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Distances between classes in W 1,1 (Ω; S 1 )

We introduce an equivalence relation on the space W 1,1 (Ω; S 1 ) which classifies maps according to their "topological singularities". We establish sharp bounds for the distances (in the usual sense and in the Hausdorff sense) between the equivalence classes. Similar questions are examined for the space W 1,p (Ω; S 1 ) when p > 1.

Introduction

Let Ω be a smooth bounded domain in R N , N ≥ 2. (Many of the results in this paper remain valid if Ω is replaced by a manifold M, with or without boundary, and the case M = S 1 is already of interest (see [START_REF] Brezis | Distances between homotopy classes of W s[END_REF][START_REF] Brezis | Distances between classes of sphere-valued Sobolev maps[END_REF]).) In some places we will assume in addition that Ω is simply connected (and this will be mentioned explicitly). Our basic setting is W 1,1 (Ω; S 1 ) = {u ∈ W 1,1 (Ω; R 2 ) W 1,1 (Ω; C); |u| = 1 a.e.}.

It is clear that if u, v ∈ W 1,1 (Ω; S 1 ) then uv ∈ W 1,1 (Ω; S 1 ); moreover if u n → u and v n → v in W 1,1 (Ω; S 1 ) then u n v n → uv in W 1,1 (Ω; S 1 ).

(1.1)

In particular, W 1,1 (Ω; S 1 ) is a topological group. We call the attention of the reader that maps u of the form u = e ıϕ with ϕ ∈ W 1,1 (Ω; R) belong to W 1,1 (Ω; S 1 ). However they do not exhaust W 1,1 (Ω; S 1 ): there exist maps in W 1,1 (Ω; S 1 ) which cannot be written as u = e ıϕ for some ϕ ∈ W 1,1 (Ω; R). A typical example is the map u(x) = x/|x| in Ω =unit disc in R 2 ; This was originally observed in [START_REF] Bethuel | Density of smooth functions between two manifolds in Sobolev spaces[END_REF] (with roots in [START_REF] Schoen | Boundary regularity and the Dirichlet problem for harmonic maps[END_REF]) and is based on degree theory; see also [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF][START_REF] Brezis | Sobolev maps with values into the circle[END_REF]. Set E = {u ∈ W 1,1 (Ω; S 1 ); u = e ıϕ for some ϕ ∈ W 1,1 (Ω; R)}.

(1.2)

We claim that E is closed in W 1,1 (Ω; S 1 ). Indeed, let u n = e ıϕn with u n → u in W 1,1 . Then ∇ϕ n = -ıu n ∇u n converges in L 1 to -ıu∇u. By adding an integer multiple of 2π to ϕ n we may assume that ´Ω ϕ n ≤ 2π|Ω|. Thus, a subsequence of {ϕ n } converges in W 1,1 to some ϕ and u = e ıϕ . Clearly E ⊂ C ∞ (Ω; S 1 ) W 1,1 .

(1.3) Indeed, if u ∈ E, write u = e ıϕ for some ϕ ∈ W 1,1 (Ω; R); let ϕ n ∈ C ∞ (Ω; R) be such that ϕ n → ϕ in W 1,1 . Then, u n = e ıϕn ∈ C ∞ (Ω; S 1 ) and converges to u in W 1,1 . However equality in (1.3) fails in general. For example when Ω = {x ∈ R 2 ; 1 < |x| < 2}, the map u(x) = x/|x| is smooth, but u / ∈ E; as above the nonexistence of ϕ is an easy consequence of degree theory. On the other hand, if Ω is simply connected, equality in (1.3) does hold since C ∞ (Ω; S 1 ) ⊂ E (recall that any u ∈ C ∞ (Ω; S 1 ) can be written as u = e ıϕ with ϕ ∈ C ∞ (Ω; R)) and E is closed in W 1,1 (Ω; S 1 )).

To each u ∈ W 1,1 (Ω; S 1 ) we associate a number Σ(u) ≥ 0 defined by Σ(u) = inf An immediate consequence of the definition is the relation Σ(u) = Σ(u). As explained in Section 2 the quantity Σ(u) plays an extremely important role in many questions involving W 1,1 (Ω; S 1 ); it has also an interesting geometric interpretation. Note that u ∈ E ⇐⇒ Σ(u) = 0, (1.5) and in particular Σ(1) = 0. The implication =⇒ is clear. For the reverse implication, assume that Σ(u) = 0, i.e., there exists a sequence v n ∈ E such that ´Ω |∇(uv n )| → 0. Then (modulo a subsequence) uv n → C in W 1,1 , for some constant C ∈ S 1 ; therefore v n → Cu in W 1,1 and thus u ∈ E (since E is closed).

In some sense Σ(u) measures how much a general u ∈ W 1,1 (Ω; S 1 ) "deviates" from E. More precisely we will prove that

2 π Σ(u) ≤ inf v∈E ˆΩ |∇(u -v)| ≤ Σ(u), (1.6) 
with optimal constants. This will be derived as a very special case of our main result Theorem 1.1. In order to state it we need to describe a decomposition of the space W 1,1 (Ω; S 1 ) according to the following equivalence relation in W 1,1 (Ω; S 1 ):

u ∼ v if and only if u = e ıϕ v for some ϕ ∈ W 1,1 (Ω; R); (1.7) in other words, u ∼ v if and only if Σ(uv) = 0. We denote by E(u) the equivalence class of an element u ∈ W 1,1 (Ω; S 1 ), that is

E(u) = {ue -ıϕ ; ϕ ∈ W 1,1 (Ω; R)}.
In particular, E(1) = E. It is easy to see that for every u ∈ W 1,1 (Ω; S 1 ), E(u) is closed (it suffices to apply (1.1) and the fact that E is closed). In Section 2 we will give an interpretation of the equivalence relation u ∼ v in terms of the "topological singularities" of u and v. We may rewrite (1.4) as

Σ(u) = inf v∈E(u)
ˆΩ |∇v|.

(1.8)

Given u 0 , v 0 ∈ W 1,1 (Ω; S 1 ) the following quantities will play a crucial role throughout the paper:

d W 1,1 (u 0 , E(v 0 )) := inf v∼v 0 ˆΩ |∇(u 0 -v)|, (1.9) 
dist W 1,1 (E(u 0 ), E(v 0 )) := inf

u∼u 0 d W 1,1 (u, E(v 0 )) = inf u∼u 0 inf v∼v 0 ˆΩ |∇(u -v)|, (1.10) 
Dist W 1,1 (E(u 0 ), E(v 0 )) := sup

u∼u 0 d W 1,1 (u, E(v 0 )) = sup u∼u 0 inf v∼v 0 ˆΩ |∇(u -v)|, (1.11) 
so that dist W 1,1 (E(u 0 ), E(v 0 )) is precisely the distance between the classes E(u 0 ) and E(v 0 ).

On the other hand we will see below, as a consequence of (1.13), that Dist W 1,1 is symmetric, a fact which is not clear from its definition. This implies that Dist W 1,1 coincides with the Hausdorff distance

H -dist W 1,1 (E(u 0 ), E(v 0 )) := max (Dist W 1,1 (E(u 0 ), E(v 0 )), Dist W 1,1 (E(v 0 ), E(u 0 )))
between E(u 0 ) and E(v 0 ). Our main result is Theorem 1.1. For every u 0 , v 0 ∈ W 1,1 (Ω; S 1 ) we have

dist W 1,1 (E(u 0 ), E(v 0 )) = 2 π Σ(u 0 v 0 ) (1.12)
and

Dist W 1,1 (E(u 0 ), E(v 0 )) = Σ(u 0 v 0 ). (1.13) 
The two assertions in Theorem 1.1 look very simple but the proofs are quite tricky; they are presented in Sections 4 and 5. The factor 2/π in (1.12) represents the ratio of two diameters of S 1 , each corresponding to a different metric: the first one computed using the Euclidean metric and the second one using the geodesic distance. This interpretation will become clear in the proof of Lemma 4.2 below.

A useful device for constructing maps in the same equivalence class is the following (see Lemma 4.1 below). Let T ∈ Lip(S 1 ; S 1 ) be a map of degree one. Then

T • u ∼ u, ∀ u ∈ W 1,1 (Ω; S 1 ). (1.14)
It turns out that this simple device plays a very significant role in the proofs of most of our main results. It allows us to work on the target space only, thus avoiding difficulties due to the possibly complicated geometry and/or topology of the domain (or manifold) Ω. A first example of an application of this technique is given by the proof of the following version of the "dipole construction"; it is the main ingredient in the proof of inequality "≤" in (1.13 For completeness we present the proof of Proposition 1.2 in the Appendix.

A basic ingredient in the proof of inequality "≥" in (1.13) is the following proposition which provides an explicit recipe for constructing "maximizing sequences" for Dist W 1,1 . In order to describe it we first introduce, for each n ≥ 3, a map T n ∈ Lip(S 1 ; S 1 ) with deg T n = 1 by T n (e ıθ ) = e ıτn(θ) , with τ n defined on [0, 2π] by setting τ n (0) = 0 and

τ n (θ) = n, θ ∈ (2j π/n 2 , (2j + 1) π/n 2 ] -(n -2), θ ∈ ((2j + 1) π/n 2 , (2j + 2) π/n 2 ]
, j = 0, 1, . . . , n 2 -1.

(1.16)

Proposition 1.3. For every u 0 , v 0 ∈ W 1,1 (Ω; S 1 ) such that u 0 ∼ v 0 we have lim n→∞ d W 1,1 (T n • u 0 , E(v 0 )) Σ(u 0 v 0 ) = 1 (1.17)
and the limit is uniform over all such u 0 and v 0 . Consequently

Dist W 1,1 (E(u 0 ), E(v 0 )) ≥ Σ(u 0 v 0 ). (1.18)
As mentioned above, a special case of interest is the distance of a given u ∈ W 1,1 (Ω; S 1 ) to the class E. An immediate consequence of Theorem 1.1 is that for every u ∈ W 1,1 (Ω; S 1 ) we have

2 π Σ(u) ≤ d W 1,1 (u, E) ≤ Σ(u), (1.19) 
and the bounds are optimal in the sense that sup

u / ∈E d W 1,1 (u, E) Σ(u) = 1, (1.20) 
and

inf u / ∈E d W 1,1 (u, E) Σ(u) = 2 π . (1.21)
There are challenging problems concerning the question whether the supremum and the infimum in the above formulas are achieved (see §5.3).

Remark 1.4. Formulas (1.19)-(1.21) provide a sharp improvement of the inequality 1 2 Σ(u) ≤ d W 1,1 (u, E) ≤ Σ(u), ∀ u ∈ W 1,1 (Ω; S 1 ), (1.22) 
established in [START_REF] Brezis | Sobolev maps with values into the circle[END_REF]Sec. 11.6].

Finally, we turn in Section 6 to the classes in W 1,p (Ω; S 1 ), 1 < p < ∞, defined in an analogous way to the W 1,1 -case, i.e., using the equivalence relation u ∼ v if and only if u = e ıϕ v for some ϕ ∈ W 1,p (Ω; R).

(1.23)

We point out that if u, v ∈ W 1,p (Ω; S 1 ) are equivalent according to the equivalence relation in (1.7), then from the relation e ıϕ = uv we deduce that ∇ϕ = -ıuv∇(uv) ∈ L p (Ω; R N ); (1.24) whence u ∼ v according to (1.23) as well. When p ≥ 2 and Ω is simply connected we have W 1,p (Ω; S 1 ) = {u ∈ W 1,1 (Ω; S 1 ); u = e ıϕ for some ϕ ∈ W 1,p (Ω; R)}, see Remark 1.10 below. Therefore, the only cases of interest are:

(a) general Ω and 1 < p < 2, (b) multiply connected Ω and p ≥ 2. In all the theorems below we assume that we are in one of these situations. The distances between the classes are defined analogously to (1.10)-(1.11) by

dist W 1,p (E(u 0 ), E(v 0 )) := inf u∼u 0 inf v∼v 0 ∇(u -v) L p (Ω) . (1.25)
and

Dist W 1,p (E(u 0 ), E(v 0 )) := sup u∼u 0 inf v∼v 0 ∇(u -v) L p (Ω) . (1.26)
The next result establishes a lower bound for dist W 1,p : Theorem 1.5. For every u 0 , v 0 ∈ W 1,p (Ω; S 1 ), 1 ≤ p < ∞, we have

dist W 1,p (E(u 0 ), E(v 0 )) ≥ 2 π inf w∼u 0 v 0 ∇w L p (Ω) .
(1.27)

Remark 1.6. For p > 1 the infimum on the R.H.S. of (1.27) is actually a minimum; this follows easily from (1.24) and the fact that W 1,p is reflexive.

Note that equality in (1.27) holds for p = 1 by (1.12). An example in [27, Section 4] shows that strict inequality ">" may occur in (1.27) for a multiply connected domain in dimension two and p = 2. We will show in §6.4 that strict inequality may also occur for simply connected domains when 1 < p < 2. On the positive side, we prove equality in (1.27) in the case of the distance to E: Theorem 1.7. For every u 0 ∈ W 1,p (Ω; S 1 ), 1 < p < ∞, we have

dist W 1,p (E(u 0 ), E) = 2 π inf w∼u 0 ∇w L p (Ω) .
(1.28)

Remark 1.8. When p > 1 we do not know general conditions on u 0 , v 0 ∈ W 1,p (Ω; S 1 ) that guarantee equality in (1.27) (a sufficient condition in the case of multiply connected two dimensional domain and p = 2 is given in [START_REF] Rubinstein | The distance between homotopy classes of S 1 -valued maps in multiply connected domains[END_REF]Th. 4]).

On the other hand, when p > 1, Dist W 1,p between distinct classes is infinite:

Theorem 1.9. For every u 0 , v 0 ∈ W 1,p (Ω; S 1 ), 1 < p < ∞, such that u 0 ∼ v 0 we have Homotopy classes have been well-studied (see [START_REF] Brezis | Topology and Sobolev spaces[END_REF][START_REF] Brezis | On some questions of topology for S 1 -valued fractional Sobolev spaces[END_REF][START_REF] Hang | Topology of Sobolev mappings II[END_REF][START_REF] Rubinstein | Homotopy classification of minimizers of the Ginzburg-Landau energy and the existence of permanent currents[END_REF][START_REF] White | Homotopy classes in Sobolev spaces and the existence of energy minimizing maps[END_REF]). Clearly u ∼ v =⇒ u H ∼ v (use the homotopy h(t) = e ı(1-t)ϕ v). Note however that when 1 ≤ p < 2 the equivalence relation u ∼ v is much more restrictive than u

Dist W 1,p (E(u 0 ), E(v 0 )) = ∞. ( 1 
H ∼ v; for example let Ω =unit disc in R 2 , u(x) = x/|x| and v(x) = (x -a)/|x -a| with 0 = a ∈ Ω, then u ∼ v (in fact, dist W 1,1 (E(u), E(v)) = 4|a| > 0 by (3.17) below) while u H ∼ v, e.g., via the homotopy h(t) = (x -ta)/|x -ta|, 0 ≤ t ≤ 1.
Part of the results were announced in [START_REF] Brezis | Distances between classes of sphere-valued Sobolev maps[END_REF].

2 Further comments on Σ(u) and E(u) Given a, b ∈ C, write as usual a = a 1 + ıa 2 , b = b 1 + ıb 2 ; we also identify a, b with the vectors a

= (a 1 , a 2 ) T , b = (b 1 , b 2 ) T ∈ R 2 and set a ∧ b = a 1 b 2 -a 2 b 1 = Im(ab) ∈ R.
(2.1)

The distributional Jacobian Ju

For every u ∈ W 1,1 (Ω; S 1 ) we consider u ∧ ∇u ∈ L 1 (Ω; R N ) defined by its components

(u ∧ ∇u) j = u ∧ ∂u ∂x j = u 1 ∂u 2 ∂x j -u 2 ∂u 1 ∂x j , j = 1, . . . , N. (2.2) 
Since |u| 2 = 1 on Ω we have

u 1 ∂u 1 ∂x j + u 2 ∂u 2 ∂x j = 0 in Ω, (2.3) 
and thus

u ∧ ∂u ∂x j = -ıu ∂u ∂x j in Ω; (2.4) in particular, |u ∧ ∇u| = |∇u| in Ω. (2.5) 
The following identities are elementary:

(uv) ∧ ∇(uv) = u ∧ ∇u + v ∧ ∇v, ∀ u, v ∈ W 1,1 (Ω; S 1 ), (2.6) e ıϕ ∧ ∇(e ıϕ ) = ∇ϕ, ∀ ϕ ∈ W 1,1 (Ω; R), (2.7) u ∧ ∇u = -u ∧ ∇u, ∀ u ∈ W 1,1 (Ω; S 1 ). (2.8)
Finally we introduce, for every u ∈ W 1,1 (Ω; S 1 ), its distributional Jacobian Ju, which is an antisymmetric matrix with coefficients in D (Ω; R) defined by (Ju) i,j := 1 2

∂ ∂x i u ∧ ∂u ∂x j - ∂ ∂x j u ∧ ∂u ∂x i . (2.9) 
When N = 2, Ju is identified with the scalar distribution 

Ju = 1 2 ∂ ∂x 1 u ∧ ∂u ∂x 2 - ∂ ∂x 2 u ∧ ∂u ∂x 1 = 1 2 curl (u ∧ ∇u) . ( 2 
J(uv) = Ju + Jv, ∀ u, v ∈ W 1,1 (Ω; S 1 ), (2.11) J(u) = -Ju, ∀ u ∈ W 1,1 (Ω; S 1 ), (2.12) J(e ıϕ ) = 0, ∀ ϕ ∈ W 1,1 (Ω; R), (2.13) 
i.e.,

J(u) = 0, ∀ u ∈ E, (2.14) 
and thus

u ∼ v =⇒ Ju = Jv. (2.15)
When Ω is simply connected the converse is also true, so that

u ∼ v ⇐⇒ Ju = Jv; (2.16)
in other words,

E(u) = {v ∈ W 1,1 (Ω; S 1 ); Ju = Jv}. (2.17)
This fact is originally due to Demengel [START_REF] Demengel | Une caractérisation des applications de W 1,p (B N , S 1 ) qui peuvent être approchées par des fonctions régulières[END_REF], with roots in [START_REF] Bethuel | A characterization of maps in H 1 (B 3 , S 2 ) which can be approximated by smooth maps[END_REF]; simpler proofs can be found in [START_REF] Brezis | Sobolev maps with values into the circle[END_REF][START_REF] Bourgain | Lifting in Sobolev spaces[END_REF][START_REF] Carbou | Applications harmoniques à valeurs dans un cercle[END_REF].

In order to have a more concrete perception of the equivalence relation u ∼ v it is instructive to understand what it means when N = 2 and Ω is simply connected, for u, v ∈ R where R = {u ∈ W 1,1 (Ω; S 1 ); u is smooth in Ω except at a finite number of points}. (2.18) The class R plays an important role since it is dense in W 1,1 (Ω; S 1 ) (see [START_REF] Bethuel | Density of smooth functions between two manifolds in Sobolev spaces[END_REF][START_REF] Brezis | Sobolev maps with values into the circle[END_REF]).

If u ∈ R then

Ju = π j d j δ a j , (2.19) 
where the a j 's are the singular points of u and d j := deg(u, a j ), i.e., the topological degree of u restricted to any small circle centered at a j ; see [START_REF] Brezis | Harmonic maps with defects[END_REF][START_REF] Brezis | W 1,1 -maps with values into S 1 , in Geometric analysis of PDE and several complex variables[END_REF][START_REF] Brezis | Sobolev maps with values into the circle[END_REF] and also [2, end of Section 6] for the special case where u(x) = x/|x|. In particular, when u, v ∈ R, u ∼ v ⇐⇒ [u and v have the same singularities and the same degree at each singularity].

(2.20)

Σ(u) computed by duality

An equivalent formula to (1.4) is ). If we take E = L 1 (Ω; R N ), p = u ∧ ∇u, M = {∇ϕ; ϕ ∈ W 1,1 (Ω; R)}, then we have

Σ(u) = inf ϕ∈W 1,1 (Ω;R) ˆΩ |u ∧ ∇u -∇ϕ|. ( 2 
M ⊥ = {ξ ∈ L ∞ (Ω; R N ); div ξ = 0 in Ω and ξ • ν = 0 on ∂Ω}, (2.23) 
where ν is the outward normal to ∂Ω. Here the condition [div ξ = 0 in Ω and ξ

•ν = 0 on ∂Ω] is understood in the weak sense [ ´Ω ξ •∇ϕ = 0, ∀ϕ ∈ W 1,1 (Ω; R)], or equivalently, [ ´Ω ξ •∇ϕ = 0, ∀ϕ ∈ C ∞ (Ω; R)]. Inserting (2.23) in (2.22) yields Σ(u) = max{ ˆΩ(u ∧ ∇u) • ξ; ξ ∈ M ⊥ , ξ L ∞ ≤ 1}. (2.24)
Next we assume that N = 2 and Ω is simply connected. We claim that for every u ∈ W 1,1 (Ω; S 1 ),

Σ(u) = max{ ˆΩ(u ∧ ∇u) • ∇ ⊥ ζ; ζ ∈ W 1,∞ 0 (Ω; R) and ∇ζ L ∞ ≤ 1}, (2.25) 
where

∇ ⊥ ζ = (-∂ζ/∂x 2 , ∂ζ/∂x 1 ).
Proof of (2.25). In view of (2.23)-( 2.24) it suffices to show that

{ξ ∈ L ∞ (Ω; R 2 ); div ξ = 0 in Ω and ξ • ν = 0 on ∂Ω} = {∇ ⊥ ζ; ζ ∈ W 1,∞ 0 (Ω; R)}. (2.26)
For the inclusion "⊃", we verify that

ˆΩ ∇ ⊥ ζ • ∇ϕ = 0, ∀ϕ ∈ C ∞ (Ω; R);
this is clear since curl(∇ϕ) = 0 and ζ = 0 on ∂Ω. For the inclusion "⊂", we start with some

ξ ∈ L ∞ (Ω; R 2 ) such that ˆΩ ξ • ∇ϕ = 0, ∀ϕ ∈ W 1,1 (Ω; R). (2.27) Set ξ := ξ, in Ω 0, in R 2 \ Ω . Then, by (2.27), ˆR2 ξ • ∇Φ = ˆΩ ξ • ∇(Φ| Ω ) = 0, ∀Φ ∈ C 1 c (R 2 ; R). (2.28) 
Thus we may invoke the generalized Poincaré lemma in R 2 and conclude that ξ

= ∇ ⊥ ζ for some ζ ∈ W 1,∞ (R 2 ; R). Clearly, ζ = ζ| Ω ∈ W 1,∞ (Ω; R), ∇ ⊥ ζ = ξ and ζ is constant on ∂Ω (since ∂Ω is connected because Ω is simply connected).
Remark 2.1. Equality (2.25) is originally due to [13, Thm 2] (with a much more complicated proof).

Finally we give a geometric interpretation for Σ(u) when Ω ⊂ R 2 is simply connected and u ∈ R. We first need some notation. Given a, b ∈ Ω, set

d Ω (a, b) = min{|a -b|, d(a, ∂Ω) + d(b, ∂Ω)} = inf Γ length(Γ ∩ Ω), (2.29) 
where the inf Γ is taken over all curves Γ ⊂ R 2 joining a to b. Clearly d Ω is a semi-metric on Ω ; moreover

d Ω (a, b) = 0 ⇐⇒ [either a = b or a, b ∈ ∂Ω].
Thus we may identify ∂Ω as a single point in Ω, still denoted ∂Ω.

Given (a, d) = (a 1 , a 2 , . . . , a l , d 1 , d 2 , . . . , d l ) with a j ∈ Ω and d j ∈ Z, ∀j, we set

D = - l j=1 d j , (2.30) 
and we consider the collection (a 1 , a 2 , . . . , a l , ∂Ω) in Ω affected with the integer coefficients (d 1 , d 2 , . . . , d l , D). We then repeat the points a j 's and ∂Ω according to their multiplicities, i.e., d 1 , d 2 , . . . , d l and D, and we rewrite them as a collection of m positive points (P j ) and m negative points (N j ), 1 ≤ j ≤ m (this is possible by (2.30)). Finally we define

L(a, d) = min σ∈Sm m j=1 d Ω (P j , N σ(j) ), (2.31) 
where S m denotes the set of permutations of {1, 2, . . . , m}.

We are now ready to state our main claim:

Σ(u) = 2πL(a, d), ∀ u ∈ R, (2.32) 
where the a j 's are the singular points of u and d j = deg(u, a j ).

Remark 2.2. A variant of formula (2.32) where Ω = S 2 (and thus ∂Ω = ∅) appears originally in [START_REF] Brezis | W 1,1 -maps with values into S 1 , in Geometric analysis of PDE and several complex variables[END_REF], but the core of the proof goes back to [START_REF] Brezis | Harmonic maps with defects[END_REF].

Here is a sketch of the proof of (2.32). From (2.10) and (2.19) we have

-ˆΩ(u ∧ ∇u) • ∇ ⊥ ζ = 2π l j=1 d j ζ(a j ), ∀ ζ ∈ W 1,∞ 0 (Ω; R). (2.33) Set W 1,∞ const (Ω; R) = {ζ ∈ W 1,∞ (Ω; R); ζ = const on ∂Ω} and let ζ ∈ W 1,∞ const (Ω; R). From (2.33) applied to ζ -ζ(∂Ω) we obtain -ˆΩ(u ∧ ∇u) • ∇ ⊥ ζ = 2π l j=1 d j ζ(a j ) + Dζ(∂Ω) .
(2.34) Combining (2.25) and (2.34) we see that

Σ(u) = 2π max m j=1 (ζ(P j ) -ζ(N j )) ; ζ ∈ W 1,∞ const (Ω; R) and ∇ζ L ∞ ≤ 1 . (2.35)
Next we observe that for every ζ : Ω → R the following conditions are equivalent: [START_REF] Brezis | Harmonic maps with defects[END_REF] combines a theorem of Kantorovich with Birkhoff's theorem on doubly stochastic matrices. An elementary proof of (2.39), totally self-contained, is presented in [START_REF] Brezis | Liquid crystals and energy estimates for S 2 -valued maps, Theory and applications of liquid crystals[END_REF] (see also [START_REF] Brezis | Remarks on Monge-Kantorovich in the discrete setting[END_REF]); it is related in spirit to the proof of the celebrated result of Rockafellar concerning cyclically monotone operators.

ζ ∈ W 1,∞ const (Ω; R) and ∇ζ L ∞ ≤ 1 (2.36) and |ζ(x) -ζ(y)| ≤ d Ω (x, y), ∀ x, y ∈ Ω. ( 2 

Optimal lifting

It is known (see [START_REF] Giaquinta | Cartesian currents in the calculus of variations. II. Variational integrals[END_REF]Section 6.2] and [START_REF] Dávila | Lifting of BV functions with values in S 1[END_REF][START_REF] Merlet | Two remarks on liftings of maps with values into S 1[END_REF][START_REF] Brezis | Sobolev maps with values into the circle[END_REF]) that every u ∈ W 1,1 (Ω; S 1 ) can be written as u = e ıϕ with ϕ ∈ BV (Ω; R). In fact, there are many such ϕ's in BV and it is natural to introduce the quantity

E(u) = inf ˆΩ |Dϕ|; ϕ ∈ BV (Ω; R) such that u = e ıϕ .
(2.40)

Then,

E(u) = ˆΩ |∇u| + Σ(u).
(2.41) Formula (2.41) was originally established in [START_REF] Brezis | W 1,1 -maps with values into S 1 , in Geometric analysis of PDE and several complex variables[END_REF] when N = 2 (and Ω = S 2 ). The nontrivial extension to N ≥ 2 can be deduced from results of Poliakovsky [START_REF] Poliakovsky | On a minimization problem related to lifting of BV functions with values in S 1[END_REF], see also [START_REF] Brezis | Sobolev maps with values into the circle[END_REF] for a direct approach.

Relaxed energy

The relaxed energy is defined for every u ∈ W 1,1 (Ω; S 1 ) by

R(u) = inf lim inf n→∞ ˆΩ |∇u n |; u n ∈ C ∞ (Ω; S 1 ), u n → u a.e. on Ω ,
where the first inf means that the infimum is taken over all sequences

(u n ) in C ∞ (Ω; S 1 ) such that u n → u a.e. on Ω. [In general there is no sequence (u n ) in C ∞ (Ω; S 1 ) such that u n → u in W 1,1
, unless Ju = 0. However, it is always possible to find a sequence (u n ) in C ∞ (Ω; S 1 ) such that u n → u a.e. on Ω.] Assume that Ω is simply connected, then

R(u) = ˆΩ |∇u| + Σ(u),
see [START_REF] Brezis | W 1,1 -maps with values into S 1 , in Geometric analysis of PDE and several complex variables[END_REF] for N = 2 and [START_REF] Brezis | Sobolev maps with values into the circle[END_REF] for N ≥ 3.

Remark 2.3. We did not investigate the natural question concerning a generalization of Theorem 1.1 to BV (Ω; S 1 ) when the classes {E(u)} and the quantity Σ(u) are appropriately adapted.

Motivation

In order to illustrate the significance of the results of Theorem 1.1 it is instructive to explain it in a special case involving maps with a finite number of singularities. Moreover, this allows us to compare the problem to an analogous one involving the Dirichlet energy of S 2 -valued maps on three dimensional domains, whose study was initiated in [START_REF] Brezis | Harmonic maps with defects[END_REF]. Since in both cases the energy scales like length, one may expect similar results; as we shall see below the analogy is not complete. We start with the problem in R 3 . Consider for simplicity Ω = B R (0) ⊂ R 3 . Analogously to (2.18) we consider the set R of maps in H 1 (Ω; S 2 ) which are smooth on Ω, except at (at most) a finite number of singularities. With each k-tuple of distinct points a = (a 1 , . . . , a k ) ∈ Ω k and corresponding degrees d = (d 1 , . . . , d k ) ∈ Z k we associate the following class of maps in R:

E a,d := u ∈ C ∞ Ω \ k j=1 {a j }; S 2 ; ∇u ∈ L 2 (Ω) and deg(u, a j ) = d j , ∀ j . (3.1) 
[Here, deg(u, a j ) = d j means that the restriction of u to any small sphere around a j has topological degree d j .] In the case where k = 0 the resulting class is C ∞ (Ω; S 2 ). There are three natural questions that we want to discuss:

(i) What is the least energy of a map in E a,d i.e., the value of Σ

a,d := inf i.e., what is the least energy required to pass from singularities located at {a j } k j=1 , with degrees {d j } k j=1 , to singularities located at {b j } l j=1 , with degrees {e j } l j=1 ?

(iii) Similarly, by analogy with (1.11), what is the value of

Dist 2 H 1 (E a,d , E b,e ) := sup u∈E a,d inf v∈E b,e ˆΩ |∇(u -v)| 2 ? (3.4)
Question (i) was originally tackled by [START_REF] Brezis | Harmonic maps with defects[END_REF]; their motivation came from a question of J. Ericksen concerning the least energy required to produce a liquid crystal configuration with prescribed singularities. Quite surprisingly it turns out that the value of this least energy can be computed explicitly in terms of geometric quantities. In the special case (3.2) their formula becomes

Σ (2) a,d = 8πL(a, d), (3.5) 
where L(a, d) is defined as in (2.31).

On the other hand, it seems that Question (ii) was never treated in the literature. Using the results of [START_REF] Brezis | Harmonic maps with defects[END_REF] one can show that if (a, d) = (b, e) then for every fixed u ∈ E a,d we have

dist H 1 (u, E b,e ) > 0. (3.6)
What is quite surprising is that for all pairs of classes we have

dist H 1 (E a,d , E b,e ) = 0. (3.7)
The basic ingredient behind (3.7) is the following fact: for every pair of integers

d 1 = d 2 we have inf ˆS2 |∇(F 1 -F 2 )| 2 ; F j ∈ H 1 (S 2 ; S 2 ), deg(F j ) = d j for j = 1, 2 = 0. (3.8)
Formula (3.8) was established in [START_REF] Levi | On the distance between homotopy classes of maps between spheres[END_REF] (see also [START_REF] Brezis | Distances between homotopy classes of W s[END_REF] for generalizations) following the same idea used by Brezis and Nirenberg [START_REF] Brezis | Degree theory and BMO. I. Compact manifolds without boundaries[END_REF] in the setting of degree theory in H 1/2 (S 1 ; S 1 ).

As for Question (iii), the "dipole removing" technique of Bethuel [START_REF] Bethuel | A characterization of maps in H 1 (B 3 , S 2 ) which can be approximated by smooth maps[END_REF] (with roots in [START_REF] Brezis | Harmonic maps with defects[END_REF]) can be applied to derive the upper bound

Dist 2 H 1 (E a,d , E b,e ) ≤ 8πL(c, f ), (3.9) 
where

c = (a 1 , . . . , a k , b 1 , . . . , b l ) ∈ Ω k+l and f = (d 1 , . . . , d k , -e 1 , . . . , -e l ) ∈ Z k+l . (3.10)
We suspect that equality holds in (3.9). It is possible to associate with every u ∈ H 1 (Ω; S 2 ) a "natural" class E(u), in the spirit of (2.17). Formulas (3.7) and (3.9), as well as their extensions to arbitrary classes E(u), E(v), are established in [16]. We also present in [16] evidence that equality holds in (3.9) by establishing the following analogue of (1.20):

sup a,d d =0 sup u∈E a,d d 2 H 1 (u, C ∞ (Ω; S 2 )) 8πL(a, d) = 1. (3.11)
Next we consider similar questions for W 1,1 (Ω; S 1 ). For simplicity let Ω = B R (0) ⊂ R 2 . By analogy with (3.1), for a = (a 1 , . . . , a k ) ∈ Ω k and d = (d 1 , . . . , d k ) ∈ Z k we consider the following class of maps in R:

E a,d := u ∈ C ∞ Ω \ k j=1 {a j }; S 1 ; ∇u ∈ L 1 (Ω) and deg(u, a j ) = d j , ∀ j .
(3.12)

The analogous questions to (i)-(iii) are then: The answer to Question (i') is given by the results in §2.2. Indeed, setting u a,d (ζ

(i') What is the value of Σ (1 
) := k j=1 ζ -a j |ζ -a j | d j
, we get from (2.32) that Σ

(1)

a,d = Σ(u a,d ) = 2πL(a, d), (3.16) 
which is completely analogous to (3.5). [Here we used the density of E a,d (for the W 1,1topology) in E(u a,d ) (see [START_REF] Bethuel | Density of smooth functions between two manifolds in Sobolev spaces[END_REF][START_REF] Brezis | Sobolev maps with values into the circle[END_REF]).] On the other hand, the situation with Question (ii') is completely different. In contrast with (3.7), here dist W 1,1 (E a,d , E b,e ) is strictly positive when (a, d) = (b, e). The explicit value of this infimum can be computed in terms of geometric quantities. Actually, (1.12) of Theorem 1.1 asserts that

dist W 1,1 (E a,d , E b,e ) = 2 π Σ(u a,d u b,e ) = 4L(c, f ), (3.17) 
where c and f are given by (3.10). Indeed, the last equality in (3.17) follows from (3.16) when applied to the map u a,d u b,e which has singularities precisely at the points {c j } k+l j=1 , with associated singularities {f j } k+l j=1 . Similarly, the second part of Theorem 1.1, (1.13), asserts that sup

u∈E a,d inf v∈E b,e ˆΩ |∇(u -v)| = Σ(u a,d u b,e ) = 2πL(c, f ).
We also present an interpretation of Theorem 1.1 when Ω ⊂ R 3 . Fix two disjoint smooth closed oriented curves Γ 1 , Γ 2 ⊂ Ω and consider for j = 1, 2

E Γ j = u ∈ C ∞ (Ω \ Γ j ; S 1 ); ∇u ∈ L 1 (Ω) and deg(u, Γ j ) = +1
(deg(u, Γ j ) = +1 means that deg(u, C j ) = +1 for every small circle C j ⊂ Ω \ Γ j linking Γ j ). In this case Theorem 1.1 asserts that inf

u∈E Γ 1 inf v∈E Γ 2 ˆΩ |∇(u -v)| = 4 inf S area(S ∩ Ω),
where inf S is taken over all surfaces S ⊂ R 3 such that ∂S = Γ 1 ∪ Γ 2 , and sup

u∈E Γ 1 inf v∈E Γ 2 ˆΩ |∇(u -v)| = 2π inf S area(S ∩ Ω).
For more details on this case, see [START_REF] Almgren | Co-area, liquid crystals, and minimal surfaces[END_REF][START_REF] Brezis | Harmonic maps with defects[END_REF][START_REF] Brezis | Sobolev maps with values into the circle[END_REF]. [START_REF] Bethuel | Density of smooth functions between two manifolds in Sobolev spaces[END_REF] Proof of (1.12) in Theorem 1.1

A basic lower bound inequality

We begin with a simple lemma about composition with Lipschitz maps; it provides a very useful device for constructing maps in the same equivalence class, or in the class E(1). Lemma 4.1. Let T ∈ Lip(S 1 ; S 1 ) be a map of degree D. Then

T • u ∼ u D , ∀ u ∈ W 1,1 (Ω; S 1 ). (4.1)
Proof. Since T (z)z D is a Lipschitz self-map of S 1 of zero degree, there exists g ∈ Lip(S 1 ; R) such that T (z)z D = e ıg(z) . The function ϕ(x) = g(u(x)) belongs to W 1,1 (Ω; R) and satisfies T (u(x)) = (u(x)) D e ıϕ(x) , and (4.1) follows by the definition of the equivalence relation.

The next simple lemma is essential for the proof of the lower bound in (1.19).

Lemma 4.2. For any w ∈ W 1,1 (Ω; S 1 ) we have

ˆΩ |∇(|w -1|)| ≥ 2 π Σ(w). (4.2)
Proof. As in [START_REF] Rubinstein | The distance between homotopy classes of S 1 -valued maps in multiply connected domains[END_REF], we define T : S 1 → S 1 by

T (e ıϕ ) := e ıθ with θ = θ(ϕ) = π sin(ϕ/2), ∀ ϕ ∈ (-π, π], (4.3) 
so that

|e ıϕ -1| = 2| sin(ϕ/2)| = 2 π |θ|. (4.4)
Clearly T is of class C 1 and its degree equals one. We claim that

|∇(|w -1|)| = 2 π |∇(T • w)| a.e. (4.5)
This is a consequence of the standard fact that, if

F ∈ Lip(S 1 ; R 2 ) ∩ C 1 (S 1 \ {1}) and w ∈ W 1,1 (Ω; S 1 ), then F • w ∈ W 1,1 (Ω; S 1
) and, moreover, 

∇(F • w) = . F ( 
P ζ (z) = z, if z = e ıθ ∈ I(ζ, -ζ) e ı(2ϕ-θ) = ζ 2 z, if z / ∈ I(ζ, -ζ) , ( 4 
z -P ζ (z) = 0, if z ∈ I(ζ, -ζ) z -ζ 2 z, if z / ∈ I(ζ, -ζ) . (4.12)
Set w ζ := u -v ζ . Using (4.12), we find that for every ζ = e ıϕ and a.e. x ∈ Ω we have

∇w ζ (x) = 0, if u(x) ∈ I(ζ, -ζ) ∇u(x) -ζ 2 ∇u(x), if u(x) / ∈ I(ζ, -ζ) . (4.13) 
Therefore, for a.e. x ∈ Ω we have The identity (4.11) is a key tool in the proof of "≤" in (1.12). For the convenience of the reader we shall present first the slightly simpler proof when v 0 = 1.

|∇w ζ (x)| = 0, if u(x) ∈ I(ζ, -ζ) 2| cos(θ -ϕ)||∇u(x)|, if u(x) = e ıθ / ∈ I(ζ, -ζ) . ( 4 
Proof of "≤" in (1.12) for v 0 = 1. By Corollary 4.3 we have inf

u∼u 0 d W 1,1 (u, E(1)) ≥ 2 π Σ(u 0 ). Use (1.4) to choose a sequence {u n } ⊂ E(u 0 ) with lim n→∞ ´Ω |∇u n | = Σ(u 0 ). Use Propo- sition 4.4 to choose ζ n ∈ S 1 such that ˆΩ |∇(u n -P ζn • u n )| ≤ 2 π ˆΩ |∇u n |, implying that lim n→∞ d W 1,1 (u n , E(1)) = 2 π Σ(u 0 ).
Next we turn to the general case.

Proof of "≤" in (1.12) for general v 0 . By (4.7) we have

dist W 1,1 (E(u 0 ), E(v 0 )) ≥ (2/π) Σ(u 0 v 0 ),
so we need to prove that this is actually an equality. By Proposition 1.2 there exists a sequence {w n } satisfying w n ∼ u 0 v 0 for all n, lim n→∞ w n = 1 a.e., and

ˆΩ |∇w n | = Σ(u 0 v 0 ) + ε n , (4.16) 
with ε n 0. By Proposition 4.4 we get

ˆS1 ˆΩ |∇(w n -P ζ • w n )| dx dζ = 4 ˆΩ |∇w n | dx = 4(Σ(u 0 v 0 ) + ε n ). (4.17) 
Hence, there exists

ζ n ∈ S 1 -:= {z = e ıθ ; θ ∈ [-π, 0]} such that ˆΩ |∇(w n -P ζn • w n )| + ˆΩ |∇(w n -P -ζn • w n )| ≤ 4 π (Σ(u 0 v 0 ) + ε n ).
By (4.7) we have For any v such that v ∼ v 0 we have vF n ∼ v 0 , vw n ∼ u 0 and This short subsection is devoted to the proof of the following Proposition 5.1. For every u 0 , v 0 in W 1,1 (Ω, S 1 ) we have,

2 π Σ(u 0 v 0 ) ≤ min ˆΩ |∇(w n -P ζn • w n )|, ˆΩ |∇(w n -P -ζn • w n )| ,
2 π Σ(u 0 v 0 ) ≤ ˆΩ |∇(vF n -vw n )| ≤ ˆΩ |∇(F n -w n )| + ˆΩ |∇v||F n -w n |. ( 4 
Dist W 1,1 (E(u 0 ), E(v 0 )) = sup u∼u 0 d W 1,1 (u, E(v 0 )) ≤ Σ(u 0 v 0 ). (5.1)
Proof. We adapt an argument from [START_REF] Brezis | Sobolev maps with values into the circle[END_REF]. By Proposition 1.2 there exists a sequence {w n } ⊂ W 1,1 (Ω; S 1 ) satisfying w n ∼ u 0 v 0 , w n → 1 a.e., and lim n→∞ ´Ω |∇w n | = Σ(u 0 v 0 ). For a given u ∈ E(u 0 ) define v n = uw n for all n. Then, v n ∼ v 0 and

d W 1,1 (u, E(v 0 )) ≤ ˆΩ |∇(u -v n )| = ˆΩ |∇(u(1 -w n ))| ≤ ˆΩ |1 -w n ||∇u| + ˆΩ |∇w n | → Σ(u 0 v 0 ).

A lower bound for

Dist W 1,1
We begin with the following elementary geometric lemma.

Lemma 5.2. Let z 1 and z 2 be two points in S 1 satisfying, for some ε ∈ (0, π/2),

d S 1 (z 1 , z 2 ) ∈ (ε, π -ε).
(5.2)

If the vectors v 1 , v 2 ∈ R 2 satisfy v j ⊥ z j , j = 1, 2, (5.3) 
then

|v 1 -v 2 | ≥ (sin ε)|v j |, j = 1, 2, (5.4) 
and in particular

|v 1 -v 2 | 2 ≥ sin 2 ε 2 (|v 1 | 2 + |v 2 | 2 ). (5.5)
Note that the inequality (5.5) can be viewed as a "reverse triangle inequality".

Proof. From the assumptions (5.2)-( 5.3) it follows that

< v 1 , v 2 >≤ (cos ε)|v 1 ||v 2 |,
and then

|v 1 -v 2 | 2 ≥ |v 1 | 2 + |v 2 | 2 -2(cos ε)|v 1 ||v 2 | ≥ (sin ε) 2 |v j | 2 , j = 1, 2.
An immediate consequence of Lemma 5.2 is Lemma 5.3. Let v, u ∈ W 1,1 (Ω; S 1 ) and denote, for ε ∈ (0, π/2),

A ε : = {x ∈ Ω; d S 1 ( u(x), v(x)) ∈ (ε, π -ε)} = {x ∈ Ω; 2 sin(ε/2) < | u(x) -v(x)| < 2 cos(ε/2)}. (5.6) Then |∇( u -v)| ≥ (sin ε)|∇ u| a.e. in A ε .
(5.7)

Proof. Since v ⊥ v x i and u ⊥ u x i a.e. on Ω for i = 1, . . . , N , we may apply Lemma 5.2 with

z 1 = u(x), z 2 = v(x), v 1 = u x i (x) and v 2 = v x i (x) to obtain | u x i -v x i | 2 ≥ (sin ε) 2 | u x i | 2 , a.e. in A ε , i = 1, . . . , N.
Summing over i yields (5.7).

The next lemma is the main ingredient in the proof of Proposition 1.3.

Lemma 5.4. Let u, u, v ∈ W 1,1 (Ω; S 1 ), ε ∈ (0, π/20) and A ε as in (5.6). Assume that

|u(x) -u(x)| ≤ ε, ∀ x ∈ Ω. (5.8) Then, ˆAε |∇(v -u)| ≥ (1 -6ε)Σ(vu) -2 ˆAε |∇u|.
(5.9)

Proof. Note first that (5.8) implies that u ∼ u. Indeed, the image of the map u u is contained in an arc of S 1 of length≤ 2 arcsin(ε/2), so there exists ϕ ∈ W 1,1 (Ω; R) such that u = e ıϕ u.

Hence, setting w := v/u = v u and w := v/ u, we have also w ∼ w. Consider the map

W := u(v -u) + 1 = w + (1 -u/u).
(5.10)

By the triangle inequality,

|∇W | = |∇ (u(v -u)) | ≤ 2|∇u| + |∇(v -u)|, whence ˆAε |∇(v -u)| ≥ ˆAε |∇W | -2 ˆAε |∇u|.
(5.11) .12) and also

By (5.8), |W -w| = |1 -u/u| = |u -u| ≤ ε in Ω. Hence ||W | -1| ≤ |W -w| ≤ ε in Ω, ( 5 
| w -w| = | u -u| ≤ ε in Ω. (5.13)
Consider the map W := W/|W |, which thanks to (5.12) belongs to W 1,1 (Ω; S 1 ). Furthermore, again by (5.12), A direct consequence of (5.12) is the pointwise inequality in Ω

| W -w| ≤ | W -W | + |W -w| ≤ 2ε in Ω, ( 5 
|∇W | ≥ (1 -ε)|∇ W |, which together with (5.11) yields ˆAε |∇(v -u)| ≥ (1 -ε) ˆAε |∇ W | -2 ˆAε |∇u|.
(5.17)

Since (5.6) and (4.8)), we deduce from (5.16) that

A ε = {x ∈ Ω; w(x) ∈ A(ε, π -ε) ∪ A(π + ε, 2π -ε)} (see
B ε := {x ∈ Ω; W (x) ∈ A(7ε, π -7ε) ∪ A(π + 7ε, 2π -7ε)} ⊆ A ε . (5.18) 
For each δ ∈ (0, π/2) consider the map K δ : S 1 → S 1 defined by

K δ (e ıθ ) :=          1, if -δ ≤ θ < δ e ıπ(θ-δ)/(π-2δ) , if δ ≤ θ < π -δ -1, if π -δ ≤ θ < π + δ -e ıπ(θ-π-δ)/(π-2δ) , if π + δ ≤ θ < 2π -δ .
(5.19)

Clearly K δ ∈ Lip(S 1 ; S 1 ) with .

K δ ∞ = π/(π -2δ) and deg(K δ ) = 1. Therefore, by (5.15) and Lemma 4.1

w 1 := K 7ε • W ∈ E(w).
(5.20)

Note that by definition, ∇w 1 = 0 a.e. on Ω \ B ε , so by (5.18) and (5.20) we have

ˆAε |∇ W | ≥ ˆBε |∇ W | ≥ (1 -5ε) ˆBε |∇w 1 | = (1 -5ε) ˆΩ |∇w 1 | ≥ (1 -5ε)Σ(w). (5.21) Plugging (5.21) in (5.17) yields ˆAε |∇(v -u)| ≥ (1 -ε) ˆBε |∇ W | -2 ˆAε |∇u| ≥ (1 -ε)(1 -5ε)Σ(w) -2 ˆAε |∇u| ≥ (1 -6ε)Σ(w) -2 ˆAε |∇u|, (5.22) 
and (5.9) follows.

The next result is a direct consequence of Lemma 5.4.

Corollary 5.5. There exists a universal constant C such that for every ε > 0 we have

n ≥ 1/ε 2 =⇒ ˆΩ |∇(T n • u) -v| ≥ (1 -Cε) Σ(uv), ∀ u, v ∈ W 1,1
(Ω; S 1 ).

(5.23)

Proof. We shall use two basic properties of T n :

d S 1 (x, T n (x)) ≤ π(n -1) n 2 , ∀ x ∈ S 1 , (5.24) 
| .

T n | ≥ n -2 a.e. in S 1 .

(5.25)

Clearly it suffices to consider ε < π/20. Hence for n ≥ 1/ε 2 we can apply Lemma 5.4 with u := T n • u (thanks to (5.24)). By (5.25) we have

|∇(T n • u)| ≥ (n -2)|∇u| a.e.
on Ω, (5.26) so combining (5.7) and (5.9) gives (recall that A ε is defined in (5.6)):

ˆAε |∇(T n • u -v)| ≥ (1 -6ε)Σ(uv) - 2 (n -2) sin ε ˆAε |∇(T n • u -v)| ≥ (1 -6ε)Σ(uv) - 3 nε ˆAε |∇(T n • u -v)|;
this leads easily to (5.23).

Proof of Proposition 1.3. Recall (see (5.1)) that

Dist W 1,1 (E(u 0 ), E(v 0 )) = sup u∼u 0 d W 1,1 (u, E(v 0 )) ≤ Σ(u 0 v 0 ), (5.27) 
and in particular, ∀ n ≥ 3,

d W 1,1 (T n • u 0 , E(v 0 )) ≤ Σ(u 0 v 0 ).
(5.28)

On the other hand, from Corollary 5.5 we know that,

∀ ε > 0, ∀ n ≥ 1/ε 2 , d W 1,1 (T n • u 0 , E(v 0 )) ≥ (1 -Cε)Σ(u 0 v 0 ). (5.29)
We conclude combining (5.28) and (5.29).

Proof of (1.13). Use (1.18) and (5.27).

About equality cases in (1.19)

It is interesting to decide whether there exist maps u ∈ W 1,1 (Ω; S 1 ) for which equality holds in any of the two inequalities in (1.19). Consider the following properties of a smooth bounded domain Ω in R N , N ≥ 2 :

(P 1 ) There exists u ∈ W 1,1 (Ω; S 1 ) such that ˆΩ |∇u| = Σ(u) > 0.

(5.30) (P 2 ) There exists u ∈ W 1,1 (Ω; S 1 ) such that

d W 1,1 (u, E(1)) = Σ(u) > 0.
(5.31) (P * 2 ) There exist u ∈ W 1,1 (Ω; S 1 ) with Σ(u) > 0 and v ∈ E(1) for which

ˆΩ |∇(u -v)| = d W 1,1 (u, E(1)) = Σ(u).
(5.32) (P 3 ) There exists u ∈ W 1,1 (Ω; S 1 ) such that

d W 1,1 (u, E(1)) = 2 π Σ(u) > 0.
(5.33) (P * 3 ) There exist u ∈ W 1,1 (Ω; S 1 ) with Σ(u) > 0 and v ∈ E(1) for which

ˆΩ |∇(u -v)| = d W 1,1 (u, E(1)) = 2 π Σ(u). (5.34)
Very little is known about domains satisfying any of the above properties. The unit disc Ω = B(0, 1) in R 2 is an example of a domain for which (P 1 ) is satisfied. Indeed, for u = x/|x| it is straightforward that

Σ x |x| = 2π = ˆΩ ∇ x |x|
(see also [START_REF] Brezis | W 1,1 -maps with values into S 1 , in Geometric analysis of PDE and several complex variables[END_REF][START_REF] Brezis | Sobolev maps with values into the circle[END_REF]) whence (P 1 ) holds. In view of the following proposition we know that (P * 3 ) is also satisfied for Ω = B(0, 1) in R 2 . Proposition 5.6. Properties (P 1 ) and (P *

3 ) are equivalent. More precisely, let u ∈ W 1,1 (Ω; S 1 ) with Σ(u) > 0. Then, the following are equivalent: (a) u satisfies (5.30).

(b) There exist u 0 ∈ E(u) and v ∈ E [START_REF] Almgren | Co-area, liquid crystals, and minimal surfaces[END_REF] 

such that ˆΩ |∇(u 0 -v)| = 2 π Σ(u).
Proof of "(a) =⇒ (b)". Use Proposition 4.4 to find

ζ 0 ∈ S 1 such that v = P ζ 0 • u ∈ E(1) satisfies d W 1,1 (u, E(1)) ≤ ˆΩ |∇(u -v)| ≤ 2 π ˆΩ |∇u| = 2 π Σ(u), (5.35) 
and the result follows, with u 0 = u, since by (1.21) we have

d W 1,1 (u, E(1)) ≥ 2 π Σ(u).
(5.36)

Proof of "(b) =⇒ (a)". Let u 0 and v be as in statement (b). Set w 0 := u 0 v, so that w 0 ∼ u 0 .

By assumption and (4.2) we have:

2 π Σ(u 0 ) ≤ ˆΩ |∇(|w 0 -1|)| = ˆΩ |∇(|u 0 -v|)| ≤ ˆΩ |∇(u 0 -v)| = 2 π Σ(u 0 ). (5.37) 
Set w 1 := T • w 0 , where T : S 1 → S 1 is given by (4.3). By Lemma 4.1, w 1 ∼ w 0 ∼ u 0 , and by (4.6) and (5.37) we obtain that

ˆΩ |∇w 1 | = π 2 ˆΩ |∇(|w 0 -1|)| = Σ(u).
We do not know any domain Ω in R 2 for which (5.30) fails and we ask:

Open Problem 1. Is there a domain Ω in R N , N ≥ 2, for which property (P 1 ) (respectively, (P 3 )) does not hold?

It seems plausible that if Ω is the interior of a non circular ellipse, then (P 1 ) and (P 3 ) fail. We also do not know whether properties (P 3 ) and (P * 3 ) are equivalent.

Concerning properties (P 2 ) and (P * 2 ) we know even less:

Open Problem 2. Is there a domain Ω for which (P 2 ) holds (respectively, fails)?

We suspect that (P 2 ) is satisfied in every domain, but we do not know any such domain. In particular, we do not know what happens when Ω is a disc in R 2 .

6 Distances in W 1,p (Ω; S 1 ), 1 < p < ∞

Throughout this section we study classes in W 1,p (Ω; S 1 ), where 1 < p < ∞ and Ω is a smooth bounded domain in R N , N ≥ 2. We give below the proofs of the results stated in the Introduction.

6.1 Proof of Theorem 1.5

Proof of Theorem 1.5. The result is a direct consequence of the following analog of Corollary 4.3: for every u, v ∈ W 1,p (Ω; S 1 ) we have

∇(u -v) L p (Ω) ≥ 2 π inf w∼uv ∇w L p (Ω) . (6.1) 
The proof of (6.1) uses an argument identical to the one used in the proofs of Lemma 4.2 and Corollary 4.3. Indeed, we first note that

ˆΩ |∇(u -v)| p ≥ ˆΩ |∇(|u -v|)| p = ˆΩ |∇(|uv -1|)| p . (6.2) 
Next, by (4.5) we have

ˆΩ |∇(|uv -1|)| p = 2 π p ˆΩ |∇(T • (uv))| p ≥ 2 π p inf w∼uv ˆΩ |∇w| p . (6.3) 
The result clearly follows by combining (6.2) with (6.3).

Proof of Theorem 1.7

We shall need the following technical lemma.

Lemma 6.1. For every w 0 ∈ W 1,p (Ω; S 1 ) we have

inf w∼w 0 ∇(|w -1|) L p (Ω) = 2 π inf w∼w 0 ∇w L p (Ω) . (6.4) 
Proof. The inequality "≥" follows from (6.3) (taking v = 1) so it remains to prove the reverse inequality. The argument is almost identical to the one used in the proof of [27, Prop 3.1]; we reproduce the argument for the convenience of the reader. We shall need the inverse S := T -1 of T : S 1 → S 1 that was defined in (4.3). It is given by: S(e ıθ ) = e ıφ , with φ = 2 sin -1 (θ/π), ∀ θ ∈ (-π, π].

This map belongs to C(S 1 ; S 1 )∩C 1 (S 1 \{-1}; S 1 ) but it is not Lipschitz. We therefore define, for each small ε > 0, an approximation S ε by:

S ε (e ıθ ) = e ıφ with φ = 2 sin -1 (J ε (θ/π)) , ∀ θ ∈ (-π, π], (6.5) 
where J ε satisfies:

J ε (±1) = ±1, J ε (±1) = 0, J ε (t) = t, for |t| ≤ 1 -ε, 0 < J ε (t) < c 0 , for |t| < 1, c 1 ε ≤ |J ε (t)| ≤ c 2 ε , for 1 - ε 2 ≤ |t| ≤ 1, (6.6) 
for some positive constants c 0 , c 1 , c 2 (independent of ε). Clearly S ε ∈ C 1 (S 1 ; S 1 ) with deg(S ε ) = 1, so by Lemma 4.1, for any w ∈ E(w 0 ) we have Therefore, by dominated convergence,

w ε := S ε • w ∈ E(w 0 ). Since |S ε (e ıθ ) -1| = 2|J ε (θ/π)| it follows from (6.6) that d dθ |S ε (e ıθ ) -1| ≤ C, ∀ θ, ∀ ε. (6.7) 
lim ε→0 ˆΩ |∇|w ε -1|| p = 2 π p ˆΩ |∇w| p ,
and since the above is valid for any w ∈ E(w 0 ), the inequality "≤" in (6.4) follows.

The next lemma is the main ingredient of the proof of Theorem 1.7.

Lemma 6.2. For every w ∈ W 1,p (Ω; S 1 ) and 0 < δ < 1 there exist a set A = A(w, δ) ⊂ Ω and two functions w 0 , w 1 ∈ W 1,p (Ω; S 1 ) such that: (i)

w 1 = w 0 in Ω \ A; (ii) w 0 = w 1 in A; (iii) w 1 ∈ E(w) and w 0 ∈ E(1); (iv) ´Ω |∇(w 1 -w 0 )| p ≤ (1 + C p δ) ´Ω |∇|w -1|| p ; (v) ´Ω |∇w 1 | p = ´Ω |∇w 0 | p ≤ C(δ, p) ´Ω |∇w| p .
Proof. Let I denote the open arc of S 1 , I := A(2π -δ, 2π) = {e ıθ : θ ∈ (2π -δ, 2π)}, and let A := w -1 (I). Define T 1 : S 1 → S 1 by T 1 (e ıθ ) = e ıπθ/(2π-δ) , if 0 ≤ θ ≤ 2π -δ (-1)e ıπ(θ-(2π-δ))/δ , if 2π -δ < θ < 2π .

Note that the image of T 1 , restricted to the arc S 1 \ I is S 1 + , and that S 1 + is covered counterclockwise. Similarly, on the arc I, the image of T 1 is S 1 -, covered again counterclockwise. It follows that deg(T 1 ) = 1. Next we define T 0 : S 1 → S 1 by P -1 • T 1 (see (4.10)), or explicitly by

T 0 (e ıθ ) := T 1 (e ıθ ), if 0 ≤ θ ≤ 2π -δ T 1 (e ıθ ), if 2π -δ < θ < 2π .
Clearly deg(T 0 ) = 0. Define w 0 := T 0 • w and w 1 := T 1 • w.

Properties (i)-(ii) are direct consequences of the definition of w 0 , w 1 . The fact that w 0 ∈ E(1) and w 1 ∈ E(w) (i.e., property (iii)) follows from Lemma 4.1. Since T 0 and T 1 are Lipschitz maps (actually, piecewise smooth, with a single corner at z = e ı(2π-δ) ), the chain rule implies that

|∇w 0 | = |∇w 1 | ≤ (π/δ) |∇w|, a.e. in A (π/(2π -1)) |∇w|, a.e. in Ω \ A ,
whence property (v). Finally, in order to verify property (iv) we first notice that on Ω \ A we have

w := w 1 w 0 = w 2 1 = Q • w,
where Q(e ıθ ) := e 2ıθπ/(2π-δ) for θ ∈ (0, 2π -δ). Therefore,

ˆΩ |∇(w 1 -w 0 )| p = ˆΩ\A |∇(w 1 -w 0 )| p = ˆΩ\A |∇|w 1 -w 0 || p = ˆΩ\A ∇| w -1| p ≤ (1 + C p δ) ˆΩ\A ∇|w -1| p ≤ (1 + C p δ) ˆΩ |∇|w -1|| p .
We are now in a position to present the Proof of Theorem 1.7. In view of Theorem 1.5 we only need to prove the inequality "≤" in (1.28). For any w ∈ E(u 0 ) we may apply Lemma 6.2 with a sequence δ n → 0 to obtain that

d W 1,p (E(u 0 ), E(1)) ≤ inf w∼u 0 ∇|w -1| L p (Ω) ,
and the result follows from Lemma 6.1.

Proof of Theorem 1.9

We next turn to the unboundedness of the Dist W 1,p -distance between distinct classes.

Proof of Theorem 1.9 when u 0 = 1. For every n ≥ 1 let u n := e ınx 1 (we write x = (x 1 , . . . , x N )), so clearly u n ∈ C ∞ (Ω; S 1 ) ⊂ E(1). We claim that lim

n→∞ d W 1,p (u n , E(v 0 )) = ∞, (6.8) 
which implies of course (1.29) in this case. Fix a small ε > 0, e.g., ε = π/8. For each v ∈ E(v 0 ) let w n := u n v and define the set A ε as in (5.6), with u = u n . Note that |∇u n (x)| = n, x ∈ Ω, so by Lemma 5.3 we have

|∇(u n -v)| ≥ n sin ε a.e. in A ε . (6.9) Therefore, ˆAε |∇(u n -v)| p ≥ |A ε |(sin ε) p n p = c 1 |A ε |n p . (6.10)
Using (5.5) instead of (5.4) in the computation leading to (6.9) yields

|∇(u n -v)| ≥ sin ε 2 (|∇u n | + |∇v|) ≥ sin ε 2 |∇w n |, a.e. in A ε . (6.11)
We set w n := K ε • w n (see (5.19)) and recall that K ε ∈ Lip(S 1 ; S 1 ),

.

K ε ∞ = π/(π -2ε) and deg(K ε ) = 1. We have w n ∈ E(v 0 ) and ∇ w n = 0 a.e. in Ω \ A ε . By (1.4), ˆAε |∇ w n | = ˆΩ |∇ w n | ≥ Σ(v 0 ). (6.12) 
Using Hölder inequality and (6.12) gives 

ˆAε |∇ w n | p ≥ ´Aε |∇ w n | p |A ε | p-1 ≥ (Σ(v 0 )) p |A ε | p-1 . ( 6 
-v)| p ≥ c 2 |A ε | p-1 , (6.14) 
whence,

|A ε | ≥ c 1/(p-1) 2 ˆAε |∇(u n -v)| p -1/(p-1)
. (6.15)

Plugging (6.15) in (6.10) finally yields ˆAε

|∇(u n -v)| p ≥ c 3 n p-1 ,
and (6.8) follows.

Proof of Theorem Theorem 1.9 in the general case. Consider an arbitrary u 0 ∈ W 1,p (Ω; S 1 ). We set u n := e ınx 1 u 0 ∈ E(u 0 ). By the triangle inequality,

|∇(e ınx 1 -u 0 v)| = |∇ (u 0 (u n -v))| ≤ |∇(u n -v)| + 2|∇u 0 |.
Therefore,

∇(u n -v) L p (Ω) ≥ ∇(e ınx 1 -u 0 v) L p (Ω) -2 ∇u 0 L p (Ω) ,
and the result follows from the first part of the proof.

6.4

An example of strict inequality in (1.27) Proposition 6.3. There exist a smooth bounded simply connected domain Ω in R 2 and u 0 , v 0 ∈ 1≤p<2 W 1,p (Ω; S 1 ) such that

dist W 1,p (E(u 0 ), E(v 0 )) > 2 π inf w∼u 0 v 0 ∇w L p (Ω) , ∀ 1 < p < 2. (6.16)
Proof. The construction resembles the one used in the proof of [START_REF] Rubinstein | The distance between homotopy classes of S 1 -valued maps in multiply connected domains[END_REF]Proposition 4.1] (for a multiply connected domain and p = 2), but the details of the proof are quite different.

Step 1. Definition of Ω ε and u 0 , v 0 Consider the three unit discs with centers at the points a -:= (-3, 0), a := (0, 0) and a + := (3, 0), respectively:

B -:= B(a -, 1 
), B := B(a, 1) and B + := B(a + , 1).

For a small ε ∈ (0, 1/4), to be determined later, define the domain Ω ε by Hence, B is connected to B -and B + by two narrow tubes (see Figure 1). We can Ω ε slightly near the "corners"=the contact points of the tubes with the circles, in order to have a smooth Ω ε . But we do it keeping the following property: Ω ε is symmetric with respect to reflections in both the x and y-axis.

Ω ε := B -∪ B ∪ B + ∪ {(x 1 , x 2 ); x 1 ∈ (-3, 3), x 2 ∈ (-ε, ε)}. ( 6 
(6.18)

For later use we denote by Ω + and Ω -the two components of Ω ε \ B (with Ω + ⊂ {z; Re z > 0}). We define the maps u 0 , v 0 ∈ 1≤p<2 W 1,p (Ω ε ; S 1 ) by

u 0 := x -a - |x -a -| x |x| 2 x -a + |x -a + | , v 0 := x -a - |x -a -| x |x| x -a + |x -a + | , (6.19) 
and then

w 0 := u 0 v 0 = x |x| . (6.20)
Step 2. Properties of energy minimizers in E(w 0 ) We denote by W ε ∈ W 1,p (Ω ε ; S 1 ) a map realizing the minimum in

S ε = inf w∼w 0 ∇w L p (Ωε) . (6.21) 
Note that the minimizer W ε is unique, up to multiplication by a complex constant of modulo one. This follows from the strict convexity of the functional: In the remaining part of Ω + , namely Ω + ∩ {x 1 > 1 + ε} we simply set w ≡ ζ. We use a similar construction for w on Ω -, and this completes the proof of (6.23).

F (ϕ) = ˆΩε ∇ e ıϕ x |x| p over ϕ ∈ W 1,p (Ω ε ; R). (6.22) We next claim that ˆB ∇ x |x| p ≤ ˆB |∇W ε | p ≤ ˆΩε |∇W ε | p ≤ ˆB ∇ x |x| p + Cε 2 , ( 6 
We shall also use a certain symmetry property of W ε . We claim that:

W ε (x) = -W ε (-x) in Ω ε . (6.24) 
Indeed, since W ε (-x) is also a minimizer in (6.21), we must have

W ε (-x) = e ıα W ε (x) for some constant α ∈ R. (6.25) Write W ε = e ıΨε x |x| , with Ψ ε ∈ W 1,p (Ω ε ; R). (6.26) 
Plugging (6.26) in (6.25) gives

-e ıΨε(-x) x |x| = e ıα e ıΨε(x) x |x| , whence e ı(Ψε(-x)-Ψε(x)) = -e ıα . It follows that Ψ ε (-x)-Ψ ε (x) ≡ const in Ω ε . Since Ψ ε (-x)- Ψ ε (x)
is odd, it follows that the constant must be zero. Hence Ψ ε (-x) = Ψ ε (x) a.e. in Ω ε , e ıα = -1 and (6.24) follows from (6.25).

The main property of W ε that we need is the following: there exists

ζ ε ∈ S 1 such that |W ε -ζ ε | ≤ c 0 ε 2/p on B + , (6.27 
)

|W ε + ζ ε | ≤ c 0 ε 2/p on B -. (6.28) 
In order to verify (6.27)-(6.28) we first notice that we may write W ε = e ıΦε in Ω ε ∩ {x 1 > 1}. Using (6.23) and Fubini Theorem we can find t ε ∈ (1, 3/2) such that the segment

I ε = {(t ε , x 2 ); x 2 ∈ (-ε, ε)} satisfies ˆIε |∇Φ ε | p = ˆIε |∇W ε | p ≤ Cε 2 .
By Hölder inequality it follows that

|Φ ε (z 1 ) -Φ ε (z 2 )| ≤ Cε 2/p for all z 1 , z 2 ∈ I ε . Hence, there exists α ε ∈ R satisfying |Φ ε (z) -α ε | ≤ Cε 2/p , ∀ z ∈ I ε . (6.29)
We claim that (6.29) continues to hold in G

ε := Ω ε ∩ {x 1 > t ε }, i.e., |Φ ε (x) -α ε | ≤ Cε 2/p , ∀ x ∈ G ε . (6.30) Indeed, defining Φ ε (x) := max α ε -Cε 2/p , min(Φ ε (x), α ε + Cε 2/p ) ,
and then W ε := e ıΦε , we clearly have ´Gε |∇ W ε | p ≤ ´Gε |∇W ε | p , with strict inequality, unless (6.30) holds. Setting ζ ε := e ıαε , we deduce (6.27) from (6.30). Finally, using the symmetry properties, (6.18) of Ω ε and (6.24) of Ψ ε , we easily deduce (6.28) from (6.27).

Step 3. A basic estimate for maps in W 1,p (S 1 ; S 1 )

The following claim provides a simple estimate which is essential for the proof. The case p = 2 was proved in [27, Lemma 4.1] and the generalization to any p ≥ 1 is straightforward. We include the proof for the convenience of the reader.

Claim. For any p ≥ 1, let f, g ∈ W 1,p (S 1 ; S 1 ) satisfy:

deg f = deg g = k = 0 and |(f -g)(ζ)| = η > 0, for some point ζ ∈ S 1 . Then, ˆS1 | ḟ -ġ| p ≥ 2η p π p-1 . ( 6 

.31)

Proof of Claim. Set w := f -g = w 1 + ıw 2 . We may assume without loss of generality that w(1) = (f -g)(1) = η ı. Since deg(g) = 0, there exists a point θ 1 ∈ (0, 2π) such that g(e ıθ 1 ) = ı, whence w 2 (e ıθ 1 ) = -tı for some t ≥ 0. Hölder's inequality, and a straightforward computation yield

ˆS1 |w | p ≥ ˆS1 |w 2 | p ≥ (η + t) p θ p-1 1 + (η + t) p (2π -θ 1 ) p-1 ≥ 2 (η + t) p π p-1 > 2η p π p-1 ,
and (6.31) follows.

Remark 6.4. We thank an anonymous referee for suggesting a simplification of our original argument for the proof of the Claim, and for pointing out that it holds under the weaker assumption: either f or g has a nontrivial degree.

Step For n ≥ n 1 (ε) we have: on each circle ∂B(a + , r) with r ∈ (1/2, 1) \ Λ ε there exists at least one point where |u n -v n | ≥ 2/3. Thus we may apply the Claim from Step 3 with η := 2/3, f := u n ∂B(a + ,r) and g := v n ∂B(a + ,r) to obtain by (6.31) (after a suitable rescaling): ˆ∂B(a + ,r) |∇(u n -v n )| p ≥ 2(rπ) The inequality (6.46) clearly contradicts (6.34) for n large enough if ε is chosen sufficiently small. Remark 6.5. In the course of the proof of Proposition 6.3 we used the following fact: In case p = 1 integration over r ∈ (0, 1) of (6.48) yields (6.47). In case 1 < p < 2 we use (6.48) and Hölder inequality, and then integration over r yields ˆΩ |∇u| p ≥ 2π ˆ1 0 dr r p-1 = 2π 2 -p = ˆΩ |∇u 0 | p , and (6.47) follows.

Examining the equality cases for the inequalities in (6.48) (and in Hölder inequality when 1 < p < 2) we obtain in addition the following conclusion: equality holds in (6.47) if and only if (i) for 1 < p < 2, u = e ıα u 0 for some constant α;

(ii) for p = 1, u(re ıθ ) = e iϕ(θ) where ϕ ∈ W 1,1 ([0, 2π]; R) satisfies ϕ(2π) -ϕ(0) = 2π and ϕ ≥ 0 a.e. on [0, 2π]. The difference between (i) and (ii) is the main reason why for the same u 0 and v 0 as in the proof of Proposition 6.3, we have the strict inequality (6.16) for 1 < p < 2, while for p = 1 the equality (1.12) holds.

ϕ∈W 1 , 1 (

 11 Ω;R) ˆΩ |∇(ue -ıϕ )| = inf v∈E ˆΩ |∇(uv)|.(1.4)

  u∈E a,d ˆΩ |∇u| 2 ? (3.2) (ii) Consider two sets of distinct points in Ω, a = (a 1 , a 2 , . . . , a k ) and b = (b 1 , b 2 , . . . , b l ), each with associated vectors of degrees, d ∈ Z k and e ∈ Z l , respectively. What is the H 1 -distance between E a,d and E b,e i.e., analogously to (1.10), dist 2 H 1 (E a,d , E b,e ) := inf u∈E a,d inf v∈E b,e ˆΩ |∇(u -v)| 2 ? (3.3)

  ) For any pair a ∈ Ω k , b ∈ Ω l and associated vectors of degrees, d ∈ Z k and e ∈ Z l ,what is the W 1,1 -distance between E a,d and E b,e , dist W 1,1 (E a,d , E b,e ) := inf u∈E a,d inf v∈E b,e ˆΩ |∇(u -v)| ? (3.14) (iii') What is the value of Dist W 1,1 (E a,d , E b,e ) := sup u∈E a,d inf v∈E b,e ˆΩ |∇(u -v)| ? (3.15)

Corollary 4 . 3 .

 43 w)∇w a.e. in [w = 1] 0 a.e. in [w = 1] . Integration of (4.5) leads to ˆΩ |∇|w -1|| = 2 π ˆΩ |∇(T • w)|. (4.6) By Lemma 4.1, we have Σ(T • w) = Σ(w), and therefore (4.2) follows from (4.6). For every u, v ∈ W 1,1 (Ω; S 1 ) we have ˆΩ |∇(u -v)| ≥ Setting w = uv and applying (4.2) yields ˆΩ |∇(u -v)| ≥ ˆΩ |∇(|u -v|)| = ˆΩ |∇(|w -1|)| ≥ 2 π Σ(uv).

4. 2

 2 Proof of(1.12) We begin by introducing some notation. For an open arc in S 1 we use the notationA(α, β) = { e ıθ ; θ ∈ (α, β)} (4.8) for any α < β. We shall also use a specific notation for half-circles; for every ζ ∈ S 1 write ζ = e ıϕ with ϕ ∈ (-π, π] and denote I(ζ, -ζ) = A(ϕ, ϕ + π). Note that z ∈ I(ζ, -ζ) ⇐⇒ ζ ∈ I(-z, z). (4.9) For each ζ = e ıϕ ∈ S 1 define a map P ζ : S 1 → I(ζ, -ζ) by

. 14 )

 14 Indeed, we justify (4.14) e.g. when ζ = 1. In view of (4.13), we have to prove that |∇Im u(x)| = |Re u(x)| |∇u(x)| for a.e. x. (4.15) If we differentiate the identity |u| 2 ≡ 1, we obtain Re u ∇(Re u) + Im u ∇(Im u) = 0 a.e.; this easily implies (4.15). Using (4.9) we find that, with u(x) = e ıθ and A(x) = {ϕ ∈ (-π, π]; u(x) / ∈ I(e ıϕ , -e ıϕ )}, we have ˆS1 ˆΩ |∇w ζ (x)| dx dζ = ˆπ -π ˆΩ χ A(x) (ϕ) 2| cos(θ -ϕ)||∇u(x)| dx dϕ = ˆΩ |∇u(x)|( ˆθ+π θ 2| cos(θ -ϕ)| dϕ) dx = 4 ˆΩ |∇u(x)| dx, which is (4.11). Here we have used ´θ+π θ 2| cos(θ -ϕ)| dϕ = ´π 0 2| cos t| dt = 4.

ˆΩ

  |∇(w n -P ζn • w n )| = 2 π Σ(u 0 v 0 ). (4.18) Passing to a subsequence, we may assume ζ n → ζ ∈ S 1 -. Therefore, P ζ (1) = 1. Denote F n := P ζn • w n . Since w n → 1 a.e., we have lim n→∞ F n = lim n→∞ P ζ • w n = 1 a.e., and it follows that F n -w n → 0 a.e. (4.19)

. 20 ) 1 5. 1

 2011 From (4.18)-(4.20) we deduce thatlim n→∞ ˆΩ |∇(vF n -vw n )| = 2 π Σ(u 0 v 0 ),and the result follows.5 Proof of (1.13) in Theorem 1.An upper bound for Dist W 1,1

  [START_REF] Brezis | Distances between homotopy classes of W s[END_REF]) with (5.13) yields | W -w| ≤ 3ε and d S 1 ( W , w) ≤ 6ε in Ω.(5.16)

Put

  A ε := {x ∈ Ω : w(x) ∈ A(-π(1 -ε), π(1 -ε))}. By (4.5), |∇|w ε -1|| = 2 π |∇w| a.e. on A ε , while, by (6.7), |∇|w ε -1|| ≤ C|∇w| a.e. on Ω.

Figure 1 :

 1 Figure 1: The domain Ω ε (before smoothing)

2 -

 2 27) yields| w n -1| ≥ √ 2c 0 ε on B + \ A ε , ∀ n ≥ n 1 (ε), and choosing ε < ( √ 2 -1)/(2c 0 ) guarantees that | w n -1| ≥ 1 on B + \ A ε , ∀ n ≥ n 1 (ε). (6.39)Going back to the definition of T in (4.3), we find by a simple computation the following equivalences for e ıθ = T (e ıϕ ) (with θ ∈ (-π, π)):|T (e ıϕ ) -1| ≥ 1 ⇐⇒ |θ| = π| sin(ϕ/2)| ≥ π/3 ⇐⇒ |e ıϕ -1| = 2| sin(ϕ/2)| ≥ 2/3. (6.40)Using (6.40) we may rewrite (6.39) in terms of the original sequence {w n }:|u n -v n | = |w n -1| ≥ 2/3 on B + \ A ε , ∀ n ≥ n 1 (ε). (6.41) Consider the set Λ ε = {r ∈ (1/2, 1); ∂B(a + , r) ⊂ A ε }. (6.42) By (6.38) we clearly have ε ≥ |A ε | ≥ (1/2)|Λ ε | • 2π, whence |Λ ε | ≤ ε π . (6.43)

Let 1 ≤

 1 p < 2 and let Ω be the unit disc. Set u 0 (x) := x/|x|, ∀ x ∈ Ω. Then ˆΩ |∇u| p ≥ ˆΩ |∇u 0 | p , ∀ u ∈ E(u 0 ). (6.47) We sketch the proof for the convenience of the reader. Let u ∈ E(u 0 ). Let C r := {z; |z| = r}. Since we may write u = e ıϕ u 0 , with ϕ ∈ W 1,p , for a.e. r ∈ (0, 1) we have u Cr ∈ W 1,p (C r ; S 1 ) and deg u Cr = 1. This implies that for a.e. r ∈ (0, 1) we have ˆCr |∇u| ≥ ˆCr | u| = ˆCr |u ∧ u| ≥ ˆCr u ∧ u = 2π = ˆCr u 0 ∧ u0 = ˆCr |∇u 0 |. (6.48)

  .10) so that for z / ∈ I(ζ, -ζ), P ζ (z) is the reflection of z with respect to the line ζ = {tζ; t ∈ R}. Proof. For each ζ ∈ S 1 set v ζ := P ζ • u. By Lemma 4.1, v ζ ∈ E(1), since deg P ζ = 0. We note that

	Next we state	
	Proposition 4.4. For every u ∈ W 1,1 (Ω; S 1 ) we have	
	ˆS1	ˆΩ |∇(u -P ζ • u)| dx dζ = 4 ˆΩ |∇u| dx.	(4.11)

  .23) for some constant C. Here and in the sequel we denote by C different constants that are independent of ε and p. Indeed, the first inequality in (6.23) is clear since the restriction of W ε to B belongs to the class of x/|x| in B, and the latter map is a minimizer of the energy in its class (see Remark 6.5 below). For the proof of the last inequality in (6.23) it suffices to construct a comparison map w ∈ E(w 0 ) as follows. We first set w = x/|x| in B. Then extend it to Ω + ∩ {x 1 ≤ 1 + ε} in such a way that w ≡ ζ (for some constant ζ ∈ S 1 ) on Ω + ∩ {x 1 = 1 + ε}. Such an extension can be constructed with ∇ w L ∞ ≤ C, whence ˆΩ+ ∩{x 1 <1+ε} |∇ w| p ≤ Cε 2 .

  4. ConclusionConsider two sequences {u n } ⊂ E(u 0 ) and {v n } ⊂ E(v 0 ) such thatlim n→∞ ∇(u n -v n ) L p (Ωε) = dist W 1,p (E(u 0 ), E(v 0 )). (6.32)By a standard density argument we may assume that u n , v n ∈ C ∞ (Ω ε \ {a -, a, a + }) for all n.By (6.33) and (6.23) there exists a constantC 0 such that ˆΩε |∇(u n -v n )| p ≤ 2 π C 0 ε 2 , ∀ n ≥ n 0 (ε). (6.34)Set w n := u n v n and note that by the same computation as in (6.2)-(6.3) we have ˆΩε|∇(u n -v n )| p ≥ ˆΩε |∇(|u n -v n |)| p = 2 π(recall that T is defined in (4.3)). Combining (6.32),(6.33) and (6.35) yields thatw n := T •w n satisfies lim n→∞ ∇ w n L p (Ωε) = S ε ,and up to passing to a subsequence we haveW ε = lim n→∞ w n in W1,p (Ω; S 1 ), (6.36) where W ε is a minimizer in (6.21). Recall that W ε is unique up to rotations; the particular W ε in (6.36) is chosen by the subsequence. For any ζ ∈ S 1 we have max(|ζ -1|, |ζ + 1|) ≥ √ 2. In particular, for ζ ε associated with W ε (see (6.27)-(6.28)) we may assume without loss of generality that By (6.36) and Egorov Theorem there exists A ε ⊂ Ω ε satisfying |A ε | ≤ ε and w n → W ε uniformly on Ω ε \ A ε , (6.38) again, after passing to a subsequence. Combining (6.38) with (6.37) and (6.

				p ˆB	∇	x |x|	
								p	ˆΩε	|∇(T • w n )| p ≥	2 π	p	S p ε	(6.35)
	|ζ ε -1| ≥	√	2.					(6.37)
	Assume by contradiction that				
	dist W 1,p (E(u 0 ), E(v 0 )) =	2 π	S ε =	2 π	min w∼w 0	∇w L p (Ωε) (see (6.21)).	(6.33)

p +

  1-p 2 3 -v n )| p ≥ ˆ(1/2,1)\Λε ˆ∂B(a + ,r) |∇(u n -v n )| p ≥ (1/2 -ε/π)γ p . (6.45) In addition, by (1.27), applied to u n B , v n B , we clearly have ˆB |∇(u n -v n )| p ≥ 2 π

							p	≥ (2π)	2 3π	p	:= γ p .	(6.44)
	Integrating (6.44), taking into account (6.43), yields
	ˆB+					
		|∇(u n p ˆB	∇	x |x|	p	,
	which together with (6.45) gives		
	ˆΩε	|∇(u n -v n )| p ≥	2 π	p ˆB	∇	x |x|

p + (1/2 -ε/π)γ p , ∀ n ≥ n 1 (ε).

(6.46)
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Remark 6.6. Consider the maps u 1 := x/|x| and v 1 := 1 in Ω ε (as in the proof of Proposition 6.3). By Theorem 1.7 we have dist W 1,p 

although u 1 v 1 = u 0 v 0 . This shows that in general it is not even true that dist W 1,p (E(u), E(v)) depends only on E(uv) when 1 < p < 2. A similar phenomenon occurs when Ω is multiply connected and p = 2 (see [START_REF] Rubinstein | The distance between homotopy classes of S 1 -valued maps in multiply connected domains[END_REF]Remark 4.1]); a comparable argument works for p > 2.

Appendix. Proof of Proposition 1.2

Proof of Proposition 1.2. We fix a sequence ε n 0 and use (1.4) to find a sequence