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Investigation of the phase velocities of guided acoustic waves
in soft porous layers

L. Boeckx, P. Leclaire, P. Khurana, C. Glorieux, and W. Lauriks
Laboratoriumvoor Akoestieken Thermischerysica, KatholiekeUniversiteit Leuven,Celestijnenlaar200D,
B-3001 HeverleeBelgium

J. F. Allard
Laboratoire d’Acoustique de I'Universitdu Maine, UMR CNRS 6613, Avenue Olivier Messiaen,
72085 Le Mans Qiex, France

A new experimentaimethodfor measuringthe phasevelocitiesof guidedacousticwavesin soft
poroelastior poroviscoelastiplatesis proposedThe methodis basedn thegeneratiorof standing
wavesin the materialand on the spatialFouriertransformof the displacemenprofile of the upper
surface.The plateis gluedon arigid substratesothatit hasa free uppersurfaceanda nonmoving
lower surface. The displacementis measuredwith a laser Doppler vibrometer along a line
correspondingto the direction of propagationof plane surfacewaves.A continuoussine with
varyingfrequenciesvaschoserasexcitationsignalto maximizethe precisionof the measurements.
The spatial Fourier transformprovidesthe wave numbers,and the phasevelocities are obtained
from the relationshipbetweenwave numberandfrequency.The phasevelocitiesof severalguided
modescould be measuredn a highly porousfoam saturatedoy air. The modeswere also studied
theoreticallyand, from the theoreticalresults,the experimentakesults,and a fitting procedurejt
waspossibleto determinehe frequencybehaviorof the complexshearmodulusandof the complex
Poissonratio from 200 Hz to 1.4 kHz, in a frequency range higher than the traditional
methods.

I. INTRODUCTION materials based on the propagation of Rayleigh waves in
thick layers was recently proposed by Allatial}* and pro-

The acoustical properties of porous materials can genefsided useful information above 3 kHz. More recently, Allard
ally be well described in a wide frequency range with Biot's et al}? have proposed a new method of measurement in thin-
theory! which involves the determination of a number of ner samples in which Biot's shear wave is excited. This
physical parameters. In many cases for air-saturated matemsethod is based on the effect of the resonance of the porous
als, the porous frame can be considered to be much morfieame around the quarter shear wavelength on the pole of the
rigid and heavier than air, and a simplified model can be useceflection coefficient.
in the rigid frame approximation. Many studies have been  Surface waves at the interface between a fluid and a
successfully carried out in this approximation and are reporous solid have been studied theoretically by many authors
ported in Ref. 2. There is also a growing interest in applica-and in particular by Deresiewi¢Z,and Feng and Johnsth
tions where the frequency dependence of the mechanical rfer liquid saturated media. The surface wave in the air above
gidity of the material should be taken into account in the fulla porous absorbing material and rough surfaces was studied
Biot theory for poroelastic and poroviscoelastic metfid.  theoretically and experimentally by Attenborough® Atten-
However, the main limitation of the full model is the lack of borough and Chet, Lauriks et al.® Kelderset al.!° and
data on the dynamic rigidities of the porous frame. Classicafllard et al?°
methods for determining these parameters involve the appli- In this article, we investigate the propagation of guided
cation of vibrations to samples'®(e.g., rods, cubes, or small waves in a layer of porous material in a wide frequency
plates) of finite sizes with respect to the wavelengths in-range, from the typical frequencies of the classical vibra-
volved. The propertie@esonance frequencies, damping, dy-tional methods to the high-frequency limit of the Rayleigh
namic behavior)of the transfer function between the re- wave. First results of this work were presented in Kydhto.
sponse and the excitation yield the mechanical properties ofogether with a complete model for guided waves in a soft
the excited structure. However, the frequency range deporous material on a rigid substrate, a new experimental
scribed in these methods is limited to the lower part of themethod is proposed in this article for the determination of the
audible frequency rangéypically below 400 Hz). A new modes of propagation in a plate of finite sizes. This method,
method for measuring the shear modulus of air-filled porousharacterized by an increased signal-to-noise ratio and mea-

surement accuracy, is based on the generation of standing
waves in the layer of porous material. Lamb waves in plates
with free surfaces, and other surface waves in layers or at
interfaces have been extensively studied and led to many
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FIG. 1. Layer of material on a rigid substrate and system of coordinates.

applications from material characterization at ultrasonic
frequencie® to the oil industry. Theoretical references in
this area are provided by the books by Royer and
Dieulesaint® Viktorov,* and Ewing, Jardetsky, and Préss.
The theoretical results of our study are presented in the next
section. The experimental principle of the new method for
measuring the phase velocities of the different modes in of
porous layers is presented in Sec. lll and applied in Sec. IV
to a melamine foam. The phase velocities of two modes were
measured and used as reference velocities for the fitting of
the dispersion curves leading to the determination of the fre-
guency variations of the complex shear modulus and Poisson
ratio.
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Il. GUIDED WAVES IN A LAYER OF POROUS 100,
MATERIAL
Results for a nonporous solid of thicknddslying on a (b) F‘r;gque“lge;mcl:ﬁgss "_fgpm} 250

rigid substrate are presented first. This simple case will be

very useful to the study of the porous case in providing theFIG. 2. Phase velocities vs frequencthickness for(a) a plate of thickness
general shape of the curves, the cutoff frequencies, and thHe of an elastic material on a_rigid supst_ra(b) a Lamb plate of thickness
limit velocities that should be expected. Many porous mate—z_Hl'z'Z” b/"th cases the material density is 14 kg/iif, =222 m/s, and/

rials in practical applications have a high porosity, a low flow ms:

resistivity, and a tortuosity close to 1. For these materials the

Coup“ngs are re|ative|y low, and the model for nonporousZH. The main difference with the Lamb plate is the absence
material will reasonably approximate the porous case. The€f modes without cutoff frequency and a greater spacing be-
full model for porous layers on a rigid substrate is presentedween the modes associated with the change in thickness.
in Sec. 11 B, which better describes materials for which theSince the thickness always appears in a product with the
couplings are higher. wave number or with the frequency in the dispersion equa-
tion, doubling(halving) the thickness is equivalent to com-
pressing(expanding)the frequency scale. The cutoff fre-
guencies are given by

A. Guided waves in a layer of soft elastic material on
a rigid substrate

Ewing, Jardetsky, and Préssp. 189)have studied sur- vV Vv
face waves in a solid layer over a semi-infinite solid. The ¢ =(2m+ 1)2 and w.=(2m+ 1)2,
frequency spectrum at ultrasonic frequencies of the surface 2H 2H
acoustic wave in a solid film over a solid substrate was also  m=0p12,. .. 2)
studied analytically by Gusev and He8sThe configuration ) -
for a soft, solid layer lying on a rigid substrate is shown inWhereV, andVy are, respectively, the velocities of the bulk
Fig. 1. Following the standard derivation, by choosing thecompressmnal and shear waves in the mater!al. The study of
potentials to be linear combinations of sines and cosines arf#€ high-frequency behavior shows that the first mode tends
from the application of the appropriate boundary conditiond© the Rayleigh mode and that the velocities of higher order

on stresses and displacements at the interfaces, the followidgedes tend to the bulk shear velocity.
dispersion equation is obtained: The results presented above do not account for the pres-

ence of a fluid surrounding the layer. The effect of the fluid
can be included by replacing the zero in the right-hand side
of the equation of dispersion by a fluid teiisee Viktorov?*

p. 117 for the Lamb case). The main influence of the pres-
ence of a loading fluid is the possible existence of a fluid
wherek, p, and q are the wave numbers defined in the wave that is damped along tlgeaxis, hence localized above
classical Lamb theory. Figure 2(ahows an example of dis- the surface(Scholte wave)and/or the possibility for the
persion curves obtained from a numerical search of the rootsiodes in the layer to “leak out{radiate)energy in the fluid

of Eq. (1). The usual Lamb dispersion curves are shown inleaky Rayleigh wave or leaky Lamb mode# large body
Fig. 2(b) for the same material but for a plate of thicknessof literature is dedicated to the study of ultrasonic surface

k2
—4k?(k?—qg?) —sinpH sinqH ﬁ(kz—q2)2+4k2pq

+ cospH cosqH[ 4k*+ (k*—q?)?]=0, (1)
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waves in fluid-loaded media. The reader is referred to theS. Choice of a functional form for the displacement
thesis by Van de RostyfAkfor an extensive and recent re- potentials

view. The fluid is air in our study and its influence has been
neglected in the case of guided waves in nonporous layers
a rigid substrate. However, air is accounted for in the follow
ing section where a porous material is studied.

Two compressional waves and one shear wave can
oﬁ}opagate in fluid-saturated porous material, and the dis-
“placements of matter are written in terms of two scalar po-
tentialsg; and ¢, and one vector potentiak

B. Guided waves in a porous layer on a rigid substrate

and saturated by air u=Ve+Ve,+VXy, 9)

The configuration examined in the previous section in- _ o B B
volves boundary conditions that are of great interest for the W~ #(U™W=¢Ver(ui= 1)+ ¢Vea(uz—1)
study of highly porous sound-absorbing materials. These + VX p(uz—1), (10)
very soft materials have a Young’s modulus betweehali

to 1¢° Pa, typically. For these materials the rigid substrate Olyhere the coefficientge;, o, and us correspond to the

the Lamb boundary conditions are fairly easy to set up eXamplitude ratios of the waves in the porous matéfal
perimentally and to control.

1. Biot’s equations of poroelasticity Pki— w?pyy
b | - : - Mi=— s 1=1,2 (119
In Biot's linear equations of poroelasticif/(Biot's sec- w?p1— QK
ond formulation is used hexethe total stress tensat; and
the fluid pressuré®; in the pores are given by
:P_:LZ (11b)
TijZZILLSij‘l‘gij()\cS_aMg), (3a) M3 p22'
Pi=—aMe+M{, (3b) ) )
, In these expressiors (i =1,2) are the wave numbers of the
with Biot compressional waves. The elastic coefficigatand Q
A=A+ a?M, (4)  were defined by Biot and Willi§? These can be related 19
L M, to the rigidity of the fluidK; and of the solidk¢ and to the
eij=z(UijTuji), (%) porosity ¢. The following approximation can be used for
e=e11+ £90t £55=diV U, (6) highly porous materials saturated by 3ir:
gz—diVW, (7) 2 (1_¢)
P~_—-u+\+ Ks, 12a
w=g(U-u). (®) 3" g (123)
In these equationsy and u are the Lameconstants of the
porous frameg andM are, respectively, an elastic coupling Q~Ki(1-¢). (12b)

factor and a rigidity associated with the fluid. They were
both defined by Biot and Willi&® &jj is the strain tensor of The following relations are also needed:
the solid and depends on the solid displacemert is the

solid dilatation, ¢» the porosity,{ the fluid content, andv Q

corresponds to the displacement of the fluidelative to the a=|1- ﬁ) 1) (13a)

solid.

2. Boundary conditions and M= —s, (13b)
The porous plate is set in the same configuration as the Q

elastic plate of Sec. IlA and the system of coordinates is _ o _ _
unchanged. In this configuration, the boundary conditions ar@ith R~ ¢K; in the approximation of an air saturated highly

expressed as follows: porous material.p,1, p12, pay are the coefficients of a den-
At y=0: sity matrix and are functions of the tortuosity,

T12= O,

T,=—p where p is the pressure of the fluid sur- p11=(1— @) pst(a,—1)dp;, (14)
rounding the layer,

Pe=p. prz=—(a.~ 1) dpr, (15)

uy,+w,=U; whereU; is the displacement of matter
in the surrounding fluid.

At y=H: p22= A Pps . (16)
u,=0
y )
u,=0, The velocities of the two compressional and of the shear
w,=0. waves were given by Bidt?® They are obtained from



1 1 PpxptRp1i1—2Qps, (PR—Q?)(p11p20—p3) | .

== . 1+(1-4 = |, i=12 17)

Vi 2 PR-Q (Pp22tRp11—2Qp1))

Vy= \/ " — (18)

(1-¢)pst|1- a—) Pps
|

The wave attenuation by viscous frictions and thermal ex- ) w? )
changes between the solid and the fluid can be formulated and g :V_Z'_k : (25¢)

through the use of a complex dynamic tortuosityw) to
replacea., and of a complex air compressibilitgee Ref. 2).
These involve the flow resistivity of the porous material
and the viscous and thermal lengthsand A’. For the first
three potentials, a linear combination of sines and cosines
chosen

¢1=(A;cospry+A;sinpry)e! (17, (19)
¢2=(By cospyy+ B, sinp,y)e' (), (20)
=(C cosqy+ C,sinqy)e' (@), (21)
pi=DeMe! (k) for y=<0, (22)

whereA;, A,, By, B,, C4, C,, andD are constantsw is
the angular frequency andis the time. The potentials de-
pend onx andy and satisfy the following equations of
propagation:

1 e
2 —_——_—_——— =
Ve, VEl 912 , (23a)
1 9,
2 —_——_—_——— =
V2~ gz (23b)
d v? ! ‘92‘#—0 23
an ¥ V_ZT W_ . (23c)
Harmonic solutions inw andk yield for a propagation along
X
az(Pl 2
Yl +p1¢1=0, (24a)
¢,
(9—7 + p%go2=0, (24b)
y
82
and %—qul/l: 0, (24c)

where the coefficientp;, p,, andq are wave numbers as-

sociated with the propagation of the fast, slow, and shear

waves, respectively

_ L2
P1 V2, k<, (25a)
2
2_ @ 2
- —k 2
P> VEz ) (25b)

T

The fluid surrounding the layer is included in the model, and
a potentialg;, associated with the wave in the fluid must
also be defined. This potential satisfies

IS
1 9
2. _ '
Py
a — 72 @;=0 (26b)

The dependence onof ¢s is such that theg component of
the propagation constantis given by

w2

2=k2_ _
Y Vf'

(27)

where V; is the free velocity in the fluid. Referring to dis-

cussion of Sec. Il A and to the form chosen for the potential
in Eq. (22), the main features of the components of the wave
numbers of the wave in the surrounding fluid are the follow-

ing:
0] Im(k)=0. This condition should always be fulfilled
and will insure that the amplitude of the wave de-
creases as increasesor is constant in the undamped
case). The definition used féris k= Re(k)+ilm(k).
Re(y)>0. This corresponds to a fluid wave localized
above the interface, i.e., a Scholte wagsemi-infinite
solid) or an A wave (plate). If Imk)=0 in condition

(i) the modes are undamped aloxg

Re(y)=0 and Im@)>0. This situation is one where
the wave can propagate in the entire fluid half-space
and is not localized near the interface. This is made
possible if both the radiation condition R@E0 and

the causality requirement Im>0 for a wave to
travel from the interface and not toward it are ful-
filled. In this case the guided modes in the layer will
radiate or leak out energy in the fluid. Since
=w\/1N2—1N2f, the consequences of these condi-
tions on the velocities are that the phase velocity of
the guided wave must be greater than the free velocity
of the fluid for the condition to be fulfilled. The wave
will be radiative for supersonic guided modes. The
nature of the fluid modélocalized or radiativecan
also change with frequency as the phase velocity var-
ies and can cross the valyg .

(iii)



4. Determinant of the boundary conditions—

. ; : &> Laser Doppler vibrometer
Dispersion equation

The displacements, andu, are obtained from writing Air
the spatial derivatives of the potentials in Ef) Shaker

vor der 0 T AW
=——4 4 —
U T Tox ay’ (282)
dpy  dep Y )
and uy=——-

+ 2= (28b)

Yy~ ay ay ay ’ FIG. 3. Experimental setup for the generation and detection of standing

waves in a layer of material on a rigid substrate.
Similarly, the components of the relative displacemergre

obtained from Eq(10). The other parameters and the usefu'foam and an application to the evaluation of the dynamic

elements of the stress and strain tensors are calculated fmgamplex elastic moduli are proposed in Sec. V.
Egs. (3) to (8). After expressing the boundary conditions T

given in Sec. lIB2, a X7 determinant is found

I1l. EXPERIMENTAL PRINCIPLE FOR MEASURING
0 D O Dy Dy O O

THE PHASE VELOCITIES OF GUIDED ACOUSTIC

D,y 0 Dy O 0 Dy Dy MODES IN POROUS MEDIA

Dy; O Ds3 O 0 0 Dy A. Experimental setup

O Dy O Dy Dys 0 Dy —0. (29) The experimental p_rinc_iple is described in Eig. 3, where
Ds; Dsy, Dsz Dgs Dss Dgg O a layer of porous material is glued on a plane rigid substrate

so that the displacement of the porous frame is zero at the
interface between the material and the substrate. Double-
D;;, D;,, Dy3 Dy Dy Dyg O faced tape and a mounting spray were used, in order to ob-
tain uniform boundary conditions over the whole interface.
The coefficients of the matrix are given in the Appendix.An optical table with a rigidity and a density much greater
Finding the zeros of this determinant, i.e., solving the equathan that of the porous layer was used as a semi-infinite rigid
tion substrate. The porous layer was excited at one end with a
thin aluminum strip used as a line source attached to a shaker
Det(w kH,...)=0, (30) at one end and to?he sample at the other end with the help of
provides a relationship between and k, the equation of double-faced tape. The shaker was fed with a continuous
dispersion. This relationship is not explicit and must be desinusoidal signal provided by the function generator unit of
termined numerically. In general, this determinant has coman SRS SR780 2-channel signal analyzer, and the frequency
plex values and Eq.30) should also be solved in the com- could be varied. The signal analyzer incorporates a lock-in
plex plane to account for attenuation mechanisms. Thigmplifier. The other end of the layer was glued on a rigid end
means that the initial values & must be complex in the so that incident waves could be reflected. The difference in
numerical algorithm to solve E@30). The theoretical calcu- impedance is large and it can be assumed that the reflection
lation of the dispersion curves for a highly porous melaminecoefficient at the interface between the rigid end and the
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FIG. 4. (a), (b), and(c): Experimental standing wave patterfd), (e), and(f): Spatial Fourier transforms of the measured standing wave patteyresd(d)
256 Hz;(b) and(e) 424 Hz;(c) and(f) 1041 Hz.



TABLE |. Phase velocities of the surface modes in a layer of material on aTABLE Il. Material parameters for the melamine foam.
rigid substrate at different frequencies.

Flow Viscous Thermal Frame
Phase velocities of modém/s) resistivity ~ dimension dimension  density
Tortuosity Ns/nft am um kg/m®  Porosity
Freq(Hz) a. p A A’ o &
1041 933 266 146 108 84 1.01 12 000 100 150 13.96 0.98
424 120 69
256 253 91 50

frequencies. The waves are mainly propagative near the

plate is 1. The displacement of the surface of the layer was®!/¢€ ar_1d standing near the “9_'0' end. In th's_ artlcl_e, _th_e
measured with the help of a laser vibrometer. The measurdttention is focused on the detection of the spatial periodici-
ment point on the surface was allowed to move along a lind!€S that appear in the standing wave field created by the
parallel to thex axis. The laser beam at the output of thereflectlon. At low frequencies, the waves traveling toward

laser was collimated and a mirror/lens arrangement insure@nd reflected from the rigid end have a fairly low attenuation,

that the beam was always focused on the surface of the m&"d the influence of the source can extend over long dis-

terial at any position of the beam. Reflection of the lasef@nces. At higher frequencies, the attenuation is greater and

beam on the material was achieved with the help of a strip ofI9ner excitation amplitudes are necessary. In practice, over-
reflective tape in the path of the scanning beam. The entirQeatlng of the source_and _nonlmear effects_ in the ma_terlal
setup was automated and placed in a semianechoic chambBfFa" the source are limitations to the maximum amplitude
For each frequency, the path was scanned with a typical ste?JOp“mple' ) -

of 1 to 5 mm and the amplitude and phase of the signal were To isolate the "standing” part of the wave pattern near

recorded at each position. Once the data were recorded, tige 19id end, and to reduce the source effect, a spatial win-
dow can be used when calculating the spatial Fourier trans-

spatial Fourier transform of the displacement profile in the N X , .
vicinity of the rigid end was calculated. form._Th|s window is Qe5|gned to reduce the amplitudes of
the displacement profile near the source. The source effect
manifests itself by the presence of dominant peaks of ampli-
B. Standing wave pattern, spatial Fourier transform tude at low wave numbers in the spatial spectrum. The length
and phase velocities of the spatial window should also vary when the frequency
Figure 4 shows the standing wave patterns measured s@ries, as the spatial extent of the source effect changes with
256, 424, and 1041 Hz, and the amplitude of their respectivéequency. Because it is quite difficult yet to find a reliable
Fourier transforms plotted in arbitrary units. The experimen-guideline for applying a window at varying frequencies, the
tal data processing scheme is the following: the spatial Foudata were processed twice, with and without window; only
rier transformA(k,f;) of the standing wave pattern at each the most certain points were retained. Thus, the dominant
frequencyf; gives a continuous spectrum with maxima indi- source effect can be filtered out to obtain the modes propa-
cating the wave numberlg"™ of the modes present in the gating with a small wavelength. As can be seen in Fig) 4
material. The phase velocities are then simply obtained bgmall ripples are present in the spectrum. These are a conse-
vzw/k{f‘jax. The phase velocities of the maxima that havequence of the finite sample dimensions and of the disconti-
been identified are indicated in Table I. The highest velocinuities introduced in the periodization in the numerical
ties in Table | correspond to the peaks with smaller values ofmplementation of the Fourier transform. A second function
wave number, but these modes can be accounted for onBf spatially windowing the standing wave pattern is to reduce
when their wavelengths are sufficiently smaller than the sizéhe amplitude of these ripples.
of the sample. The differences in peak amplitudes are due to
detection takes place in the normal direction. The modeaND FITTING OF THE COMPLEX SHEAR
with the highest amplitudes are those with main displacemODULUS AND POISSON RATIO
ments along thg axis. The source configuration plays a role
in the excitation efficiency of the modes. The source/materiaf"
impedance matching is also of great importance in the uni- A highly porous melamine foam with a thickness of 10
formity of the source amplitude with frequency. The key cm (the material parameters are given in TablewBs stud-
advantages of this method are that more energy can be di&d theoretically and experimentally using the technique de-
livered at a given frequency and that the signals are continuscribed in the previous section. Calculated dispersion curves
ous, not localized in time. Since the excitation is a continufor this material are presented in Fig. 5. The real parts of the
ous sine, the rigid backing of the sample is used in order tghase velocities of the modes are given in Fig)%&nd the
create a spatial profile of the sample surface near the reflectimaginary parts in Fig. 5(b). A shear modulusof 110 000
that does not depend on time. Pa, obtained from the high-frequency limit of the experimen-
However, as can be seen in Figc) the standing wave tal results, and a Poisson ratioof 0.25 were used in the
pattern is most clearly observed near the rigid end of thesimulation. Imaginary parts of 10% of their respective real
sample and for higher frequencies. This can be explained bgarts were added to these coefficients to simulate structural
the reduced influence of the source in this area and at thesiEamping. The simulation includes both the Biot attenuation

Theoretical dispersion curves

6
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- 0 FIG. 6. Root search of Eq30) in the complexk plane at 2000 Hz. The
0 spots correspond to the roots found numerically. The downward triangle, the
5-100- diamond, the right and the upward triangle correspond, respectively, to the
2 first, to the second longitudinal Biot wave number, to the transverse Biot
8 -200f wave numbers, and to the fluid wave number.
3
§'3°°' rant of thek space was used. The dots correspond to the
4 400 maxima found, i.e., the roots of E¢30). The downward
‘5 triangle, the diamond, the right- and the upward triangles are
2 -500} trivial solutions of Eq.(30). They correspond, respectively,
E to Biot's first and second compressional wave numbers, to
-600; 500 1000 1500 2000 Biot's shear wave number, and to the fluid wave number
(b) Frequency (Hz) (these modes are not shown in Fig. Bn addition, each

mode was calculated separately by using a branch-following

FIG. 5. Dispersion curves calculated by solving E2p) numerically for a  algorithm in which a root is being traced from high to low
melamine foam of 0.1-m thicknes@) Real part andb) imaginary part of requencies
the phase velocities. The anomalous behavior of the dashed-curve moée ’
around 250 Hz is due to numerical error.
B. Interpretation of the theoretical results

mechanism in a porous medium and the structural damping When comparing the results with those obtained from
associated with complex Young and shear moduli. Thehe results of Sec. Il A, in which the porous solid is consid-
damped modes were calculated by searching the zeros of tleeed as an effective nonporous solid, it is found that more
determinant (29) in the complex plane(no attenuation modes exist in the porous case. This result can be associated
mechanism was considered in Sec. IlA and undampedvith the existence of the fluid and solid phases. The interpre-
modes were obtained from a root search on the real axis). #ation can be made easier by considering, in a first approach,
simple numerical algorithm was developed that seems tthe purely theoretical case of a porous layer with a rigorously
give good results. The idea is to locate the maxima of theero coupling between the two Biot waves. In such a case,
|Det(w,k,H,...)| ! surface in the complek plane, which is  one may consider two decoupled sets of guided waves in the
equivalent to solving30) but with the advantage that this porous layer: the structure-borne guided waves and the fluid-
function is real-valued and easier to handle. Numerically, thidborne guided waves. If Biot's structure-borne bulk waves
function can be represented by a large matrix, any value ofcompressional and sheawere nondispersive at all, the
which has a row and a column index that correspond to thetructure-borne set of guided modes in the layer would cor-
discretized real and imaginary parts lof The root search respond exactly to the modes obtained from the effective
was done in aMATLAB routine where a smaller square matrix solid model of Sec. Il A. The new result is the possible ex-
was used to “scan” the large matrix of data to find the localistence of a second set of guided modes associated with Bi-
maxima. The size of this “scanning” matrix can be chosenot’s fluid-borne wave. This result is a direct consequence of
so that there is only one maximum in it. The condition thatthe addition of the term containing the scalar potendal

the maximum found in the scanning matrix must not be onassociated with Biot's wave of the second kind in E®).

its edges must be fulfilled because it does not necessarilyncluding this potential results in increasing the number of
correspond to a local maximum of the large matrix. Severakolutions for the dispersion equation and therefore the num-
simple methods can be used to implement this condition nuber of modes in the porous system. The porous material stud-
merically. This zero search algorithm is simple and fastied in this article is such that the coupling between the two
enough for our study. Figure 6 shows an example of contoucompressional waves is weak, and so it is thought that the
plot of the function|Det(w,k,H,...)|"! at 2000 Hz for a interpretation given above should hold for this material.
melamine foam as an example of root search in the complekowever, the coupling, even though very small, always ex-
k plane. The sign convention used fkrin the numerical ists in real experimental conditions and it is thought that the
algorithm wask=Re(k)—ilm(k), and the lower-right quad- main effect of the coupling will be the possibility for the
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FIG. 7. Real part of the dispersion curves calculated as a function of freg|g g Measured phase velocitigircles)and fitted modessolid lines)for
quency for a melamine foam of 0.1 m thickness up to 10 kHz. a melamine foam.

structure- and fluid-borne guided waves to exchange energy. Fitting of the dispersion curves
It is difficult to envisage the detection of any of the fluid- T . tal thod d to determi
borne modes at the moment with the current experimentaﬂ1e € hew experimental method was used 1o determine

. : phase velocities in a layer of melamine foam. The sample
setup designed to measure the displacement of the solid A . ) .
structure only. was set up as shown in Fig. 3 and a continuous sine excita-

Another consequence of the porous nature of the layer itiqn with frequencies varying from 150 to 1500 Hz was ap-

. ! ) lied. The measurements were performed at a temperature of
the possible loss of energy by viscous and thermal interacs, o 4nd variations remained within 5% of this value. Two
tions in the pores resulting in a higher attenuation for theyear maxima could be traced throughout the measured fre-
guided modes in the porous material than for an equivalery,ency domain. These provided the velocities of the first two
elastic solid in which only structural damping is accountedmodes of the dispersion curves. The results are shown in Fig.
for. On average and for all the modes, about 15% extrg, Several data points seem to provide evidence for the ex-
damping should be attributed to Biot's attenuation in the diS'istence of a third mode. It was found that a variation in
persion curves of Fig. 5. While this result holds only for thefrequency of the elastic coefficients and the use of the com-
porous material studied in this article, Biot's attenuationp|ete porous model was needed to fit the variations of the
should in general affect both the damping and the dispersiofirst two modes. The solid lines indicate a fit where the shear
of the modes. In addition to the existence of the fluid-bornemodulus and its imaginary part were allowed to vary. The
dispersion curves, the existence of a second compressiona&rameters for the fit are the real and imaginary parts of the
wave in a porous medium has a very interesting conseshear modulus and the Poisson ratio. All other physical pa-
quence. As frequency increases, it can be seen in F&. 5 rameters: porosity, permeability, tortuosity, thermal and vis-
that the thin dotted line and the thin solid line tend to thecous characteristic lengths, were measured. Standard meth-
velocity of the Biot wave of the second kind. In the material0ds exist for the first two parameters. The last three
studied, the Biot wave of the second kind is faster than tharameters were determined using ultrasonic transmission
Biot wave of the first kind at high frequencies, and is slowerMethods(see Ref. 32 and references theyeim the fitting
than the free velocity in the surrounding fluid. The curves ardr0Cess, the experimental results were assumed to corre-
plotted in a wider frequency range in Fig. 7, clearly showingSPONd to the first two modetindicated by the medium thick
the two sets of dispersion curves. The shear velocity acts Z%O“d_ line and the dashe_d _I|_ne))f Fig. 5(a). This indirectly
asymptotic values toward which the structure-borne mode row_ded a guess for the |n|t|al_value of the Sheaf modu|u§ as

. . : : the first mode tends asymptotically to the Rayleigh velocity,
tend. While this behavior can be expected in a nonporous , .

which depends on the shear modulus. A separate measure-

solid, the existence of a second velocity limit in porous me- . . .
di ding to th locity of the Biot t th ment of the Rayleigh velocity at high frequency was per-
'a corresponding fo the velocity of the biot wave of €, aq oy a smaller sample of the same material and was

second kind is new. This behavior can be related to the facéonsistent with the high-frequency asymptotic limit. An ini-

that the fluid-borne modes propagate in an equivalent “fluidgg) yajue of 0.25 was used for the Poisson coefficient. The
plate.” In such a plate, the shear velocity is zero and th&maginary part of the Poisson coefficient was allowed to vary

modes tend to the bulk compressional velocity in the highyyithin 209 of the real part. The values obtained for the shear
frequency limit®® The existence of a compressional and amodulus, the Poisson coefficients, and their imaginary parts
shear limit velocity can also be observed in materials forare given in Fig. 9. A variation of the shear modulus between

which the coupling between the compressional and sheay.05 and 0.12 GPa was obtained in the frequency range in-
waves is small, such as in highly attenuative plastic pi3tes. vestigated. Although the measurement error is difficult to

The attenuation mechanisms and the presence of a loadimgtimate precisely, the discrepancy between the fit and the
fluid are responsible for the existence of the maxima obmeasured phase velocities gives an indication. It was noticed
served in the dispersion curves of Figs. 5 and 7. that the fit is less sensitive to the Poisson ratio than to the
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materials was proposed and applied to a highly porous
melamine foam. This method is based on the generation of
standing waves in the layer and accounts for the dispersion
of guided acoustic waves in the layer of material lying on a
rigid substrate. The dispersion of the modes was also studied
theoretically and new, interesting results were found on the
consequences of the existence of two compressional waves
in a porous material. The coupling between the two Biot
compressional waves is fairly low in the material studied,
and structure-borne and fluid-borne guided waves were pre-
dicted. It was also found that the velocity of the Biot com-
pressional wave of the second kind acts as a limit velocity
for the fluid-borne dispersion curves, and that a significant
additional damping was induced by the inclusion of Biot's
parameters in the model.

The experimental results are consistent with other mea-
surements on this material and with the results obtained from
static tests and traditional methods. Although this method
allows description of a higher frequency range than the tra-
ditional methods, it is still limited by the lack of a reliable
line source that can be used to excite high-frequency vibra-
tions with sufficient amplitude. Other materials, experimen-
tal configurations, theoretical development, as well as new
excitation techniques are currently being investigated. In par-
ticular, a porous layer with its two surfaces frgdgeamb con-
ditions) is being studied experimentally and theoretically.

FIG. 9. Fitted real and imaginary parts of the shear modulus and PoissolThis work should allow the study of more rigid materials and

ratio against frequency. The imaginary parts are plotted in percentage of t

real parts.

"he exploration of a higher frequency range.

shear modulus. As a consequence, one may consider the rpPPENDIX:

sult to be reliable for the shear modulus while only giving an

order of magnitude for the variations of the Poisson ratio.
Although precise literature values on the variation of the D= —2ikpy,

shear modulus for this type of highly porous foams are D14=— 2ikp,,

scarce, the values measured in this study can be compared to Dy5=k*—?,

other measuremenis? In Ref. 10, vibration measurements

on this type of foan{imelamine)gave a range of variation for

the Young’s modulus between X3.0° Pa and 2.340° Pa

The elements of the determinant in E&9) are given by

Dor=—2upy— (K24 P (ot aM b (us 1)),
Dos=—2upy— (k*+p2) (A e+ aM ¢(u,— 1)),
Dos=2ikgu,

between 200 and 1000 Hz. Considering a real part of Poisson ~ D27= — Ki(—k*+?),
ratio around 0.Zobtained from the fit in Fig. 9(b)], the cor- , Py
responding range for the shear modulus is between 6.2 Daz=(k*+p)M(a+ ¢(uz2—1)),

X 10* Pa and 9.640% Pa. In the same frequency range, the
results we obtained vary betweenx10* Pa and 10
X 10* Pa[real part of the shear modulus in Fig. 9(a)], show-

Da;= (K*+p)M(a+ ¢p(ui—1)),

Dar=Ki(—K*+%7),
Dap=p1(1+¢p(u1—1)),
Das=pa(l+p(uo—1)),

ing a good consistency with the results of Ref. 10 and a Dys=ik(1+¢(unz—1)),

difference between 4% and 11%. The error on the Poisson
ratio should also be added when carrying out the compari-
son. This type of material exhibits a non-negligible anisot-
ropy, and the way the material is cut can explain the differ-
ences observed. However, the range of values obtained is
confirmed by static tests, by the traditional lower frequency
measurement methods, and by the Rayleigh wave measure-
ment method that was also performed on this material in
the high-frequency limit.

V. CONCLUSION

A new experimental technique for measuring the dy-
namic complex shear modulus and Poisson ratio of porous
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Dar=—,

Ds;= —ps1sinpH,
Ds,=p; cospiH,
Ds3= —p2 sinpH,
Ds4= p2 cOSp,H,
Dss=ik cosqH,
Dgg=ik singH,
Dg,= —ik cosp;H,
D62: - |k Sinle,
Dgz= —ik cosp,H,
D64: - |k Sinsz,
Dgs= —qsingH,
Dee=q cosgH,
D71= — ¢(p1—1)pysinpsH,
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