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Abstract

We introduce an equivalence relation on the space W 1,1(Ω;S1) which classifies maps
according to their “topological singularities”. We establish sharp bounds for the dis-
tances (in the usual sense and in the Hausdorff sense) between the equivalence classes.
Similar questions are examined for the space W 1,p(Ω; S1) when p > 1.

1 Introduction

Let Ω be a smooth bounded domain in RN , N ≥ 2. (Many of the results in this paper remain
valid if Ω is replaced by a manifold M, with or without boundary, and the case M = S1 is
already of interest (see [14, 15]).) In some places we will assume in addition that Ω is simply
connected (and this will be mentioned explicitly). Our basic setting is

W 1,1(Ω;S1) = {u ∈ W 1,1(Ω;R2) ' W 1,1(Ω;C); |u| = 1 a.e.}.

It is clear that if u, v ∈ W 1,1(Ω;S1) then uv ∈ W 1,1(Ω;S1); moreover

if un → u and vn → v in W 1,1(Ω;S1) then unvn → uv in W 1,1(Ω;S1). (1.1)

In particular, W 1,1(Ω;S1) is a topological group. We call the attention of the reader that
maps u of the form u = eıϕ with ϕ ∈ W 1,1(Ω;R) belong to W 1,1(Ω;S1). However they do
not exhaust W 1,1(Ω;S1): there exist maps in W 1,1(Ω;S1) which cannot be written as u = eıϕ

for some ϕ ∈ W 1,1(Ω;R). A typical example is the map u(x) = x/|x| in Ω =unit disc in R2;
This was originally observed in [4] (with roots in [29]) and is based on degree theory; see also
[9, 12]. Set

E = {u ∈ W 1,1(Ω;S1); u = eıϕ for some ϕ ∈ W 1,1(Ω;R)}. (1.2)

We claim that E is closed in W 1,1(Ω;S1). Indeed, let un = eıϕn with un → u in W 1,1.
Then ∇ϕn = −ıun∇un converges in L1 to −ıu∇u. By adding an integer multiple of 2π to
ϕn we may assume that

∣∣ ´
Ω
ϕn
∣∣ ≤ 2π|Ω|. Thus, a subsequence of {ϕn} converges in W 1,1 to

some ϕ and u = eıϕ.
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Clearly

E ⊂ C∞(Ω;S1)
W 1,1

. (1.3)

Indeed, if u ∈ E , write u = eıϕ for some ϕ ∈ W 1,1(Ω;R); let ϕn ∈ C∞(Ω;R) be such that
ϕn → ϕ in W 1,1. Then, un = eıϕn ∈ C∞(Ω;S1) and converges to u in W 1,1. However equality
in (1.3) fails in general. For example when Ω = {x ∈ R2; 1 < |x| < 2}, the map u(x) = x/|x|
is smooth, but u /∈ E ; as above the nonexistence of ϕ is an easy consequence of degree theory.
On the other hand, if Ω is simply connected, equality in (1.3) does hold since C∞(Ω;S1) ⊂ E
(recall that any u ∈ C∞(Ω;S1) can be written as u = eıϕ with ϕ ∈ C∞(Ω;R)) and E is closed
in W 1,1(Ω;S1)).

To each u ∈ W 1,1(Ω;S1) we associate a number Σ(u) ≥ 0 defined by

Σ(u) = inf
ϕ∈W 1,1(Ω;R)

ˆ
Ω

|∇(ue−ıϕ)| = inf
v∈E

ˆ
Ω

|∇(uv)|. (1.4)

An immediate consequence of the definition is the relation Σ(u) = Σ(u). As explained in
Section 2 the quantity Σ(u) plays an extremely important role in many questions involving
W 1,1(Ω;S1); it has also an interesting geometric interpretation. Note that

u ∈ E ⇐⇒ Σ(u) = 0, (1.5)

and in particular Σ(1) = 0. The implication =⇒ is clear. For the reverse implication, assume
that Σ(u) = 0, i.e., there exists a sequence vn ∈ E such that

´
Ω
|∇(uvn)| → 0. Then (modulo

a subsequence) uvn → C in W 1,1, for some constant C ∈ S1; therefore vn → Cu in W 1,1 and
thus u ∈ E (since E is closed).

In some sense Σ(u) measures how much a general u ∈ W 1,1(Ω;S1) “deviates” from E .
More precisely we will prove that

2

π
Σ(u) ≤ inf

v∈E

ˆ
Ω

|∇(u− v)| ≤ Σ(u), (1.6)

with optimal constants. This will be derived as a very special case of our main result The-
orem 1.1. In order to state it we need to describe a decomposition of the space W 1,1(Ω;S1)
according to the following equivalence relation in W 1,1(Ω;S1):

u ∼ v if and only if u = eıϕ v for some ϕ ∈ W 1,1(Ω;R); (1.7)

in other words, u ∼ v if and only if Σ(uv) = 0. We denote by E(u) the equivalence class of
an element u ∈ W 1,1(Ω;S1), that is

E(u) = {ue−ıϕ; ϕ ∈ W 1,1(Ω;R)}.

In particular, E(1) = E . It is easy to see that for every u ∈ W 1,1(Ω;S1), E(u) is closed (it
suffices to apply (1.1) and the fact that E is closed). In Section 2 we will give an interpretation
of the equivalence relation u ∼ v in terms of the “topological singularities” of u and v. We
may rewrite (1.4) as

Σ(u) = inf
v∈E(u)

ˆ
Ω

|∇v|. (1.8)
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Given u0, v0 ∈ W 1,1(Ω;S1) the following quantities will play a crucial role throughout the
paper:

dW 1,1(u0, E(v0)) := inf
v∼v0

ˆ
Ω

|∇(u0 − v)|, (1.9)

distW 1,1(E(u0), E(v0)) := inf
u∼u0

dW 1,1(u, E(v0)) = inf
u∼u0

inf
v∼v0

ˆ
Ω

|∇(u− v)|, (1.10)

DistW 1,1(E(u0), E(v0)) := sup
u∼u0

dW 1,1(u, E(v0)) = sup
u∼u0

inf
v∼v0

ˆ
Ω

|∇(u− v)|, (1.11)

so that distW 1,1(E(u0), E(v0)) is precisely the distance between the classes E(u0) and E(v0).
On the other hand we will see below, as a consequence of (1.13), that DistW 1,1 is symmetric,
a fact which is not clear from its definition. This implies that DistW 1,1 coincides with the
Hausdorff distance

H − distW 1,1(E(u0), E(v0)) := max (DistW 1,1(E(u0), E(v0)), DistW 1,1(E(v0), E(u0)))

between E(u0) and E(v0). Our main result is

Theorem 1.1. For every u0, v0 ∈ W 1,1(Ω;S1) we have

distW 1,1(E(u0), E(v0)) =
2

π
Σ(u0v0) (1.12)

and

DistW 1,1(E(u0), E(v0)) = Σ(u0v0). (1.13)

The two assertions in Theorem 1.1 look very simple but the proofs are quite tricky; they
are presented in Sections 4 and 5. The factor 2/π in (1.12) represents the ratio of two
diameters of S1, each corresponding to a different metric: the first one computed using the
Euclidean metric and the second one using the geodesic distance. This interpretation will
become clear in the proof of Lemma 4.2 below.

A useful device for constructing maps in the same equivalence class is the following (see
Lemma 4.1 below). Let T ∈ Lip(S1; S1) be a map of degree one. Then

T ◦ u ∼ u, ∀u ∈ W 1,1(Ω;S1). (1.14)

It turns out that this simple device plays a very significant role in the proofs of most of our
main results. It allows us to work on the target space only, thus avoiding difficulties due to
the possibly complicated geometry and/or topology of the domain (or manifold) Ω. A first
example of an application of this technique is given by the proof of the following version of
the “dipole construction”; it is the main ingredient in the proof of inequality “≤” in (1.13).

Proposition 1.2. (H. Brezis and P. Mironescu [12, Proposition 2.1]) Let u ∈ W 1,1(Ω;S1).
Then there exists a sequence {un} ⊂ E(u) satisfying

un → 1 a.e., and lim
n→∞

ˆ
Ω

|∇un| = Σ(u). (1.15)

For completeness we present the proof of Proposition 1.2 in the Appendix.

A basic ingredient in the proof of inequality “≥” in (1.13) is the following proposition
which provides an explicit recipe for constructing “maximizing sequences” for DistW 1,1 . In
order to describe it we first introduce, for each n ≥ 3, a map Tn ∈ Lip(S1;S1) with deg Tn = 1
by Tn(eıθ) = eıτn(θ), with τn defined on [0, 2π] by setting τn(0) = 0 and

τ ′n(θ) =

{
n, θ ∈ (2j π/n2, (2j + 1) π/n2]

−(n− 2), θ ∈ ((2j + 1) π/n2, (2j + 2) π/n2]
, j = 0, 1, . . . , n2 − 1. (1.16)
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Proposition 1.3. For every u0, v0 ∈ W 1,1(Ω;S1) such that u0 6∼ v0 we have

lim
n→∞

dW 1,1(Tn ◦ u0, E(v0))

Σ(u0v0)
= 1 (1.17)

and the limit is uniform over all such u0 and v0. Consequently

DistW 1,1(E(u0), E(v0)) ≥ Σ(u0v0). (1.18)

As mentioned above, a special case of interest is the distance of a given u ∈ W 1,1(Ω;S1)
to the class E . An immediate consequence of Theorem 1.1 is that for every u ∈ W 1,1(Ω;S1)
we have

2

π
Σ(u) ≤ dW 1,1(u, E) ≤ Σ(u), (1.19)

and the bounds are optimal in the sense that

sup
u/∈E

dW 1,1(u, E)

Σ(u)
= 1, (1.20)

and

inf
u/∈E

dW 1,1(u, E)

Σ(u)
=

2

π
. (1.21)

There are challenging problems concerning the question whether the supremum and the
infimum in the above formulas are achieved (see §5.3).

Remark 1.4. Formulas (1.19)–(1.21) provide a sharp improvement of the inequality

1

2
Σ(u) ≤ dW 1,1(u, E) ≤ Σ(u), ∀u ∈ W 1,1(Ω;S1), (1.22)

established in [12, Sec. 11.6].

Finally, we turn in Section 6 to the classes in W 1,p(Ω;S1), 1 < p < ∞, defined in an
analogous way to the W 1,1-case, i.e., using the equivalence relation

u ∼ v if and only if u = eıϕ v for some ϕ ∈ W 1,p(Ω;R). (1.23)

We point out that if u, v ∈ W 1,p(Ω;S1) are equivalent according to the equivalence relation
in (1.7), then from the relation eıϕ = uv we deduce that

∇ϕ = −ıuv∇(uv) ∈ Lp(Ω;RN); (1.24)

whence u ∼ v according to (1.23) as well. When p ≥ 2 and Ω is simply connected we have
W 1,p(Ω;S1) = {u ∈ W 1,1(Ω;S1); u = eıϕ for some ϕ ∈ W 1,p(Ω;R)}, see Remark 1.10 below.
Therefore, the only cases of interest are:

(a) general Ω and 1 < p < 2,
(b) multiply connected Ω and p ≥ 2.
In all the theorems below we assume that we are in one of these situations. The distances
between the classes are defined analogously to (1.10)–(1.11) by

distW 1,p(E(u0), E(v0)) := inf
u∼u0

inf
v∼v0

‖∇(u− v)‖Lp(Ω). (1.25)

and

DistW 1,p(E(u0), E(v0)) := sup
u∼u0

inf
v∼v0

‖∇(u− v)‖Lp(Ω). (1.26)

The next result establishes a lower bound for distW 1,p :
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Theorem 1.5. For every u0, v0 ∈ W 1,p(Ω;S1), 1 ≤ p <∞, we have

distW 1,p(E(u0), E(v0)) ≥
(

2

π

)
inf

w∼u0v0

‖∇w‖Lp(Ω). (1.27)

Remark 1.6. For p > 1 the infimum on the R.H.S. of (1.27) is actually a minimum; this
follows easily from (1.24) and the fact that W 1,p is reflexive.

Note that equality in (1.27) holds for p = 1 by (1.12). An example in [27, Section 4]
shows that strict inequality “>” may occur in (1.27) for a multiply connected domain in
dimension two and p = 2. We will show in §6.4 that strict inequality may also occur for
simply connected domains when 1 < p < 2. On the positive side, we prove equality in (1.27)
in the case of the distance to E :

Theorem 1.7. For every u0 ∈ W 1,p(Ω;S1), 1 < p <∞, we have

distW 1,p(E(u0), E) =

(
2

π

)
inf
w∼u0

‖∇w‖Lp(Ω). (1.28)

Remark 1.8. When p > 1 we do not know general conditions on u0, v0 ∈ W 1,p(Ω;S1) that
guarantee equality in (1.27) (a sufficient condition in the case of multiply connected two
dimensional domain and p = 2 is given in [27, Th. 4]).

On the other hand, when p > 1, DistW 1,p between distinct classes is infinite:

Theorem 1.9. For every u0, v0 ∈ W 1,p(Ω;S1), 1 < p <∞, such that u0 6∼ v0 we have

DistW 1,p(E(u0), E(v0)) =∞. (1.29)

Remark 1.10. There is another natural equivalence relation in W 1,p(Ω;S1), 1 ≤ p < ∞,
defined by the homotopy classes, i.e.,

u
H∼ v if and only if u = h(0) and v = h(1) for some h ∈ C

(
[0, 1];W 1,p(Ω;S1)

)
.

Homotopy classes have been well-studied (see [10, 11, 22, 28, 30]). Clearly u ∼ v =⇒ u
H∼ v

(use the homotopy h(t) = eı(1−t)ϕv). Note however that when 1 ≤ p < 2 the equivalence

relation u ∼ v is much more restrictive than u
H∼ v; for example let Ω =unit disc in R2, u(x) =

x/|x| and v(x) = (x− a)/|x− a| with 0 6= a ∈ Ω, then u 6∼ v (in fact, distW 1,1(E(u), E(v)) =

4|a| > 0 by (3.17) below) while u
H∼ v, e.g., via the homotopy h(t) = (x − ta)/|x − ta|, 0 ≤

t ≤ 1.

Part of the results were announced in [15].
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2 Further comments on Σ(u) and E(u)

Given a, b ∈ C, write as usual a = a1 + ıa2, b = b1 + ıb2; we also identify a, b with the vectors
a = (a1, a2)T , b = (b1, b2)T ∈ R2 and set

a ∧ b = a1b2 − a2b1 = Im(ab) ∈ R. (2.1)

2.1 The distributional Jacobian Ju

For every u ∈ W 1,1(Ω;S1) we consider u ∧∇u ∈ L1(Ω;RN) defined by its components

(u ∧∇u)j = u ∧ ∂u

∂xj
= u1

∂u2

∂xj
− u2

∂u1

∂xj
, j = 1, . . . , N. (2.2)

Since |u|2 = 1 on Ω we have

u1
∂u1

∂xj
+ u2

∂u2

∂xj
= 0 in Ω, (2.3)

and thus

u ∧ ∂u

∂xj
= −ıu ∂u

∂xj
in Ω; (2.4)

in particular,

|u ∧∇u| = |∇u| in Ω. (2.5)

The following identities are elementary:

(uv) ∧∇(uv) = u ∧∇u+ v ∧∇v, ∀u, v ∈ W 1,1(Ω;S1), (2.6)

eıϕ ∧∇(eıϕ) = ∇ϕ, ∀ϕ ∈ W 1,1(Ω;R), (2.7)

u ∧∇u = −u ∧∇u, ∀u ∈ W 1,1(Ω;S1). (2.8)

Finally we introduce, for every u ∈ W 1,1(Ω;S1), its distributional Jacobian Ju, which is an
antisymmetric matrix with coefficients in D′(Ω;R) defined by

(Ju)i,j :=
1

2

[
∂

∂xi

(
u ∧ ∂u

∂xj

)
− ∂

∂xj

(
u ∧ ∂u

∂xi

)]
. (2.9)

When N = 2, Ju is identified with the scalar distribution

Ju =
1

2

[
∂

∂x1

(
u ∧ ∂u

∂x2

)
− ∂

∂x2

(
u ∧ ∂u

∂x1

)]
=

1

2
curl (u ∧∇u) . (2.10)

From (2.6)–(2.8) we deduce that

J(uv) = Ju+ Jv, ∀u, v ∈ W 1,1(Ω;S1), (2.11)

J(u) = −Ju, ∀u ∈ W 1,1(Ω;S1), (2.12)

J(eıϕ) = 0, ∀ϕ ∈ W 1,1(Ω;R), (2.13)

i.e.,

J(u) = 0, ∀u ∈ E , (2.14)
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and thus

u ∼ v =⇒ Ju = Jv. (2.15)

When Ω is simply connected the converse is also true, so that

u ∼ v ⇐⇒ Ju = Jv; (2.16)

in other words,

E(u) = {v ∈ W 1,1(Ω;S1); Ju = Jv}. (2.17)

This fact is originally due to Demengel [20], with roots in [3]; simpler proofs can be found in
[12, 9, 18].

In order to have a more concrete perception of the equivalence relation u ∼ v it is
instructive to understand what it means when N = 2 and Ω is simply connected, for u, v ∈ R
where

R = {u ∈ W 1,1(Ω;S1); u is smooth in Ω except at a finite number of points}. (2.18)

The class R plays an important role since it is dense in W 1,1(Ω;S1) (see [4, 12]).
If u ∈ R then

Ju = π
∑
j

djδaj , (2.19)

where the aj’s are the singular points of u and dj := deg(u, aj), i.e., the topological degree
of u restricted to any small circle centered at aj; see [8, 13, 12] and also [2, end of Section 6]
for the special case where u(x) = x/|x|. In particular, when u, v ∈ R,

u ∼ v ⇐⇒ [u and v have the same singularities

and the same degree at each singularity].
(2.20)

2.2 Σ(u) computed by duality

An equivalent formula to (1.4) is

Σ(u) = inf
ϕ∈W 1,1(Ω;R)

ˆ
Ω

|u ∧∇u−∇ϕ|. (2.21)

Indeed, from (2.6)–(2.8) we have ue−ıϕ∧∇(ue−ıϕ) = u∧∇u−∇ϕ, and by (2.5), |∇(ue−ıϕ)| =
|u ∧∇u−∇ϕ|, which yields (2.21).

Next we apply the following standard consequence of the Hahn-Banach theorem:

dist(p,M) = inf
m∈M

‖p−m‖ = max{< ξ, p >; ξ ∈M⊥, ‖ξ‖ ≤ 1}, (2.22)

where E is a Banach space, p ∈ E, and M is a linear subspace of E (see e.g., [6, Section 1.4,
Example 3]). If we take E = L1(Ω;RN), p = u ∧ ∇u, M = {∇ϕ; ϕ ∈ W 1,1(Ω;R)}, then we
have

M⊥ = {ξ ∈ L∞(Ω;RN); div ξ = 0 in Ω and ξ · ν = 0 on ∂Ω}, (2.23)
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where ν is the outward normal to ∂Ω. Here the condition [div ξ = 0 in Ω and ξ ·ν = 0 on ∂Ω]
is understood in the weak sense [

´
Ω
ξ ·∇ϕ = 0, ∀ϕ ∈ W 1,1(Ω;R)], or equivalently, [

´
Ω
ξ ·∇ϕ =

0, ∀ϕ ∈ C∞(Ω;R)]. Inserting (2.23) in (2.22) yields

Σ(u) = max{
ˆ

Ω

(u ∧∇u) · ξ; ξ ∈M⊥, ‖ξ‖L∞ ≤ 1}. (2.24)

Next we assume that N = 2 and Ω is simply connected. We claim that for every u ∈
W 1,1(Ω;S1),

Σ(u) = max{
ˆ

Ω

(u ∧∇u) · ∇⊥ζ; ζ ∈ W 1,∞
0 (Ω;R) and ‖∇ζ‖L∞ ≤ 1}, (2.25)

where ∇⊥ζ = (−∂ζ/∂x2, ∂ζ/∂x1).

Proof of (2.25). In view of (2.23)–(2.24) it suffices to show that

{ξ ∈ L∞(Ω;R2); div ξ = 0 in Ω and ξ · ν = 0 on ∂Ω} = {∇⊥ζ; ζ ∈ W 1,∞
0 (Ω;R)}. (2.26)

For the inclusion “⊃”, we verify that

ˆ
Ω

∇⊥ζ · ∇ϕ = 0, ∀ϕ ∈ C∞(Ω;R);

this is clear since curl(∇ϕ) = 0 and ζ = 0 on ∂Ω.
For the inclusion “⊂”, we start with some ξ ∈ L∞(Ω;R2) such that

ˆ
Ω

ξ · ∇ϕ = 0, ∀ϕ ∈ W 1,1(Ω;R). (2.27)

Set ξ̄ :=

{
ξ, in Ω

0, in R2 \ Ω
. Then, by (2.27),

ˆ
R2

ξ̄ · ∇Φ =

ˆ
Ω

ξ · ∇(Φ|Ω) = 0, ∀Φ ∈ C1
c (R2;R). (2.28)

Thus we may invoke the generalized Poincaré lemma in R2 and conclude that ξ̄ = ∇⊥ζ̄ for
some ζ̄ ∈ W 1,∞(R2;R). Clearly, ζ = ζ̄|Ω ∈ W 1,∞(Ω;R), ∇⊥ζ = ξ and ζ is constant on ∂Ω
(since ∂Ω is connected because Ω is simply connected).

Remark 2.1. Equality (2.25) is originally due to [13, Thm 2] (with a much more complicated
proof).

Finally we give a geometric interpretation for Σ(u) when Ω ⊂ R2 is simply connected and
u ∈ R. We first need some notation. Given a, b ∈ Ω, set

dΩ(a, b) = min{|a− b|, d(a, ∂Ω) + d(b, ∂Ω)} = inf
Γ

length(Γ ∩ Ω), (2.29)

where the infΓ is taken over all curves Γ ⊂ R2 joining a to b. Clearly dΩ is a semi-metric on
Ω ; moreover

dΩ(a, b) = 0⇐⇒ [either a = b or a, b ∈ ∂Ω].

Thus we may identify ∂Ω as a single point in Ω, still denoted ∂Ω.

8



Given (a,d) = (a1, a2, . . . , al, d1, d2, . . . , dl) with aj ∈ Ω and dj ∈ Z, ∀j, we set

D = −
l∑

j=1

dj, (2.30)

and we consider the collection (a1, a2, . . . , al, ∂Ω) in Ω affected with the integer coefficients
(d1, d2, . . . , dl, D). We then repeat the points aj’s and ∂Ω according to their multiplicities,
i.e., d1, d2, . . . , dl and D, and we rewrite them as a collection of m positive points (Pj) and
m negative points (Nj), 1 ≤ j ≤ m (this is possible by (2.30)). Finally we define

L(a,d) = min
σ∈Sm

m∑
j=1

dΩ(Pj, Nσ(j)), (2.31)

where Sm denotes the set of permutations of {1, 2, . . . ,m}.
We are now ready to state our main claim:

Σ(u) = 2πL(a,d), ∀u ∈ R, (2.32)

where the aj’s are the singular points of u and dj = deg(u, aj).

Remark 2.2. A variant of formula (2.32) where Ω = S2 (and thus ∂Ω = ∅) appears originally
in [13], but the core of the proof goes back to [8].

Here is a sketch of the proof of (2.32). From (2.10) and (2.19) we have

−
ˆ

Ω

(u ∧∇u) · ∇⊥ζ = 2π
l∑

j=1

djζ(aj), ∀ ζ ∈ W 1,∞
0 (Ω;R). (2.33)

Set W 1,∞
const(Ω;R) = {ζ ∈ W 1,∞(Ω;R); ζ = const on ∂Ω} and let ζ ∈ W 1,∞

const(Ω;R). From
(2.33) applied to ζ − ζ(∂Ω) we obtain

−
ˆ

Ω

(u ∧∇u) · ∇⊥ζ = 2π

(
l∑

j=1

djζ(aj) +Dζ(∂Ω)

)
. (2.34)

Combining (2.25) and (2.34) we see that

Σ(u) = 2πmax

{
m∑
j=1

(ζ(Pj)− ζ(Nj)) ; ζ ∈ W 1,∞
const(Ω;R) and ‖∇ζ‖L∞ ≤ 1

}
. (2.35)

Next we observe that for every ζ : Ω→ R the following conditions are equivalent:

ζ ∈ W 1,∞
const(Ω;R) and ‖∇ζ‖L∞ ≤ 1 (2.36)

and

|ζ(x)− ζ(y)| ≤ dΩ(x, y), ∀x, y ∈ Ω. (2.37)

Thus (2.35) becomes

Σ(u) = 2πmax

{
m∑
j=1

(ζ(Pj)− ζ(Nj)) ; ζ satisfying (2.37)

}
. (2.38)
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Finally we invoke the formula

max

{
m∑
j=1

(ζ(Pj)− ζ(Nj)) ; ζ satisfying (2.37)

}
= L(a,d) (2.39)

to conclude that Σ(u) = 2πL(a,d).
Relation (2.39) appears originally in [8, Lemma 4.2]. The proof in [8] combines a theorem

of Kantorovich with Birkhoff’s theorem on doubly stochastic matrices. An elementary proof
of (2.39), totally self-contained, is presented in [5] (see also [7]); it is related in spirit to the
proof of the celebrated result of Rockafellar concerning cyclically monotone operators.

2.3 Optimal lifting

It is known (see [21, Section 6.2] and [19, 24, 12]) that every u ∈ W 1,1(Ω;S1) can be written
as u = eıϕ with ϕ ∈ BV (Ω;R). In fact, there are many such ϕ’s in BV and it is natural to
introduce the quantity

E(u) = inf

{ˆ
Ω

|Dϕ|; ϕ ∈ BV (Ω;R) such that u = eıϕ
}
. (2.40)

Then,

E(u) =

ˆ
Ω

|∇u|+ Σ(u). (2.41)

Formula (2.41) was originally established in [13] when N = 2 (and Ω = S2). The nontrivial
extension to N ≥ 2 can be deduced from results of Poliakovsky [25], see also [12] for a direct
approach.

2.4 Relaxed energy

The relaxed energy is defined for every u ∈ W 1,1(Ω;S1) by

R(u) = inf

{
lim inf
n→∞

ˆ
Ω

|∇un|; un ∈ C∞(Ω;S1), un → u a.e. on Ω

}
,

where the first inf means that the infimum is taken over all sequences (un) in C∞(Ω;S1) such
that un → u a.e. on Ω. [In general there is no sequence (un) in C∞(Ω;S1) such that un → u
in W 1,1, unless Ju = 0. However, it is always possible to find a sequence (un) in C∞(Ω;S1)
such that un → u a.e. on Ω.] Assume that Ω is simply connected, then

R(u) =

ˆ
Ω

|∇u|+ Σ(u),

see [13] for N = 2 and [12] for N ≥ 3.

Remark 2.3. We did not investigate the natural question concerning a generalization of
Theorem 1.1 to BV (Ω;S1) when the classes {E(u)} and the quantity Σ(u) are appropriately
adapted.
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3 Motivation

In order to illustrate the significance of the results of Theorem 1.1 it is instructive to explain
it in a special case involving maps with a finite number of singularities. Moreover, this allows
us to compare the problem to an analogous one involving the Dirichlet energy of S2-valued
maps on three dimensional domains, whose study was initiated in [8]. Since in both cases the
energy scales like length, one may expect similar results; as we shall see below the analogy
is not complete. We start with the problem in R3. Consider for simplicity Ω = BR(0) ⊂ R3.
Analogously to (2.18) we consider the set R of maps in H1(Ω;S2) which are smooth on Ω,
except at (at most) a finite number of singularities. With each k-tuple of distinct points
a = (a1, . . . , ak) ∈ Ωk and corresponding degrees d = (d1, . . . , dk) ∈ Zk we associate the
following class of maps in R:

Ea,d :=

{
u ∈ C∞

(
Ω \

k⋃
j=1

{aj};S2

)
; ∇u ∈ L2(Ω) and deg(u, aj) = dj, ∀ j

}
. (3.1)

[Here, deg(u, aj) = dj means that the restriction of u to any small sphere around aj has
topological degree dj.] In the case where k = 0 the resulting class is C∞(Ω;S2). There are
three natural questions that we want to discuss:

(i) What is the least energy of a map in Ea,d i.e., the value of

Σ
(2)
a,d := inf

u∈Ea,d

ˆ
Ω

|∇u|2 ? (3.2)

(ii) Consider two sets of distinct points in Ω, a = (a1, a2, . . . , ak) and b = (b1, b2, . . . , bl),
each with associated vectors of degrees, d ∈ Zk and e ∈ Zl, respectively. What is the
H1-distance between Ea,d and Eb,e i.e., analogously to (1.10),

dist2
H1(Ea,d, Eb,e) := inf

u∈Ea,d

inf
v∈Eb,e

ˆ
Ω

|∇(u− v)|2 ? (3.3)

i.e., what is the least energy required to pass from singularities located at {aj}kj=1, with
degrees {dj}kj=1, to singularities located at {bj}lj=1, with degrees {ej}lj=1?

(iii) Similarly, by analogy with (1.11), what is the value of

Dist2
H1(Ea,d, Eb,e) := sup

u∈Ea,d

inf
v∈Eb,e

ˆ
Ω

|∇(u− v)|2 ? (3.4)

Question (i) was originally tackled by [8]; their motivation came from a question of J. Er-
icksen concerning the least energy required to produce a liquid crystal configuration with
prescribed singularities. Quite surprisingly it turns out that the value of this least energy
can be computed explicitly in terms of geometric quantities. In the special case (3.2) their
formula becomes

Σ
(2)
a,d = 8πL(a,d), (3.5)

where L(a,d) is defined as in (2.31).
On the other hand, it seems that Question (ii) was never treated in the literature. Using

the results of [8] one can show that if (a,d) 6= (b, e) then for every fixed u ∈ Ea,d we have

distH1(u, Eb,e) > 0. (3.6)
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What is quite surprising is that for all pairs of classes we have

distH1(Ea,d, Eb,e) = 0. (3.7)

The basic ingredient behind (3.7) is the following fact: for every pair of integers d1 6= d2 we
have

inf

{ˆ
S2

|∇(F1 − F2)|2; Fj ∈ H1(S2;S2), deg(Fj) = dj for j = 1, 2

}
= 0. (3.8)

Formula (3.8) was established in [23] (see also [14] for generalizations) following the same
idea used by Brezis and Nirenberg [17] in the setting of degree theory in H1/2(S1; S1).

As for Question (iii), the “dipole removing” technique of Bethuel [3] (with roots in [8])
can be applied to derive the upper bound

Dist2
H1(Ea,d, Eb,e) ≤ 8πL(c,f), (3.9)

where

c = (a1, . . . , ak, b1, . . . , bl) ∈ Ωk+l and f = (d1, . . . , dk,−e1, . . . ,−el) ∈ Zk+l. (3.10)

We suspect that equality holds in (3.9).
It is possible to associate with every u ∈ H1(Ω;S2) a “natural” class E(u), in the spirit

of (2.17). Formulas (3.7) and (3.9), as well as their extensions to arbitrary classes E(u),
E(v), are established in [16]. We also present in [16] evidence that equality holds in (3.9) by
establishing the following analogue of (1.20):

sup
a,d
d6=0

sup
u∈Ea,d

d2
H1(u,C∞(Ω;S2))

8πL(a,d)
= 1. (3.11)

Next we consider similar questions for W 1,1(Ω;S1). For simplicity let Ω = BR(0) ⊂ R2.
By analogy with (3.1), for a = (a1, . . . , ak) ∈ Ωk and d = (d1, . . . , dk) ∈ Zk we consider the
following class of maps in R:

Ea,d :=

{
u ∈ C∞

(
Ω \

k⋃
j=1

{aj};S1

)
; ∇u ∈ L1(Ω) and deg(u, aj) = dj, ∀ j

}
. (3.12)

The analogous questions to (i)–(iii) are then:

(i’) What is the value of

Σ
(1)
a,d := inf

u∈Ea,d

ˆ
Ω

|∇u| ? (3.13)

(ii’) For any pair a ∈ Ωk, b ∈ Ωl and associated vectors of degrees, d ∈ Zk and e ∈ Zl,what
is the W 1,1-distance between Ea,d and Eb,e,

distW 1,1(Ea,d, Eb,e) := inf
u∈Ea,d

inf
v∈Eb,e

ˆ
Ω

|∇(u− v)| ? (3.14)

(iii’) What is the value of

DistW 1,1(Ea,d, Eb,e) := sup
u∈Ea,d

inf
v∈Eb,e

ˆ
Ω

|∇(u− v)| ? (3.15)
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The answer to Question (i’) is given by the results in §2.2. Indeed, setting ua,d(ζ) :=
k∏
j=1

(
ζ − aj
|ζ − aj|

)dj
, we get from (2.32) that

Σ
(1)
a,d = Σ(ua,d) = 2πL(a,d), (3.16)

which is completely analogous to (3.5). [Here we used the density of Ea,d (for the W 1,1-
topology) in E(ua,d) (see [4, 12]).]

On the other hand, the situation with Question (ii’) is completely different. In contrast
with (3.7), here distW 1,1(Ea,d, Eb,e) is strictly positive when (a,d) 6= (b, e). The explicit
value of this infimum can be computed in terms of geometric quantities. Actually, (1.12) of
Theorem 1.1 asserts that

distW 1,1(Ea,d, Eb,e) =
2

π
Σ(ua,d ub,e) = 4L(c,f), (3.17)

where c and f are given by (3.10). Indeed, the last equality in (3.17) follows from (3.16)
when applied to the map ua,d ub,e which has singularities precisely at the points {cj}k+l

j=1, with

associated singularities {fj}k+l
j=1. Similarly, the second part of Theorem 1.1, (1.13), asserts

that

sup
u∈Ea,d

inf
v∈Eb,e

ˆ
Ω

|∇(u− v)| = Σ(ua,d ub,e) = 2πL(c,f).

We also present an interpretation of Theorem 1.1 when Ω ⊂ R3. Fix two disjoint smooth
closed oriented curves Γ1,Γ2 ⊂ Ω and consider for j = 1, 2

EΓj
=
{
u ∈ C∞(Ω \ Γj;S1); ∇u ∈ L1(Ω) and deg(u,Γj) = +1

}
(deg(u,Γj) = +1 means that deg(u,Cj) = +1 for every small circle Cj ⊂ Ω \ Γj linking Γj).
In this case Theorem 1.1 asserts that

inf
u∈EΓ1

inf
v∈EΓ2

ˆ
Ω

|∇(u− v)| = 4 inf
S

area(S ∩ Ω),

where inf
S

is taken over all surfaces S ⊂ R3 such that ∂S = Γ1 ∪ Γ2, and

sup
u∈EΓ1

inf
v∈EΓ2

ˆ
Ω

|∇(u− v)| = 2π inf
S

area(S ∩ Ω).

For more details on this case, see [1, 8, 12].

4 Proof of (1.12) in Theorem 1.1

4.1 A basic lower bound inequality

We begin with a simple lemma about composition with Lipschitz maps; it provides a very
useful device for constructing maps in the same equivalence class, or in the class E(1).

Lemma 4.1. Let T ∈ Lip(S1;S1) be a map of degree D. Then

T ◦ u ∼ uD, ∀u ∈ W 1,1(Ω;S1). (4.1)
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Proof. Since T (z)z̄D is a Lipschitz self-map of S1 of zero degree, there exists g ∈ Lip(S1;R)
such that T (z)z̄D = eıg(z). The function ϕ(x) = g(u(x)) belongs to W 1,1(Ω;R) and satisfies
T (u(x)) = (u(x))Deıϕ(x), and (4.1) follows by the definition of the equivalence relation.

The next simple lemma is essential for the proof of the lower bound in (1.19).

Lemma 4.2. For any w ∈ W 1,1(Ω;S1) we have
ˆ

Ω

|∇(|w − 1|)| ≥ 2

π
Σ(w). (4.2)

Proof. As in [27], we define T : S1 → S1 by

T (eıϕ) := eıθ with θ = θ(ϕ) = π sin(ϕ/2), ∀ϕ ∈ (−π, π], (4.3)

so that

|eıϕ − 1| = 2| sin(ϕ/2)| = 2

π
|θ|. (4.4)

Clearly T is of class C1 and its degree equals one. We claim that

|∇(|w − 1|)| = 2

π
|∇(T ◦ w)| a.e. (4.5)

This is a consequence of the standard fact that, if F ∈ Lip(S1;R2) ∩ C1(S1 \ {1}) and
w ∈ W 1,1(Ω;S1), then F ◦ w ∈ W 1,1(Ω;S1) and, moreover,

∇(F ◦ w) =

{ .
F (w)∇w a.e. in [w 6= 1]

0 a.e. in [w = 1]
.

Integration of (4.5) leads to
ˆ

Ω

|∇|w − 1|| = 2

π

ˆ
Ω

|∇(T ◦ w)|. (4.6)

By Lemma 4.1, we have Σ(T ◦ w) = Σ(w), and therefore (4.2) follows from (4.6).

Corollary 4.3. For every u, v ∈ W 1,1(Ω;S1) we have
ˆ

Ω

|∇(u− v)| ≥ 2

π
Σ(uv). (4.7)

Proof. Setting w = uv and applying (4.2) yields
ˆ

Ω

|∇(u− v)| ≥
ˆ

Ω

|∇(|u− v|)| =
ˆ

Ω

|∇(|w − 1|)| ≥ 2

π
Σ(uv).

4.2 Proof of (1.12)

We begin by introducing some notation. For an open arc in S1 we use the notation

A(α, β) = { eıθ; θ ∈ (α, β)} (4.8)

for any α < β. We shall also use a specific notation for half-circles; for every ζ ∈ S1 write
ζ = eıϕ with ϕ ∈ (−π, π] and denote I(ζ,−ζ) = A(ϕ, ϕ+ π). Note that

z ∈ I(ζ,−ζ)⇐⇒ ζ ∈ I(−z, z). (4.9)
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For each ζ = eıϕ ∈ S1 define a map Pζ : S1 → I(ζ,−ζ) by

Pζ(z) =

{
z, if z = eıθ ∈ I(ζ,−ζ)

eı(2ϕ−θ) = ζ2z, if z /∈ I(ζ,−ζ)
, (4.10)

so that for z /∈ I(ζ,−ζ), Pζ(z) is the reflection of z with respect to the line `ζ = {tζ; t ∈ R}.
Next we state

Proposition 4.4. For every u ∈ W 1,1(Ω;S1) we have

ˆ
S1

(ˆ
Ω

|∇(u− Pζ ◦ u)| dx
)
dζ = 4

ˆ
Ω

|∇u| dx. (4.11)

Proof. For each ζ ∈ S1 set vζ := Pζ ◦ u. By Lemma 4.1, vζ ∈ E(1), since degPζ = 0. We note
that

z − Pζ(z) =

{
0, if z ∈ I(ζ,−ζ)

z − ζ2 z, if z /∈ I(ζ,−ζ)
. (4.12)

Set wζ := u− vζ . Using (4.12), we find that for every ζ = eıϕ and a.e. x ∈ Ω we have

∇wζ(x) =

{
0, if u(x) ∈ I(ζ,−ζ)

∇u(x)− ζ2∇u(x), if u(x) /∈ I(ζ,−ζ)
. (4.13)

Therefore, for a.e. x ∈ Ω we have

|∇wζ(x)| =

{
0, if u(x) ∈ I(ζ,−ζ)

2| cos(θ − ϕ)||∇u(x)|, if u(x) = eıθ /∈ I(ζ,−ζ)
. (4.14)

Indeed, we justify (4.14) e.g. when ζ = 1. In view of (4.13), we have to prove that

|∇Imu(x)| = |Reu(x)| |∇u(x)| for a.e. x. (4.15)

If we differentiate the identity |u|2 ≡ 1, we obtain

Reu∇(Reu) + Imu∇(Imu) = 0 a.e.;

this easily implies (4.15).
Using (4.9) we find that, with u(x) = eıθ and

A(x) = {ϕ ∈ (−π, π]; u(x) /∈ I(eıϕ,−eıϕ)},

we haveˆ
S1

ˆ
Ω

|∇wζ(x)| dx dζ =

ˆ π

−π

ˆ
Ω

χA(x)(ϕ) 2| cos(θ − ϕ)||∇u(x)| dx dϕ

=

ˆ
Ω

|∇u(x)|(
ˆ θ+π

θ

2| cos(θ − ϕ)| dϕ) dx = 4

ˆ
Ω

|∇u(x)| dx,

which is (4.11). Here we have used
´ θ+π
θ

2| cos(θ − ϕ)| dϕ =
´ π

0
2| cos t| dt = 4.

The identity (4.11) is a key tool in the proof of “≤” in (1.12). For the convenience of the
reader we shall present first the slightly simpler proof when v0 = 1.
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Proof of “≤” in (1.12) for v0 = 1. By Corollary 4.3 we have

inf
u∼u0

dW 1,1(u, E(1)) ≥ 2

π
Σ(u0).

Use (1.4) to choose a sequence {un} ⊂ E(u0) with limn→∞
´

Ω
|∇un| = Σ(u0). Use Propo-

sition 4.4 to choose ζn ∈ S1 such thatˆ
Ω

|∇(un − Pζn ◦ un)| ≤ 2

π

ˆ
Ω

|∇un|,

implying that limn→∞ dW 1,1(un, E(1)) =
2

π
Σ(u0).

Next we turn to the general case.

Proof of “≤” in (1.12) for general v0. By (4.7) we have

distW 1,1(E(u0), E(v0)) ≥ (2/π) Σ(u0v0),

so we need to prove that this is actually an equality. By Proposition 1.2 there exists a
sequence {wn} satisfying wn ∼ u0v0 for all n, limn→∞wn = 1 a.e., andˆ

Ω

|∇wn| = Σ(u0v0) + εn, (4.16)

with εn ↘ 0. By Proposition 4.4 we getˆ
S1

ˆ
Ω

|∇(wn − Pζ ◦ wn)| dx dζ = 4

ˆ
Ω

|∇wn| dx = 4(Σ(u0v0) + εn). (4.17)

Hence, there exists ζn ∈ S1
− := {z = eıθ; θ ∈ [−π, 0]} such thatˆ

Ω

|∇(wn − Pζn ◦ wn)|+
ˆ

Ω

|∇(wn − P−ζn ◦ wn)| ≤ 4

π
(Σ(u0v0) + εn).

By (4.7) we have

2

π
Σ(u0v0) ≤ min

(ˆ
Ω

|∇(wn − Pζn ◦ wn)|,
ˆ

Ω

|∇(wn − P−ζn ◦ wn)|
)
,

and thus

lim
n→∞

ˆ
Ω

|∇(wn − Pζn ◦ wn)| = 2

π
Σ(u0v0). (4.18)

Passing to a subsequence, we may assume ζn → ζ ∈ S1
−. Therefore, Pζ(1) = 1. Denote

Fn := Pζn ◦ wn. Since wn → 1 a.e., we have limn→∞ Fn = limn→∞ Pζ ◦ wn = 1 a.e., and it
follows that

Fn − wn → 0 a.e. (4.19)

For any v such that v ∼ v0 we have vFn ∼ v0, vwn ∼ u0 and

2

π
Σ(u0v0) ≤

ˆ
Ω

|∇(vFn − vwn)| ≤
ˆ

Ω

|∇(Fn − wn)|+
ˆ

Ω

|∇v||Fn − wn|. (4.20)

From (4.18)-(4.20) we deduce that

lim
n→∞

ˆ
Ω

|∇(vFn − vwn)| = 2

π
Σ(u0v0),

and the result follows.
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5 Proof of (1.13) in Theorem 1.1

5.1 An upper bound for DistW 1,1

This short subsection is devoted to the proof of the following

Proposition 5.1. For every u0, v0 in W 1,1(Ω, S1) we have,

DistW 1,1(E(u0), E(v0)) = sup
u∼u0

dW 1,1(u, E(v0)) ≤ Σ(u0v0). (5.1)

Proof. We adapt an argument from [12]. By Proposition 1.2 there exists a sequence {wn} ⊂
W 1,1(Ω;S1) satisfying wn ∼ u0v0, wn → 1 a.e., and limn→∞

´
Ω
|∇wn| = Σ(u0v0). For a given

u ∈ E(u0) define vn = uwn for all n. Then, vn ∼ v0 and

dW 1,1(u, E(v0)) ≤
ˆ

Ω

|∇(u− vn)| =
ˆ

Ω

|∇(u(1− wn))|

≤
ˆ

Ω

|1− wn||∇u|+
ˆ

Ω

|∇wn| → Σ(u0v0).

5.2 A lower bound for DistW 1,1

We begin with the following elementary geometric lemma.

Lemma 5.2. Let z1 and z2 be two points in S1 satisfying, for some ε ∈ (0, π/2),

dS1(z1, z2) ∈ (ε, π − ε). (5.2)

If the vectors v1, v2 ∈ R2 satisfy

vj ⊥ zj, j = 1, 2, (5.3)

then

|v1 − v2| ≥ (sin ε)|vj|, j = 1, 2, (5.4)

and in particular

|v1 − v2|2 ≥
(

sin2 ε

2

)
(|v1|2 + |v2|2). (5.5)

Note that the inequality (5.5) can be viewed as a “reverse triangle inequality”.

Proof. From the assumptions (5.2)–(5.3) it follows that

< v1, v2 >≤ (cos ε)|v1||v2|,

and then

|v1 − v2|2 ≥ |v1|2 + |v2|2 − 2(cos ε)|v1||v2| ≥ (sin ε)2|vj|2, j = 1, 2.

An immediate consequence of Lemma 5.2 is
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Lemma 5.3. Let v, ũ ∈ W 1,1(Ω;S1) and denote, for ε ∈ (0, π/2),

Aε : = {x ∈ Ω; dS1(ũ(x), v(x)) ∈ (ε, π − ε)}
= {x ∈ Ω; 2 sin(ε/2) < |ũ(x)− v(x)| < 2 cos(ε/2)}.

(5.6)

Then

|∇(ũ− v)| ≥ (sin ε)|∇ũ| a.e. in Aε. (5.7)

Proof. Since v ⊥ vxi and ũ ⊥ ũxi a.e. on Ω for i = 1, . . . , N , we may apply Lemma 5.2 with
z1 = ũ(x), z2 = v(x), v1 = ũxi(x) and v2 = vxi(x) to obtain

|ũxi − vxi |2 ≥ (sin ε)2|ũxi |2, a.e. in Aε, i = 1, . . . , N.

Summing over i yields (5.7).

The next lemma is the main ingredient in the proof of Proposition 1.3.

Lemma 5.4. Let u, ũ, v ∈ W 1,1(Ω;S1), ε ∈ (0, π/20) and Aε as in (5.6). Assume that

|u(x)− ũ(x)| ≤ ε, ∀x ∈ Ω. (5.8)

Then,

ˆ
Aε

|∇(v − ũ)| ≥ (1− 6ε)Σ(vu)− 2

ˆ
Aε

|∇u|. (5.9)

Proof. Note first that (5.8) implies that ũ ∼ u. Indeed, the image of the map ũ u is contained
in an arc of S1 of length≤ 2 arcsin(ε/2), so there exists ϕ ∈ W 1,1(Ω;R) such that ũ = eıϕu.
Hence, setting w := v/u = v u and w̃ := v/ũ, we have also w̃ ∼ w. Consider the map

W := u(v − ũ) + 1 = w + (1− ũ/u). (5.10)

By the triangle inequality,

|∇W | = |∇ (u(v − ũ)) | ≤ 2|∇u|+ |∇(v − ũ)|,

whenceˆ
Aε

|∇(v − ũ)| ≥
ˆ
Aε

|∇W | − 2

ˆ
Aε

|∇u|. (5.11)

By (5.8), |W − w| = |1− ũ/u| = |u− ũ| ≤ ε in Ω. Hence

||W | − 1| ≤ |W − w| ≤ ε in Ω, (5.12)

and also

|w̃ − w| = |ũ− u| ≤ ε in Ω. (5.13)

Consider the map W̃ := W/|W |, which thanks to (5.12) belongs to W 1,1(Ω;S1). Furthermore,
again by (5.12),

|W̃ − w| ≤ |W̃ −W |+ |W − w| ≤ 2ε in Ω, (5.14)
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implying in particular that

W̃ ∈ E(w). (5.15)

Combining (5.14) with (5.13) yields

|W̃ − w̃| ≤ 3ε and dS1(W̃ , w̃) ≤ 6ε in Ω. (5.16)

A direct consequence of (5.12) is the pointwise inequality in Ω

|∇W | ≥ (1− ε)|∇W̃ |,

which together with (5.11) yields

ˆ
Aε

|∇(v − ũ)| ≥ (1− ε)
ˆ
Aε

|∇W̃ | − 2

ˆ
Aε

|∇u|. (5.17)

Since

Aε = {x ∈ Ω; w̃(x) ∈ A(ε, π − ε) ∪ A(π + ε, 2π − ε)} (see (5.6) and (4.8)),

we deduce from (5.16) that

Bε := {x ∈ Ω; W̃ (x) ∈ A(7ε, π − 7ε) ∪ A(π + 7ε, 2π − 7ε)} ⊆ Aε. (5.18)

For each δ ∈ (0, π/2) consider the map Kδ : S1 → S1 defined by

Kδ(e
ıθ) :=


1, if − δ ≤ θ < δ

eıπ(θ−δ)/(π−2δ), if δ ≤ θ < π − δ
−1, if π − δ ≤ θ < π + δ

−eıπ(θ−π−δ)/(π−2δ), if π + δ ≤ θ < 2π − δ

. (5.19)

Clearly Kδ ∈ Lip(S1;S1) with ‖
.
Kδ‖∞ = π/(π − 2δ) and deg(Kδ) = 1. Therefore, by (5.15)

and Lemma 4.1

w1 := K7ε ◦ W̃ ∈ E(w). (5.20)

Note that by definition, ∇w1 = 0 a.e. on Ω \Bε, so by (5.18) and (5.20) we have

ˆ
Aε

|∇W̃ | ≥
ˆ
Bε

|∇W̃ | ≥ (1− 5ε)

ˆ
Bε

|∇w1| = (1− 5ε)

ˆ
Ω

|∇w1| ≥ (1− 5ε)Σ(w). (5.21)

Plugging (5.21) in (5.17) yields

ˆ
Aε

|∇(v − ũ)| ≥ (1− ε)
ˆ
Bε

|∇W̃ | − 2

ˆ
Aε

|∇u|

≥ (1− ε)(1− 5ε)Σ(w)− 2

ˆ
Aε

|∇u| ≥ (1− 6ε)Σ(w)− 2

ˆ
Aε

|∇u|,
(5.22)

and (5.9) follows.

The next result is a direct consequence of Lemma 5.4.
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Corollary 5.5. There exists a universal constant C such that for every ε > 0 we have

n ≥ 1/ε2 =⇒
ˆ

Ω

|∇(Tn ◦ u)− v| ≥ (1− Cε) Σ(uv), ∀u, v ∈ W 1,1(Ω;S1). (5.23)

Proof. We shall use two basic properties of Tn:

dS1(x, Tn(x)) ≤ π(n− 1)

n2
, ∀x ∈ S1, (5.24)

|
.
Tn| ≥ n− 2 a.e. in S1. (5.25)

Clearly it suffices to consider ε < π/20. Hence for n ≥ 1/ε2 we can apply Lemma 5.4 with
ũ := Tn ◦ u (thanks to (5.24)). By (5.25) we have

|∇(Tn ◦ u)| ≥ (n− 2)|∇u| a.e. on Ω, (5.26)

so combining (5.7) and (5.9) gives (recall that Aε is defined in (5.6)):

ˆ
Aε

|∇(Tn ◦ u− v)| ≥ (1− 6ε)Σ(uv)− 2

(n− 2) sin ε

ˆ
Aε

|∇(Tn ◦ u− v)|

≥ (1− 6ε)Σ(uv)− 3

nε

ˆ
Aε

|∇(Tn ◦ u− v)|;

this leads easily to (5.23).

Proof of Proposition 1.3. Recall (see (5.1)) that

DistW 1,1(E(u0), E(v0)) = sup
u∼u0

dW 1,1(u, E(v0)) ≤ Σ(u0v0), (5.27)

and in particular, ∀n ≥ 3,

dW 1,1(Tn ◦ u0, E(v0)) ≤ Σ(u0v0). (5.28)

On the other hand, from Corollary 5.5 we know that, ∀ ε > 0, ∀n ≥ 1/ε2,

dW 1,1(Tn ◦ u0, E(v0)) ≥ (1− Cε)Σ(u0v0). (5.29)

We conclude combining (5.28) and (5.29).

Proof of (1.13). Use (1.18) and (5.27).

5.3 About equality cases in (1.19)

It is interesting to decide whether there exist maps u ∈ W 1,1(Ω;S1) for which equality holds in
any of the two inequalities in (1.19). Consider the following properties of a smooth bounded
domain Ω in RN , N ≥ 2 :

(P1) There exists u ∈ W 1,1(Ω;S1) such that

ˆ
Ω

|∇u| = Σ(u) > 0. (5.30)

(P2) There exists u ∈ W 1,1(Ω;S1) such that

dW 1,1(u, E(1)) = Σ(u) > 0. (5.31)
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(P∗2) There exist u ∈ W 1,1(Ω;S1) with Σ(u) > 0 and v ∈ E(1) for which

ˆ
Ω

|∇(u− v)| = dW 1,1(u, E(1)) = Σ(u). (5.32)

(P3) There exists u ∈ W 1,1(Ω;S1) such that

dW 1,1(u, E(1)) =
2

π
Σ(u) > 0. (5.33)

(P∗3) There exist u ∈ W 1,1(Ω;S1) with Σ(u) > 0 and v ∈ E(1) for which

ˆ
Ω

|∇(u− v)| = dW 1,1(u, E(1)) =
2

π
Σ(u). (5.34)

Very little is known about domains satisfying any of the above properties. The unit disc
Ω = B(0, 1) in R2 is an example of a domain for which (P1) is satisfied. Indeed, for u = x/|x|
it is straightforward that

Σ

(
x

|x|

)
= 2π =

ˆ
Ω

∣∣∣∣∇( x

|x|

)∣∣∣∣ (see also [13, 12])

whence (P1) holds. In view of the following proposition we know that (P∗3) is also satisfied
for Ω = B(0, 1) in R2.

Proposition 5.6. Properties (P1) and (P∗3) are equivalent. More precisely, let u ∈ W 1,1(Ω;S1)
with Σ(u) > 0. Then, the following are equivalent:

(a) u satisfies (5.30).

(b) There exist u0 ∈ E(u) and v ∈ E(1) such that

ˆ
Ω

|∇(u0 − v)| = 2

π
Σ(u).

Proof of “(a) =⇒ (b)”. Use Proposition 4.4 to find ζ0 ∈ S1 such that v = Pζ0 ◦ u ∈ E(1)
satisfies

dW 1,1(u, E(1)) ≤
ˆ

Ω

|∇(u− v)| ≤ 2

π

ˆ
Ω

|∇u| = 2

π
Σ(u), (5.35)

and the result follows, with u0 = u, since by (1.21) we have

dW 1,1(u, E(1)) ≥ 2

π
Σ(u). (5.36)

Proof of “(b) =⇒ (a)”. Let u0 and v be as in statement (b). Set w0 := u0v, so that w0 ∼ u0.
By assumption and (4.2) we have:

2

π
Σ(u0) ≤

ˆ
Ω

|∇(|w0 − 1|)| =
ˆ

Ω

|∇(|u0 − v|)| ≤
ˆ

Ω

|∇(u0 − v)| = 2

π
Σ(u0). (5.37)

Set w1 := T ◦w0, where T : S1 → S1 is given by (4.3). By Lemma 4.1, w1 ∼ w0 ∼ u0, and by
(4.6) and (5.37) we obtain that

ˆ
Ω

|∇w1| =
π

2

ˆ
Ω

|∇(|w0 − 1|)| = Σ(u).
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We do not know any domain Ω in R2 for which (5.30) fails and we ask:

Open Problem 1. Is there a domain Ω in RN , N ≥ 2, for which property (P1) (respectively,
(P3)) does not hold?

It seems plausible that if Ω is the interior of a non circular ellipse, then (P1) and (P3) fail.
We also do not know whether properties (P3) and (P∗3) are equivalent.

Concerning properties (P2) and (P∗2) we know even less:

Open Problem 2. Is there a domain Ω for which (P2) holds (respectively, fails)?

We suspect that (P2) is satisfied in every domain, but we do not know any such domain. In
particular, we do not know what happens when Ω is a disc in R2.

6 Distances in W 1,p(Ω; S1), 1 < p <∞
Throughout this section we study classes in W 1,p(Ω;S1), where 1 < p < ∞ and Ω is a
smooth bounded domain in RN , N ≥ 2. We give below the proofs of the results stated in
the Introduction.

6.1 Proof of Theorem 1.5

Proof of Theorem 1.5. The result is a direct consequence of the following analog of Corol-
lary 4.3: for every u, v ∈ W 1,p(Ω;S1) we have

‖∇(u− v)‖Lp(Ω) ≥
(

2

π

)
inf
w∼uv

‖∇w‖Lp(Ω). (6.1)

The proof of (6.1) uses an argument identical to the one used in the proofs of Lemma 4.2
and Corollary 4.3. Indeed, we first note that

ˆ
Ω

|∇(u− v)|p ≥
ˆ

Ω

|∇(|u− v|)|p =

ˆ
Ω

|∇(|uv − 1|)|p. (6.2)

Next, by (4.5) we have

ˆ
Ω

|∇(|uv − 1|)|p =

(
2

π

)p ˆ
Ω

|∇(T ◦ (uv))|p ≥
(

2

π

)p
inf
w∼uv

ˆ
Ω

|∇w|p. (6.3)

The result clearly follows by combining (6.2) with (6.3).

6.2 Proof of Theorem 1.7

We shall need the following technical lemma.

Lemma 6.1. For every w0 ∈ W 1,p(Ω;S1) we have

inf
w∼w0

‖∇(|w − 1|)‖Lp(Ω) =

(
2

π

)
inf
w∼w0

‖∇w‖Lp(Ω). (6.4)
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Proof. The inequality “≥” follows from (6.3) (taking v = 1) so it remains to prove the reverse
inequality. The argument is almost identical to the one used in the proof of [27, Prop 3.1];
we reproduce the argument for the convenience of the reader. We shall need the inverse
S := T−1 of T : S1 → S1 that was defined in (4.3). It is given by:

S(eıθ) = eıφ, with φ = 2 sin−1(θ/π), ∀ θ ∈ (−π, π].

This map belongs to C(S1; S1)∩C1(S1\{−1};S1) but it is not Lipschitz. We therefore define,
for each small ε > 0, an approximation Sε by:

Sε(e
ıθ) = eıφ with φ = 2 sin−1 (Jε(θ/π)) , ∀ θ ∈ (−π, π], (6.5)

where Jε satisfies:

Jε(±1) = ±1, J ′ε(±1) = 0,

Jε(t) = t, for |t| ≤ 1− ε,
0 < J ′ε(t) < c0, for |t| < 1,
c1

ε
≤ |J ′′ε (t)| ≤ c2

ε
, for 1− ε

2
≤ |t| ≤ 1,

(6.6)

for some positive constants c0, c1, c2 (independent of ε). Clearly Sε ∈ C1(S1; S1) with
deg(Sε) = 1, so by Lemma 4.1, for any w ∈ E(w0) we have wε := Sε ◦ w ∈ E(w0). Since
|Sε(eıθ)− 1| = 2|Jε(θ/π)| it follows from (6.6) that∣∣∣∣ ddθ (|Sε(eıθ)− 1|

)∣∣∣∣ ≤ C, ∀ θ, ∀ ε. (6.7)

Put Aε := {x ∈ Ω : w(x) ∈ A(−π(1− ε), π(1− ε))}. By (4.5),

|∇|wε − 1|| = 2

π
|∇w| a.e. on Aε,

while, by (6.7),

|∇|wε − 1|| ≤ C|∇w| a.e. on Ω.

Therefore, by dominated convergence,

lim
ε→0

ˆ
Ω

|∇|wε − 1||p =

(
2

π

)p ˆ
Ω

|∇w|p,

and since the above is valid for any w ∈ E(w0), the inequality “≤” in (6.4) follows.

The next lemma is the main ingredient of the proof of Theorem 1.7.

Lemma 6.2. For every w ∈ W 1,p(Ω;S1) and 0 < δ < 1 there exist a set A = A(w, δ) ⊂ Ω
and two functions w0, w1 ∈ W 1,p(Ω;S1) such that:
(i) w1 = w0 in Ω \ A;
(ii) w0 = w1 in A;
(iii) w1 ∈ E(w) and w0 ∈ E(1);
(iv)
´

Ω
|∇(w1 − w0)|p ≤ (1 + Cpδ)

´
Ω
|∇|w − 1||p;

(v)
´

Ω
|∇w1|p =

´
Ω
|∇w0|p ≤ C(δ, p)

´
Ω
|∇w|p.
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Proof. Let I denote the open arc of S1, I := A(2π− δ, 2π) = {eıθ : θ ∈ (2π− δ, 2π)}, and let
A := w−1(I). Define T1 : S1 → S1 by

T1(eıθ) =

{
eıπθ/(2π−δ), if 0 ≤ θ ≤ 2π − δ
(−1)eıπ(θ−(2π−δ))/δ, if 2π − δ < θ < 2π

.

Note that the image of T1, restricted to the arc S1 \ I is S1
+, and that S1

+ is covered counter-
clockwise. Similarly, on the arc I, the image of T1 is S1

−, covered again counterclockwise. It
follows that deg(T1) = 1. Next we define T0 : S1 → S1 by P−1 ◦ T1 (see (4.10)), or explicitly
by

T0(eıθ) :=

{
T1(eıθ), if 0 ≤ θ ≤ 2π − δ
T1(eıθ), if 2π − δ < θ < 2π

.

Clearly deg(T0) = 0. Define w0 := T0 ◦ w and w1 := T1 ◦ w.

Properties (i)–(ii) are direct consequences of the definition of w0, w1. The fact that
w0 ∈ E(1) and w1 ∈ E(w) (i.e., property (iii)) follows from Lemma 4.1. Since T0 and T1 are
Lipschitz maps (actually, piecewise smooth, with a single corner at z = eı(2π−δ)), the chain
rule implies that

|∇w0| = |∇w1| ≤

{
(π/δ) |∇w|, a.e. in A

(π/(2π − 1)) |∇w|, a.e. in Ω \ A
,

whence property (v). Finally, in order to verify property (iv) we first notice that on Ω \ A
we have

w̃ := w1w0 = w2
1 = Q ◦ w,

where Q(eıθ) := e2ıθπ/(2π−δ) for θ ∈ (0, 2π − δ). Therefore,

ˆ
Ω

|∇(w1 − w0)|p =

ˆ
Ω\A
|∇(w1 − w0)|p =

ˆ
Ω\A
|∇|w1 − w0||p =

ˆ
Ω\A

∣∣∇|w̃ − 1|
∣∣p

≤ (1 + Cpδ)

ˆ
Ω\A

∣∣∇|w − 1|
∣∣p ≤ (1 + Cpδ)

ˆ
Ω

|∇|w − 1||p .

We are now in a position to present the

Proof of Theorem 1.7. In view of Theorem 1.5 we only need to prove the inequality “≤” in
(1.28). For any w ∈ E(u0) we may apply Lemma 6.2 with a sequence δn → 0 to obtain that

dW 1,p(E(u0), E(1)) ≤ inf
w∼u0

‖∇|w − 1|‖Lp(Ω),

and the result follows from Lemma 6.1.

6.3 Proof of Theorem 1.9

We next turn to the unboundedness of the DistW 1,p-distance between distinct classes.
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Proof of Theorem 1.9 when u0 = 1. For every n ≥ 1 let

un := eınx1 (we write x = (x1, . . . , xN)),

so clearly un ∈ C∞(Ω;S1) ⊂ E(1). We claim that

lim
n→∞

dW 1,p(un, E(v0)) =∞, (6.8)

which implies of course (1.29) in this case. Fix a small ε > 0, e.g., ε = π/8. For each v ∈ E(v0)
let wn := un v and define the set Aε as in (5.6), with ũ = un. Note that |∇un(x)| = n, x ∈ Ω,
so by Lemma 5.3 we have

|∇(un − v)| ≥ n sin ε a.e. in Aε. (6.9)

Therefore,ˆ
Aε

|∇(un − v)|p ≥ |Aε|(sin ε)pnp = c1|Aε|np. (6.10)

Using (5.5) instead of (5.4) in the computation leading to (6.9) yields

|∇(un − v)| ≥
(

sin ε

2

)
(|∇un|+ |∇v|) ≥

(
sin ε

2

)
|∇wn|, a.e. in Aε. (6.11)

We set w̃n := Kε ◦wn (see (5.19)) and recall that Kε ∈ Lip(S1;S1), ‖
.
Kε‖∞ = π/(π− 2ε) and

deg(Kε) = 1. We have w̃n ∈ E(v0) and ∇w̃n = 0 a.e. in Ω \ Aε. By (1.4),ˆ
Aε

|∇w̃n| =
ˆ

Ω

|∇w̃n| ≥ Σ(v0). (6.12)

Using Hölder inequality and (6.12) gives

ˆ
Aε

|∇w̃n|p ≥

(´
Aε
|∇w̃n|

)p
|Aε|p−1

≥ (Σ(v0))p

|Aε|p−1
. (6.13)

Since |∇wn| ≥ (1− 2ε/π)|∇w̃n| on Ω we obtain by combining (6.11) and (6.13) thatˆ
Aε

|∇(un − v)|p ≥ c2

|Aε|p−1
, (6.14)

whence,

|Aε| ≥ c
1/(p−1)
2

(ˆ
Aε

|∇(un − v)|p
)−1/(p−1)

. (6.15)

Plugging (6.15) in (6.10) finally yieldsˆ
Aε

|∇(un − v)|p ≥ c3n
p−1,

and (6.8) follows.

Proof of Theorem Theorem 1.9 in the general case. Consider an arbitrary u0 ∈ W 1,p(Ω;S1).
We set un := eınx1 u0 ∈ E(u0). By the triangle inequality,

|∇(eınx1 − u0 v)| = |∇ (u0(un − v))| ≤ |∇(un − v)|+ 2|∇u0|.

Therefore,

‖∇(un − v)‖Lp(Ω) ≥ ‖∇(eınx1 − u0v)‖Lp(Ω) − 2‖∇u0‖Lp(Ω),

and the result follows from the first part of the proof.
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6.4 An example of strict inequality in (1.27)

Proposition 6.3. There exist a smooth bounded simply connected domain Ω in R2 and
u0, v0 ∈

⋂
1≤p<2W

1,p(Ω;S1) such that

distW 1,p(E(u0), E(v0)) >

(
2

π

)
inf

w∼u0v0

‖∇w‖Lp(Ω), ∀ 1 < p < 2. (6.16)

Proof. The construction resembles the one used in the proof of [27, Proposition 4.1] (for a
multiply connected domain and p = 2), but the details of the proof are quite different.

Step 1. Definition of Ωε and u0, v0

Consider the three unit discs with centers at the points a− := (−3, 0), a := (0, 0) and a+ :=
(3, 0), respectively:

B− := B(a−, 1), B := B(a, 1) and B+ := B(a+, 1).

For a small ε ∈ (0, 1/4), to be determined later, define the domain Ωε by

Ωε := B− ∪B ∪B+ ∪ {(x1, x2); x1 ∈ (−3, 3), x2 ∈ (−ε, ε)}. (6.17)

Ωε

BB B+−

.. .
aa +− a

Figure 1: The domain Ωε (before smoothing)

Hence, B is connected to B− and B+ by two narrow tubes (see Figure 1). We can enlarge
Ωε slightly near the “corners”=the contact points of the tubes with the circles, in order to
have a smooth Ωε. But we do it keeping the following property:

Ωε is symmetric with respect to reflections in both the x and y-axis. (6.18)

For later use we denote by Ω+ and Ω− the two components of Ωε \B (with Ω+ ⊂ {z; Re z >
0}). We define the maps u0, v0 ∈

⋂
1≤p<2W

1,p(Ωε; S1) by

u0 :=

(
x− a−
|x− a−|

)(
x

|x|

)2(
x− a+

|x− a+|

)
, v0 :=

(
x− a−
|x− a−|

)(
x

|x|

)(
x− a+

|x− a+|

)
, (6.19)

and then

w0 := u0 v0 =
x

|x|
. (6.20)

Step 2. Properties of energy minimizers in E(w0)
We denote by Wε ∈ W 1,p(Ωε;S1) a map realizing the minimum in

Sε = inf
w∼w0

‖∇w‖Lp(Ωε). (6.21)
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Note that the minimizer Wε is unique, up to multiplication by a complex constant of modulo
one. This follows from the strict convexity of the functional:

F (ϕ) =

ˆ
Ωε

∣∣∣∣∇(eıϕ x|x|
)∣∣∣∣p over ϕ ∈ W 1,p(Ωε;R). (6.22)

We next claim thatˆ
B

∣∣∣∣∇( x

|x|

)∣∣∣∣p ≤ ˆ
B

|∇Wε|p ≤
ˆ

Ωε

|∇Wε|p ≤
ˆ
B

∣∣∣∣∇( x

|x|

)∣∣∣∣p + Cε2, (6.23)

for some constant C. Here and in the sequel we denote by C different constants that are
independent of ε and p. Indeed, the first inequality in (6.23) is clear since the restriction of
Wε to B belongs to the class of x/|x| in B, and the latter map is a minimizer of the energy
in its class (see Remark 6.5 below). For the proof of the last inequality in (6.23) it suffices
to construct a comparison map w̃ ∈ E(w0) as follows. We first set w̃ = x/|x| in B. Then
extend it to Ω+ ∩ {x1 ≤ 1 + ε} in such a way that w̃ ≡ ζ (for some constant ζ ∈ S1) on
Ω+ ∩ {x1 = 1 + ε}. Such an extension can be constructed with ‖∇w̃‖L∞ ≤ C, whence

ˆ
Ω+∩{x1<1+ε}

|∇w̃|p ≤ Cε2.

In the remaining part of Ω+, namely Ω+ ∩ {x1 > 1 + ε} we simply set w̃ ≡ ζ. We use a
similar construction for w̃ on Ω−, and this completes the proof of (6.23).

We shall also use a certain symmetry property of Wε. We claim that:

Wε(x) = −Wε(−x) in Ωε. (6.24)

Indeed, since Wε(−x) is also a minimizer in (6.21), we must have

Wε(−x) = eıαWε(x) for some constant α ∈ R. (6.25)

Write

Wε = eıΨε

(
x

|x|

)
, with Ψε ∈ W 1,p(Ωε;R). (6.26)

Plugging (6.26) in (6.25) gives

−eıΨε(−x)

(
x

|x|

)
= eıα eıΨε(x)

(
x

|x|

)
,

whence eı(Ψε(−x)−Ψε(x)) = −eıα. It follows that Ψε(−x)−Ψε(x) ≡ const in Ωε. Since Ψε(−x)−
Ψε(x) is odd, it follows that the constant must be zero. Hence Ψε(−x) = Ψε(x) a.e. in Ωε,
eıα = −1 and (6.24) follows from (6.25).

The main property of Wε that we need is the following: there exists ζε ∈ S1 such that

|Wε − ζε| ≤ c0 ε
2/p on B+, (6.27)

|Wε + ζε| ≤ c0 ε
2/p on B−. (6.28)

In order to verify (6.27)–(6.28) we first notice that we may write Wε = eıΦε in Ωε∩{x1 > 1}.
Using (6.23) and Fubini Theorem we can find tε ∈ (1, 3/2) such that the segment Iε =
{(tε, x2); x2 ∈ (−ε, ε)} satisfies

ˆ
Iε

|∇Φε|p =

ˆ
Iε

|∇Wε|p ≤ Cε2.
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By Hölder inequality it follows that |Φε(z1)−Φε(z2)| ≤ Cε2/p for all z1, z2 ∈ Iε. Hence, there
exists αε ∈ R satisfying

|Φε(z)− αε| ≤ Cε2/p, ∀ z ∈ Iε. (6.29)

We claim that (6.29) continues to hold in Gε := Ωε ∩ {x1 > tε}, i.e.,

|Φε(x)− αε| ≤ Cε2/p, ∀x ∈ Gε. (6.30)

Indeed, defining

Φ̃ε(x) := max
(
αε − Cε2/p,min(Φε(x), αε + Cε2/p)

)
,

and then W̃ε := eıΦε , we clearly have
´
Gε
|∇W̃ε|p ≤

´
Gε
|∇Wε|p, with strict inequality, unless

(6.30) holds. Setting ζε := eıαε , we deduce (6.27) from (6.30). Finally, using the symmetry
properties, (6.18) of Ωε and (6.24) of Ψε, we easily deduce (6.28) from (6.27).

Step 3. A basic estimate for maps in W 1,p(S1;S1)
The following claim provides a simple estimate which is essential for the proof. The case
p = 2 was proved in [27, Lemma 4.1] and the generalization to any p ≥ 1 is straightforward.
We include the proof for the convenience of the reader.

Claim. For any p ≥ 1, let f, g ∈ W 1,p(S1;S1) satisfy:

deg f = deg g = k 6= 0 and |(f − g)(ζ)| = η > 0,

for some point ζ ∈ S1. Then,
ˆ
S1

|ḟ − ġ|p ≥ 2ηp

πp−1
. (6.31)

Proof of Claim. Set w := f − g = w1 + ıw2. We may assume without loss of generality
that w(1) = (f − g)(1) = η ı. Since deg(g) 6= 0, there exists a point θ1 ∈ (0, 2π) such that
g(eıθ1) = ı, whence w2(eıθ1) = −tı for some t ≥ 0. Hölder’s inequality, and a straightforward
computation yield

ˆ
S1

|w′|p ≥
ˆ
S1

|w′2|p ≥
(η + t)p

θp−1
1

+
(η + t)p

(2π − θ1)p−1
≥ 2

(η + t)p

πp−1
>

2ηp

πp−1
,

and (6.31) follows.

Remark 6.4. We thank an anonymous referee for suggesting a simplification of our original
argument for the proof of the Claim, and for pointing out that it holds under the weaker
assumption: either f or g has a nontrivial degree.

Step 4. Conclusion
Consider two sequences {un} ⊂ E(u0) and {vn} ⊂ E(v0) such that

lim
n→∞

‖∇(un − vn)‖Lp(Ωε) = distW 1,p(E(u0), E(v0)). (6.32)

By a standard density argument we may assume that un, vn ∈ C∞(Ωε \ {a−, a, a+}) for all n.
Assume by contradiction that

distW 1,p(E(u0), E(v0)) =

(
2

π

)
Sε =

(
2

π

)
min
w∼w0

‖∇w‖Lp(Ωε) (see (6.21)). (6.33)
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By (6.33) and (6.23) there exists a constant C0 such that

ˆ
Ωε

|∇(un − vn)|p ≤
(

2

π

)p ˆ
B

∣∣∣∣∇( x

|x|

)∣∣∣∣p + C0ε
2, ∀n ≥ n0(ε). (6.34)

Set wn := un vn and note that by the same computation as in (6.2)–(6.3) we have

ˆ
Ωε

|∇(un − vn)|p ≥
ˆ

Ωε

|∇(|un − vn|)|p =

(
2

π

)p ˆ
Ωε

|∇(T ◦ wn)|p ≥
(

2

π

)p
Spε (6.35)

(recall that T is defined in (4.3)). Combining (6.32),(6.33) and (6.35) yields that w̃n := T ◦wn
satisfies

lim
n→∞

‖∇w̃n‖Lp(Ωε) = Sε,

and up to passing to a subsequence we have

Wε = lim
n→∞

w̃n in W 1,p(Ω;S1), (6.36)

where Wε is a minimizer in (6.21). Recall that Wε is unique up to rotations; the particular
Wε in (6.36) is chosen by the subsequence. For any ζ ∈ S1 we have max(|ζ−1|, |ζ+1|) ≥

√
2.

In particular, for ζε associated with Wε (see (6.27)–(6.28)) we may assume without loss of
generality that

|ζε − 1| ≥
√

2. (6.37)

By (6.36) and Egorov Theorem there exists Aε ⊂ Ωε satisfying

|Aε| ≤ ε and w̃n → Wε uniformly on Ωε \ Aε, (6.38)

again, after passing to a subsequence. Combining (6.38) with (6.37) and (6.27) yields

|w̃n − 1| ≥
√

2− 2c0 ε on B+ \ Aε, ∀n ≥ n1(ε),

and choosing ε < (
√

2− 1)/(2c0) guarantees that

|w̃n − 1| ≥ 1 on B+ \ Aε, ∀n ≥ n1(ε). (6.39)

Going back to the definition of T in (4.3), we find by a simple computation the following
equivalences for eıθ = T (eıϕ) (with θ ∈ (−π, π)):

|T (eıϕ)−1| ≥ 1 ⇐⇒ |θ| = π| sin(ϕ/2)| ≥ π/3 ⇐⇒ |eıϕ−1| = 2| sin(ϕ/2)| ≥ 2/3. (6.40)

Using (6.40) we may rewrite (6.39) in terms of the original sequence {wn}:

|un − vn| = |wn − 1| ≥ 2/3 on B+ \ Aε, ∀n ≥ n1(ε). (6.41)

Consider the set

Λε = {r ∈ (1/2, 1); ∂B(a+, r) ⊂ Aε}. (6.42)

By (6.38) we clearly have ε ≥ |Aε| ≥ (1/2)|Λε| · 2π, whence

|Λε| ≤
ε

π
. (6.43)
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For n ≥ n1(ε) we have: on each circle ∂B(a+, r) with r ∈ (1/2, 1) \ Λε there exists at least
one point where |un − vn| ≥ 2/3. Thus we may apply the Claim from Step 3 with η := 2/3,
f := un

∣∣
∂B(a+,r)

and g := vn
∣∣
∂B(a+,r)

to obtain by (6.31) (after a suitable rescaling):

ˆ
∂B(a+,r)

|∇(un − vn)|p ≥ 2(rπ)1−p
(

2

3

)p
≥ (2π)

(
2

3π

)p
:= γp. (6.44)

Integrating (6.44), taking into account (6.43), yieldsˆ
B+

|∇(un − vn)|p ≥
ˆ

(1/2,1)\Λε

ˆ
∂B(a+,r)

|∇(un − vn)|p ≥ (1/2− ε/π)γp. (6.45)

In addition, by (1.27), applied to un
∣∣
B
, vn
∣∣
B

, we clearly have
ˆ
B

|∇(un − vn)|p ≥
(

2

π

)p ˆ
B

∣∣∣∣∇( x

|x|

)∣∣∣∣p ,
which together with (6.45) givesˆ

Ωε

|∇(un − vn)|p ≥
(

2

π

)p ˆ
B

∣∣∣∣∇( x

|x|

)∣∣∣∣p + (1/2− ε/π)γp, ∀n ≥ n1(ε). (6.46)

The inequality (6.46) clearly contradicts (6.34) for n large enough if ε is chosen sufficiently
small.

Remark 6.5. In the course of the proof of Proposition 6.3 we used the following fact:

Let 1 ≤ p < 2 and let Ω be the unit disc. Set u0(x) := x/|x|, ∀x ∈ Ω. Thenˆ
Ω

|∇u|p ≥
ˆ

Ω

|∇u0|p, ∀u ∈ E(u0). (6.47)

We sketch the proof for the convenience of the reader.

Let u ∈ E(u0). Let Cr := {z; |z| = r}. Since we may write u = eıϕ u0, with ϕ ∈ W 1,p, for

a.e. r ∈ (0, 1) we have u
∣∣
Cr
∈ W 1,p(Cr;S1) and deg

(
u
∣∣
Cr

)
= 1. This implies that for a.e.

r ∈ (0, 1) we haveˆ
Cr

|∇u| ≥
ˆ
Cr

|u̇| =
ˆ
Cr

|u ∧ u̇| ≥
ˆ
Cr

u ∧ u̇ = 2π =

ˆ
Cr

u0 ∧ u̇0 =

ˆ
Cr

|∇u0|. (6.48)

In case p = 1 integration over r ∈ (0, 1) of (6.48) yields (6.47). In case 1 < p < 2 we use
(6.48) and Hölder inequality, and then integration over r yields

ˆ
Ω

|∇u|p ≥ 2π

ˆ 1

0

dr

rp−1
=

2π

2− p
=

ˆ
Ω

|∇u0|p, and (6.47) follows.

Examining the equality cases for the inequalities in (6.48) (and in Hölder inequality when
1 < p < 2) we obtain in addition the following conclusion: equality holds in (6.47) if and
only if

(i) for 1 < p < 2, u = eıαu0 for some constant α;
(ii) for p = 1, u(reıθ) = eiϕ(θ) where ϕ ∈ W 1,1([0, 2π];R) satisfies ϕ(2π) − ϕ(0) = 2π and
ϕ′ ≥ 0 a.e. on [0, 2π].
The difference between (i) and (ii) is the main reason why for the same u0 and v0 as in the
proof of Proposition 6.3, we have the strict inequality (6.16) for 1 < p < 2, while for p = 1
the equality (1.12) holds.

30



Remark 6.6. Consider the maps u1 := x/|x| and v1 := 1 in Ωε (as in the proof of Propo-
sition 6.3). By Theorem 1.7 we have distW 1,p(E(u1), E(v1)) = (2/π) infw∼u1v1 ‖∇w‖Lp(Ωε).
Therefore, we have

distW 1,p(E(u1), E(v1)) 6= distW 1,p(E(u0), E(v0))

although u1v1 = u0v0. This shows that in general it is not even true that distW 1,p(E(u), E(v))
depends only on E(uv) when 1 < p < 2. A similar phenomenon occurs when Ω is multiply
connected and p = 2 (see [27, Remark 4.1]); a comparable argument works for p > 2.

Appendix. Proof of Proposition 1.2

Proof of Proposition 1.2. We fix a sequence εn ↘ 0 and use (1.4) to find a sequence {vn} ⊂
E(u) such that

ˆ
Ω

|∇vn| ≤ Σ(u) + εn, ∀n. (A.1)

For θ ∈ [0, 2π) define Ψn,θ ∈ Lip(S1;S1) by

Ψn,θ(z) :=

{
eıπ(1+2(ϕ−θ)/εn), if z = eıϕ ∈ A(θ − εn/2, θ + εn/2)

1, if z /∈ A(θ − εn/2, θ + εn/2)
. (A.2)

Clearly deg Ψn,θ = 1, so setting wn,θ := Ψn,θ ◦ vn, we have, by Lemma 4.1, wn,θ ∼ vn ∼ u.
Moreover,

|∇wn,θ(x)| =

{
(2π/εn) |∇vn(x)|, if vn(x) ∈ A(θ − εn/2, θ + εn/2)

0, if vn(x) /∈ A(θ − εn/2, θ + εn/2)
. (A.3)

Set An(x) := {θ ∈ [0, 2π); vn(x) ∈ A(θ − εn/2, θ + εn/2)}. We have

ˆ 2π

0

ˆ
Ω

|∇wn,θ| dx dθ =
2π

εn

ˆ
Ω

|∇vn(x)| |An(x)| dx = 2π

ˆ
Ω

|∇vn|, (A.4)

and
ˆ 2π

0

|{wn,θ 6= 1}| dθ =

ˆ
Ω

|An(x)| dx = εn |Ω|. (A.5)

Combining (A.1) with (A.4)–(A.5) yields

ˆ 2π

0

(
|{wn,θ 6= 1}|/ε1/2

n +

ˆ
Ω

|∇wn,θ|
)
dθ ≤ |Ω| ε1/2

n + 2π(Σ(u) + εn). (A.6)

From (A.6) it follows that there exists θn ∈ [0, 2π) such that

|{wn,θn 6= 1}|/ε1/2
n +

ˆ
Ω

|∇wn,θn| ≤ |Ω| ε1/2
n /(2π) + Σ(u) + εn;

so clearly a subsequence of un := wn,θn satisfies (1.15).
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