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Guided elastic waves in porous materials saturated by air
under Lamb conditions

L. Boeckx, P. Leclaire, P. Khurana, C. Glorieux,?’ and W. Lauriks”
Laboratorium voor Akoestiek en Thermische Fysica, Katholieke Universiteit Leuven,
Celestijnenlaan 200D, B-3001 Heverlee, Belgium

J. F. Allard

Laboratoire d’Acoustique de I'Université du Maine, Unité Mixte de Recherche du Centre National de la
Recherche Scientifigue (UMR CNRS) 6613, Avenue Olivier Messiaen,

72085 Le Mans Cédex, France

The propagatiornof guidedelasticwavesin porousmaterialssaturateddy air underLamb conditionsis studiedtheoretically
andexperimentallyThe modesarederivedfrom expressinghe boundaryconditionson the normalandtangentiaktresseand

the displacementst the interfacesbetweenthe porouslayer and the surroundingfluid. The stressesnd the fluid pressure
inside the porousmediumare obtainedfrom Biot's equationsof poroelasticity.Symmetricaland antisymmetricaimodesare

found whenthe porouslayer is loadedby the samefluid on both sides.Dampingmechanismsnclude viscousand thermal

exchange$etweenthe solid andthe fluid, in additionto the classicalstructuraldamping.Using an experimentaketupbased
onthe generatiorof standingwavesin the layerandtakingthe spatialFouriertransformof the displacemenprofile, the phase
velocities of three modeswere measuredor two porousmaterialsin a frequencyrangebetween80 Hz and 4 kHz. The

measurementsonfirmthetheoreticalpredictionsandprovideinformationon the sheamodulusof a sound-absorbingraterial

in a wide frequency range.

waves can propagate in a porous layer: the structure-borne
guided waves, with the Rayleigh and the shear velocities as
high-frequency limits, and the fluid-borne guided waves,
with the velocity of Biot’s wave of the second kind as the
high-frequency limit. An experimental principle for the de-

Surface waves at the interface between a solid and gecnon of these waves in highly damping materials was sug-

fluid and guided waves in layers of solid have long beengested. The main contribution of this work to the mechanical

established as important tools for determining material propgharacter|z§t|on of pprous materials was the possibility to
ccess the intermediate frequency rarfg@0 Hz—1.5 kHz,

erties(see Refs. 1,2). For porous materials, theoretical an§

experimental studies of surface waves were presented féypically) betvyeen the fre&uencies describeq by classical
liquid-saturated medi&* in materials saturated by air for tansfer function method5™ at low frequencies and the

applications in outdoor sound propagat?o‘hand for mate- Rayleigh wave characterizatidom the high-frequency limit.

rial characterization in highly porous absorbent materials [N this article, guided waves in porous layers under
saturated by air at ultrasonic frequenciésn air-saturated L@mb conditions are studied and a new experimental con-
materials, the solid is generally more rigid and heavier thafiguration is proposed. The modes are derived by using dis-
air, and the study of surface waves is often restricted to th@lacement potentials to derive the normal and tangential
wave propagating in the air above the porous interface in thétresses and by expressing the boundary conditions at the
rigid frame approximation. More recently, Allagt al’have interfaces between the porous layer and the surrounding
studied the structure-borne surface wave in soft porous mdluid. The stresses and the fluid pressure inside the porous
terials, with the determination of the shear modulus at verynedium are obtained from Biot's equations of
high frequencies as a direct application. Making the link withPoroelasticity:> Symmetrical and antisymmetrical modes are
laser ultrasonics for material characterization, Allatcal’®  found in a porous medium if the layer is loaded by the same
studied the deformation and phase velocities of laser-induceftiid on both sides. The materials studied exhibit high struc-
surface waves at a fluid-saturated porous interface in thtural damping, and complex elastic moduli have to be used.
Rayleigh wave regime. The transmission and reflection coefln addition, the viscous and thermal interactions between the
ficients of water-saturated porous plates were also studiesblid and the fluid are included in the model. An experimen-
theoretically by Belloncleet al!* More recently, Boeckxet  tal setup based on the generation of standing waves in a plate
al.*? presented a theoretical and experimental study of thef finite size is proposed for the measurement of the phase
guided modes in thin porous layers lying on a rigid substrateelocities of porous layers under Lamb conditions. The
and saturated by air. It was found that two sets of guideghase velocities for two different materials are measured be-

I. INTRODUCTION
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- whereg is the porosityg.. is the tortuosityps andp; are the
Fluid2  of densities of the solid and of the fluid, respectively;, p12,

andp,, are the elements of a density mattid\, is the shear
FIG. 1. Layer of material under Lamb conditions and system of coordinatesr,nO(.ju|us of the porous frame, aiy Q, andR are the elastic

coefficients defined by Biot and Wilfi&for a fluid-saturated
tween 80 Hz and 4 kHz. The experimental results are comporous medium. These coefficients are functions of the bulk
pared with the model and provide information on the sheamodulus of the solik, of the porous framé,, and of the
modulus of a sound-absorbing material in a wide frequencyluid K;. The attenuation by viscous friction can be included
range that is difficult to access with classical methods. by using a complex tortuosity functiom(w) to replacea,..*’

The thermal exchanges can be accounted for through the use
Il. GUIDED WAVES IN A POROUS LAYER SATURATED of a frequency-dependent elastic modul(;gs18 The poten-
BY A FLUID UNDER LAMB CONDITIONS tials are functions of the direction of propagatisnof the
A. Displacement potentials directiqn perpendicqlar to the direction of prppe_\gat}'olanq

of the timet Harmonic solutions are chosen in time andin

In the following, the dispersion equation of the guided For the dependence along thexis, the linear combination

waves in a porous layer with open pores under Lamb condipf hyperbolic sines and cosines proposed by Emh@|,,19
tions are derived from the displacement potentials, the exis chosen for the potentials in the porous layer. The motiva-
pressions for the displacements, stresses, and the boundajyn for this choice is that true symmetrical and antisym-
conditions. A porous plate of thicknestis loaded on both  metrical modes do not exist in a plate loaded with two dif-
sides with two different fluids in the general ca$ég. 1).  ferent fluids on either side, and a general form is chosen. As
The wave propagation in the porous medium is described bit will be shown in Sec. Il C, the symmetry of the plate when
two scalar potentialg; and ¢, associated with two compres- syrrounded by a single fluid will result in the exsistence of
sional waves and by one vector potential, which is associatesymmetrical and antisymmetrical modes. The two families of
with a shear wave and whose onIy nonzero compoeist  dispersion curves corresponding to symmetrical and anti-
on thez axis. The potentialg} and ¢} are defined for com-  symmetrical modes are decoupled can cross each Bther.
pressional waves in the surrounding fluids. These potential$he potentials in the porous medium and the two potentials

satisfy the equations of propagation in the fluid are written as
Vi, - ‘92901 (1a) @1 = (Ajcoshpyy) + Agsinh(py)) €™, (5)
I‘l
1 ¢, = (B1coshf,y) + Bssinh(pyy)) e, (6)
V2¢2—V—20t2<p220, (1b)
K = (Cy00shay) + Cosinhy) =, (7)
1
VA= =0 (10) | H
Vit @y =D for y= > (8)
and
V2eh - iﬁz f=0 2 f i(wt-kx) H
P17 2 =0, (2a) o =D,e"ve for y<- > 9)
F1

1 where A;,A,,B4,B,,C;,C,,D4, and D, are constantse is
Vb - V_zatZQD; =0, (2b)  the angular frequencyy ,,q, andy; , are they components

of the wave numbers for the different potentials, daib
whereV, andV,_, are the velocities of the two Biot com- their commonx component. Upon inserting the expressions
pressmnal Wavé§ and V5 the velocity of the Biot shear for the potentials in the equations of propagatiéhand (2),

wave.Ve andVg, are the free velocities in the surrounding the following relations are found:
fluids. The Biot velocities are obtained from 2

2 2, 9 _
1 1Ppyy+Rpy1—2Qp1, Pia=k +VE o 4o
\/—Z:E PR—Q2 1+|1-4 12
Ly
2 _ 2\12 ?
. (PR=Q)(prpz0 p12)> ] 12 @ -+ =0, (11)
(Pp2a+ Rp11— 2Qpy)? VT



2 K2 w_Z 0 tively, andU)fl’l is the normal component of the displacement
1,2 V'2:12 - Y in the surrounding fluid.
Conditions on the imaginary parts &fand of y, , must be
fulfilled for the guided waves in the material to be physnlczal
Also, the real part ofy; , will determine whether the modes The Biot stresses are given by
radiate energy in the surrounding fluids 1 andeaky Lamb s _ 2 12
modes)or the fluid waves are localized near the interfaces.  %yy~ [(P= 2N+ 11Q)(pE - k) + 2NepT]eps + [ (P - 2N

C. Determinant of the boundary conditions

N + Q)(p3— k) + 2Ngp3 ], + j2NKayy,  (17)
B. Boundary conditions on stresses
and normal displacement Ty = @+ BB~ )1+ (Q+ R (95K
The boundary conditions on the normal and tangential (18)
stresses ag=+H/2 are given by
_ . . 1
¢Pl’2' (13) Uiy: 2Ng| - Jkayﬁol - ]kay(PZ + E(qz + k2)¢ ) (19)
y=~ (= d)P,, (14) where the coefficientg, u,, and us correspond to the am-
s plitude ratios of the waves in the porous matetial.
oy=0, (15) Pl o2
i — W
whereP, , are the pressures exerted by the surrounding flu- &= 2—_51K1 i=1,2 (20)
ids1and 2 ay=+H/2, andayy andayy are the Biot stresses P
along they axis for the effective fluid in the porous medium
and the solid frame. An additional boundary condition is Ms:p—lz_ (21)
given by the continuity of the normal components of the P22
displacements at the interfaces between the porous medjgserting the potentialés)—(9) into the boundary conditions
and the surrounding fluids gt&=+H/2 (13)—(16)for both sides of the plate yields a system of eight
(1-@)u,+ ¢U, = Uy (16) equations with the eight unknowrg ,A,,B,,B,,C;,C,,Dy,
1, 2’

andD,. The relation betweew andk, i.e., the equation of
whereu, andU, are the normal components of the solid anddispersion is obtained by equating the determinant of this
fluid displacementsi andU in the porous medium, respec- system to zero

—jkpisy —jkpicr —jkpss —jkpC, F(R+0Acy (R + ), 0 0

M 1C1 M 151 M 202 M 292 0 0 - d)Pl O

N;C; N;s; NCo NS, J2Nkas, j2Nkag, - (1-¢)P; 0

Kisy KiC K2S2 KaC2 KaCyq Kssy yi€ 12 0 0 (22)
jkpis; = jkpicy  jkpsS = jkpocy 3(0C+AAc, - 50+ ), 0 0

Mic;,  —Misp My,  —Mgs, 0 0 0 - ¢P,

Nic;  —Nis; Nie, —Ngs,  —j2NKkag,  j2NKqg 0 -(1-¢)P,
-Kis Kiep -Kys, Koo KsCq - Kz 0 — e 722

|
with Ko =[(1 - ¢) + updlp,,

M1= (R+ Q) (pi - k%), |

Ks=JK[(1 - ¢) + uaeh],
M2=(R+M2Q)(p§—kz),

P =Ky (- K)e 2,
Ny = (P = 2Ng+ 1,Q)(p2 - K2) + 2Ngp?, Lo

— _ 1.2\ a—yoH/I2
N2 = (P = 2Ng + 1,Q)(p5 — k?)2Ngp?, P, =K (- kD)e 22,

Ki=[(1-¢) + p1py, s, = sinh(pyH/2),



s, = sinl~(p2H/2), the case where the two surrounding fluids and the fluid in the
pores are the same,

Sq=sinl(qH/2), y1=7,=yandP,=P,=P. (23)
It is interesting to notice the symmetry in determinant
C1= COSf(PlH/Z), (22). Discarding the last two columns, one can notice that the
last four rows are obtained from the first four rows by chang-
¢, = cosi{p,H/2), ing the signs of the coefficients involving the hyperbolic

sines(s,,s,, ands;). This property can be used to write this
determinant in a different way. By adding and subtracting
rows, it is possible to create new rows without changing the
This determinant describes the dispersion of guided waves ideterminant. It is also possible to create new columns with-
a porous layer with open pores and surrounded by two difout changing the determinant by adding or subtracting col-
ferent fluids 1 and 2. An example of such a situation could baimns. This property is related to the fact that transposing a
a porous layer immersed in water in a tank and with thedeterminant does not change its value. Using these properties
upper surface coinciding with the interface between wateand if conditions(23) are fulfilled, it is possible to write the
and air. In this case, the saturating fluid would be water. Indeterminant22) in the following form:

cq = cosi{qH/2).

- 2jkpicy = 2jkpac, (K2 +0d)cy 0 0 0 0 0
2M;s; 2M5s, 0 - 2¢P 0 0 0 0
2N;s; 2Nys,  jANkasg, -2(1-¢)P 0 0 0 0
2K, 2K,C, 2Ksc, 2ye 2 0 0 0 0 o (24)
0 0 0 0 - 2jkpis; - 2jkpys, (K2 + q2)sq 0 '
0 0 0 0 2M4cq 2MC, 0 -2¢P
0 0 0 0 2N,c; 2N,c,  jANKqe -2(1-¢)P
0 0 0 0 2K;8, 2K,s, 2K s, 2ye M2
This determinant is block diagonal, and the equation of dispersion is finally written as the product oK#lvdeterminants
- 2jkpacy - 2jkpyc, (K2 +0d)cq 0 - 2jkpys; - 2jkpos; (K +P)sy 0
2M4s; 2M5s, 0 -2¢P y 2M4cq 2M,C, 0 - 2¢P 0. (25)
2N;s; 2N,s, jANkas, -2(1-¢)P 2N;c, 2N,  jANKgg —2(1-¢)P
2K, 2K,C, 2K 3¢, 2ye M2 2K;s; 2K, 2K s, 2ye M2

Plotting the dispersion curves associated with the twdoe noticed that for some modes, the dispersion curves are
4X 4 determinants shows that the first determinant of thesimilar to those obtained from the Lamb theory for an elastic
left-hand side of Eq{(25) corresponds to antisymmetrical solid. A, andS, modes for porous media can be identified at
modes in porous layers, while the second corresponds tlew frequencies. The disappearance of cutoff frequencies and
symmetrical modes. The solutions are obtained by splittinghe presence of maxima that can be observed for modes of
Eqg. (25) into two equations involving the first and second higher order are a consequence of the inclusion of damping
4X 4 determinants successively. It is also worth noticing thainechanisms in the models. These are the classical structural
the two 4X 4 determinants can be deduced from one anothefjamping associated with the complex elastic moduli and Bi-

by interchanging the hyperbolic sines and cosines. ot's attenuation mechanisms. The imaginary parts of the
_ _ wave numbers, i.e., the attenuatigfay. 2(b)], are very use-
D. Dispersion curves ful for the prediction of the modes that can be observed and

The phase velocity curves for a highly porous foamthe frequency regions where they should be detected. In the
(foam 1)were calculated and are shown in Fig. 2. The mafrequency range investigated, the modes that are likely to be
terial properties used are given in Table |. The same numeriebserved are those with the smallest imaginary parts, namely,
cal algorithm as the one described in Ref. 12 was used téy, S, andA;. The parts of other modes should also be ob-
solve Eq.(25). The velocities of the three Biot waves were servable when their imaginary parts are low.
calculated using Eq$3) and(4) in which the parameters are As for the Melamine foam studied in Ref. 12, a second
obtained from Refs. 15, 16, and 12 and from Table I. It c‘elmset of dispersion curves is predicted. The existence of two



400 (@ [ll. EXPERIMENTAL CONFIGURATION

S A. Wave excitation in highly damping materials

300 A e .

' A difficulty one faces when studying structure-borne
S,

s A, waves in porous polyurethane foams is the high level of
A, A structural damping. In addition, significant attenuation is in-
s, |\& s troduced by the viscous frictions and thermal exchanges be-
100 tween the solid and the fluid. The short-pulse propagation

Ay method in layers of infinite extent and a time-frequency
0 analysis to obtain the dispersion curve, a standard method
used in laser ultrasonics, can hardly be implemented as the
waves are rapidly damped, and there is not enough energy
per frequency to obtain sensible results. In order to supply
more energy per frequency, an excitation with sine bursts is
possible, and the detection can take place at longer distances.
Results of experiments on guided waves using sine bursts are
reported in Ref. 21. Several modes could be detected at par-
ticular frequencies where the velocities of the different
modes are very different. The main disadvantage of this
S, ) method is that it requires bursts with fairly large duration in
order to excite the material with enough energy and with a
narrowband signal. The only situation where it is possible to
eventually observe several guided modes is, therefore, when
the velocities are very different. This occurs in limited fre-
FIG. 2. Theoretical dispersion curves for guided waves in a porous materigfjuency regions only. In regions where two modes have simi-
(foam 1).(a) Real parts of the phase velocities abdimaginary parts of the  |ar velocities, the bursts overlap and it is not possible to
wave numbers. distinguish the different modes. Time-frequency analysis for
separating the modes cannot be used as the source is narrow-
sets of dispersion curves is associated with the two scaldsand.
potentialsy; and ¢, and is a consequence of the existence of
two compressional and one shear waves in the porous me-
dium. The second set could be plotted as well as the first sd. Experimental principle

by solving Eq.(25). Only the structure-borne dispersion The method proposed here for measuring the phase ve-

curves are presented in the frequency range studied. Plottingises of the guided waves is based on the generation of
the second set at frequenqes hlgher than those studied h %nding waves in the layer excited harmonically at frequen-
V\{ould show thqt the velqcny of Blotsiwavg of the second ujes that can be varied and on the spatial Fourier transform of
kind acts as a limit velocitysee also Fig. 7 in Ref. 12 and o standing-wave pattern to identify the different guided
comments therein). In Ref. 12, the second set of dispersiop,,qes |t is similar in principle to the standing-wave tube
curves could be distinguished when the curves were calCusaihod for measuring the acoustical properties of materials
lated up to 10 kHz. For the foam studied in Fig. 2, the perha yses the reflection of the incident wave to create a
meability is approximately 10 times lower than the perme-gianging-wave field in the tube. This principle has been used
ability qf the Melamine foa_lm. The characterllsnc frequencyby Kelderset al? in surface-wave propagation experiments
separating the low- and high-frequency regimes is then 1Q},,,6 4 periodical grating at ultrasonic frequencies. The key
times higher. It is predicted, and it could be verified, that theadvantages of this method are that more energy can be sup-

limit velocity for the second set of dispersion curves is Ob.' lied at a given frequency when harmonic excitation is used,
servable at around 100 kHz and above. These frequencigg, signals do not need to be localized in time, and the

could not be reached experimentally in this study.

200

Phase velocity (m/s)

0 1000 2000 3000 4000 5000
Frequency (Hz)

Imaginary part of k (m™)

0 1000 2000 3000 4000 500(
Frequency (Hz)

standing-wave pattern can be determined simply by scanning
the surface of the layer along the direction of propagation.
TABLE I. Material properties. The spatial Fourier transform of the surface profile detects all
spatially periodic components and provides the wave num-

Foam 1 Foam 2 pers k of different modes propagating in the layer at the
Tortuosity ., 1.4 1.1 angular frequencyw. The phase velocities of the different
Flow resistivity o(Ns/nt) 130 000 5000 modes indexed are then given by
Viscous dimension\ (um) 60 50
Thermal dimension\’(um) 180 150 Vj(w) - 2_ (28)
Density p(kg/m?) 59 32 Ki
_';ﬁir:f:gjg_| ™) 8:82 g:gg The _spati_al spec'grum obtained from the _Fourier tran_sform
Shear modulud\, (kPa) 127412.7i 61+6.1i Provides information not only on the spatial frequencies of

the modes but also on their damping.




Laser Doppler vibrometer ing the source was fed with a continuous sine function pro-
vided by the function generator unit of a SRS SR780 two-
channel signal analyzer. At each driving frequency of the
source, the displacement of the surface was measured using a
laser Doppler vibrometer. The detection method is the same
as in Ref. 12 and is summarized in Fig. 3. Typical measure-

Rigid end Shaker Rigid end ment steps between 1 and 5 mm in the measurement path

were used. The amplitude and phase of the response of the

Gt ot e o pepotcs o sy g riece were measured using th lock n amplife ofthe sig
r;tg]dpﬁy zifindgr La}nb conditiorfpam 1F)), f(l;)r aline sourcg located );t the nal analyzer. The entire setup was automated and placed in a
center. semianechoic chamber.

C. Experimental setup

Although the principle is the same as that used in Ref.
12, the experimental configuration is different. The configu-D. Experimental results on the standing-wave
ration is shown in Fig. 3, where a layer of porous material ispatterns

mounted under symmetrical conditions with its two ends E | f d standi it for f
glued to thick metal plates to achieve rigid endings at which xamples of measured standing-wave patterns for foam

the waves are perfectly reflectgthe porous material is 1 and their spectra are shown in Fig. 40' The mea_su_rements
much softer and lighter than the metal endEhe porous were performed at a temperature of 21 °C and variations re-

sample was excited harmonically at the center with the heljn@ined within 5% of this value. Figuresa-4c) show the

of a line source. In order to generate plane waves propagattanding-wave patterns at 202, 600, and 800 Hz, respectively,

ing along thex axis, a thin metal plate attached to a shakerVhile Figs. 4(d)—4f) show their respective spatial spectra. At

was used as a line source. In Fig. 3, the displacement profil@W frequency, only theéd, mode could be observed, as only

of an elastic plate with the effective properties of a porousOn€ clear peak was present for frequencies between 50 and
plate (foam 1)was calculated at 200 Hz with the help of a 400 Hz (this becomes clear when plotting the experimental
finite element codéFEM). The FEM was used to visualize "€sults on the phase velocities and comparing with the pre-
the standing-wave pattern obtained from the wave reflectiondictions). The mode is generally more difficult to excite

at the rigid ends, for any configuration of the source. Theand to detect at low frequencies. With increasing frequency,
main advantages of this new experimental condition are tha® Mmaximum related to th& mode appears in the spectrum
the standing-wave pattern is expected to be symmetricdf the standing-wave pattern. At 800 Hz a high-wavelength
about the vertical plane that cuts the plate in two equaperiodicity is present in the standing-wave pattern corre-
halves, displacements at the rigid ends are zero such that ti§@onding to a higher-frequency mode, which was identified
periodization of the pattern in the numerical implementationas A;. The excitation of the standing-wave pattern at even
of the Fourier transform does not introduce discontinuitieshigher frequencies becomes increasingly difficult due to
and no spatial windowing is required. The main disadvangreater attenuation and to the fact that the excitation and the
tages are that very soft material will tend to sag when gluedletection are on opposite sides. The high-frequency behavior
on both extremities to the rigid backings and that the excitacan nonetheless be estimated from the asymptotical behavior
tion and the detection take place on opposite sides, whichf the modes. High-excitation amplitudes and increasing de-
may reduce the measurable high-frequency limit. The lindection accuracy are needed, but are limited by the possible
source attached to the sample and a slight tension applied smurce overheating and nonlinear effects of the material lo-
the sample can help to reduce the sagging. The shaker dricalized near the source.
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o 300 @) rather insensitive to reasonable variations in the starting val-
E 25 ues. After the fitting was checked, the true frequency varia-
§ 200 tions of the shear modulus were determined from the theo-
g ° retical model of Sec. Il in which the shear modulus was a
E 150 free parameter. The variations of the shear modulus of
B 100, around 10% were found for the first sample, and of 5% for
50(4 o the second sample in the frequency range studied. These
. ) variations are fairly small and for this reason, it was decided
0 1000 2000 3000 4000 to do the comparison between theoretical and experimental
Frequency (Hz) results with a constant value of the shear modulus. The val-
350 ues used in the model were 127 kPa for the first sample and
%‘ 300 ® 61 kPa for the sec_:ond sample. The good correspondence be-
- tween the theoretical and experimental results seems to pro-
3 250 vide evidence that th&, and A, modes were detected and
$ 200 measured. In Fig. 5(a), however, a larger difference between
2 ) .
g 150 theoretical and experimental results can be observed at
* 100 ; around 700 Hz. This can be explained by the fact that the
50 measurement error is higher for higher phase velocities. As-
g 65525003050 suming no error on the frequency and referring to 28),
Frequency (Hz) A_V _ ﬁ( ( 2 9)
Y, k

FIG. 5. Experimental results on the phase velocities of guided waves in
h!ghly porous foams saturated by air an(_j comparison with theoreticql Presince Ak can be considered fairly constant throughout the
dictions.(a) Foam 1 and (bjoam 2. The triangles correspond to Rayleigh- . . . .
wave velocity measurementgef. 9). spatial frequency range, the .rat||d\\.//v| is higher .for
smaller values ok. The very dispersive part of a higher-
order mode is therefore difficult to trace accurately. In addi-
tion, Fig. 2(b) shows that the damping of the modes in-
creases near a cutoff frequency, making the modes more
difficult to detect and increasing the measurement error. An-
The phase velocities of two highly porous materials wereother important source of error is the large width of the peaks
investigated using the setup and the principle described i the spatial spectrum and the different amplitudes of the
the previous sections. The first samffieam 1)is a material modes. The spectrum is dominated throughout a large fre-
of which the rigidity has already been studied using anquency domain by thé, mode, making the estimation of
acoustical technique described in Ref. 23. In this paper thehase velocities corresponding to smaller maxima in the
phase velocity of the Rayleigh-wave regime was determine@pectrum less accurate. The crossing of dispersion curves is
to be aroundVga,=44 m/s, which corresponded to a sheardescribed with less accuracy due to the width of the peaks.
modulus of 125 kPa for a Poisson ratio of 0.3. The measurelhe detection system is such that modes for which the dis-
ments of the Rayleigh-wave velocity were performed at 2placement of matter is mainly parallel to the surface of the
3.4, and 4 kHz. At low frequencies, the behavior was verifiedayer will be detected with less accuracy. Sagging of the
with a classical springlike resonance test, which provided #ample and anisotropy should also be mentioned as possible
value for the shear modulus of 130 kPa for a resonance fresources of error.
quency at 37 Hz. The experimental and calculated phase ve-
locities for the two foams are presented in Figa)mand 5(b). V. CONCLUSION
The triangles indicate Rayleigh-wave velocity measurements . . .
performed at different frequencies. The Biot parameters used A theoretical and experimental study of the propagation

for the calculation were measured using standard techniquepé guided waves in air-saturated porous layers under Lamb

and are given in Table I. Afitting algorithm was used in order(‘fond'tlons was presented. It was shown in Ref. 12 and con-

to obtain a frequency dependence of the shear modulug.rmed ”: th'stﬁrt'fle thallt_htwo §etts of g;uded Watv_eslcand
First, the algorithm was tested by fitting the experimentalpro_pagae N the 1ayer. The existence of symmetrical an

data with a theoreticah, mode in which the shear modulus antisymmetrical modes was predicted for a sample saturated
had a known frequency dependence. Random noise w d loaded on both sides by the same fluid. A clear experi-

added to the data. For both samples, a structural damping gﬂegtal ewdencedvAvas fodur;ﬁ for the pro;()jagatlon ?If thtrhee
5% and a Poisson ratio of 0.3 were used. It was found thal '© es(Ag, S, andAy) an ese compared very well wi

within the limits of the random noise, the fitting algorithm the theoretical predictions. This study demonstrates the pos-

was able to reproduce the frequency dependence of the sh c;mf/ to determine V?”at'%%SHOf thet STI?L modulus in a
modulus supplied initially. The fitting algorithm seemed far wide frequency range from zupto Z:

less sensitive to variations in the Po_|sson ratio and damplr_wgD. E. Chimenti, Appl. Mech. Rev50, 247(1997).

rates. The measured Rayleigh velocity was used as a starting: gjorieuxet al., Rev. Sci. Instrum74, 465 (2003).

value for the fit. The fitting algorithm also proved to b;—z 3H. Deresiewicz, Bull. Seismol. Soc. Anb2, 627(1962).

IV. EXPERIMENTAL RESULTS ON THE PHASE
VELOCITIES AND COMPARISON WITH
THE PREDICTIONS
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