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under Lamb conditions
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72085 Le Mans Cédex, France

The propagation of guided elastic waves in porous materials saturated by air under Lamb conditions is studied theoretically 
and experimentally. The modes are derived from expressing the boundary conditions on the normal and tangential stresses and 
the displacements at the interfaces between the porous layer and the surrounding fluid. The stresses and the fluid pressure
inside the porous medium are obtained from Biot’s equations of poroelasticity. Symmetrical and antisymmetrical modes are
found when the porous layer is loaded by the same fluid on both sides. Damping mechanisms include viscous and thermal 
exchanges between the solid and the fluid, in addition to the classical structural damping. Using an experimental setup based
on the generation of standing waves in the layer and taking the spatial Fourier transform of the displacement profile, the phase
velocities of three modes were measured for two porous materials in a frequency range between 80 Hz and 4 kHz. The
measurements confirm the theoretical predictions and provide information on the shear modulus of a sound-absorbing material 
in a wide frequency range. 
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I. INTRODUCTION

Surface waves at the interface between a solid a
fluid and guided waves in layers of solid have long b
established as important tools for determining material p
erties ssee Refs. 1,2d. For porous materials, theoretical
experimental studies of surface waves were presente
liquid-saturated media,3,4 in materials saturated by air f
applications in outdoor sound propagation,5,6 and for mate
rial characterization in highly porous absorbent mate
saturated by air at ultrasonic frequencies.7,8 In air-saturate
materials, the solid is generally more rigid and heavier
air, and the study of surface waves is often restricted to
wave propagating in the air above the porous interface i
rigid frame approximation. More recently, Allardet al.9 have
studied the structure-borne surface wave in soft porous
terials, with the determination of the shear modulus at
high frequencies as a direct application. Making the link w
laser ultrasonics for material characterization, Allardet al.10

studied the deformation and phase velocities of laser-ind
surface waves at a fluid-saturated porous interface in
Rayleigh wave regime. The transmission and reflection c
ficients of water-saturated porous plates were also stu
theoretically by Belloncleet al.11 More recently, Boeckxet
al.12 presented a theoretical and experimental study o
guided modes in thin porous layers lying on a rigid subs
and saturated by air. It was found that two sets of gu
1

a

-

r

-

d
e
-
d

waves can propagate in a porous layer: the structure-
guided waves, with the Rayleigh and the shear velocitie
high-frequency limits, and the fluid-borne guided wa
with the velocity of Biot’s wave of the second kind as
high-frequency limit. An experimental principle for the d
tection of these waves in highly damping materials was
gested. The main contribution of this work to the mechan
characterization of porous materials was the possibilit
access the intermediate frequency ranges200 Hz–1.5 kHz
typicallyd between the frequencies described by clas
transfer function methods13,14 at low frequencies and th
Rayleigh wave characterization9 in the high-frequency limi

In this article, guided waves in porous layers un
Lamb conditions are studied and a new experimental
figuration is proposed. The modes are derived by using
placement potentials to derive the normal and tange
stresses and by expressing the boundary conditions a
interfaces between the porous layer and the surroun
fluid. The stresses and the fluid pressure inside the p
medium are obtained from Biot’s equations
poroelasticity.15 Symmetrical and antisymmetrical modes
found in a porous medium if the layer is loaded by the s
fluid on both sides. The materials studied exhibit high st
tural damping, and complex elastic moduli have to be u
In addition, the viscous and thermal interactions betwee
solid and the fluid are included in the model. An experim
tal setup based on the generation of standing waves in a
of finite size is proposed for the measurement of the p
velocities of porous layers under Lamb conditions.

phase velocities for two different materials are measured be-
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tween 80 Hz and 4 kHz. The experimental results are c
pared with the model and provide information on the s
modulus of a sound-absorbing material in a wide freque
range that is difficult to access with classical methods.

II. GUIDED WAVES IN A POROUS LAYER SATURATED
BY A FLUID UNDER LAMB CONDITIONS

A. Displacement potentials

In the following, the dispersion equation of the guid
waves in a porous layer with open pores under Lamb co
tions are derived from the displacement potentials, the
pressions for the displacements, stresses, and the bou
conditions. A porous plate of thicknessH is loaded on bot
sides with two different fluids in the general casesFig. 1d.
The wave propagation in the porous medium is describe
two scalar potentialsw1 andw2 associated with two compre
sional waves and by one vector potential, which is assoc
with a shear wave and whose only nonzero componentc is
on thez axis. The potentialsw1

f andw2
f are defined for com

pressional waves in the surrounding fluids. These poten
satisfy the equations of propagation

¹2w1 −
1

VL1

2 ]t
2w1 = 0, s1ad

¹2w2 −
1

VL2

2 ]t
2w2 = 0, s1bd

¹2c −
1

VT
2]t

2c = 0 s1cd

and

¹2w1
f −

1

VF1

2 ]t
2w1

f = 0, s2ad

¹2w2
f −

1

VF2

2 ]t
2w2

f = 0, s2bd

whereVL1
and VL2

are the velocities of the two Biot com

pressional waves15 and VT the velocity of the Biot shea
wave.VF1

andVF2
are the free velocities in the surround

fluids. The Biot velocities are obtained from

1

VL1

2 =
1

2

Pr22 + Rr11 − 2Qr12

PR− Q2 F1 ± S1 − 4

3
sPR− Q2dsr11r22 − r12

2 d
2 D1/2G, i = 1,2 s3d

FIG. 1. Layer of material under Lamb conditions and system of coordin
sPr22 + Rr11 − 2Qr12d 2
-

-
-
ry

y

d

s

VT =Î Ns

s1 − fdrs + S1 −
1

a`
Dfr f

, s4d

wheref is the porosity,a` is the tortuosity,rs andrf are the
densities of the solid and of the fluid, respectively,r11,r12,
andr22 are the elements of a density matrix;15 Ns is the shea
modulus of the porous frame, andP,Q, andR are the elasti
coefficients defined by Biot and Willis16 for a fluid-saturate
porous medium. These coefficients are functions of the
modulus of the solidKs, of the porous frameKb, and of the
fluid Kf. The attenuation by viscous friction can be inclu
by using a complex tortuosity functionasvd to replacea`.17

The thermal exchanges can be accounted for through th
of a frequency-dependent elastic modulusKf.

18 The poten
tials are functions of the direction of propagationx, of the
direction perpendicular to the direction of propagationy, and
of the timet Harmonic solutions are chosen in time and ix.
For the dependence along they axis, the linear combinatio
of hyperbolic sines and cosines proposed by Ewinget al.,19

is chosen for the potentials in the porous layer. The mo
tion for this choice is that true symmetrical and antis
metrical modes do not exist in a plate loaded with two
ferent fluids on either side, and a general form is chose
it will be shown in Sec. II C, the symmetry of the plate wh
surrounded by a single fluid will result in the exsistenc
symmetrical and antisymmetrical modes. The two familie
dispersion curves corresponding to symmetrical and
symmetrical modes are decoupled can cross each o20

The potentials in the porous medium and the two poten
in the fluid are written as

w1 = sA1coshsp1yd + A2sinhsp1yddeisvt−kxd, s5d

w2 = sB1coshsp2yd + B2sinhsp2yddeisvt−kxd, s6d

c = sC1coshsqyd + C2sinhsqyddeisvt−kxd, s7d

w1
f = D1e

−g1yeisvt−kxd for y ù
H

2
, s8d

w2
f = D2e

g2yeisvt−kxd for y ø −
H

2
, s9d

whereA1,A2,B1,B2,C1,C2,D1, and D2 are constants,v is
the angular frequency,p1,2,q, andg1,2 are they component
of the wave numbers for the different potentials, andk is
their commonx component. Upon inserting the expressi
for the potentials in the equations of propagations1d ands2d,
the following relations are found:

P1,2
2 − k2 +

v2

VL1,2

2 = 0, s10d

q2 − k2 +
v2

V2 = 0, s11d

.

T
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v2

VF1,2

2 = 0. s12d

Conditions on the imaginary parts ofk and of g1,2 must be
fulfilled for the guided waves in the material to be physica12

Also, the real part ofg1,2 will determine whether the mod
radiate energy in the surrounding fluids 1 and 2sleaky Lamb
modesdor the fluid waves are localized near the interfac

B. Boundary conditions on stresses
and normal displacement

The boundary conditions on the normal and tange
stresses aty= ± H/2 are given by

syy
f = − fP1,2, s13d

syy
s = − sl − fdP1,2, s14d

sxy
s = 0, s15d

whereP1,2 are the pressures exerted by the surrounding
ids 1 and 2 aty= ±H /2, andsyy

f andsyy
s are the Biot stresse

along they axis for the effective fluid in the porous mediu
and the solid frame. An additional boundary condition
given by the continuity of the normal components of
displacements at the interfaces between the porous m
and the surrounding fluids aty= ±H /2

s1 − fduy + fUy = Uy1,2

F , s16d

whereuy andUy are the normal components of the solid

fluid displacementsu andU in the porous medium, respec-

K1 = fs1 − fd + m1fgp1,
3

l

-

ia

tively, andUy1,1

F is the normal component of the displacem
in the surrounding fluid.

C. Determinant of the boundary conditions

The Biot stresses are given by

syy
s = fsP − 2Ns + m1Qdsp1

2 − k2d + 2Nsp1
2gw1 + fsP − 2Ns

+ m2Qdsp2
2 − k2d + 2Nsp2

2gw2 + j2Nsk]yc, s17d

syy
f = sQ + m1Rdsp1

2 − k2dw1 + sQ + m2Rdsp2
2 − k2dw2,

s18d

sxy
s = 2NsF− jk]yw1 − jk]yw2 +

1

2
sq2 + k2dcG , s19d

where the coefficientsm1,m2, andm3 correspond to the am
plitude ratios of the waves in the porous material.9

mi =
Pki − v2r11

v2r12 − Qki
, i = 1,2 s20d

m3 =
r12

r22
. s21d

Inserting the potentialss5d–s9d into the boundary condition
s13d–s16dfor both sides of the plate yields a system of e
equations with the eight unknownsA1,A2,B1,B2,C1,C2,D1,
and D2. The relation betweenv and k, i.e., the equation o
dispersion is obtained by equating the determinant of

system to zero
*
− jkp1s1 − jkp1c1 − jkp2s2 − jkp2c2

1
2sk2 + q2dcq

1
2sk2 + q2dsq 0 0

M1c1 M1s1 M2c2 M2s2 0 0 − fP1 0

N1c1 N1s1 N2c2 N2s2 j2Nskqsq j2Nskqcq − s1 − fdP1 0

K1s1 K1c1 K2s2 K2c2 K3cq K3sq g1e
−g1H/2 0

jkp1s1 − jkp1c1 jkp2s2 − jkp2c2
1
2sk2 + q2dcq − 1

2sk2 + q2dsq 0 0

M1c1 − M1s1 M2c2 − M2s2 0 0 0 − fP2

N1c1 − N1s1 N2c2 − N2s2 − j2Nskqsq j2Nskqcq 0 − s1 − fdP2

− K1s1 K1c1 − K2s2 K2c2 K3cq − K3sq 0 − g2e
−g2H/2

* = 0 s22d
with

M1 = sR+ m1Qdsp1
2 − k2d ,

M2 = sR+ m2Qdsp2
2 − k2d ,

N1 = sP − 2Ns + m1Qdsp1
2 − k2d + 2Nsp1

2,

N2 = sP − 2Ns + m2Qdsp2
2 − k2d2Nsp2

2,
K2 = fs1 − fd + m2fgp2,

K3 = jkfs1 − fd + m3fg,

P1 = Kf1
sg2 − k2de−g1H/2,

P2 = Kf2
sg2 − k2de−g2H/2,
s1 = sinhsp1H/2d ,
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s2 = sinhsp2H/2d ,

sq = sinhsqH/2d ,

c1 = coshsp1H/2d ,

c2 = coshsp2H/2d ,

cq = coshsqH/2d .

This determinant describes the dispersion of guided wav
a porous layer with open pores and surrounded by two
ferent fluids 1 and 2. An example of such a situation coul
a porous layer immersed in water in a tank and with
upper surface coinciding with the interface between w

and air. In this case, the saturating fluid would be water. In
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obtained from Refs. 15, 16, and 12 and from Table I. It can
4

n

the case where the two surrounding fluids and the fluid in
pores are the same,

g1 = g2 = g andP1 = P2 = P. s23d

It is interesting to notice the symmetry in determin
s22d. Discarding the last two columns, one can notice tha
last four rows are obtained from the first four rows by cha
ing the signs of the coefficients involving the hyperb
sinesss1,s2, andsqd. This property can be used to write t
determinant in a different way. By adding and subtrac
rows, it is possible to create new rows without changing
determinant. It is also possible to create new columns w
out changing the determinant by adding or subtracting
umns. This property is related to the fact that transpos
determinant does not change its value. Using these prop
and if conditionss23d are fulfilled, it is possible to write th

determinants22d in the following form:

s

*
− 2jkp1c1 − 2jkp2c2 sk2 + q2dcq 0 0 0 0 0

2M1s1 2M2s2 0 − 2fP 0 0 0 0

2N1s1 2N2s2 j4Nskqsq − 2s1 − fdP 0 0 0 0

2K1c1 2K2c2 2K3cq 2ge−gH/2 0 0 0 0

0 0 0 0 − 2jkp1s1 − 2jkp2s2 sk2 + q2dsq 0

0 0 0 0 2M1c1 2M2c2 0 − 2fP

0 0 0 0 2N1c1 2N2c2 j4Nskqcq − 2s1 − fdP
0 0 0 0 2K1s1 2K2s2 2K3sq 2ge−gH/2

* = 0. s24d

This determinant is block diagonal, and the equation of dispersion is finally written as the product of two 434 determinant

*
− 2jkp1c1 − 2jkp2c2 sk2 + q2dcq 0

2M1s1 2M2s2 0 − 2fP

2N1s1 2N2s2 j4Nskqsq − 2s1 − fdP
2K1c1 2K2c2 2K3cq 2ge−gH/2

* 3 *
− 2jkp1s1 − 2jkp2s2 sk2 + q2dsq 0

2M1c1 2M2c2 0 − 2fP

2N1c1 2N2c2 j4Nskqcq − 2s1 − fdP
2K1s1 2K2s2 2K3sq 2ge−gH/2

* = 0. s25d
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Plotting the dispersion curves associated with the
4Ã4 determinants shows that the first determinant of
left-hand side of Eq.s25d corresponds to antisymmetric
modes in porous layers, while the second correspond
symmetrical modes. The solutions are obtained by spli
Eq. s25d into two equations involving the first and seco
4Ã4 determinants successively. It is also worth noticing
the two 4Ã4 determinants can be deduced from one ano
by interchanging the hyperbolic sines and cosines.

D. Dispersion curves

The phase velocity curves for a highly porous fo
sfoam 1dwere calculated and are shown in Fig. 2. The
terial properties used are given in Table I. The same num
cal algorithm as the one described in Ref. 12 was use
solve Eq.s25d. The velocities of the three Biot waves w
calculated using Eqs.s3d ands4d in which the parameters a
o

r

-
o

be noticed that for some modes, the dispersion curve
similar to those obtained from the Lamb theory for an ela
solid. A0 andS0 modes for porous media can be identifie
low frequencies. The disappearance of cutoff frequencie
the presence of maxima that can be observed for mod
higher order are a consequence of the inclusion of dam
mechanisms in the models. These are the classical stru
damping associated with the complex elastic moduli and
ot’s attenuation mechanisms. The imaginary parts of
wave numbers, i.e., the attenuationsfFig. 2sbdg, are very use
ful for the prediction of the modes that can be observed
the frequency regions where they should be detected. I
frequency range investigated, the modes that are likely
observed are those with the smallest imaginary parts, na
A0,S0, andA1. The parts of other modes should also be
servable when their imaginary parts are low.

As for the Melamine foam studied in Ref. 12, a sec

set of dispersion curves is predicted. The existence of two
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sets of dispersion curves is associated with the two s
potentialsw1 andw2 and is a consequence of the existenc
two compressional and one shear waves in the porous
dium. The second set could be plotted as well as the firs
by solving Eq. s25d. Only the structure-borne dispers
curves are presented in the frequency range studied. Pl
the second set at frequencies higher than those studied
would show that the velocity of Biot’s wave of the seco
kind acts as a limit velocityssee also Fig. 7 in Ref. 12 a
comments thereind. In Ref. 12, the second set of dispe
curves could be distinguished when the curves were c
lated up to 10 kHz. For the foam studied in Fig. 2, the
meability is approximately 10 times lower than the per
ability of the Melamine foam. The characteristic freque
separating the low- and high-frequency regimes is the
times higher. It is predicted, and it could be verified, that
limit velocity for the second set of dispersion curves is
servable at around 100 kHz and above. These freque
could not be reached experimentally in this study.

FIG. 2. Theoretical dispersion curves for guided waves in a porous ma
sfoam 1d.sad Real parts of the phase velocities andsbd imaginary parts of th
wave numbers.

TABLE I. Material properties.

Foam 1 Foam 2

Tortuositya` 1.4 1.1
Flow resistivityssNs/m4d 130 000 5000
Viscous dimensionLsmmd 60 50
Thermal dimensionL8smmd 180 150
Densityrskg/m3d 59 32
Porosityf 0.98 0.98
ThicknessH smd 0.04 0.05
Shear modulusNs skPad 127+12.7i 61+6.1i
5
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III. EXPERIMENTAL CONFIGURATION

A. Wave excitation in highly damping materials

A difficulty one faces when studying structure-bo
waves in porous polyurethane foams is the high leve
structural damping. In addition, significant attenuation is
troduced by the viscous frictions and thermal exchange
tween the solid and the fluid. The short-pulse propaga
method in layers of infinite extent and a time-freque
analysis to obtain the dispersion curve, a standard me
used in laser ultrasonics, can hardly be implemented a
waves are rapidly damped, and there is not enough e
per frequency to obtain sensible results. In order to su
more energy per frequency, an excitation with sine burs
possible, and the detection can take place at longer dista
Results of experiments on guided waves using sine burs
reported in Ref. 21. Several modes could be detected a
ticular frequencies where the velocities of the diffe
modes are very different. The main disadvantage of
method is that it requires bursts with fairly large duratio
order to excite the material with enough energy and w
narrowband signal. The only situation where it is possib
eventually observe several guided modes is, therefore,
the velocities are very different. This occurs in limited
quency regions only. In regions where two modes have
lar velocities, the bursts overlap and it is not possibl
distinguish the different modes. Time-frequency analysis
separating the modes cannot be used as the source is n
band.

B. Experimental principle

The method proposed here for measuring the phas
locities of the guided waves is based on the generatio
standing waves in the layer excited harmonically at freq
cies that can be varied and on the spatial Fourier transfo
the standing-wave pattern to identify the different gui
modes. It is similar in principle to the standing-wave t
method for measuring the acoustical properties of mate
that uses the reflection of the incident wave to crea
standing-wave field in the tube. This principle has been
by Kelderset al.22 in surface-wave propagation experime
above a periodical grating at ultrasonic frequencies. The
advantages of this method are that more energy can be
plied at a given frequency when harmonic excitation is u
the signals do not need to be localized in time, and
standing-wave pattern can be determined simply by sca
the surface of the layer along the direction of propaga
The spatial Fourier transform of the surface profile detec
spatially periodic components and provides the wave n
bers kj of different modes propagating in the layer at
angular frequencyv. The phase velocities of the differe
modes indexedj are then given by

Vjsvd =
v

kj
. s28d

The spatial spectrum obtained from the Fourier trans
provides information not only on the spatial frequencie

l

the modes but also on their damping.
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C. Experimental setup

Although the principle is the same as that used in
12, the experimental configuration is different. The confi
ration is shown in Fig. 3, where a layer of porous materi
mounted under symmetrical conditions with its two e
glued to thick metal plates to achieve rigid endings at w
the waves are perfectly reflectedsthe porous material
much softer and lighter than the metal endsd. The porous
sample was excited harmonically at the center with the
of a line source. In order to generate plane waves prop
ing along thex axis, a thin metal plate attached to a sha
was used as a line source. In Fig. 3, the displacement p
of an elastic plate with the effective properties of a por
plate sfoam 1d was calculated at 200 Hz with the help o
finite element codesFEMd. The FEM was used to visuali
the standing-wave pattern obtained from the wave reflec
at the rigid ends, for any configuration of the source.
main advantages of this new experimental condition are
the standing-wave pattern is expected to be symme
about the vertical plane that cuts the plate in two e
halves, displacements at the rigid ends are zero such th
periodization of the pattern in the numerical implementa
of the Fourier transform does not introduce discontinui
and no spatial windowing is required. The main disadv
tages are that very soft material will tend to sag when g
on both extremities to the rigid backings and that the ex
tion and the detection take place on opposite sides, w
may reduce the measurable high-frequency limit. The
source attached to the sample and a slight tension appl
the sample can help to reduce the sagging. The shaker

FIG. 3. Finite element simulation of the deformation at 200 Hz of an
damped elastic plate, with the effective properties of the porous layer
rated by air under Lamb conditionssfoam 1d, for a line source located at t
center.
6
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ing the source was fed with a continuous sine function
vided by the function generator unit of a SRS SR780
channel signal analyzer. At each driving frequency of
source, the displacement of the surface was measured u
laser Doppler vibrometer. The detection method is the s
as in Ref. 12 and is summarized in Fig. 3. Typical meas
ment steps between 1 and 5 mm in the measuremen
were used. The amplitude and phase of the response
surface were measured using the lock-in amplifier of the
nal analyzer. The entire setup was automated and place
semianechoic chamber.

D. Experimental results on the standing-wave
patterns

Examples of measured standing-wave patterns for
1 and their spectra are shown in Fig. 4. The measurem
were performed at a temperature of 21 °C and variation
mained within 5% of this value. Figures 4sad–4scd show the
standing-wave patterns at 202, 600, and 800 Hz, respec
while Figs. 4sdd–4sfd show their respective spatial spectra
low frequency, only theA0 mode could be observed, as o
one clear peak was present for frequencies between 5
400 Hz sthis becomes clear when plotting the experime
results on the phase velocities and comparing with the
dictionsd. TheS0 mode is generally more difficult to exc
and to detect at low frequencies. With increasing freque
a maximum related to theS0 mode appears in the spectr
of the standing-wave pattern. At 800 Hz a high-wavele
periodicity is present in the standing-wave pattern co
sponding to a higher-frequency mode, which was ident
as A1. The excitation of the standing-wave pattern at e
higher frequencies becomes increasingly difficult due
greater attenuation and to the fact that the excitation an
detection are on opposite sides. The high-frequency beh
can nonetheless be estimated from the asymptotical beh
of the modes. High-excitation amplitudes and increasing
tection accuracy are needed, but are limited by the pos
source overheating and nonlinear effects of the materia
calized near the source.

-

FIG. 4. sad, sbd and scd: Experimenta
standing-wave patterns.sdd, sed and
sfd: Spatial Fourier transforms of th
measured standing-wave patterns.sad
and sdd, 202 Hz;sbd and sed, 600 Hz
scd and sfd, 800 Hz.
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IV. EXPERIMENTAL RESULTS ON THE PHASE
VELOCITIES AND COMPARISON WITH
THE PREDICTIONS

The phase velocities of two highly porous materials w
investigated using the setup and the principle describe
the previous sections. The first samplesfoam 1d is a materia
of which the rigidity has already been studied using
acoustical technique described in Ref. 23. In this pape
phase velocity of the Rayleigh-wave regime was determ
to be aroundVRayl=44 m/s, which corresponded to a sh
modulus of 125 kPa for a Poisson ratio of 0.3. The meas
ments of the Rayleigh-wave velocity were performed a
3.4, and 4 kHz. At low frequencies, the behavior was ver
with a classical springlike resonance test, which provid
value for the shear modulus of 130 kPa for a resonance
quency at 37 Hz. The experimental and calculated phas
locities for the two foams are presented in Fig. 5sad and 5sbd
The triangles indicate Rayleigh-wave velocity measurem
performed at different frequencies. The Biot parameters
for the calculation were measured using standard techn
and are given in Table I. A fitting algorithm was used in or
to obtain a frequency dependence of the shear mod
First, the algorithm was tested by fitting the experime
data with a theoreticalA0 mode in which the shear modul
had a known frequency dependence. Random noise
added to the data. For both samples, a structural dampi
5% and a Poisson ratio of 0.3 were used. It was found
within the limits of the random noise, the fitting algorith
was able to reproduce the frequency dependence of the
modulus supplied initially. The fitting algorithm seemed
less sensitive to variations in the Poisson ratio and dam
rates. The measured Rayleigh velocity was used as a st

FIG. 5. Experimental results on the phase velocities of guided wav
highly porous foams saturated by air and comparison with theoretica
dictions.sad Foam 1 and sbdfoam 2. The triangles correspond to Raylei
wave velocity measurementssRef. 9d.
value for the fit. The fitting algorithm also proved to be
7
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rather insensitive to reasonable variations in the starting
ues. After the fitting was checked, the true frequency v
tions of the shear modulus were determined from the t
retical model of Sec. II in which the shear modulus wa
free parameter. The variations of the shear modulu
around 10% were found for the first sample, and of 5%
the second sample in the frequency range studied. T
variations are fairly small and for this reason, it was dec
to do the comparison between theoretical and experim
results with a constant value of the shear modulus. The
ues used in the model were 127 kPa for the first sample
61 kPa for the second sample. The good corresponden
tween the theoretical and experimental results seems to
vide evidence that theS0 and A1 modes were detected a
measured. In Fig. 5sad, however, a larger difference bet
theoretical and experimental results can be observe
around 700 Hz. This can be explained by the fact tha
measurement error is higher for higher phase velocities
suming no error on the frequency and referring to Eq.s28d,

UDV

V
U = UDk

k
U . s29d

Since Dk can be considered fairly constant throughout
spatial frequency range, the ratiouDV/Vu is higher for
smaller values ofk. The very dispersive part of a high
order mode is therefore difficult to trace accurately. In a
tion, Fig. 2sbd shows that the damping of the modes
creases near a cutoff frequency, making the modes
difficult to detect and increasing the measurement error
other important source of error is the large width of the p
in the spatial spectrum and the different amplitudes of
modes. The spectrum is dominated throughout a large
quency domain by theA0 mode, making the estimation
phase velocities corresponding to smaller maxima in
spectrum less accurate. The crossing of dispersion cur
described with less accuracy due to the width of the pe
The detection system is such that modes for which the
placement of matter is mainly parallel to the surface of
layer will be detected with less accuracy. Sagging of
sample and anisotropy should also be mentioned as po
sources of error.

V. CONCLUSION

A theoretical and experimental study of the propaga
of guided waves in air-saturated porous layers under L
conditions was presented. It was shown in Ref. 12 and
firmed in this article that two sets of guided waves
propagate in the layer. The existence of symmetrical
antisymmetrical modes was predicted for a sample satu
and loaded on both sides by the same fluid. A clear ex
mental evidence was found for the propagation of t
modessA0,S0, and A1d and these compared very well w
the theoretical predictions. This study demonstrates the
sibility to determine variations of the shear modulus i
wide frequency range from 80 Hz up to 4 kHz.
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