < rg.

Let s € {1,...,1+ 1}, p € [1,40], and denote by Fy the set of hyperplanar faces of U. Then,
there exists a real number C depending only on d, o, I, s and p such that, for allm € {0,...,s—1}
and all ve WSP(U),
1
hﬁ|?]—7TU U‘me _7:U) Oh ‘1}|Ws,p(U). (4)
Here, W™P(Fy) denotes the set of functions that belong to W™P(F) for all F € Fy, and
|"lwm.»(F,) the corresponding broken seminorm.

The proof of Theorem [2]is obtained combining the results of Theorem I] with a continuous LP-trace
inequality.

The approximation results of Theorems [I] and 2] are used to prove novel error estimates for the
Hybrid High-Order (HHO) method of [13] for nonlinear Leray—Lions elliptic problems of the form:
Find a potential u : 2 — R such that

—div(a(z, Vu)) = f in Q,

5
u=0 on 0, (5)

where € is a bounded polytopal subset of R? with boundary oS, while the source term f: Q — R
and the function a : Q x RY — R? satisfy the requirements detailed in Eq. below. This



equation, which contains the p-Laplace equation (cf. below), appears in the modelling of
glacier motion [30], of incompressible turbulent flows in porous media [20], and in airfoil design [29].

In the context of conforming Finite Element (FE) approximations of problems which can be traced
back to the general form , a priori error estimates were derived in [4,[30]. For nonconforming
(Crouzeix—Raviart) FE approximations, error estimates are proved in [33], with convergence rates
consistent with the ones presented in this work (concerning the link between the HHO method
and nonconforming FE, cf. |18, Remark 1]). Error estimates for a nodal Mimetic Finite Difference
(MFD) method for a particular kind of operator a and with p = 2 are proved in [2]. Finite volume
methods, on the other hand, are considered in [1], where error estimates similar to the ones
obtained here are derived under the assumption that the source term f vanishes on the boundary
(additional error terms are present when this is not the case). Finally, we also cite here |21], where
the convergence study of a Mixed Finite Volume (MFV) scheme inspired by [22] is carried out
using a compactness argument under minimal regularity assumptions on the exact solution.

The HHO method analysed here is based on meshes composed of general polytopal elements and
its formulation hinges on degrees of freedom (DOFSs) that are polynomials of degree k = 0 on mesh
elements and faces; cf. [14H17] for an introduction to HHO methods and and [9}/13] for applications
to nonlinear problems. Based on such DOFSs, a gradient reconstruction operator G’% of degree k

and a potential reconstruction operator p];’fl of degree (k+1) are devised by solving local problems

inside each mesh element T'. By construction, the composition of the potential reconstruction p’%“

with the interpolator on the DOF space coincides with the elliptic projector W%ﬂkH. The gradient
and potential reconstruction operators are then used to formulate a local contribution composed of
a consistent and a stabilisation term. The W*®P-approximation properties for waikﬂ play a crucial
role in estimating the error associated with the latter. Denoting by h the meshsize, we prove in

Theorem [7] below that, for smooth enough exact solutions, the approximation error measured in
k+1
a discrete W1P-like norm converges as h1 when p =2 and as hFtD@=1) when p < 2.

As noticed in [17], the lowest-order version of the HHO method corresponding to k = 0 is essentially
analogous (up to equivalent stabilisation) to the SUSHI scheme of [27] when face unknowns are not
eliminated by interpolation. This method, in turn, has been proved in [24] to be equivalent to the
MFV method of [22] and the mixed-hybrid MFD method [8,/32] (cf. also [6] for an introduction to
MFD methods). As a consequence, our results extend the analysis conducted in [21], by providing
in particular error estimates for the MFV scheme applied to Leray—Lions equations.

To conclude, it is worth mentioning that the tools of Theorems [I] and [2] alongside the optimum
W$P-estimates of |13] for L?-projectors on polynomial spaces (see Lemma , are potentially of
interest also for the study of other polytopal methods. Elliptic projections on polynomial spaces
appear, e.g., in the conforming and nonconforming Virtual Element Methods (cf. [5, Eq. (4.18)]
and [3, Egs. (3.18)—(3.20)], respectively). They also play a role in determining the high-order
part of some post-processings of the potential used in the context of Hybridizable Discontinuous
Galerkin methods; cf., e.g., the variation proposed in [10] of the post-processing considered in
[111[12].

The rest of the paper is organised as follows. In Section [2| we provide the proofs of Theorems
and [2| preceeded by the required preliminary results. In Section [3| we use these results to derive
error estimates for the Hybrid High-Order discretization of problem [5] Appendix [A] collects some
useful inequalities for Leray—Lions operators.

2 W#*P-approximation properties of the elliptic projector on
polynomial spaces

This section contains the proofs of Theorems [I| and [2] preceeded by two abstract lemmas for
projectors on polynomials subspaces. Throughout the paper, to alleviate the notation, when



writing integrals we omit the dependence on the integration variable  as well as the differential
with the exception of those integrals involving the function a (cf. (F).

2.1 Two abstract results for projectors on polynomial subspaces
Our first lemma is an abstract approximation result valid for any projector on a polynomial space
that satisfies a suitable boundedness property.

Lemma 3 (W?*P-approximation for W-bounded projectors). Assume that U is star-shaped with
respect to every point of a ball of radius ohy for some o > 0. Let five integers | = 0, s €
{1,...,0+ 1}, p e [1,+0], and g,m € {0,...,s} be fived. Let TG - WOH(U) — PU) be a
projector such that there exists a real number C' > 0 depending only on d, o, l, q, and p such that
for allve WeP(U),

Ifm<gq: |H({}lv|wm,p(U c Z by " vl (6a)

Ifm=>=q: |Hglv|wq,p(U) < Clvlwar )y, (6b)

Then, there exists a real number C' > 0 depending only on d, o, I, ¢, m, s, and p such that, for
all ve W=P(U),

v — T 0| wms @y < ChE ™ [0lwsw )- (7)

Proof. Here A < B means A < M B with real number M > 0 having the same dependencies as C'
in (7). Since smooth functions are dense in W*?(U), we can assume v € C®(U) n W*P(U). We
consider the following representation of v proposed in [7, Chapter 4]:

v=Q°v + R’v, (8)

where Q%v € P*~1(U) < PY(U) is the averaged Taylor polynomial, while the remainder R*v
satisfies, for all r € {0, ..., s} (cf. |7, Lemma 4.3.8]),

|R* 0|y S b " 0lwer - (9)

Since H‘gl is a projector, it holds H@l(QSv) = @°v so that, taking the projection of , it is
inferred
H?jlv = Q% + Hg;l(Rsv).

Subtracting this equation from , we arrive at v — Hglu = R°v— H‘,ﬁl(Rsv). Hence, the triangle
inequality yields

"U — H%lU|Wm,p(U) < |RS'U‘Wm,;n(U) + ‘H%I(RSU)‘Wm,p(U). (10)
For the first term in the right-hand side, the estimate @ with r = m readily yields
|R*vwmw ) S hir " vlwer @) (11)

Let us estimate the second term. If m < ¢, using the boundedness assumption followed by
the estimate @, it is inferred

q q
N s W= s — s—r s—
G (RE0) o0y < § R @) S D) BRIl S B olwesw)

=m r=m

If, on the other hand, m > ¢, using the reverse Sobolev embeddings on polynomial spaces of [13|
Remark A.2] followed by assumption and the estimate (9) with r = g, it is inferred that

5 (R20) [wmn o) S B IE (R waw @y < hE ™R wawwy < i ™ 0lwew@)-



In conclusion we have, in either case m < g or m > g,
! —
05 (RP0) lwmw ) < by ™ [vlwee - (12)

Using and to estimate the first and second term in the right-hand side of , respectively,
the conclusion follows. O

Our second technical result concerns the LP-boundedness of L?-orthogonal projectors on polyno-
mial subspaces, and will be central to prove property @ (with ¢ = 1) for the elliptic projector
7T(1J’l. This result generalises |13, Lemma 3.2], which corresponds to P = P!(U).

Lemma 4 (LP-boundeness of L2-orthogonal projectors on polynomial subspaces). Let two integers
I >0andn > 1 be fizred, and let P be a subspace of P{(U)". We consider the L*-orthogonal
projector I, : LY(U)" — P such that, for all ® € L*(U)™,

f(npé—cp)-xp =0 for all U e P. (13)
T

Let pe [1,+]. Let ry be the inradius of U and assume that there is a real number § such that

Ty
— =>0>0.
hu

Then there exists a real number C' > 0 depending only onn, d, §, I, and p such that
VB € LYU)" ¢ [Tp®| Loy < Cl] Loy (14)

Proof. We abridge as A < B the inequality A < M B with real number M > 0 having the same
dependencies as C. Since Il is an L?-orthogonal projector, trivially holds with C' = 1 if
p = 2. On the other hand, if p > 2, we have, using the reverse Lebesgue embeddings on polynomial
spaces of [13, Lemma 3.2] followed by for p = 2,

1
2

1_1 1_
Mp®@|rr @y S UG * [Tp®@|2@yn S UG 9] 220yn-

Here, |Ulg is the d-dimensional measure of U. Using the Holder inequality to infer [®|z2yn <

1_1
|U|g " |®| ey concludes the proof for p > 2. Tt only remains to treat the case p < 2. We first
observe that, using the definition of I, twice, for all ®, ¥ e L*(U)",

| v = | e - | @)

U

Hence, with p’ such that 1/p + 1/p’ = 1, it holds

M ®| ey = sup (ILp®)- ¥
VeLr' (U)™ ¥y 1yyn =1 YU
= sup O-(I1,7) (15)
LeLP (U™ |¥] pt yyn =1 YU
sup H‘I’HLP(U)"HHP‘I’HLP’(U)M
TeLy (U)", ¥ 1

N

e’ (uyn =

where we have used the Holder inequality to conclude. Using for p’ > 2, we have |1, ¥| oy S
1@ o (17yn = 1. Plugging this bound into concludes the proof for p < 2. O



2.2 Proof of the main results

We are now ready to prove Theorems |I|and [2} Inside the proofs, A < B means A < M B with M
having the same dependencies as the real number C' in the corresponding statement.

Proof of Theorem[1 The proof consists in verifying the boundedness property @, with ¢ = 1, for

the elliptic projector first with m = 1 (Step 1) then with m = 0 (Step 2). The conclusion then

follows applying Lemmato H%}l = wé,’l.

Step 1. |-[w1.»(v)-boundedness. We start by proving that
Yo e WHP(U) : |mg'vlwisw) S [olwir@)- (16)
By definition of W%}l, it holds, for all v e WL1(T),
V' = Tgpi ) Vo, (17)

where HVP,(U) denotes the L2-orthogonal projector on VP!(U) < P!=1(U)4. Then, is proved
observing that, by definition of the |-[y1.»()-seminorm, and invoking and the (LP)%-

boundedness of Ilgp, ;) resulting from with P = VP/(U), we have

)0 1,1
7 vlwiow) S [Vrg vlewye = Mgp ey Vol S 1V0lrwy $ [olwirw)-

Step 2. |-||Lr(v)-boundedness. We next prove that
i
Yoe WHP(U) : [rg'olew) € hulvlwrrw) + [v] e @)- (18)

Let v e W1P(U) and denote by v € P°(U) the L?-orthogonal projection of v on P°(U) such that

1
(v—71) =0, that is, v = —J v.
fU Ula Ju

By definition of the elliptic projector, ¥ is also the L?-orthogonal projection on P°(U) of 7T(1jl'l).
The W#P-approximation of the L2-projector (applied with m = 0 and s = 1 to ﬂ'lljlv instead
of v) therefore gives HWlU’lv — ey S hU"]T[ljl'U|Wl,p(U). This yields

1,0 1,0 _ _
|m vl ey < 7 v =l Loy + 10 ey
1 -
< hulrg'vlwro @y + 19 o)
< hulvlwe@y + [vllee @),

where we have introduced +7 inside the norm and used the triangle inequality in the first line, and
the terms in the second line are have been estimated using for the first one and the Jensen
inequality for the second one. O

Proof of Theorem[4 Under the assumptions on U, we have the following LP-trace inequality
(cf. [13| Lemma 3.6] for a proof): For all w e Wh?(U),

1
hir|wloe vy < lwle@wy + ho|Vwl e wy- (19)

For m < s—1, by applying (|19) to w = aa(v—wlU’lv) e WHP(U) for all @ € N? such that |a|; = m,
we find

hg|’l} - Fllflv‘wm,p(]:y) < |’U — ﬂ—[ljl’U|Wm,p(U) + hU|’U - 7T[];/"l/U|Wm,+1,p(U).

To conclusion follows using (3]) for m and m +1 to bound the two terms in the right-hand side. O



3 Error estimates for a Hybrid High-Order discretisation
of Leray—Lions problems

In this section we use the approximation results for the elliptic projector to derive new error esti-
mates for the HHO discretisation of Leray—Lions problems introduced in [13] (where convergence
to minimal regularity solutions is proved using a compactness argument).

3.1 Continuous model

We consider problem under the following assumptions for a fixed p € (1, +00) with p’ := #:

feLr(Q), (20a)
a: Q) x R? - R? is a Caratheodory function, (20Db)
a(-,0) € L¥ (Q)% and (200)

3Ba € (0,+0) : |a(z, &) — a(x,0)| < Bal&|P~! for ae. € Q, for all £ € RY,

Ia € (0,4+0) : a(x, &) - & = \a|€|P for ae. z €, for all £ € RY, (20d)

B0 € (0,40) 5 Ja@,€) — alw n)| < Talé — 1€~ + [n*~?) 200)
for a.e. x € €, for all (§,m) e RY x RY,

ae (0,4+0) ¢ [a(@,€) — ala.m)] - (€~ 1] > Galé — (€] + [n))?~2 00

for a.e. & € Q, for all (£,1) e R? x RY,

Assumptions 7 are the pillars of Leray—Lions operators and stipulate, respectively, the
regularity for a, its growth, and its coercivity. Assumptions and additionally require
the Lipschitz continuity and uniform monotonicity of a in an appropriate form.

Remark 5 (p-Laplacian). A particularly important example of Leray—Lions problem is the p-
Laplace equation, which corresponds to the function

a(x,€) = [¢]"7%¢. (21)

Properties (20b))—(20d|) are trivially verified for this choice, which additionally verifies (20€]) and
(201); cf. [4] for a proof of the former and [23] for a proof of both.

As usual, problem is understood in the following weak sense:

Find u € WP () such that, for all v e W, *(1), f

a(z, Vu(x)) - Vo(x)dx = J fv,  (22)
Q Q

where W, ?(Q) is spanned by the elements of W' (Q) that vanish on @ in the sense of traces.

3.2 The Hybrid High-Order (HHO) method

We briefly recall here the construction of the HHO method and a few known results that will be
needed in the analysis.



3.2.1 Mesh and notations

Let us start by the notion of mesh, and some associated notations. A mesh 7}, is a finite collection
of nonempty disjoint open polytopal elements 7T such that Q = UTGTh T and h = maxreT, hr,
with hp standing for the diameter of T. A face F' is defined as a hyperplanar closed connected
subset of Q with positive (d—1)-dimensional Hausdorff measure and such that (i) either there exist
Ty,T5 € Ty such that F' < 011 n 015 and F is called an interface or (ii) there exists T € T}, such
that F < 0T n 0§ and F is called a boundary face. Interfaces are collected in the set F}, boundary
faces in .7-'}3, and we let Fp, := .7’-',"1 U .7-',5’. The diameter of a face F' € Fj, is denoted by hp. For all
TeTy Fr:={FeF, | FcdT} denotes the set of faces contained in 0T (with ¢T denoting the
boundary of T') and, for all F' € Fr, nyp is the unit normal to F' pointing out of T". Throughout
the rest of the paper, we assume the following regularity for 7j,.

Assumption 6 (Regularity assumption on 7). The mesh 7, admits a matching simplicial sub-
mesh T, and there exists a real number g > 0 such that: (i) For all simplices S € ¥}, of diameter
hs and inradius rg, ohs < rg, and (ii) for all T € T, and all S € ¥}, such that S < T, ohr < hg.

When working on refined mesh sequences, all the (explicit or implicit) constants we consider
below remain bounded provided that o remains bounded away from 0 in the refinement process.
Additionally, mesh elements satisfy the geometric regularity assumptions that enable the use of
both Theorems [1] and [2[ (as well as Lemma [13| below).

3.2.2 Degrees of freedom and interpolation operators

Let a polynomial degree k£ > 0 and an element T € 7}, be fixed. The local space of degrees of
freedom (DOFs) is

U = PH(T) x < X IP”“(F)>, (23)
FeFr

where P¥(F) denotes the set of (d — 1)-variate polynomials on F. We use the underlined notation
vy = (v, (VF)pery) for a generic element v, € Q’%. IfU=T¢€eT7,orU=F € Fp, we define the
L2-projector 7T[0jl : LY(U) — PY(U) such that, for any v € L*(U), 7TOU’Z’U is the unique element of
P!(U) satisfying

Yw e PHU) : J (W%’lv —v) w=0. (24)
U

When applied to vector-valued function, it is understood that Wg’l acts component-wise. The local
interpolation operator 15 : Wh1(T) — U~ is then given by

Yoe WHHT) : 15w = (9%, (%5 0) pe sy ). (25)

Local DOFs are collected in the following global space obtained by patching interface values:

uUf = < ¢ P’“(T)) X < X IP’“(F)).
TeT FeFy

A generic element of U} is denoted by v, = ((vr)reT,, (VF)rer,) and, for all T € Ty, vp =
(vr, (VF)Fery) is its restriction to T. We also introduce the notation vy, for the broken polynomial
function in P*(73) := {ve L*(Q) : vr € P*(T) VT € T} obtained from element-based DOFs by

setting v = vr for all T' € T;,. The global interpolation operator 1’2 : lel(Q) — Qﬁ is such that

Yoe WHH(Q) : L = (12 ) res,, (1" 0) per, ). (26)



3.2.3 Gradient and potential reconstructions

For U =T € T, or U = F € Fy, we denote henceforth by (-,-)y the L2 or (L?)%inner product
on U. The HHO method hinges on the local discrete gradient operator G? : Ql% — P*(T)? such
that, for all v, = (v, (Vp)pery) € Q?, GifpyT is the unique solution of the following problem: For
all ¢ € PH(T)4,
(Girvr, )1 = —(vr,div@)r + > (ve, ¢-nrp)e. (27)
FGJ:T

In 7 the right-hand side mimicks an integration by parts formula where the role of the scalar
function inside volumetric and boundary integrals is played by element-based and face-based
DOFs, respectively. This recipe for the gradient reconstruction is justified observing that, as
a consequence of the definitions of I¥ and of the L2-projector, we have the following
commuting property: For all v e W11(T),

Ghlyv = 77" (Vo). (28)

For further use, we note the following formula inferred from integrating by parts the first
term in the right-hand side: For all v,» € UX. and all ¢ € P*(T),

(Ghvr, &)1 = (Vvr, d)r + Z (VP = V1, ¢ nrF)p. (29)
FEJ:T
We also define the local potential reconstruction operator p’%‘“ : Q; — PF+1(T) such that, for all
k
vV € QT?

J (VpkHlvy — Ghvy)-Vw = 0 for all w e PF+1(T) and f (phF vy —vr) = 0. (30)
T T

As already noticed in [17] (cf., in particular, Eq. (17) therein), we have the following relation

which establishes a link between the potential reconstruction pi}“ composed with the interpolation

operator 1’% defined by and the elliptic projector ﬂqlikﬂ defined by :

P ot = rH 31)

The local gradient and potential reconstructions give rise to the global gradient operator GZ :
UF — P*(T,)¢ and potential reconstruction pf*! : Uf — PF+1(T;,) such that, for all v, € U},

(Gﬁyh)‘T = GZ}MT and (pﬁ“yh)‘T = p?”lyT for all T € Tj,. (32)

3.2.4 Discrete problem

For all T € 7;,, we define the local function A : Q’% X Q; — R such that

Ar(up,vy) = L a(z, Ghup(x)) - Ghvr(z) dz + sp(up,vr), (33a)

with sp : Q? X Ql;ﬂ — R stabilisation term such that

_ -2
s7(Up,vr) = Z h}w pJ |6§“F!T}p 5§“FQT 5:]7“F!Ta (33b)
FE}—T F

where the scaling factor h};p ensures the dimensional homogeneity of the terms composing Ar,
and the face-based residual operator 0% : UY. — P*(F) is defined such that, for all v, € U%.,

ok k
5§"F¥T = 77% (vr — pI%H!T) - 775} (vr — p?rl!:r)- (33c)



A global function A, : UF x U¥ — R is assembled element-wise from local contributions setting

Ap(uy,,vy) - Z Ar(up,vy). (33d)
TeTh

Boundary conditions are strongly enforced by considering the following subspace of QZ:
Uhoi={u el lve=0 vFerp}. (33¢)
The HHO approximation of problem reads:
Find u,;, € Qﬁ,o such that, for all v, € Qﬁ,m Ap(up,vy) = J fvn. (33f)
Q

For a discussion on the existence and uniqueness of a solution to we refer the reader to |13,
Theorem 4.5 and Remark 4.7].

3.3 Error estimates

We state in this section an error estimate in terms of the following discrete W'-seminorm on U}

[Lph = (Z lvr [y

TeTh

=

vy, 7p7T> , where [vp[1p7 (HVkaerT”ip(T)d + ST(MT’!TD - (34)

It is a simple matter to realise that the map |-|1, 5 defines a norm on UhO The regularity
assumptions on the exact solution are expressed in terms of the broken W*P-spaces defined by

WP(T) = {ve LP(Q) : VT € Ty, ve W*P(T)},

which we endow with the norm

[ollwer(m,y = (Z vaw(T) -

TeTh

Notice that, if v € W*P(T,) for a certain mesh Ty, then [v[ysr(7,) depends only on v, not
on Tp. Our main result is summarised in the following theorem, whose proof makes use of the
approximation results for the elliptic projector stated in Theorems [I| and [2} cf. Remark for
further insight into their role.

Theorem 7 (Error estimate). Let the assumptions in hold, and let u solve Let a
polynomial degree k = 0 and a mesh Ty, be fixed, and let uh solve Assume the addmonal
reqularity u € WH2P(T,) and a(-, Vu) € WL (T (with p/ = s ) and define the quantity
En(u) as follows:

o [fp=2
1
Ba(u) = ¥ ulwcrnniry + 055 (Julilon, i + a0 VO )i (350)
o [fp<2,
Eh(u) h(k+1)p 1)|u‘wk+2p(7—h) hk+l|a('aVU)|W’€+1,p/(7‘h)d- (35b)

Then, there exists a real number C' > 0 depending only on ), k, the mesh reqularity parameter o
defined in Assumption@ the coefficients p, Ba, Aa, Va, Ca defined in , and an upper bound of
|fll e () such that

[V = uplipn < CEn(u). (36)

10



Proof. See Section [3.4] O

Some remarks are of order.

Remark 8 (Order of convergence). From , it is inferred that the approximation error in the
discrete W1 P-norm scales as the dominant terms in Ej,, namely s if p > 2 and REFDE-D) if
p<2.

Remark 9 (Role of the various terms). There is a nice parallel between the various error terms
in and the error estimate obtained for gradient schemes in [23]. In the gradient schemes
framework [25}/28], the accuracy of a scheme is essentially assessed through two quantities: a
measure Wp of the default of conformity of the scheme, and a measure Sp of the consistency of
the scheme. In (35), the terms involving |a(-, Vu)|yyrs1 (7;,)a estimate the contribution to the
error of the default of conformity of the method, and the terms involving [u|yx+2,»(7;,) come from
the consistency error of the method.

From the convergence result in Theorem |7} we can infer an error estimate on the potential recon-

struction pi“ u;, and on its jumps measured through the stabilisation function sr.

Corollary 10 (Convergence of the potential reconstruction). Under the notations and assump-
tions in Theorem[7, and denoting by V', the broken gradient on Ty, we have

Yy
<|Vh(u _p’icz+19h)HiP(Q)d + Z ST(UT,UT)> <C (Eh(u) + hk+1|u|Wk+2,zz(Th)) , (37)
TeTh

where C' has the same dependencies as in Theorem[7]

Proof. See Section O

Remark 11 (Variations). Following |13 Remark 4.4], variations of the HHO scheme are
obtained replacing the space Q’% defined by by

Uz == PY(T) x ( X P'“(F)> :

FeFp

for k > 0and !l € {k—1,k,k + 1}. For the sake of simplicity, we consider the case [ = k — 1
only when k > 1 (technical modifications, not detailed here, are required for k =0 and [ = k — 1
owing to the absence of element DOFs). The interpolant ll} naturally has to be replaced with
le’kv = (w%’lv, (W%’kv)pefT). The definitions of G% and of pkt! remain formally the
same (only the domain of the operators changes), and a close inspection shows that both key
properties and remain valid for all the proposed choices for [ —replacing, of course, 1?
with 15F in (31). In the expression of the penalization bilinear form sz, we replace the
face-based residual 8%, defined by with a new operator (5%«]} : QZT’k — P¥(F) such that, for
all v e ULF,

Lk . 0k k+1 0,1 k+1
OppY¥r = Tp (VF =P vy — 7 (vr — pp MT)) .
Up to minor modifications, the proof of Theorem [7] remains valid, and therefore so is the case for

the error estimates and .

3.4 Proof of the error estimates

In this section, we write A < B for A < M B with M having the same dependencies as C' in
Theorem [7] The notation A ~ B means A < B and B < A.

11



Proof of Theorem[7] The proof is split into several steps. In Step 1 we obtain an initial estimate
involving, on the left-hand side, a and s, and, on the right-hand side, a sum of four terms. In Step
2 we prove that the left-hand side of this estimate provides an upper bound of the approximation
error |1fu — uy,|1.p.n. Then, in Steps 35, we estimate each of the four terms in the right-hand
side of the original estimate. Combined with the result of Step 2, these estimates prove (36]).

Throughout the proof, to alleviate the notation, we write O(X) for a quantity that satisfies
|O(X)| < X, and we abridge 1fu into Gj,.

We will need the following equivalence of local seminorms, established in |13, Lemma 5.2]: For all
k
MT € QT’

1— P k p

el = (I9vel gyt 3 17 ve=valfay )~ (IGhwr e +srturan) ) (39)
FeFr

Step 1. Initial estimate. Let v;, be a generic element of Qﬁm and denote by v € Q’% its restriction

to a generic mesh element T' € Tj. In this step, we estimate the error made when using u,,, instead
of uy, in the scheme, namely

&)= 3, | [ale.Ghar) - a@. Ghun)| Gl + 3 (sr@pur) - srlupvr)). (39
TeTy, ¥ T TeT,

Let T € Tj, be fixed. Setting
Tir = |a(, Grir) — al-, Vu) | o gy, (40)

by the Holder inequality we infer

f a(z, Ghip(z)) Ghyp(z) de = f a(z, Vu()) Ghyyp (@) de + O(T) 1) |Gy Lo (rye.
T T

To benefit from the definition of GI%MT, we approximate a(-, Vu) by its L?-orthogonal proje-
tion on the polynomial space P*(T)?. We therefore introduce

Tor = |a(, Vu) — 73 a(, V)| o iy, (41)
and we have
f a(z, Ghiy(z)) Ghyy(z) de =
T

J mrta(e, Vu(@))-Grvr(x) dz + O(Tir + Tor) |Gy Lo(rye. (42)
T
Using with ¢ = 7T£}’ka(~7 Vu), the first term in the right-hand side rewrites

f w%ka(w,Vu(w))'GgyT(w)dw = (w%ka(-, Vu), Vvp)r + Z (W%ka(~,Vu)-nTF,vF —vr)F.
T FeFr

We now want to eliminate the projectors ﬂ%k, in order to utilise the fact that u is a solution to .

In the first term, the projector w%k can be cancelled simply by observing that Vv € PF~1(T)4
P*(T)?, whereas for the second term we introduce an error controlled by
%
o 0,k v’ '
Ty = ( > hrla(-, Vu) — mp"a(-, Vu) |Lp,(F)> (43)
FE]:T

12



(this quantity is well defined since a(-, Vu) € W# (T)4 by assumption). We therefore have, using
the Holder inequality,

J w%ka(:c,Vu(a:))-Gl%yT(w)dw = (a(-, Vu), Vvp)r + Z (a(-, Vu)nrp,ve —vr)F
T FeFr

1

p

1—

+ O(%s,1) ( Z hp Plve _VT|1£p(F)> :
FE]‘—T

We plug this expression into (42)) and use the equivalence of seminorms (38 to obtain

J a(x, G5ir(z))-Ghvy (@) dz = (a(-, Vu), Vvr)r + Y. (a(, Vu)nrp,ve —vr)p
T FeFr

+ 0% + %27 + T3 1) vl p,r

Integrating by parts the first term in the right-hand side and writing — div(a(-, Vu)) = f in T,
we arrive at

La(ac, Ghiiy(@))-Ghyy(z) dz =

(fovr)r + Z (@a(, Vu)nrp,vp)r + O(T1r + Tor + Ty 1) |vp 1,7
FE]:T

We then sum over T € Ty, use a(-, Vu)npr = —a(-, Vu)np,r on F whenever F € Fr, n Fr,
(this is because — div(a(-, Vu)) € LP (Q)) together with v = 0 whenever F € F to infer

Z Z (a(, Vu)nrp,vp)r =0,

TeTy, FEFT
invoke the scheme , and use the Holder inequality on the O terms to write

T;’h JT [a(:c, GIZC“QT(-'E)) —a(x, GI%QT(QJ))] .G’I}MT(w) de — T;h st (up, Vo)

= 0(11 + % + T3)“Mh

1,p,h

where, for i € {1,2,3}, we have set

=

T, = (Z sg’T> " (44)

TeTh

Finally, introducing the last error term

ZTGTh st (U, vr)

Ty = sup , (45)
v, €Uk v, #0, vy, |1,p,h
we have
En(vy) = O(FT1 + To + Tz + Ta) vy, 1,5 (46)

Step 2. Lower bound for (U, — uy)-

Let, for the sake of conciseness, e, := U, — u;,. The goal of this step is to find a lower bound for
En(ep,) in terms of the error measure |ep]1,p.n. To this end, we let v, = g, in the definition
of &, and distinguish two cases.

13



Case p > 2: Using for all T € T, the bound (70) below with & = Gl and p = G}.uy. for the first
term in the right-hand side of , the definition (33b|) of st and, for all F' € Fr, the bound
below with ¢ = 6%,.0; and r = 6% ,up for the second, and concluding by the norm equivalence

, we have

Enle)z ) <|G§eT|ip<T)d+ D h;paépew;pm) 2 leal? (47)

TeTh FeFr

Case p < 2: Let an element T € T}, be fixed. Applying below to & = Gy and g = Ghuy,
integrating over T and using the Holder inequality with exponents % and %, we get

|Gherl? e < ( L (e, Gy (x)) — a(@, Ghur ()] Gher(a) dm) )

2—p
2

% (IGEGL1% o + Gl o)

Summing over T' € Tj, and using the discrete Holder inequality, we obtain

2—p

2

pa ~
IGhen e < Enlen)t x (IGEGLIG e + 1GEUALY 1 oy (48)

1-p i=p
A similar reasoning starting from with ¢t = h;" (5’7“1 pUp and r = h;” 5!}FQT, integrating over
F, summing over F' € Fr and using the Holder inequality gives

)4 2—p
2

sr(er,er) S (st(Up,er) — sr(urp,er))? (s7(Up,Uy) + s7(up,ur)) 2

Summing over T' € T, and using the discrete Holder inequality, we get

Z st(ep,er) < Sh(ﬁh)g x <Z st (U, Uy) + Z ST(UTaUT)) . (49)

TeTh TeTh TeTh

Combining and , and using the seminorm equivalence leads to

2-p

Bon)
1,p,h

1,p,h Proved in [13, Proposition

y ~
lenll pn < Enlen)® x (18I, + luy

From the W1?-boundedness of 1% and the a priori bound on ||uj,
7.1 and Proposition 6.1], respectively, we infer that

1 —
o < [ulwin) < 1 and Julipn < 1F170 ) < 1 (50)

|y,

so that

lenlF o < Enlen)- (51)

In conclusion, combining the initial estimate with v, = e, with the bounds (if p = 2)
and (if p < 2), we obtain

Ifp=2: e,

1 e 1 1
1.0 SO (‘Ilpl + X7+ 4 ‘Zj’l) , (52)

Ifp<2: e,

1ph S O(Tl + T+ %3 +T4).
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Step 3. FEstimate of T5.
Recall that, by and ,

%= ( Z ”a(vGIIC“gT) ( Vu)”Lp (T)d>

TeT

'ﬁ\‘ -

Notice also that, by (28] .7 GTuT = GTITu = 7rT (Vu) Thus, using the approximation properties
of ﬂ%k summarised in Lemma 3 below (with v = d;u for i = 1,...,d), we infer

|Gty — V| o (rya < R ulyrszm(ry. (53)

Case p > 2: Assume first p > 2. Recalhng , and using the generalised Holder inequality with
exponents (p/, p,7) such that 2 7= 5 ; (that isr = 1%) together with yields, for all T € Ty,

la- GEr) = al, Vo)l rye < |Ghr = Vulpogrys (IGEGrR 0. + [ Vulfir. )
< W5 ulwsnory (HG@THQ;W IVl )

This relation is obviously also valid if p = 2. We then sum over T € T, and use, as before, the
generalised Holder inequality, and to infer

T < hk+1|u|wk+2,p(7'h (HG h”Lp(Q P HUHW1 p(Q)) < hk+1|u|wk+2,p(7—h).

Case p < 2: By (66) below, |a(-, Gkiip) —a(-, Vu)| . Ty S < |GhG, — VuH’;(lT)d. Use then

and sum over 7' € 7, to obtain T; < A*FDE=D]yPL > (Th):

In conclusion, we obtain the following estimates on ¥y:
Ifp=2: %< hk+1|u|wk+2 2(Th)>

Ifp<2: % <hktDl- 1)|u|p (54)

k42, p(Th)

Step 4. Estimate of T2 + T3. Owing to together with the definitions and of Ty 7
and T3 1, we have

=) <|a( Vu) — 7o @, V) pya + > hF|a(~7Vu)W%k(a(.,VU))ip/(F)d).
TeTh FeFr

Using the approximation properties (63 and ( of 7rT with v replaced by the components of
a(-, Vu), p’ instead of p, and m =0, s = k + 1 we get

T+ 35 < A a( V)P

Taking the power 1/p’ of this inequality and using (a + b)» i < 27 a7 + 277 b7 leads to

To+ %3 < hk+1|a(-, Vu)‘wk+1,p’(7”L)d- (55)

15



Step 5. FEstimate of Ty.
Recall that T, is defined by . Using the Holder inequality, we have for all T' € Ty,

N e
Sk

st(Up,vy) S s7(Up, Up)? s7(vp, vy) 7.

Hence, using again the Holder inequality, since > ;. s7(vy,vy) < |47, 1)

T, < (2 sT(GT,aﬂ)p . (56)

TeTh

We proceed in a similar way as in Lemma 4] to estimate sy (Ur,Ur). Let F € Fp. We use the

definition of the face-based residual operator (5T P together with the triangle inequality, the

relation ﬁ%kﬁ%k — 7% the LP(F)-boundedness (65) of 7%, the equality piia, = pi}“l?u =
;f”l (cf. . ), the trace inequality 7 and the LP(T) and WP (T)-boundedness of 7TT

to write

||5ZIFFQT I e ()

0,k ht 1o ft 1
< g (u = pittay )”LP(F) + |73 (w = Py ) | Loy o
k -2 ok k 57
< lu—mp hr | o(ry + ||7r F (- mpit! )HLP(T) + hy 7w (u— o u)we (1)
< ”U 1Tk+1uHLp + h p ”U 1 k+1UHLP + h | qlﬂk+lu|W1‘p(T).

The optimal W*P-estimates on the elliptic projector and therefore give, for all F' € Fr,

~ k42—

H‘séc“FHTHLP(F) < hyp ’ |u|wr+2. (1)
Raise this inequality to the power p, multiply by hy ?, use h};ph;f““)p_l < h;—P+(k+2)p—1 =
h%k“)p < h+DP and sum over F € Fp to obtain

sr(Up,Ur) S h(k+l)p|u|€vk+2,p(T)~ (58)
Substituted into , this gives

T4 < h(k+1 p—1) |u‘Wk+2P(Th) (59)

Conclusion. Use , and in . ]

Remark 12 (Role of Theorems [1| and , Theorems [1| and [2| are used in Step 5 of the proof of
Theorem [7| below to derive a bound on the stabilisation term sy when its arguments are the
interpolate of the exact solution.

Proof of Corollary[I0} Let an element T € Tp be fixed and set, as in the proof of Theorem [7]
Up = ITu Recalling the definition of s, and using the inequality

(a4 b)P < 2P~ 1aP 4 2P~ 1pP, (60)

it is inferred

r(ur, ur) Z hl pf |5§’FHT| 2 hl pf |5§’FQT+5§“F(9T_QT)|IJ
FeFr FeFr (61)

~

< st(Up,Up) + s7(up — Up, up — Up).
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On the other hand, inserting pi+'G; — mr:**'u = 0 (cf. [B1)), and using again (60), we have
T+
IV (= A ) B e < IV (= T2, o+ IV @y~ u) e (62)
Summing and (62), and recalling the definition of |||

k 1k 1 ~
19 (= P )2 gy + s up) S [V — 7w )2, 00+ sr(@pGr) + [or — upl

1,p,7» We obtain

T

The result follows by summing this estimate over T' € T, and invoking Theorem [1| for the first
term in the right-hand side, for the second, and for the third. O

The following optimal approximation properties for the L?-orthogonal projector were used in Step
4 of the proof of Theorem [7| with U =T € Ty,

Lemma 13 (W*P-approximation for 7y Y. Let U be as in Theoreml Let s€{0,...,l+1} and
€ [1, +o]. Then, there ezists C dependmg only ond, 0,1, s and p such that, for allv e W*P(U),

Vme{0,...,s} ¢ [v— 1 vlwmsw) < Chi ™ olwso @) (63)
and, if s =1

VYme{0,...,s—1} : |v—7rU Vlwme(Fy) < Chy " vlwer @y, (64)
with Fy, W™P(Fy) and corresponding seminorm as in Theorem @

Proof. This result is a combination of |13, Lemmas 3.4 and 3.6]. We give here an alternative proof
based on the abstract results of Section By Lemma [4| with P = P!/(U), we have the following
boundedness property for 7r[0]’l: For all v € LY(U), |7y V|| ry < Clvllpey with real number
C > 0 depending only on d, g, and [. The estimate is then an immediate consequence of
Lemma |3[ with ¢ = 0 and H%l = w?]’l. To prove , proceed as in Theorem [2 using in place

O

of .

Corollary 14 (W*P-boundedness of ﬂg,’l). With the same notation as in Theorem it holds,
for allve WoP(U),

|7T[0J’l’l)|ws,p(U) < C|v\ws,p(U). (65)

Proof. Use the triangle inequality to write |7r(l)]’lv|Ws,p(U) < \WOU’ZU = vlwer@) + [Vlwer @) and
conclude using with m = s for the first term. O

3.5 Numerical examples

For the sake of completeness, we present here some new numerical examples that demonstrate the
orders of convergence achieved by the HHO method in practice. The test were run using the hho
software platfornﬂ We solve on the unit square domain 2 = (0,1)? the homogeneous p-Laplace
Dirichlet problem corresponding to the exact solution

u(x) = sin(rz ) sin(mwxs),

with p € {2, 3,4} and source term inferred from u (cf. for the expression of a in this case).
We consider the matching triangular, Cartesian, locally refined, and (predominantly) hexagonal
mesh families depicted in Figure [I] and polynomial degrees ranging from 0 to 3. The three former
mesh families are taken from the FVCA5 benchmark [31], whereas the latter is taken from [19)].
The local refinement in the third mesh family has no specific meaning for the problem considered
here: its purpose is to demonstrate the seamless treatment of nonconforming interfaces.

L Agence pour la Protection des Programmes deposit number IDDN.FR.001.220005.000.S.P.2016.000.10800
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Figure 1: Matching triangular, Cartesian, locally refined and hexagonal mesh families used in the
numerical examples of Section

We report in Figure 2| the error Hlﬁu — up|l1p,pn versus the meshsize h. From the leftmost column,
we see that the error estimates are sharp for p = 2, which confirms the results of [17] (a known
superconvergence phenomenon is observed on the Cartesian mesh for k¥ = 0). For p = 3,4,
better orders of convergence than the asymptotic ones (cf. Remark [8) are observed in most of
the cases. One possible explanation is that the lowest-order terms in the right-hand side of
are not yet dominant for the specific problem data and mesh at hand. Another possibility is
that compensations occur among lowest-order terms that are separately estimated in the proof
of Theorem [} For k = 3 and p = 3, the observed orders of convergence in the last refinement
steps are inferior to the predicted value for smooth solutions, which can likely be ascribed to the
violation of the regularity assumption on a(-, Vu) (cf. Theorem E[), due to the lack of smoothness
of a for that p.

A Inequalities involving the Leray—Lions operator
This section collects inequalities involving the Leray—Lions operator adapted from [23].
Lemma 15. Assume , , and p < 2. Then, for a.e. € Q and all (€,1) e R? x RY,
la(z, &) —a(@,n)| < (27a + 277 fa + fa)l€ — "7 (66)
Proof. Let r > 0. If |£| = r and |n| = r then, using and p — 2 < 0, we have
la(z, &) — a(a, n)| < 7al€ —nl(€77 + [n'7?) < 27ar"7?[€ — n). (67)
Otherwise, assume for example that |n| < r. Then [£] < [€ — n| + r and thus, owing to (20d),

a(z,§) —a(z,n)| < la(z,§) — a(z,0)[ + |a(z, 0) — a(z,n)|
Ba(l€P~H +[nP~h)
Ba(l€ —nl +r)P~" + far? . (68)

Combining and shows that, in either case,

<
<

la(z,€) — a(x,n)| < 29 *|€ = n| + Ba(l€ —n| +7)P7" + Bar? .
Taking r = [€ — 1| concludes the proof of (66)). O
Lemma 16. Under Assumption we have, for a.e. € Q and all (£,1) € R? x R,
o Ifp<2,

2-p

(1gl7 + i) =5 (69)

(NS

€ —nl < G2 520705 ([a(w.€) — al@.m)] - [€ — ]
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o Ifp=2,

€ —nl” < G 'alx, &) —alz,n)] - [€ —n). (70)
Proof. Estimate is obtained by raising (20f) to the power p/2 and using (|£] + |p])? <
20=1(|€]P + n|?). To prove (70), we simply write [§ — 0[P < [€ —n[*(|€] + [n])?~>. D

Remark 17. The (real-valued) mapping a : t — |t[P=2t corresponds to the p-Laplace operator in
dimension 1, and it therefore satisfies (20f). Hence, by Lemma

tp<2 [t—rP<C ([P 2= |rP 2] [t—r]) (1 + [/P) 7", (71)
Ifp=>2 [t—rP<C[tP 2t —|r[P?r] [t — ], (72)

where C' depends only on p.
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