
HAL Id: hal-01326805
https://hal.science/hal-01326805v1

Submitted on 5 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Second-order shape derivatives along normal
trajectories, governed by Hamilton-Jacobi equations

Grégoire Allaire, Eric Cancès, Jean-Léopold Vie

To cite this version:
Grégoire Allaire, Eric Cancès, Jean-Léopold Vie. Second-order shape derivatives along normal trajec-
tories, governed by Hamilton-Jacobi equations. Structural and Multidisciplinary Optimization, 2016,
�10.1007/s00158-016-1514-2�. �hal-01326805�

https://hal.science/hal-01326805v1
https://hal.archives-ouvertes.fr

Second-order shape derivatives along normal trajectories, governed by

Hamilton-Jacobi equations

G. Allaire ∗

CMAP, UMR CNRS 7641

École Polytechnique,
Université Paris-Saclay, 91128 Palaiseau, FRANCE

(gregoire.allaire@polytechnique.fr)

E. Cancès

CERMICS, École des Ponts and INRIA,
Champs-sur-Marne, FRANCE
(cances@cermics.enpc.fr)

J.-L. Vié

CERMICS, École des Ponts,
Champs-sur-Marne, FRANCE

(viej@cermics.enpc.fr)

June 5, 2016

Dedicated to the memory of George Rozvany.

Abstract

In this paper we introduce a new variant of shape differentiation which is adapted to the deformation of shapes
along their normal direction. This is typically the case in the level-set method for shape optimization where the
shape evolves with a normal velocity. As all other variants of the orginal Hadamard method of shape differentiation,
our approach yields the same first order derivative. However, the Hessian or second-order derivative is different
and somehow simpler since only normal movements are allowed. The applications of this new Hessian formula are
twofold. First, it leads to a novel extension method for the normal velocity, used in the Hamilton-Jacobi equation
of front propagation. Second, as could be expected, it is at the basis of a Newton optimization algorithm which
is conceptually simpler since no tangential displacements have to be considered. Numerical examples are given
to illustrate the potentiality of these two applications. The key technical tool for our approach is the method
of bicharacteristics for solving Hamilton-Jacobi equations. Our new idea is to differentiate the shape along these
bicharacteristics (a system of two ordinary differential equations).

Key words: shape and topology optimization, level-set method, second-order shape derivative, Newton method.

1 Introduction

Differentiation with respect to a shape (an open subset of Rd with d = 2 or 3) is a key tool in shape optimization, that
was first introduced by Hadamard [17]. It was then widely developed by many authors [1], [14], [18], [22], [23], [32],
[35] (and references therein). There are two variants of the Hadamard method of shape differentiation. The first one,
advocated by Murat and Simon [23, 32, 33], is based on a parametrization of shapes by displacement vector fields.
Given a reference open set Ω of Rd, a variation of this domain is of the type Ωθ =

(
Id + θ

)
(Ω), where θ is a vector field

from Rd into Rd and Id is the identity operator on Rd. In other words, any point x ∈ Ω is moved to a new position
x + θ(x) ∈ Ωθ. In this context, shape differentiation is defined as differentiation with respect to the vector field θ.
The second approach is the so-called speed method, introduced by Zolésio and co-workers [13, 15, 35, 40], which is
based on the flow of a vector field and on shapes evolving along this flow. For a given vector field V (t, x), defined
from R+ × Rd into Rd, consider the solution (or flow) of the ordinary differential equation

∂XV

∂t
(t, x) = V

(
t,XV (t, x)

)
for t > 0 ,

XV (0, x) = x .

(1)

Then the variation of the reference domain Ω is defined, for t ≥ 0, as Ωt = XV (t,Ω) = {XV (t, x) such that x ∈ Ω}.
In this context, shape differentiation is defined as the derivative with respect to t and it is a directional derivative in
the direction of V . These two variants of the Hadamard method of shape differentiation lead to the same notion of
first order derivative by identifying the vectors fields θ(·) and V (0, ·) but to slightly different second-order derivatives.

∗G. A. is a member of the DEFI project at INRIA Saclay Ile-de-France. This work has partially been supported by the RODIN project
(FUI AAP 13).

1

There are strong connections between them in the sense that results obtained with one method can be translated to
similar results for the other one.

The goal of the present paper is to define a third approach of Hadamard shape differentiation by considering again
a family of shapes Ωt, evolving with time t ≥ 0 in the direction of the normal vector n(t) to the boundary ∂Ωt. This
new approach is especially suited to the level-set method for shape and topology optimization [2], [3], [38] where the
shape is indeed advected in its normal direction by solving an eikonal or Hamilton-Jacobi equation. Following the
lead of Osher and Sethian [27], a shape Ω is represented by a level-set function φ which, by definition, satisfies

x ∈ Ω iff φ(x) < 0,

x ∈ ∂Ω iff φ(x) = 0,

x ∈ Rd \ (Ω ∪ ∂Ω) iff φ(x) > 0.

(2)

In other words, the boundary of Ω is given by the zero level-set {x ∈ Rd | φ(x) = 0}. Let v(t, x) be a smooth function
from R+×Rd into R. Evolving the shape Ωt with a normal velocity v is equivalent to solving the following eikonal or
Hamilton-Jacobi equation

∂ϕ

∂t
(t, x) + v(t, x) |∇xϕ(t, x)| = 0,

ϕ(0, x) = φ(x).
(3)

For t ≥ 0, the shape Ωt is recovered as the set of negative values of ϕ(t, ·), namely Ωt = {x ∈ Rd | ϕ(t, x) < 0}.
Here we give a rigorous definition of shape differentiation for such evolutions. The key ingredient is the method of
bicharacteristics for solving (3) when its solution ϕ is smooth. It is well known [28] that smooth solutions of (3) can
be computed by solving the following system of two ordinary differential equations

dx

dt
(t) = ∇pH

(
t, x(t), p(t)

)
,

dp

dt
(t) = −∇xH

(
t, x(t), p(t)

)
,

(4)

where H(t, x, p) = v(t, x)|p| is the Hamiltonian defined on R+ × Rd × Rd. For smooth evolutions1, an equivalent
definition of Ωt is then ∂Ωt = {x(t) solution of (4) with x(0) ∈ ∂Ω}. By using (4) we can introduce a new definition
of shape derivative which is different from the two previous ones (note that (4) cannot be put under the simpler form
(1)). It turns out that the first order shape derivatives for all three variants are the same and it is only the second-order
shape derivative which is different and simpler since it does not involve any tangential displacement of the boundary
as in the two previous methods. Our main theoretical result is Theorem 3.4.

There are two main applications of the knowledge of second-order derivatives. The most obvious one is the definition
of the Newton’s algorithm. We explore this issue in Section 5. We are not the first ones to study second-order shape
derivatives and the Newton algorithm. Let us mention the stability results in [10], [11], and the numerical algorithms
in [26], [29]. Much more is even known in the context of control theory [19]. Another application of second-order
derivative is presented in Section 4 for the first time, to the best of our knowledge. It turns out to be useful for the
extension of a descent direction, merely known on the boundary ∂Ω, to the entire space Rd, as required for solving
the Hamilton-Jacobi equation (3). The main idea is that the structure of the second-order shape derivative gives a
hint to the choice of the normal derivative of the extension on ∂Ω. Our numerical experiments indicate that this idea
leads to better extensions in the sense that the convergence of the optimization process is improved.

This paper is organized as follows. In Section 2, we recall the two usual frameworks for computing shape derivatives,
namely domain perturbation (or displacement field method) [23, 32, 33] and time moving domain (or speed method)
[6, 13, 15, 35], and the respective structures of the second-order shape derivatives. Section 3 describes the proposed
new setting of shape differentiation when the shape evolves in its normal direction which is the typical case in the
level-set method for shape optimization. In Section 4 we take advantage of the structure of the second-order shape
derivative to present new extension methods for a descent direction, from ∂Ω to Rd. Section 5 is concerned with
optimization algorithms and most notably the Newton method. In Section 6 we discuss some technical details in the
computation of boundary integrals which are key ingredients in the formulas of shape derivatives. Eventually Section
7 is devoted to some 2-d numerical examples of shape and topological optimization problems. In particular we make
comparisons between gradient and Newton’s algorithms. These are preliminary results which are very encouraging
but not definite since several important issues (3-d, CPU time, memory storage) have not yet been addressed. We
give some concluding remarks and perspectives in the final Section 8. The results presented here are part of the PhD
thesis [36] of the third author where much more details and numerical experiments can be found. Needless to say that
topology optimization of structures is a very important field where our friend and colleague George Rozvany made
essential contributions [30], [31]. This paper is dedicated to his memory.

1The Hamiltonian H(t, x, p) = v(t, x)|p| is not smooth at p = 0 but it is not an issue as explained in Remark 3.3.

2

2 Shape differentation

We recall the basic definitions and results of the Hadamard method of shape differentiation (see [18, §5]). There are
two variants of the Hadamard method. The first one, based on displacement fields, is described in Subsection 2.1 and
advocated by Murat and Simon [23, 32, 33]. The second one is the speed method of Zolesio [14, 35], based on flows of
ordinary differential equations, as described in Subsection 2.2. We introduce the following set of admissible shapes

Ok = {Ω ⊂ Rd | Ω bounded open set of class Ck} for k = 1, 2.

In the sequel, we fix a reference shape Ω ∈ O1 with boundary ∂Ω and unit exterior normal vector n. This reference
shape will be further assumed to belong to O2 when second order derivatives are considered. All shape variations will
be made with respect to this reference shape.

2.1 The displacement field method

Let C1,∞(Rd;Rd) be the set of differentiable and bounded vector fields from Rd into Rd, defined as C1,∞(Rd;Rd) :=
C1(Rd;Rd) ∩ W 1,∞(Rd;Rd), where W 1,∞(Rd,Rd) is the set of Lipschitz bounded functions of Rd. For any θ ∈
C1,∞(Rd;Rd), let Ωθ ∈ O1 be defined by

Ωθ =
{(

Id + θ
)
(x), x ∈ Ω

}
.

Definition 2.1. Let E(Ω) be a function from O1 into R. We define

E : C1,∞(Rd;Rd) → R
θ 7→ E

((
Id + θ

)(
Ω
))
.

The function E is said to be shape-differentiable at Ω if E is Fréchet-differentiable at 0, that is, if there exists a
continuous linear map E ′(0; ·) : C1,∞(Rd;Rd)→ R such that :

E(θ)− E(0)− E ′(0; θ) = o
(
‖θ‖C1,∞(Rd;Rd)

)
.

We denote E′(Ω; θ) := E ′
(
0; θ
)
.

Definition 2.2. The function E of Definition 2.1 is said to be twice shape-differentiable at Ω if E is Fréchet-
differentiable in a neighborhood U of 0 in C1,∞(Rd;Rd) and if the first derivative E ′ defined by

E ′ : U →
(
C1,∞(Rd;Rd))′

θ 7→ E ′
(
θ; ·
)
,

is Fréchet differentiable at 0. We denote by E ′′
(
0; θ1, θ2

)
the second Fréchet derivative at 0, θ1 and θ2 being respectively

the first and second direction of derivation. We also denote E′′(Ω; θ1, θ2) := E ′′
(
0; θ1, θ2

)
. In that case, E has a second-

order Taylor expansion at 0 and

E(θ) = E(0) + E ′(0; θ) +
1

2
E ′′(0; θ, θ) + o

(
‖θ‖2C1,∞(Rd;Rd)

)
.

Remark 2.3. As a classical result of Calculus of Variations (see [16, §II.1.2] for example), since C1,∞(Rd;Rd) is
a linear space, the second derivative of E corresponds to the derivative of its first derivative. However, as explained
in [33], it is not the case for E(Ω) because the variation of two successive vector fields θ1, θ2 is not the same as the
variation obtained with the sum θ1 + θ2:(

Id + θ1

)
◦
(
Id + θ2

)
= Id + θ2 + θ1 ◦

(
Id + θ2

)
6= Id + θ2 + θ1. (5)

A standard computation [33], [18] gives

E′′(Ω; θ1, θ2) =
(
E′
(
Ω; θ1

))′(
Ω; θ2

)
− E′(Ω;∇θ1 θ2). (6)

We now recall the Hadamard structure theorem for the first and second-order shape derivatives.

Theorem 2.4 ([18, Theorem 5.9.2]). Let E, E be defined as in Definition 2.1.

1. Take Ω ∈ O1. Assume E is differentiable at 0 in C1,∞(Rd;Rd). Then, there exists a continuous linear form

l1 : C1
(
∂Ω)→ R such that, for any θ ∈ C1,∞(Rd;Rd),

E′(Ω; θ) = E ′(0; θ) = l1 (θ · n) .

3

2. Take Ω ∈ O2. Assume E is twice differentiable at 0 in C1,∞(Rd;Rd). Then there exists a continuous bilinear

symmetric form l2 : C1
(
∂Ω)× C1

(
∂Ω)→ R such that for any θ, ξ ∈ C2,∞(Rd;Rd),{

E′′(Ω; θ, ξ) = E ′′(0; θ, ξ) = l2(θ · n, ξ · n) + l1(Zθ,ξ),

Zθ,ξ =
(

(ξΓ · ∇Γ) n
)
· θΓ −∇Γ (θ · n) · ξΓ −∇Γ (ξ · n) · θΓ.

(7)

In Theorem 2.4, for any vector field ξ(x) from ∂Ω into Rd, ξΓ(x) denotes its tangential component, defined by
ξΓ = ξ − (ξ · n)n. Furthermore, for a function v ∈ C1

(
Rd;R

)
, its tangential gradient ∇Γv is defined on ∂Ω as the

tangential component of its gradient, ∇Γv(x) = ∇v(x)−
(
∇v(x) ·n(x)

)
n(x), for any x ∈ ∂Ω. Explicit examples of the

linear forms l1 and l2 will be given in Section 7.

Remark 2.5. The vector field Zθ,ξ defined by (7), and thus the second-order shape derivative E′′(Ω; θ, ξ), are sym-
metric in (θ, ξ). This is a consequence of the fact that ∇Γn is a symmetric matrix on ∂Ω (see [18, Proposition 5.4.14,
§5.9.1]). To compute ∇Γn, a first step is to extend the normal n in a neighborhood of ∂Ω : the resulting value of ∇Γn
is independent of the choice of this extension.

2.2 The speed method

Following the approach of Sokolowski and Zolésio [13, 15, 35], shape derivatives may also be defined as the Eulerian
derivatives along time trajectories, defined as flows or solutions of ordinary differential equations.

Definition 2.6. Let V ∈ C1,∞(R+ × Rd;Rd
)
. For τ > 0 small enough and for x ∈ Rd, we define the flow of the

vector field V as the unique solution XV : [0, τ]× Rd → Rd of
∂XV

∂t
(t, x) = V (t,XV (t, x)),

XV (0, x) = x.

(8)

Define the set
XV (t, ·)(Ω) = {XV (t, x), x ∈ Ω} .

For V , W in C1,∞(R+ × Rd;Rd
)

the first and second-order directional derivatives of E are defined by

dE
(
Ω;V

)
:= ∂tE

(
XV (t, ·)(Ω)

)∣∣∣
t=0

,

d2E
(
Ω;V,W

)
:= ∂t∂sE

(
XV (t, ·) ◦XW (s, ·)(Ω)

)∣∣∣
s=t=0

.

Since Ω is a bounded domain, the existence time τ for (8) can be chosen to be uniform for any point x in a compact
neighborhood of Ω.

Remark 2.7. In the above definition, the velocity field V plays the same role as the vector field θ in Subsection 2.1.
One can check [25, Remark 2.5] that

dE
(
Ω;V

)
= E′(Ω;V) and d2E

(
Ω;V,W

)
=
(
E′
(
Ω;V

))′(
Ω;W

)
.

Contrary to Definition 2.1 where the shape derivative is a Fréchet derivative, the shape derivative of Definition 2.6 is
a directional or Gâteaux derivative.

Theorem 2.8 ([18, Corollaire 5.9.3]). Let XV (·, x) be the solution of (8) where V ∈ C1,∞(R+ × Rd;Rd
)
. Define the

function e(t) from [0, τ] into R by

e(t) = E
(
XV (t, ·)(Ω)

)
= E

(
XV (t, ·)− Id

)
. (9)

Then e is twice differentiable on [0, τ] and

e′(0) = l1 (V · n) ,

e′′(0) = l2
(
V · n, V · n

)
+ l1(Z̃V,V),

with the same linear form l1 and bilinear form l2, defined on ∂Ω, as in Theorem 2.4, and with

Z̃V,V =
(
∂tV + (V · ∇)V

)
· n +

(
(VΓ · ∇Γ) n

)
· VΓ − 2∇Γ (V · n) · VΓ.

Proof. Using the chain rule we get e′(t) = E ′
(
XV (t, ·)− Id;V

(
t,XV (t, ·)

))
and e′′(0) = E ′′(0;V, V)+E ′

(
0;
dV

dt

)
. The

expected result then follows from Theorem 2.4.

Although Theorem 2.8 is just a corollary of Theorem 2.4, the two notions of shape derivatives differ. The first
derivatives in Theorems 2.4 and 2.8 coincide but the second derivatives are different. Note however that the directional
derivatives of Theorem 2.4 can be recovered from Theorem 2.8 by the special choice in (8) of the vector field

V (t, x) = θ ◦
(
Id + tθ

)−1
(x),

which corresponds to the solution X(t, x) =
(
Id + tθ

)
(x).

4

3 Shape derivation with respect to normal evolution

In this section we introduce a new variant of shape differentiation which makes sense for domains that evolve in the
direction of their normal vector, as it is the case in the level-set method [27], [9]. Note that the case of a normal
evolution is a priori not covered by the flow of equation (8) since it is not always obvious that there exists a velocity
V which stays parallel to the normal vector for times t > 0, even if it so at the initial time t = 0. There are simple
examples of initial geometries and normal flows: indeed, take an initial disk with a radial velocity. But it is easy to
construct instances of non-normal flows too. Take for example an initially flat part of the boundary (with constant
unit normal n0) with a velocity V (x) which is everywhere parallel to n0 and affine (non-constant) with respect to the
tangential variable (x − (x · n0)n0). Clearly, for any later time t > 0, the boundary is not anymore flat since points
on the initially flat part move with different velocities. Therefore, the unit normal to this part of ∂Ω(t) is no longer
parallel to n0 and thus to V . By a blow-up argument, this simple example can be extended to more general situations
(at the price of some technicalities). Nevertheless, the arguments below prove the existence of at least one normal
velocity V (which is not explicit in terms of the initial boundary), as stated in Remark 3.6. The main new idea here is
to introduce a set of two coupled ordinary differential equations (the so-called bicharacteristics) which are equivalent
to the level-set equation, in the case of smooth domains. We first recall the method of bicharacteristics for solving
Hamilton-Jacobi equations, of which the level-set equation is a particular case.

3.1 Bicharacteristics method for solving Hamilton-Jacobi equations

Let H(t, x, p) : R+ × Rd × Rd → R be a smooth function, called a Hamiltonian in this context. For (t, x) ∈ R+ × Rd,
we consider the scalar first order partial differential equation

∂tφ(t, x) +H
(
t, x,∇xφ(t, x)

)
= 0, (10)

with unknown φ : R+ × Rd → R. Usually, (10) is complemented by initial and boundary conditions. Here, ∂t, ∇x
and ∇p respectively denote the derivation with respect to the first variable, the following d and the last d variables of
R+ × Rd × Rd. We recall a classical result for solving (10).

Lemma 3.1 ([28, Lemma 5.I.2]). Let τ > 0 and O be an open set of Rd. Assume that φ is a smooth solution of (10)
for (t, x) ∈ [0, τ]×O, and that (x(t), p(t)), defined from R+ into Rd × Rd, solves

dx

dt
(t) = ∇pH

(
t, x(t), p(t)

)
,

dp

dt
(t) = −∇xH

(
t, x(t), p(t)

)
.

(11)

If p(0) = ∇xφ(0, x(0)), then p(t) = ∇xφ
(
t, x(t)

)
as long as (t, x(t)) ∈ [0, τ] × O. Furthermore, let t 3 R+ 7→

(y(t), r(t)) ∈ R× R be the solution of
dy

dt
(t) = −∂tH

(
t, x(t), p(t)

)
,

dr

dt
(t) = y(t) + p(t) · ∇pH

(
t, x(t), p(t)

)
,

(12)

with y(0) = ∂tφ(0, x(0)), r(0) = φ
(
0, x(0)

)
. Then y(t) = ∂tφ(t, x(t)) and r(t) = φ

(
t, x(t)

)
as long as (t, x(t)) ∈

[0, τ]×O.

Remark 3.2. Equation (11) is a Hamiltonian system, called the bicharacteristics system of (10), which admits global
solution in time since the value of the Hamiltonian function H

(
t, x(t), p(t)

)
is conserved along the flow. Lemma 3.1

roughly states that, in order to find a smooth solution of the Hamilton-Jacobi equation (10), it is enough to solve the
Hamiltonian system (11). This construction breaks down as soon as the projection on the configuration space Rd of
the bicharacteristics (x(t), p(t)) in the phase space Rd × Rd cross, implying that φ

(
t, x(t)

)
is multivalued. In such a

case, (10) has no smooth solution and one should resort to the notion of viscosity solutions [9]. However, for short
time τ there exists a unique smooth solution of (10) [28]. Note that (12) is decoupled from (11) and is just a kind of
post-processing phase of the bicharacteristics method.

For the sake of completeness, we provide a proof of Lemma 3.1.

Proof. To simplify the notation we write ż(t) instead of
dz

dt
(t). Let φ be a smooth solution of (10) on [0, τ] ×O and

define X(t) : [0, τ]→ Rd the solution of the following ordinary differential equation (o.d.e.) Ẋ(t) = ∇pH
(
t,X(t),∇xφ

(
t,X(t)

))
,

X(0) = x(0),
(13)

5

which exists, at least for short times, by virtue of the Cauchy-Lipschitz theorem. Let Y, P,R be defined by

Y (t) = ∂tφ
(
t,X(t)

)
, P (t) = ∇xφ

(
t,X(t)

)
, R(t) = φ

(
t,X(t)

)
.

We now prove that X,Y, P,R coincide with x, y, p, r. By rewriting (13) and differentiating the definitions of Y, P,R,
we obtain

Ẋ(t) = ∇pH
(
t,X(t), P (t)

)
, Ẏ (t) = ∂ttφ

(
t,X(t)

)
+ ∂t∇xφ

(
t,X(t)

)
· Ẋ(t),

Ṗ (t) = ∂t∇xφ
(
t,X(t)

)
+∇2

xφ
(
t,X(t)

)
Ẋ(t), Ṙ(t) = ∂tφ

(
t,X(t)

)
+∇xφ

(
t,X(t)

)
· Ẋ(t).

With the definition of Y, P and the o.d.e. for X, we already get an o.d.e. for R, similar to that for r in (12),

Ṙ(t) = Y (t) + P (t) · ∇pH
(
t,X(t), P (t)

)
.

Differentiating the Hamilton-Jacobi equation (10) with respect to t and x respectively leads to

∂ttφ+ ∂tH + ∂t∇xφ · ∇pH = 0, and ∂t∇xφ+∇xH +∇2
xφ∇pH = 0. (14)

Evaluating (14) at
(
t,X(t)

)
(for small times, we are sure that X(t) ∈ O), and using Ẋ = ∇pH, we get

∂ttφ+ ∂t∇φ · Ẋ = −∂tH, and ∂t∇φ+∇2
xφẊ = −∇xH,

which are exactly the o.d.e.’s, similar to those for y and p,

Ẏ (t) = −∂tH
(
t,X(t), P (t)

)
, and Ṗ (t) = −∇xH

(
t,X(t), P (t)

)
.

As a result, (x, y, p, r) and (X,Y, P,R) satisfy the same differential system with the same initial condition since
X(0) = x(0) and p(0) = ∇xφ(0, x(0)) by assumption. Therefore (x, y, p, r) = (X,Y, P,R) and, furthermore, from the
equivalent definitions of Y, P,R we deduce

y(t) = ∂tφ
(
t, x(t)

)
, p(t) = ∇xφ

(
t, x(t)

)
, r(t) = φ

(
t, x(t)

)
.

A particular case of (10), which is crucial for the level-set method, is the eikonal equation corresponding to the
Hamiltonian H(t, x, p) = v(t, x)|p| where v is a smooth function from R+ × Rd into R. In other words, we specialize
(10) to the case {

∂tφ(t, x) + v(t, x) |∇xφ(t, x)| = 0,
φ(0, x) = φ0(x),

(15)

where φ0 is a smooth function, satisfying for some smooth bounded open set Ω0, φ0(x) < 0 if x ∈ Ω0,
φ0(x) = 0 if x ∈ ∂Ω0,
φ0(x) > 0 if x ∈ Rd \ (Ω0 ∪ ∂Ω0).

The evolution of the eikonal equation defines a family of domains Ωt :

Ωt :=
{
x ∈ Rd | φ(t, x) < 0

}
.

Applying Lemma 3.1 to (15), in the case of smooth solutions, yields ṗ = ∇xφ and

ẋ = ∇pH = v
∇xφ
|∇xφ|

= v n (16)

because the derivative of the function |p| is p/|p| and ∇xφ/|∇xφ| defines a smooth extension of the unit exterior normal
vector n to the boundary ∂Ωt. We thus recover from (16) that the level-set equation (15) corresponds to an evolution
with a normal velocity v.

Furthermore, if we restrict the solutions of the Hamiltonian system (11) to those initial positions x(0) ∈ ∂Ω0, with
p(0) = ∇xφ0(x(0)), then the boundary of Ωt can be obtained simply by

∂Ωt = {x(t) solution of (11) with x(0) ∈ ∂Ω0} ,

without the necessity to solve the other o.d.e.’s (12).

Remark 3.3. Although the function Rd 3 p 7→ |p| ∈ R is not smooth at 0 (contrary to our assumption), it is not a
problem for the level-set method which focuses only on the evolution of the zero level-set (the shape boundary) where
p = ∇xφ is proportional to the normal vector to the boundary and thus does not vanish, at least for small times when
the initial value p(0) is uniformly bounded away from 0. In other words, the non-smooth function |p| can be regularized
near 0 without changing the evolution of the zero level-set.

6

3.2 Derivation along normal trajectories

We now introduce our new variant of the Hadamard method of shape differentiation, based on the Hamiltonian system
(11).

Theorem 3.4. Let E : O2 → R be twice differentiable at Ω0 ∈ O2 and v(t, x) be a C1 scalar function from R+ × Rd
into R. Let φ0 to be the signed distance function associated to Ω0. For some time τ > 0, let φ ∈ C1

(
[0, τ]× Rd

)
be a

smooth solution (see Remark 3.5) of {
∂tφ(t, x) + v(t, x) |∇xφ(t, x)| = 0,
φ(0, x) = φ0(x).

(17)

Define Ωt :=
{
x ∈ Rd | φ(t, x) < 0

}
and ε(t) := E

(
Ωt
)
. Then ε is twice differentiable at 0 and it holds

ε′(0) = l1
(
v(0, ·)

)
and ε′′(0) = l2

(
v(0, ·), v(0, ·)

)
+ l1(Ẑv,v(0, ·)),

with the same linear form l1 and bilinear form l2, defined on ∂Ω, as in Theorem 2.4, and where Ẑv,v = ∂tv + v∂nv
with ∂nv = n · ∇xv.

Remark 3.5. As already said in Remark 3.2, (17) may not have smooth solutions for all times, even if the Hamiltonian
H and the initial data are smooth. Nevertheless, there always exists a small enough time τ > 0 such that there exists
a unique classical (smooth) solution of (17). To obtain solutions for all times, Crandall and Lions [9] introduced the
notion of viscosity solutions for Hamilton-Jacobi equations, which yields the uniqueness and global-in-time existence
of such solutions.

Remark 3.6. Once again, the first order shape derivative in Theorem 3.4 is the same as in the two variants of
the Hadamard method, discussed in Section 2. However, the second derivative is different from the previous ones in
Theorems 2.4 and 2.8. The family of shape evolutions along the normal direction is somehow smaller than the previous
two classes of shape evolutions since it completely eliminates the possibility of tangential displacements. Therefore, the
second-order derivative is simpler in the present new setting. The formula of the second-order derivative in Theorem
3.4 coincides with that of Theorem 2.8 if one can find a vector field V (t, x) such that V (t, x) = v(t, x)n(t, x), where
n(t, x) is the unit normal vector to the evolving shape Ωt. The existence of such a vector field was a priori not obvious
but it is actually provided by the method of bicharacteristics in Lemma 3.1. Indeed, after solving (11), it is enough to
take V (t, x) = ∇pH(t, x, p(t)), where H(t, x, p) = v(t, x)|p|. Note that such a velocity field V depends strongly on the
initial shape Ω0 and that it is far from being explicit.

Proof. We apply the result of Section 3.1 with H(t, x, p) = v(t, x)|p|. By definition, we have ε(t) = E
(
Ωt
)

= E
(
x(t, ·)−

Id
)

where x(t, x0) is the solution of (11) with x(0) = x0. Arguing as in the proof of Theorem 2.8 and using Theorem
2.4, the shape derivatives are given by the chain rule

ε′(t) = E ′
(
x(t, ·)− Id; ẋ(t, ·)

)
,

ε′′(t) = E ′′
(
x(t, ·)− Id; ẋ(t, ·), ẋ(t, ·)

)
+ E ′

(
x(t, ·)− Id; ẍ(t, ·)

)
.

In (16) we already computed ẋ(t, x0) = v(t, x0) n(t, x0) and thus ε′(0) = l1

(
ẋ(0, ·) · n

)
= l1

(
v(0, ·)

)
. To obtain the

second-order derivative, we remark that, by definition the tangential component of ẋ(0, ·) vanishes, i.e., ẋ(0, ·)Γ = 0
(or ẋ(0, ·) is a normal vector), which implies Zẋ(0,·),ẋ(0,·) = 0 (where Z is defined in (7)) and thus

E ′′
(
x(0, ·)− Id; ẋ(0, ·), ẋ(0, ·)

)
= l2

(
ẋ(0, ·) · n, ẋ(0, ·) · n

)
,

so that
ε′′(0) = l2

(
ẋ(0, ·) · n, ẋ(0, ·) · n

)
+ l1

(
ẍ(0, ·) · n

)
. (18)

It remains to compute ẍ, starting from ẋ(t, ·) = v(t, ·) n(t, ·). We first compute the time derivative of n = p/|p| :

ṅ =
ṗ

|p| − p
(p · ṗ)
|p|3 .

Since ṗ = −∇xH = −|p|∇xv, p = ∇φ and n =
∇xφ
|∇xφ|

, we get

ṅ = −∇xv +
p

|p|3 |p| (∇xv · p) = −∇xv + (∇xv · n) n.

Here n is an extension in Rd of the unit exterior normal to ∂Ωt. If we restrict ourselves to the boundary ∂Ωt, this
implies that ṅ = −∇Γv. By using a suitable extension of ∇Γv (see [36] for details), this result is valid everywhere in
Rd. Then, differentiating ẋ(t, ·) = v(t, ·) n(t, ·) we deduce

ẍ =
(
∂tv +∇xv · ẋ

)
n + vṅ = ∂tv n + v

(
∇xv · n

)
n− v∇Γv, (19)

which implies ẍ(0, ·) · n = ∂tv + v
(
∇xv · n

)
since ∇Γv · n = 0. This proves the desired result.

7

4 Extension of the shape derivative

In this section we discuss a first application of the formula for the second-order shape derivative, which is concerned
with the problem of extending the shape derivative or the normal velocity in the eikonal equation (17) from the shape
boundary to the entire space Rd. Indeed, as stated in Theorems 2.4, 2.8 and 3.4, the first oder shape derivative is
of the type E ′(0; θ) = l1 (θ · n) where l1 is a linear form on C1

(
∂Ω). In full generality, l1 can be represented by a

first-order distribution. Nevertheless, in many practical cases, it is smoother, meaning that it can be represented by a
function j ∈ L1(∂Ω). For simplicity, we assume it is the case. Thus, there exists an integrand j(x), depending on the
function E and defined only on the boundary ∂Ω, such that

E ′(0; θ) = l1 (θ · n) ≡
∫
∂Ω

j θ · n .

A possible descent direction is to choose θ · n = −j (other choices are possible, see [3], [7], [12]). In the sequel we call
vγ a descent direction, a function from ∂Ω into R such that

l1(vγ) =

∫
∂Ω

j vγ ≤ 0 . (20)

A priori, vγ is defined only on ∂Ω, while the level-set method requires to solve (17) with a velocity vγ defined everywhere
in Rd. Therefore, one needs to extend vγ from ∂Ω to Rd. This issue is discussed in [3], [7], [12] and here we propose
new approaches based on the following Ansatz. For small t ≥ 0, according to Theorem 3.4, we write the second-order
Taylor expansion

E
(
Ωt
)

= ε(t) = ε(0) + t l1(vγ) +
1

2
t2
(
l2
(
vγ , vγ

)
+ l1(∂tvγ + vγ∂nvγ)

)
+O(t3). (21)

For simplicity we restrict ourselves to time independent descent direction, namely ∂tvγ = 0. Taking into account the
bilinear form l2 in (21) is at the basis of the Newton algorithm which shall be discussed in the next section. For the
moment we focus on the other second-order term and our main idea is to build an extension of vγ such that

l1(vγ∂nvγ) ≤ 0. (22)

To enforce (22), and since vγ is already bound to satisfy (20), we can choose a suitable normal derivative ∂nvγ . We
propose here two new extension methods based on this idea and we recall a third classical method which, under some
variants, can be found in [3], [7], [12].

Method 4.1. Given a descent direction vγ on ∂Ω, we compute its extension v(t, x) to Rd as the solution of the
following linear transport equation ∂tv + sign(φ)

(
n · ∇xv − 1

)
= 0 in [0, τ]× Rd,

v(t, x) = vγ on ∂Ω,
v(0, x) = 0 on Rd\∂Ω,

(23)

where n is an extension of the unit outer normal and φ is a level-set function for Ω. The stationary solution v of (23)
satisfies

n · ∇xv = ∂nvγ = 1 in Rd, and v = vγ on ∂Ω.

Thus, we obtain l1(v) = l1(vγ) and l1(v∂nv) = l1(v) = l1(vγ) ≤ 0.

As already said in Remark 2.5, there exists a smooth extension of the unit outer normal n in the neighborhood
of ∂Ω [18]. A global smooth extension is easily deduced if the unit norm contraint is not enforced away from ∂Ω.
In numerical practice, the extension of n is given by ∇xφ

|∇xφ| where φ is the level set function (such an extension is

not smooth on the skeleton of the shape Ω). Equation (23) is very much inspired from the classical re-initialization
technique in the level set algorithm. In particular, the velocity being opposed on each side of ∂Ω, it implies that
the information from the boundary condition vγ is carried away from ∂Ω. It is not matematically clear that there

exists a stationary solution of (23). In numerical practice (with our choice n = ∇xφ
|∇xφ|), we always find one and, in any

case, since the extension is only needed locally close to ∂Ω, we could stop the time evolution of (23) as soon as the
characteristics associated to the velocity sign(φ)n have reached a certain distance away from ∂Ω. The same comments
apply to the following alternative extension method.

Method 4.2. Let vγ be a descent direction defined on ∂Ω. Assume that an extension of the product jvγ is already
known in Rd (we keep the same notation jvγ for the extension). We compute another extension v(t, x) of vγ as a
solution of the linear transport equation ∂tv + sign(φ)

(
n · ∇xv + jvγ

)
= 0 in [0, τ]× Rd,

v(t, x) = vγ on ∂Ω,
v(0, x) = 0 on Rd\∂Ω,

(24)

8

where φ is a level-set function for Ω. The stationary solution v of (24) satisfies

n · ∇xv = −jvγ in Rd, and v = vγ on ∂Ω.

Thus, we obtain l1(v) = l1(vγ) and

l1(v∂nv) = l1(−jv2
γ) = −

∫
∂Ω

j2v2
γ ≤ 0.

Eventually, for the sake of comparison, we recall a standard regularization and extension approach which can be
found in [3], [7], [12].

Method 4.3. Let vγ be a descent direction defined on ∂Ω. We compute an extension v(x) of vγ as a solution of the
following variational problem on Rd

η2

∫
Rd

∇v · ∇w +

∫
∂Ω

vw =

∫
∂Ω

vγw, ∀w ∈ H1
(
Rd
)
, (25)

where η > 0 is a small parameter (typically of the order of a few mesh cell diameters in numerical practice). In
practice too, the full space Rd is replaced by a bounded computational domain. On the one hand, the solution v is not
strictly speaking an extension of vγ since vγ 6= v on ∂Ω. On the other hand, the direction v is more regular than vγ on
∂Ω. In the case of the obvious descent direction vγ = −j, one can check that the solution v of (25) remains a descent
direction since

l1(v) =

∫
∂Ω

jv = −
∫
∂Ω

vγv = −
(
η2

∫
Rd

|∇v|2 +

∫
∂Ω

v2
)
≤ 0.

Remark 4.4. Method 4.3 can be used to compute the extension of jvγ which is assumed to be already known at the
beginning of Method 4.2. Even though such an extension is not equal to jvγ on ∂Ω, one can show by the same argument
that Method 4.2 produces again an extension satisfying l1(v∂nv) ≤ 0.

5 Optimization method

For simplicity we consider the unconstrained minimization of an objective function E(Ω) over all possible shapes
Ω ⊂ Rd. Of course, in practice there are always additional constraints, whether directly on the domain Ω (like
geometrical or manufacturing constraints) or on the mechanical performances of Ω. Nevertheless, for simplicity we
focus on the definition of a Newton’s algorithm in the unconstrained case and we recall that Newton’s method can be
extended to the constrained setting [24] without theoretical difficulties, although it may be quite intricate in numerical
practice. Starting from an initial shape Ω0, we build an iterative sequence (Ωp)p∈N in order to minimize the objective
function E(Ω). For a given iteration number p, we denote by φp the level-set function associated to ∂Ωp. To build
the new shape Ωp+1 from Ωp, we solve the Hamilton-Jacobi equation{

∂tφp+1(t, x) + vp(x) |∇xφp+1(t, x)| = 0,

φp+1(0, x) = φp(x).
(26)

For any pseudo-time or descent parameter t ≥ 0 we define an associated shape

Ω(t, vp) =
{
x ∈ Rd | φp+1(t, x) < 0

}
.

The new shape is defined as Ωp+1 = Ω(tp, v
p) where tp > 0 is chosen in order to decrease the reduced objective

function t 7→ E (Ω(t, vp)).
In (26) the normal velocity vp is a descent direction (properly extended to Rd by one of the three methods presented

in Section 4), evaluated at Ωp with a gradient or a Newton-like method that we now describe. The linear and bilinear
forms l1 and l2, defined in Theorem 2.4, depend on the shape Ωp (cf. the explicit examples in Section 7). In this
section, we denote them by lp,1 and lp,2 for the corresponding shape Ωp.

5.1 Newton’s algorithm

In view of the scaling invariance Ω(tα , αv
p) = Ω(t, vp), there is no loss of generality in choosing the parameter tp equal

to 1. Then, for small enough v, the following quadratic approximation holds true

E
(
Ω(1, v)

)
' E(Ωp) + lp,1(v) +

1

2

(
lp,2(v, v) + lp,1(v∂nv)

)
,

where only the traces of v and ∂nv on ∂Ωp play a role. The principle of the Newton method is to minimize this
quadratic approximation in order to obtain the descent direction vp. We now observe that, on ∂Ωp, v and ∂nv may be
considered as independent variables and that ∂nv does not enter the advection equation (26). Therefore, ∂nv can be
used only in an extension process of the shape derivative (as explained in the previous section) and it makes sense to

9

minimize separately in v and ∂nv (although other choices are possible). First, we solve the following problem, referred
to as the Newton problem

min
v ∈ C1,∞(∂Ωp;R

) lp,1(v) +
1

2
lp,2(v, v). (27)

Second, knowing the optimal vp in (27), we should minimize lp,1(vp∂nv) with respect to ∂nv. This linear problem does
not have a solution, and this is precisely the content of the previous section. Note that, if we impose a trust-region
constraint (say ‖∂nv‖L2(∂Ωp;R) ≤ m), then this linear problem has a solution ∂nv which is proportional to jv and
we are back to Method 4.2 for extending the descent direction away from ∂Ω. Another possibility could be to first
extend v by Method 4.3 and then consider ∂nv to be the image of the extended v by the Dirichlet-to-Neumann map.
It results in a quadratic approximation featuring only v. It is not clear how it can be implemented in practice but, at
least, it shows that there are different ways of extracting useful information from the second-order approximation of
the objective function.

There is a priori no reason for the Newton problem (27) to have a finite minimum. Indeed, the Hessian operator lp,2
may have zero or negative eigenvalues. To be convinced, consider the examples of Section 7 where the Hessian depends
on the normal vector n but also on the shape curvature H and has thus no clear sign. In such a case, the minimal
value of (27) could be −∞. For this reason, instead of solving the Newton problem (27) we consider a trust-region
variant (see for example [24, Section 6.4], [39])

min
v ∈ C1,∞(∂Ωp;R

)
,

‖v‖L∞(∂Ωp;R) ≤ vM ,

lp,1(v) +
1

2
lp,2(v, v) , (28)

for some finite positive bound vM . Such a bound implies that, at least after finite dimensional discretization, (28)
admits a minimimizer. If the solution vp to (28) satisfies a strict bound ‖vp‖L∞(∂Ω;R) < vM , then it is also a solution

of (27) and it satisfies the optimality condition or Newton equation

lp,2(vp, w) = −lp,1(w) ∀w ∈ C1,∞(∂Ωp;R
)
.

After having found a good descent direction vp, we also look for a good descent step tp to ensure an efficient decrease
of the reduced objective function t 7→ E

(
Ω(t, vp)

)
, or equivalently t 7→ E

(
Ω(1, tvp)

)
, due to the scaling invariance.

Ideally we should choose tp as the global minimizer of the reduced objective function, but repeated evaluations of the
objective function are way too costly. Therefore, our strategy is a trade-off which ensures a substantial decrease of
the objective function, at an affordable computing price. We use a well-known backtracking procedure [24, Procedure
3.1, Chapter 3] :

Algorithm 5.1. Choose tp > 0, c1, c2 in]0, 1[.

1. Set tp := c1tp.

2. If E
(
Ω(1, tpv

p)
)
≤ E

(
Ωp
)

+ c2 tp lp,1(vp) stop. Else go to step 1.

The following algorithm will be referred to as the Newton algorithm in the sequel.

Algorithm 5.2. Newton algorithm

1. Initialisation Set p = 0. Choose an initial domain Ω0, two convergence thresholds ε > 0, η > 0, and two
coefficients c0, c1 in]0, 1[.

2. Newton direction Compute the solution vp of (28).

3. Extension Compute an extension of vp with one of the three methods detailed in Section 4.

4. Time Step Compute a time step tp with Algorithm 5.1.

5. Update Set p = p+ 1. If
∫
∂Ωp
|vpγ |2 ≤ ε or tp ≤ η stop. Else return to step 2.

Remark 5.3. Since the Hessian operator lp,2 may have negative eigenvalues, the extension vp of the solution to (28)
may fail to be be a descent direction, i.e we may have lp,1(vp) > 0. When it occurs, we take its opposite in order to
ensure that lp,1(vp) ≤ 0.

10

5.2 Gradient algorithm

Gradient algorithms are based on a first order Taylor expansion for sufficiently small v

E
(
Ω(1, v)

)
' E(Ωp) + lp,1(v).

When lp,1(v) =
∫
∂Ω
jpv, it yields a descent direction which, up to a positive multiplicative factor, is vp = −jp. Then,

one look for a descent step tp > 0 such that the objective function decreases. This is the usual gradient-type method.
However, in order to make a fair comparison with the previous Newton algorithm which is coupled to a trust-region
method, we change this usual algorithm and couple it again with a trust-region method. More precisely, we compute
a descent direction as the solution of

min
v ∈ C1,∞(∂Ωp;R

)
,

‖v‖L∞(∂Ωp;R) ≤ vM

lp,1(v) +
1

2

∫
∂Ωp

v2. (29)

Comparing with (28), we keep the same L∞ bound and we replace the Hessian operator by the simpler L2(∂Ω) scalar
product. Note that this quadratic term is not really necessary to make (29) well-posed but it helps for making a fair
comparison with (28). In particular, if vp is a solution to (29) which does not saturate the bound, ‖vp‖L∞(∂Ωp;R) < vM ,

then the optimality condition of (29) yields that vp = −jp as usual, when lp,1(v) =
∫
∂Ω
jpv.

The main reason for choosing this approach for the gradient agorithm is to ease the comparison with the Newton
method. Indeed, the only difference between (28) and (29) is the replacement of the Hessian operator by the identity
operator on ∂Ω.

The following algorithm will be referred to as the gradient algorithm in the sequel.

Algorithm 5.4. Gradient algorithm

1. Initialisation Set p = 0. Choose an initial domain Ω0, two convergence thresholds ε > 0, η > 0, and two
coefficients c0, c1 in]0, 1[.

2. Gradient direction Compute the solution vp of (29).

3. Extension Compute an extension of vp with one of the three methods detailed in Section 4.

4. Time Step Compute a time step tp with Algorithm 5.1.

5. Update Set p = p+ 1. If
∫
∂Ωp
|vp|2 ≤ ε or tp ≤ η stop. Else return to step 2.

6 Computing boundary integrals

Both gradient and Newton algorithms are based on shape derivatives which are written in terms of boundary integrals.
It is therefore crucial to compute them accurately for a maximal efficiency of optimization. We first recall the standard
procedure in the level-set method for structural optimization which is based on the so-called approximate Dirac mass
for the boundary. Then we introduce a better approximation using a piecewise linear reconstruction of the boundary,
in the spirit of earlier results of Min and Gibou [20, 21].

6.1 Approximation with a Dirac mass function

In the level-set framework, let sΩ be the sign function of the level-set, i.e sΩ(x) = −1 if x ∈ Ω,
sΩ(x) = 0 if x ∈ ∂Ω,
sΩ(x) = 1 if x ∈ Rd \ (Ω ∪ ∂Ω).

(30)

The derivative (in the sense of distributions) of sΩ is ∇sΩ = 2δ∂Ωn, where δ∂Ω is the Dirac mass carried by ∂Ω. In
other words, for any smooth function ψ ∈ C∞c (Rd;Rd)

〈∇sΩ, ψ〉 = 2

∫
∂Ω

ψ · n ,

where 〈·, ·〉 denotes the duality product between C∞c -functions and distributions (a simple integral on Rd if the
distribution is just a function). Introducing a small regularization parameter ε > 0, we compute an approximation of
the sign function by

sΩ,ε =
dΩ√
d2

Ω + ε2
,

11

where dΩ is the signed distance function to ∂Ω. Therefore δ∂Ω is approximated by

δ∂Ω,ε =
1

2
|∇sΩ,ε|,

and a boundary integral is computed as ∫
∂Ω

f ≈
∫
Rd

δ∂Ω,εf.

Finally, using finite differences and standard quadrature formulas makes this last approximation fully discrete (see [3]
for details).

6.2 Approximation with a linear interpolation method

The previous Dirac mass approach is very simple to implement in practice but may well not be accurate enough in
some cases. We therefore introduce another approach to evaluate boundary integrals. The main idea is to reconstruct a
piecewise linear approximation of the boundary and compute exactly the boundary integral for a linear approximation
of the integrand. There has been many works on improving the computation of surface integrals in the context of
the level-set method [5], [4], [20], [34] Here we follow the lead of Min and Gibou [20, 21] and we compute boundary
integrals as in a finite element method, building a mass matrix.

In numerical practice we work in 2-d with a regular square mesh Qh of the computational domain in which all
admissible shapes are included (extension to the 3-d case is conceptually simple although more cumbersome than in
2-d). Each rectangular cell is divided in four triangles separated by its diagonals. Let Th be the resulting triangular
mesh. The level-set function φ is discretized by finite differences on the square mesh. To obtain its P1 finite element
interpolation on the triangular mesh Th we simply assign to the additional node at the center of each square the
average of the values at the four corner nodes. Once we have a P1 interpolation φh of φ on the triangular mesh,
it is standard to obtain a discretization Ωh of Ω which is defined by Ωh = {x ∈ Rd |φh(x) < 0}. By construction,
the boundary of Ωh is piecewise linear (more precisely it is the continuous union of line segments in each triangle).
To compute an approximation of an integral on ∂Ω, we compute an exact integral on ∂Ωh of an interpolation of the
integrand.

To be more specific, let us consider the approximate computation of a quadratic integral

I =

∫
∂Ω

v w,

where v(x) and w(x) are two functions which have vh and wh as P1 interpolation on Th. Our approximation of I is

Ih =

∫
∂Ωh

vh wh,

where the last integral is evaluated exactly (it amounts to integrate a quadratic function on a line segment). In truth,
representing vh and wh as vectors in the finite-dimensional space of finite elements, Ih is a bilinear form of these
two vectors which is represented by a matrix. It is this (mass) matrix which is computed. This numerical method
for computing boundary integrals is more precise than the approximation with a Dirac function. It is more time
consuming but the additional burden is completely negligible in front of the CPU time required for the finite element
analysis. The same process of discretizing ∂Ω in ∂Ωh works also for computing bulk integrals on Ω. We refer to [36]
for more details.

7 Numerical Examples

7.1 Setting of the problem

We start by describing our model in linearized elasticity. Let Ω ∈ R2 be a smooth open bounded set, filled with a
homogeneous isotropic material, having Hooke’s tensor A, and Lamé’s coefficients λ, µ. For a symmetric tensor ζ, we
have Aζ = 2µζ + λTr(ζ)Id. We consider a partition of the boundary of Ω as

∂Ω = Γ ∪ ΓN ∪ ΓD ,

where ΓN and ΓD remain unchanged, whereas Γ is the part to be optimized. We introduce a working domain D
containing all admissible shapes. For g ∈ H1(D;Rd) such that g = 0 on Γ, we consider the following boundary
problem, with unknown u :

−div
(
Aε(u)

)
= 0 in Ω,

u = 0 on ΓD,
Aε(u)n = g on ΓN ,
Aε(u)n = 0 on Γ,

(31)

12

with the strain tensor ε(u) =
1

2

(
∇u+ (∇u)T

)
. We introduce the Hilbert space

V =
{
u ∈ H1(Ω;Rd) | u = 0 on ΓD

}
.

The variationnal formulation of (31) is
find u ∈ V such that,

∀ϕ ∈ V,
∫

Ω

Aε(u) : ε(ϕ) =

∫
ΓN

g · ϕ. (32)

Our aim is to minimize an objective function subject to a volume constraint. A first common choice is the compliance
defined as

J1(Ω) =

∫
Ω

Aε(u) : ε(u) =

∫
ΓN

g · u.

It is also common to choose a least square error with a target displacement u0

J2(Ω) =

√∫
Ω

k|u− u0|2,

where k ∈ L∞(D) and u0 ∈ L2(D;Rd). In the following numerical examples for J2, we shall take u0 = 0 and k(x) will
be the characteristic function of a thin neighborhood of ΓN . The volume is defined as

V (Ω) =

∫
Ω

1 dx.

For simplicity in the sequel, we shall fix the Lagrange multiplier Λ > 0 for the volume constraint and minimize, without
any constraint, a Lagrangian L, defined by

L(Ω) = J(Ω) + ΛV (Ω),

where J is either J1 or J2. Optimizing without constraints the Lagrangian L allows us to focus exclusively on the
comparison between the gradient and the Newton algorithms.

7.2 Shape derivatives and implementation issues

When the shape Ω and the boundary load g are sufficiently smooth, the objective function and the volume are shape
differentiable [18], [3]. We recall without proofs these shape derivatives.

Proposition 7.1. Assume that Ω is of class C2. Then, the volume V (Ω) is twice shape differentiable. For θ, ξ ∈
C1,∞(Rd;Rd), the maps l1, l2 (defined in Theorem 2.4) corresponding to the derivatives of V (Ω) are defined by

l1(θ) =

∫
∂Ω

(θ · n) and l2(θ, ξ) =

∫
∂Ω

H (θ · n) (ξ · n) ,

where H = divΓ n is the mean curvature of the boundary.

Proposition 7.2. Assume that Ω is of class C2 and that ΓD and ΓN are fixed. Then, the compliance J1 is twice
shape differentiable. For θ, ξ ∈ C1,∞(Rd;Rd), the maps l1, l2 corresponding to the derivatives of J1 are defined by

l1(θ) = −
∫

Γ

(θ · n)Aε(u) : ε(u),

l2(θ, ξ) = 2

∫
Ω

Aε(u′θ) : ε(u′ξ)−
∫

Γ

(θ · n) (ξ · n)

(
HAε(u) : ε(u) + ∂n

(
Aε(u) : ε(u)

))
,

where H is the mean curvature on the boundary and u′θ is the solution of
−div

(
Aε(u′θ)

)
= 0 in Ω,

u′θ = 0 on ΓD,
Aε(u′θ)n = 0 on ΓN ,
Aε(u′θ)n = divΓ

(
θ · nAε(u)

)
on Γ.

(33)

For the least square criteria, we denote J̃2(Ω) = (J2(Ω))
2

=
∫

Ω
k|u − u0|2. In order to ease the reading, we give

the derivatives of J̃2 instead of J2.

13

Proposition 7.3. Assume that the domain Ω is of class C2. The least square criteria J̃2 is twice shape differentiable.
For θ, ξ ∈ C1,∞(Rd;Rd), the map l1 corresponding to the first shape derivative of J̃2 is defined by

l1(θ) =

∫
Γ

(θ · n)

(
C0

2
k|u− u0|2 +Aε(u) : ε(p)

)
,

where C0 =
(∫

Ω
k|u− u0|2

)− 1
2

and the adjoint state p is assumed to be smooth, defined as the solution to
−div

(
Aε(p)

)
= −C0k(u− u0) in Ω,

p = 0 on ΓD,
Aε(p)n = 0 on ΓN ,
Aε(p)n = 0 on Γ.

(34)

The map l2 corresponding to the second-order shape derivative of J̃2 is defined by

l2(θ, ξ) =
2

C0

∫
Γ

(ξ · n)Aε(u′θ) : ε(p) + (θ · n)Aε(u′ξ) : ε(p) + 2

∫
Ω

k u′θ · u′ξ

+ 2

∫
Γ

k(u− u0)
(

(θ · n)u′ξ + (ξ · n)u′θ

)
+

2

C0

∫
Γ

(θ · n) (ξ · n)
(
∂nJ +HJ

)
,

where H is the mean curvature on the boundary, u′θ is the smooth solution to (33) and

J =
C0

2
k|u− u0|2 +Aε(u) : ε(p) .

We now discuss some implementation issues. We use a single regular square mesh Qh for both the Hamilton-
Jacobi equation and the linearized elasticity systems, like (31), (33), (34). The Hamilton-Jacobi equation is solved
by a second-order finite difference scheme and the elasticity equations by Q1 finite elements with an ersatz material
approach for the void region (see [3] for details). These algorithms are implemented in Scilab [8] with some routines
(concerning the evaluation of the objective function and their gradients) in C.

We use the gradient algorithm 5.4 or the Newton algorithm 5.2, and the corresponding quadratic problems (28), (29)
are solved by using Ipopt [37]. The numerical parameters ε, η for both algorithms 5.4 and 5.2 are set to ε = η = 10−5.
Even if we can observe a decrease on the L2-norm of the descent direction, it appears that it is always the criteria
on the descent step that stops the algorithms. The descent direction is a priori defined only on ∂Ω, and we need to
extend it to the entire domain D in order to solve the Hamilton-Jacobi equation (26). We compare the three extension
methods proposed in Section 4.

The most tricky part is the computation of the matrix discretizing the Hessian operator, and more precisely the
bilinear form l2. Note that the discretization of the linear form l1 (or the first order derivative) is standard [3]. A first
remark concerns the assumed smoothness of the shape Ω for deriving the above formulas. In numerical practice, the
optimal structures may exhibit corners, i.e., are not smooth. In such a case the mean curvature H = divΓ n is not
well defined. To mitigate this effect, we truncate the value of the discretized version of H by a maximum (absolute)
value of the order of 1/h where h is the mesh size. A second remark deals with the computation of normal derivatives
of Aε(u) : ε(u) or J in the formulas for l2. When u and p are Q1, we need to interpolate their gradients as Q1 finite
elements before computing these normal derivatives. The third and most important comment is about the matrix
arising from the discretization of l2. It is a full matrix of size proportional to the number of nodes belonging to a
mesh cell cut by the boundary ∂Ω. Therefore its storage is a real issue, at least for 3-d problems, but we did not
yet experience it in 3-d. A possible cure could be to store only elements which are above a threshold, in absolute
value. Furthermore, the evaluation of the Hessian matrix requires the knowledge of the shape derivatives of the
displacement, namely u′θ and u′ξ. For a given θ ∈ P1

(
Th;R2

)
, computing u′θ corresponds to solving the linear system

with the stiffness matrix and the right-hand side parametrized by θ in (33). In 2-d, the stiffness matrix is already
factorized for the computation of u. There are as many different right-hand sides as the number of nodes in the vicinity
of the boundary (this number is usually much smaller than the number of cells in the mesh). This computation of the
Hessian is not too expensive if the stiffness matrix is factorized and stored, as is easily the case in 2-D. However, in
3-d, when iterative solvers are used, the computational cost may be outrageous. For example in 2-d, and without any
performance optimization (using Scilab), for a mesh of size 120× 60 (as used in the next section) the computation of
the Hessian is of the order of 5s in CPU time, whereas the computation of the gradient is of the order of 100ms. We
plan to study incomplete Hessian assembly or approximate Newton methods for 3-d effectiveness.

7.3 Arch

As a first test case, we consider an arch under boundary conditions described by Figure 1. We consider a working
domain of size 2 × 1 with a square mesh of size 120 × 60. For both the compliance and the least square criteria, the

14

applied force is a point load (0,−1) applied at the middle of the bottom boundary. The Young’s modulus and the
Poisson coefficient are respectively E = 1.0, ν = 0.3. In the definition of the Lagrangian, the Lagrange multiplier is
Λ = 20 for the initialization with holes and Λ = 8 for the initialization without holes.

Ω

D

ΓD

ΓN

Γ

Figure 1: Boundary condition for the arch.

7.3.1 Least square criteria - Initialization with holes

In this example we consider the least square error with the target displacement (0, 0) on the boundary ΓN . Since both
components of the displacement are minimized on ΓN this least square objective function is different from compliance.
The initial shape is the one of Figure 2

Figure 2: Initial shape for the arch.

Figure 3: Final domains for the gradient algorithm on problem of Section 7.3.1. From left to right, gradient with
extension 4.3, gradient with extension 4.1, gradient with extension 4.2.

Figure 4: Final domains for Newton’s algorithm on problem of Section 7.3.1. From left to right, Newton with extension
4.3, Newton with extension 4.1, Newton with extension 4.2.

We denote Ω∞ the final shape for each method, and Ω? the best of all six final shapes (which are very similar). We keep
this notation in the sequel. The final value of the Lagrangian and the number of iterations needed to get convergence
are reported in Figure 5. Due to the line search, each iteration may need several finite element computations for the
evaluation of the criteria. Therefore, we also give the number of finite element computations needed to get convergence.

15

Extension 4.3 Extension 4.1 Extension 4.2
Lagrangian Iterations FE Lagrangian Iterations FE Lagrangian Iterations FE

gradient 26.991224 92 1006 26.894358 105 1032 26.868040 110 1235
Newton 26.454090 38 128 26.173114 43 121 26.125447 40 150

Figure 5: Number of iterations, of finite element computations and value of L(Ω∞) for each algorithm for the arch
problem of Section 7.3.1.

Figure 6: Convergence of L(Ω)− L(Ω?) for problem of Section 7.3.1

Figure 7: Convergence of L(Ω)− L(Ω∞) for problem of Section 7.3.1.

In this first example one can observe that the best shape is obtained with the Newton method and the extension 4.2.
Looking at Figure 7 we see that there are three methods that converge with fewer iterations, but Figure 6 shows that
their optimal objective values are worse. Comparing the curves of the Newton method, we can also conclude that
the improvement of the second order method relies on the computation of the Hessian but also on the choice of the
extension which has a great influence on the result.

Of course, the final convergence of L(Ω) to L(Ω∞) is very fast but it is a lure since, by definition, L(Ω∞) is the
limit value of L(Ω). Nevertheless, the convergence histories of Figures 6 and 7 are good measures of convergence
speed for the early iterations. Plotting the residual of the derivative (some norm of the normal velocity vp in the

16

advection equation (26), for example) is deceptive and not a good convergence indicator [36]. The reason (already
explained in [3]) is that our optimization algorithms rely on continuous derivatives and, as is well known, derivation
and discretization do not always commute.

7.3.2 Least square criteria - Initialization without holes

Secondly we consider the same example but the initialization differs since it has no holes

Figure 8: Final domains for the gradient algorithm on problem of Section 7.3.2. From left to right, gradient with
extension 4.3, gradient with extension 4.1, gradient with extension 4.2.

Figure 9: Final domains for Newton’s algorithm on problem of Section 7.3.2. From left to right, Newton with extension
4.3, Newton with extension 4.1, Newton with extension 4.2.

The final value of the Lagrangian and the number of iterations needed to get convergence are transcripted in Figure
10.

Extension 4.3 Extension 4.1 Extension 4.2
Lagrangian Iterations FE Lagrangian Iterations FE Lagrangian Iterations FE

gradient 10.641893 55 353 10.627132 100 847 10.643709 59 415
Newton 10.654021 50 162 10.623230 36 99 10.651637 41 156

Figure 10: Number of iterations, of finite element computations and value of L(Ω∞) for each method for problem of
Section 7.3.2.

17

Figure 11: Convergence of L(Ω)− L(Ω?) on problem of Section 7.3.2.

Figure 12: Convergence of L(Ω)− L(Ω∞) on problem of Section 7.3.2.

In this example the main advantage of the Newton method consists in converging nearly to the best of all shapes in
fewer iterations than with only a gradient method. With the Newton method, the convergence is also obtained with
fewer finite elements computations.

7.3.3 Compliance - Initialization without holes

Next we consider the compliance for the arch, for an initialization without holes.

18

Figure 13: Final domains for the gradient algorithm on problem of Section 7.3.3. From left to right, gradient with
extension 4.3, gradient with extension 4.1, gradient with extension 4.2.

Figure 14: Final domains for Newton’s algorithm on problem of Section 7.3.3. From left to right, Newton with
extension 4.3, Newton with extension 4.1, Newton with extension 4.2.

In Figure 15 we can see the final values of the Lagrangian and the number of iterations needed.

Extension 4.3 Extension 4.1 Extension 4.2
Lagrangian Iterations FE Lagrangian Iterations FE Lagrangian Iterations FE

gradient 18.210883 48 466 18.137610 35 225 18.227131 28 191
Newton 18.225898 22 96 17.970161 31 76 18.192965 24 132

Figure 15: Number of iterations, of finite element computations and value of L(Ω∞) for each method for problem of
Section 7.3.3.

Figure 16: Convergence of L(Ω)− L(Ω?) on problem of Section 7.3.3

19

Figure 17: Convergence of L(Ω)− L(Ω∞) on problem of Section 7.3.3.

The extension 4.3 leads to the best shapes for both Newton and gradient method, but it has a great cost in terms of
iterations. Excepting this two results, the best shape is obtained by the Newton method with extension 4.2. In this
case there is not much difference - for the Newton method - between the extensions 4.3 and 4.2.

7.3.4 Compliance - Initialization with holes

We continue to minimize compliance but with an initialization with holes as in Figure 2. In this example, we take the
opportunity to report, not only the total number of iterations and finite element analyses, but also the total number
of linear system solves. In the case of the gradient algorithm, each finite element analysis corresponds to one and
only one linear system to solve (for compliance minimization there is no adjoint equation). However, for Newton’s
algorithm, at each iteration we compute the Hessian matrix which requires to solve as many equations (33) as there
are degrees of freedom on the boundary ∂Ω. Solving (33) amounts to solve a linear system with the same rigidity
matrix as the state equation (31). Therefore, if the rigidity matrix is factorized once per iteration, the additional
cost of the Newton’s algorithm is just a large number of back-and-forth substitutions. Factorizing the rigidity matrix,
and thus minimizing the overhead of Newton’s algorithm is possible in 2-d but is clearly a problem in 3-d (see the
Conclusion for possible remedies). We recall that, for the moment, we do not try to minimize the CPU and memory
cost of Newton’s algorithm.

Figure 18: Final domains for the gradient algorithm on problem of Section 7.3.4. From left to right, gradient with
extension 4.3, gradient with extension 4.1, gradient with extension 4.2.

20

Figure 19: Final domains for Newton’s algorithm on problem of Section 7.3.4. From left to right, Newton with
extension 4.3, Newton with extension 4.1, Newton with extension 4.2.

Gradient Newton

Extension 4.3

Lagrangian 26.60038339 26.61049365

Iterations 81 29

FE 771 90

linear solves 771 41061

Extension 4.1

Lagrangian 26.72446997 26.59986314

Iterations 78 36

FE 645 96

linear solves 645 51976

Extension 4.2

Lagrangian 26.83716099 26.43690880

Iterations 68 32

FE 608 109

linear solves 608 47308

Figure 20: Number of iterations, of finite element analyses, of linear system solves and value of L(Ω∞) for each method
for problem of Section 7.3.4.

Figure 21: Convergence of L(Ω)− L(Ω?) for problem of Section 7.3.4

21

Figure 22: Convergence of L(Ω)− L(Ω∞) for problem of Section 7.3.4.

7.3.5 Compliance - Initialization with holes and a finer 200x100 mesh

To assess the mesh dependency, or scalability, of Newton’s algorithm, compared to the gradient algorithm, we run the
same test case as in the previous Section 7.3.4, but on a finer mesh of size 200x100 (while the previous one was 120x60).
Starting from the same initialization, the final domains are the same (but with different values of the Lagrangian).

Figure 23: Final domains for the gradient algorithm and the fine mesh of Section 7.3.5. From left to right, gradient
with extension 4.3, gradient with extension 4.1, gradient with extension 4.2.

Figure 24: Final domains for Newton’s algorithm and the fine mesh of Section 7.3.5. From left to right, Newton with
extension 4.3, Newton with extension 4.1, Newton with extension 4.2.

22

Gradient Newton

Extension 4.3

Lagrangian 28.72140629 28.43652421

Iterations 65 51

FE 496 122

linear solves 496 125950

Extension 4.1

Lagrangian 28.19959181 28.81666153

Iterations 138 54

FE 1123 130

linear solves 1123 131798

Extension 4.2

Lagrangian 28.41156703 28.05832997

Iterations 99 66

FE 835 168

linear solves 835 171261

Figure 25: Number of iterations, of finite element analyses, of linear system solves and value of L(Ω∞) for each method
on the fine mesh of Section 7.3.5.

Figure 26: Convergence of L(Ω)− L(Ω?) for the fine mesh of Section 7.3.5.

23

Figure 27: Convergence of L(Ω)− L(Ω∞) for the fine mesh of Section 7.3.5.

Compared to the coarser mesh of the previous Section 7.3.4, the number of iterations and finite element analyses
has roughly doubled (except for the exceptional case of the gradient algorithm with extension 4.3, the convergence of
which has prematurately stopped). Since the number of cells has doubled in each space direction too, the number of
degrees of freedom on the boundary ∂Ω has roughly doubled. Therefore it is not a surprise that the number of linear
system solves for Newton’s algorithm has approximately quadrupled. In any case, it is clear that the cost of Newton’s
algorithm may turn out to be prohibitive for fine meshes, motivating the development of inexact (but cheaper) Newton
strategies.

7.4 Cantilever

Our second and last test case is a cantilever. The working domain and the mesh have the same size than in the case
of the arch, i.e., 2× 1 and 120× 60. For both the compliance and the least square criteria, the applied force is a point
load (0,−0.1) applied at the middle of the right boundary. The Young’s modulus and the Poisson coefficient are still
respectively E = 1.0, ν = 0.3.

Ω

D

Figure 28: Cantilever

7.4.1 Least square criteria - Initialization with Holes

We first consider the least square error on a cantilever for an initialization with holes (see Figure 29). The criteria is
similar to the case of the arch, since we take the same target displacement, i.e (0, 0) on ΓN . In the definition of the
Lagrangian, the Lagrange multiplier is Λ = 16.

24

Figure 29: Initial shape for the cantilever.

Figure 30: Final domains for the gradient algorithm on problem of Section 7.4.1. From left to right, gradient with
extension 4.3, gradient with extension 4.1, gradient with extension 4.2.

Figure 31: Final domains for Newton’s algorithm on problem of Section 7.4.1. From left to right, Newton with
extension 4.3, Newton with extension 4.1, Newton with extension 4.2.

Extension 4.3 Extension 4.1 Extension 4.2
Lagrangian Iterations FE Lagrangian Iterations FE Lagrangian Iterations FE

gradient 19.740827 32 290 19.718258 33 269 19.755948 33 309
Newton 19.656573 23 82 19.665630 22 80 19.571101 22 95

Figure 32: Number of iterations, of finite element computations and value of L(Ω∞) for each method for the cantilever
problem of Section 7.4.1.

25

Figure 33: Convergence of L(Ω)− L(Ω?) on problem of Section 7.4.1

Figure 34: Convergence of L(Ω)− L(Ω∞) on problem of Section 7.4.1.

The best shape is obtained with the gradient algorithm and extension 4.1, at the price of many iterations (compared
to the other algorithms). The second best shape is obtained with Newton’s algorithm and extension 4.2 with three
times less iterations.

7.4.2 Compliance - Initialization with Holes

Now we consider the compliance for the cantilever with an initialization with holes (see Figure 29). In the definition
of the Lagrangian, the Lagrange multiplier is Λ = 1.

26

Figure 35: Final domains for the gradient algorithm on problem of Section 7.4.2. From left to right, gradient with
extension 4.3, gradient with extension 4.1, gradient with extension 4.2.

Figure 36: Final domains for Newton’s algorithm on problem of Section 7.4.2. From left to right, Newton with
extension 4.3, Newton with extension 4.1, Newton with extension 4.2.

Extension 4.3 Extension 4.1 Extension 4.2
Lagrangian Iterations FE Lagrangian Iterations FE Lagrangian Iterations FE

gradient 1.571077 23 195 1.570056 34 276 1.572323 30 283
Newton 1.565558 21 84 1.574471 13 53 1.566995 11 54

Figure 37: Number of iterations, of finite element computations and value of L(Ω∞) for each method for problem of
Section 7.4.2.

Figure 38: Convergence of L(Ω)− L(Ω?) on problem of Section 7.4.2

27

Figure 39: Convergence of L(Ω)− L(Ω∞) on problem of Section 7.4.2.

Here, the main advantage of Newton’s algorithm combined with extension 4.2 is to lower the numbers of iterations
and of finite element computations. Compared to the gradient algorithm, the convergence is obtained with at least
two times less finite elements computation, which is the most expensive part of the computation.

8 Conclusion

In this work we presented a new approach for the second order shape derivative, adapted to the level-set setting. The
resulting formula for the Hessian is simpler since it does not involve tangential components of the shape displacement
(contrary to the previous variants of the Hadamard method of shape variations). As a consequence the Newton’s
algorithm is simpler to implement. This new formula gives also a clear indication on how to extend a descent direction
from the boundary ∂Ω to the whole computational domain D.

Our first numerical examples, presented here, are very encouraging in showing that a good combination of a second
order algorithm and a suitable extension may significantly improve the optimization process by reducing the number
of iterations. However it remains a lot of work to do in order to confirm this appraisal. In particular, we did not
pay too much attention to the CPU time and rather counted only the iteration numbers (both from optimization and
from finite element analysis). We plan to investigate more carefully the topic. Several potential ideas, in order to
minimize the CPU time, are as follows. It is customary to apply quasi or inexact Newton algorithms instead of plain
Newton. In this line of thoughts, we think of approximating the Hessian instead of computing it exactly. Since the
time consuming part of the computation of the Hessian amounts in solving linear systems with the stiffness matrix
(to obtain the shape derivatives of the displacement, namely u′θ), it could be worthwhile to approximate its inverse
(by a few diagonals) and then to keep the structure of the global Hessian.

Of course, we need to test our approach on 3-d examples, where the cost of computing the Hessian would be way
more important. Even in 2-d, we intend to perform more various examples and to vary the mesh size. Since the
Newton method is a priori known to be efficient close to the optimum, at the end of the optimization, it could be
interesting to try combine, in a first step, the gradient algorithm, and in a second step, the Newton’s algorithm, when
approaching convergence. Another key issue is to test our approach in the case of constrained optimization problems.
In such a case, one has to compute the Hessian of the Lagrangian [24]. However, our idea from Section 4 for extending
the descent direction is not completely clear in view of the constraints. In any case, we plan to address those issues in
a forthcoming paper or in [36].

References

[1] G. Allaire. Conception optimale de structures, volume 58 of Mathématiques & Applications (Berlin) [Mathematics
& Applications]. Springer-Verlag, Berlin, 2007.

[2] G. Allaire, F. Jouve, and A.-M. Toader. A level-set method for shape optimization. C. R. Math. Acad. Sci. Paris,
334(12):1125–1130, 2002.

[3] G. Allaire, F. Jouve, and A-M. Toader. Structural optimization using sensitivity analysis and a level-set method.
Journal of Computational Physics, 194(1):363–393, February 2004.

28

[4] A.-K. Tornberg B. Engquist and R. Tsai. Discretization of Dirac delta functions in level-set methods. Journal of
Computational Physics, 207(1):28 – 51, 2005.

[5] J. Th. Beale. A proof that a discrete delta function is second-order accurate. Journal of Computational Physics,
227(4):2195 – 2197, 2008.

[6] D. Bucur and J-P. Zolésio. Anatomy of the shape Hessian via Lie brackets. Annali di Matematica pura ed
applicata, IV(CLIX):315–339, 1997.

[7] M. Burger. A framework for the construction of level-set methods for shape optimization and reconstruction.
Interfaces and Free Boundaries, 5:301–329, 2003.

[8] S. L. Campbell, J.-Ph. Chancelier, and R. Nikoukhah. Modeling and simulation in Scilab/Scicos. Springer, New
York, 2006.

[9] M. G. Crandall and P.-L. Lions. Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc.,
277:1–42, 1983.

[10] M. Dambrine. On variations of the shape Hessian and sufficient conditions for the stability of critical shapes.
RACSAM. Rev. R. Acad. Cienc. Exactas F́ıs. Nat. Ser. A Mat., 96(1):95–121, 2002.

[11] M. Dambrine and M. Pierre. About stability of equilibrium shapes. Mathematical Modeling and Numerical
Analysis, 34(4):811–834, 3 2000.

[12] F. de Gournay. Velocity extension for the level-set method and multiple eigenvalues in shape optimization. SIAM
Journal on Control and Optimization, 45(1):343–367, 2006.

[13] M-C. Delfour and J-P. Zolesio. Velocity method and Lagrangian formulation for the computation of the shape
Hessian. SIAM Journal on Control and Optimization, 29(6):1414–1442, 1991.

[14] M. C. Delfour and J.-P. Zolésio. Shapes and geometries, volume 4 of Advances in Design and Control. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001. Analysis, differential calculus, and
optimization.

[15] M-C. Delfour and J-P. Zolésio. Anatomy of the shape Hessian. Annali di Matematica pura ed applicata,
CLIX(IV):315–339, 1991.

[16] M. Giaquinta and S. Hildebrandt. Calculus of Variations I, volume 310 of Grundlehren der mathematischen
Wissenschaften. Springer Berlin Heidelberg, 2004.

[17] J. Hadamard. Mémoire sur le problème d’analyse relatif à l’équilibre des plaques élastiques encastrées. In Oeuvres
de J. Hadamard, volume II, pages 515–641. C.N.R.S., 1907.

[18] A. Henrot and M. Pierre. Variation et optimisation de formes, volume 48. Springer, 2005.

[19] H. Kasumba and K. Kunisch. On computation of the shape Hessian of the cost functional without shape sensitivity
of the state variable. J. Optim. Theory Appl., 162(3):779–804, 2014.

[20] C. Min and F. Gibou. Geometric integration over irregular domains with application to level-set methods. Journal
of Computational Physics, 226(2):1432 – 1443, 2007.

[21] C. Min and F. Gibou. Robust second-order accurate discretizations of the multi-dimensional Heaviside and Dirac
delta functions. Journal of Computational Physics, 227(22):9686 – 9695, 2008.

[22] B. Mohammadi and O. Pironneau. Applied shape optimization for fluids. Numerical Mathematics and Scientific
Computation. Oxford University Press, Oxford, second edition, 2010.

[23] F. Murat and J. Simon. Sur le contrôle par un domaine géométrique. Pré-publication du laboratoire d’analyse
numérique, no 76015, Université Paris VI, 1976.

[24] J. Nocedal and S-J. Wright. Numerical Optimization. Springer, 1999.

[25] A. Novruzi and M. Pierre. Structure of shape derivatives. Journal of Evolution Equations, 2:365–383, 2002.

[26] A. Novruzi and J. R. Roche. Newton’s method in shape optimisation : a three-dimensional case. BIT, 40(1):102–
120, 2000.

[27] S. Osher and J-A. Sethian. Fronts propagating with curvature-dependent speed : Algorithms based on Hamilton-
Jacobi formulations. Journal of Computational Physics, 79(1):12 – 49, 1988.

[28] J. Rauch. Hyperbolic partial differential equations and geometrics optics, volume 133 of Graduate Studies in
Mathematics. American Mathematical Society, 2012.

29

[29] J. R. Roche. Adaptive Newton-like method for shape optimization. Control Cybernet., 34(1):363–377, 2005.

[30] G. Rozvany. Aims, scope, methods, history and unified terminology of computer-aided topology optimization in
structural mechanics. Struct. Multidiscip. Optim., 21(2):90–108, 2001.

[31] G. Rozvany. A critical review of established methods of structural topology optimization. Struct. Multidiscip.
Optim., 37(3):1–38, 2009.

[32] J. Simon. Differentiation with respect to the domain in boundary value problems. Numer. Funct. Anal. Optim.,
2:649–687, 1980.

[33] J. Simon. Second variation for domain optimization problems. Control and estimation of distributed parameter
systems, F. Kappel, K. Kunish et W. Schappacher éd., International Series of Numerical Mathematics, 91:361–
378, 1989.

[34] P. Smereka. The numerical approximation of a delta function with application to level-set methods. Journal of
Computational Physics, 211(1):77 – 90, 2006.

[35] J. Sokolowski and J-P. Zolesio. Introduction to Shape Optimization, volume 16 of Springer Series in Computational
Mathematics. Springer Berlin Heidelberg, 1992.

[36] J.-L. Vié. Second-order methods for shape optimization with the level-set method. PhD thesis, Université Paris
Est, 2016.

[37] A. Wächter and L. T. Biegler. On the implementation of a primal-dual interior point filter line search algorithm
for large-scale nonlinear programming. Mathematical Programming, 106(1):25–57, 2006.

[38] M. Y. Wang, X. Wang, and D. Guo. A level-set method for structural topology optimization. Comput. Methods
Appl. Mech. Engrg., 192(1-2):227–246, 2003.

[39] Y.-X. Yuan. A review of trust region algorithms for optimization. volume 99, pages 271–282. International
Congress on Industrial and Applied Mathematics, Oxford University Press, 2000.

[40] J.-P. Zolésio. The material derivative (or speed) method for shape optimization. In Optimization of distributed
parameter structures, Vol. II (Iowa City, Iowa, 1980), volume 50 of NATO Adv. Study Inst. Ser. E: Appl. Sci.,
pages 1089–1151. Nijhoff, The Hague, 1981.

30

