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Abstract. We consider a general network of harmonic oscillators driven out of thermal equilib-
rium by coupling to several heat reservoirs at different temperatures. The action of the reservoirs
is implemented by Langevin forces. Assuming the existence and uniqueness of the steady state of
the resulting process, we construct a canonical entropy production functional St which satisfies
the Gallavotti–Cohen fluctuation theorem. More precisely, we prove that there exists κc > 1

2

such that the cumulant generating function of St has a large-time limit e(α) which is finite on
a closed interval [ 12 − κc, 12 + κc], infinite on its complement and satisfies the Gallavotti–Cohen
symmetry e(1 − α) = e(α) for all α ∈ R. Moreover, we show that e(α) is essentially smooth,
i.e., that e′(α)→ ∓∞ as α→ 1

2 ∓ κc. It follows from the Gärtner-Ellis theorem that St satisfies
a global large deviation principle with a rate function I(s) obeying the Gallavotti–Cohen fluctua-
tion relation I(−s) − I(s) = s for all s ∈ R. We also consider perturbations of St by quadratic
boundary terms and prove that they satisfy extended fluctuation relations, i.e., a global large de-
viation principle with a rate function that typically differs from I(s) outside a finite interval. This
applies to various physically relevant functionals and, in particular, to the heat dissipation rate of
the network. Our approach relies on the properties of the maximal solution of a one-parameter
family of algebraic matrix Riccati equations. It turns out that the limiting cumulant generating
functions of St and its perturbations can be computed in terms of spectral data of a Hamiltonian
matrix depending on the harmonic potential of the network and the parameters of the Langevin
reservoirs. This approach is well adapted to both analytical and numerical investigations.
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1 Introduction

Boundary driven mechanical systems are paradigmatic in nonequilibrium statistical mechanics. Ex-
istence and uniqueness of nonequilibrium steady states have been extensively studied for a variety
of such systems: harmonic [LS1] and anharmonic [BK] crystals, 1-dimensional chains of anhar-
monic oscillators [EPR1, EPR2, EH1, EH2, RT1, Ca, BL], rotors [CEP, CE2] and other Hamil-
tonian systems [EY, LY1, LY2, CE]. More general Hamiltonian networks have been considered
in [EZ, MNV, CE1]. In this paper, we shall study stochastically driven networks of harmonic oscilla-
tors which are the simplest models in the last category. The questions of existence and uniqueness of
the steady state is well understood in such systems. Estimates of the rate of relaxation to the steady
state are also available [RT2, AE]. The focus of this work is on the concept of entropy production and
its fluctuations, although our approach can be extended to cover the fluctuations of energy/entropy
fluxes between individual heat reservoirs and the network. The universal fluctuation relations sat-
isfied by the entropy production rate (or phase-space contraction rate) in transient [ECM, ES] and
stationary [GC1, GC2] processes have been one of the central issues in the recent developments of
nonequilibrium statistical mechanics. Various approaches to these relations have been proposed in the
literature and we refer the reader to [RM, Se, LS2, Ma, CFG, CG, JPR, JOPP] for reviews and detailed
discussions. The interested reader should also consult [RT3], where fluctuation relations are derived
for boundary driven anharmonic chains, and [JPS] for a discussion of these topics in the framework
of Gaussian dynamical systems. For theoretical and experimental works dealing specifically with
mechanically driven harmonic systems we refer the reader to [JGC, JGDPC, KSD].

In this paper we follow the scheme advocated in [JPR, JOPP] and fully elaborated in [JNPPS]. The
details are as follows.

Consider a probability space (Ω,P,P) equipped with a measurable involution Θ : Ω → Ω. Suppose
that the measures P and P̃ = P ◦Θ are equivalent. We define the canonical entropic functional of the
quadruple (Ω,P,P,Θ) by

S(ω) = log
dP
dP̃

(ω), (1.1)

and denote by P the law of this random variable under P. Since

S ◦Θ(ω) = log
dP ◦Θ

dP̃ ◦Θ
(ω) = log

dP̃
dP

(ω) = −S(ω), (1.2)

the support of P is symmetric w.r.t. the origin. It reduces to {0} whenever P̃ = P. In the opposite
case the symmetry Θ is broken and the well known fact that the relative entropy of P w.r.t. P̃, given
by

Ent(P|P̃) = −
∫

Ω
S(ω)P(dω) = −

∫
R
sP (ds)

3
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is strictly negative (it vanishes iff P = P̃) shows that the law P favors positive values of S. To obtain
a more quantitative statement of this fact, it is useful to consider Rényi’s relative α-entropy

Entα(P|P̃) = log

∫
Ω

eαS(ω)P̃(dω).

Note that Ent0(P|P̃) = Ent1(P|P̃) = 0, and since the function R 3 α 7→ Entα(P|P̃) is convex
by Hölder’s inequality, one has Entα(P|P̃) ≤ 0 for α ∈ [0, 1]. It is straightforward to check that
Entα(P|P̃) is a real-analytic function of α on some open interval containing ]0, 1[ and infinite on
the (possibly empty) complement of its closure. In particular, it is strictly convex on its analyticity
interval.

From the definition of P̃ and Relation (1.2) we deduce

Entα(P|P̃) = log

∫
Ω

eαS◦Θ(ω)P(dω) = log

∫
Ω

e−αS(ω)P(dω) = log

∫
Ω

e−αS(ω) dP
dP̃

(ω)P̃(dω),

(1.3)
and the definition of S yields

log

∫
Ω

e−αS(ω) dP
dP̃

(ω)P̃(dω) = log

∫
Ω

e(1−α)S(ω)P̃(dω) = Ent1−α(P|P̃).

It follows that Rényi’s entropy satisfies the symmetry relation

Ent1−α(P|P̃) = Entα(P|P̃), (1.4)

which, in applications to dynamical systems, will turn into the so-called Gallavotti–Cohen symmetry.
The second equality in Eq. (1.3) allows us to express Rényi’s entropy in terms of the law P as

Entα(P|P̃) = e(α) = log

∫
R

e−αsP (ds).

Note that, up to the sign of α, e(α) is the the cumulant generating function of the random variable S.
Denoting by P̃ the law of −S under P, the symmetry (1.4) leads to∫

R
eαsP̃ (ds) =

∫
R

e−αsP (ds) =

∫
R

e−(1−α)sP (ds) =

∫
R

eαse−sP (ds),

from which we obtain
dP̃

dP
(s) = e−s (1.5)

on the common support of P and P̃ . Thus, negative values of S are exponentially suppressed by the
universal weight e−s. In the physics literature such an identity is called a fluctuation relation or a
fluctuation theorem for the quantity described by S. Most often S is a measure of the power injected
in a system or of the rate at which it dissipates heat in some thermostat. The equivalent symmetry of
the cumulant generating function e(α) of S which follows from the symmetry (1.4) of Rényi’s entropy

e(1− α) = e(α) (1.6)

is referred to as the Gallavotti–Cohen symmetry. The name symmetry function is sometimes given to

s(s) = log
dP

dP̃
(s).

4
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In terms of this function, the fluctuation relation is expressed as

s(s) = s.

The above-mentioned fact that

0 = Ent1(P|P̃) = log

∫
R

e−sP (ds),

rewritten as ∫
R

e−sP (ds) = 1, (1.7)

constitute the associated Jarzynski identity and the strict negativity of relative entropy

0 < −Ent(P|P̃) =

∫
sP (ds), (1.8)

becomes Jarzynski’s inequality.

In all known applications of the above scheme to nonequilibrium statistical mechanics, the space
(Ω,P,P) describes the space-time statistics of the physical system under consideration over some
finite time interval [0, t] (in the following, we shall denote by a superscript or a subscript the depen-
dence of various objects on the length t of the considered time interval). The involution Θt is related
to time-reversal and the canonical entropic functional St to entropy production or phase space con-
traction. The fluctuation relation (1.5) as a fingerprint of time-reversal symmetry breaking and the
strict inequality in (1.8) is a signature of nonequilibrium.

The practical implementation of our scheme to nonequilibrium statistical mechanics requires 4 distinct
steps which will structure our treatment of thermally driven harmonic networks. In order to clearly
formulate the purpose of each of these steps, we illustrate the procedure at hand on a very simple
model of electrical RC-circuit described in Figure 1. We shall not provide detailed proofs of our
claims in this example since they all reduce to elementary calculations. We refer the reader to [ZCC]
for a detailed physical analysis and to [GC] for experimental verification of the fluctuation relations
for this system.

Step 1: Construction of the canonical entropic functional

The internal energy of the circuit of Figure 1 is stored in the electric field within the capacitor and is
given by

E =
z2

2C
, (1.9)

where z denotes the charge on the plate of the capacitor and C is the capacitance. The equation of
motion for z is

żt = I − zt
RC

+
Vt
R
,

where I is the constant current fed into the circuit and Vt the electromotive force (emf) generated by
the Johnson–Nyquist thermal noise within the resistor R. Integrating the equation of motion gives

zt = e−t/RCz0 + (1− e−t/RC)RCI +
1

R

∫ t

0
e−(t−s)/RCVsds. (1.10)

5
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C
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R
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Figure 1: A parallel RC circuit is fed with a constant current I . The resistor R is in contact with a
heat bath at temperature T . The Johnson–Nyquist thermal noise in this resistor generates a fluctuat-
ing electromotive force V which contributes to the potential difference U = RIR + V driving the
capacitor C.

To simplify our discussion (and to avoid stochastic integrals and the technicalities related to time-
reversal), we shall assume that Vt has the form

Vt
R

=
∞∑
k=1

ξkδ(t− kτ),

where τ � τ0 = RC and ξk denotes a sequence of i.i.d. centered Gaussian random variables with
variance σ2. Sampling the charge at times nτ + 0 yields a sequence z0, z1, z2, . . . satisfying the
recursion relation

zk+1 = ηzk + (1− η)z + ξk+1,

where z = Iτ0 and η = e−τ/τ0 . According to (1.10), the charge between two successive kicks is
given by

zkτ+s = e−s/τ0zk + (1− e−s/τ0)z, s ∈]0, τ [. (1.11)

Assuming z0 to be independent of {ξk}, the sequence z0, z1, z2 . . . is a Markov chain with transition
kernel

p(z′|z) =
1√

2πσ2
e−(z′−ηz−(1−η)z)2/2σ2

. (1.12)

One easily checks that the unique invariant measure for this chain has the pdf

pst(z) =
1√

2πσ2/(1− η2)
e−(z−z)2(1−η2)/2σ2

. (1.13)

In the case I = 0 (no external forcing), according to the zeroth law of thermodynamics, the system
should relax to its thermal equilibrium at the temperature T of the heat bath. Thus, in this case the
invariant measure should be the equilibrium Gibbs state of the circuit at temperature T which, by (1.9),
has the pdf

peq(z) =
1√

2πkBTC
e−z

2/2kBTC ,

kB denoting Boltzmann’s constant. This requirement fixes the value of variance of ξk’s and

σ2 = kBTC(1− η2).

6
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One can show (see Section 8 in [Bi]) that, in the limit τ → 0, the covariance of the fluctuating emf Vt
converges to

〈VsVt〉 = 2kBTRδ(s− t),
in accordance with the Johnson-Nyquist formula ([Ny], see also [vK, Section IX.2]). For I 6= 0,
Eq. (1.13) describes a nonequilibrium steady state (NESS) of the system. In the following, we shall
consider the stationary Markov chain started with the invariant measure and denote by 〈 · 〉st the cor-
responding expectation.

The pdf of a finite segment Zn = (z0, . . . , zn) ∈ Rn+1 of the stationary process is given by

pn(Zn) = p(zn|zn−1) · · · p(z1|z0)pst(z0), (1.14)

which is the Gaussian measure on Rn+1 with mean and covariance

〈zk〉st = z, 〈zkzj〉st − 〈zk〉st〈zj〉st = kBTCe−|k−j|τ/τ0 .

We chose the involution Θ : Rn+1 → Rn+1 to be the composition of charge conjugation z 7→ −z
with time-reversal of the Markov chain,

Θ : (z0, . . . , zn) 7→ (−zn, . . . ,−z0).

The time-reversed process is the Markov chain which assigns the weight (1.14) to the reversed segment
Θ(Zn). Thus, the transition kernel p̃(z′|z) and invariant measure p̃st(z) of the time-reversed process
must satisfy

p̃(−z0| − z1) · · · p̃(−zn−1| − zn)p̃st(−zn) = p(zn|zn−1) · · · p(z1|z0)pst(z0) (1.15)

for all n ≥ 1 and Zn ∈ Rn+1. For n = 1, this equation becomes

p̃(−z0| − z1)p̃st(z1) = p(z1|z0)pst(z0). (1.16)

Integrating both sides over z1 gives
p̃st(−z0) = pst(z0),

from which we further deduce

p̃(−z0| − z1) = p(z1|z0)
pst(z0)

pst(z1)
.

One then easily checks that (1.15) is indeed satisfied for all n ≥ 1. Note that in the case I = 0 one
has

p(−z′| − z) = p(z′|z), pst(z) = pst(−z),
and it follows that p̃(z′|z) = p(z′|z), Eq. (1.16) turning into the detailed balance condition. In this
case, the time-reversed process coincides with the direct one: in thermal equilibrium, the time-reversal
symmetry holds. However, in the nonequilibrium case I 6= 0, time-reversal invariance is broken and
p̃st(z) 6= pst(z).

We are now ready to describe the canonical entropic functional. Applying our general scheme to the
marginal Pnτ of the finite segment Zn (which has the pdf pn), we can write (1.1) as

Snτ = log
dPnτ

dP̃nτ
(Zn) = log

pn(Zn)

pn(Θ(Zn))
= log

p(zn|zn−1) · · · p(z1|z0)pst(z0)

p(−z0| − z1) · · · p(−zn−1| − zn)pst(−zn)

=
n−1∑
k=0

log
p(zk+1|zk)

p(−zk| − zk+1)
+ log

pst(z0)

pst(−zn)
.

7
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Eqs. (1.12) and (1.13) yield

log
p(z′|z)

p(−z| − z′) = − 1

kBTC

(
z′2

2
− z2

2
− 1− η

1 + η
(z + z′)z

)
,

log
pst(z0)

pst(−zn)
=

1

kBTC

(
z2
n

2
− z2

0

2
+ (z0 + zn)z

)
,

from which we deduce

Snτ =
1

kBT

[
1− η
1 + η

n−1∑
k=0

zk +
zn + ηz0

1 + η

]
2z

C
.

Step 2: Deriving a large deviation principle

From a more mathematical point of view, as stressed by Gallavotti–Cohen [GC1, GC2], the interesting
question is whether the entropic functional St satisfies a large deviation principle in the limit t→∞.
More precisely, is it possible to control the large fluctuations of St by a rate function R 3 s 7→ I(s)
such that

P
[

1

t
St ∈ S

]
≈ e−t infs∈S I(s),

as t→∞ for any open set S ⊂ R ? Moreover, does this rate function satisfy the relation

I(−s) = I(s) + s, (1.17)

which is the limiting form of (1.5), for all s ∈ R ? Finally, can one relate this rate function to the
large-time asymptotics of Rényi’s entropy via a Legendre transformation

I(s) = sup
α∈R

(αs− e(−α)) , e(α) = lim sup
t→∞

1

t
Entα(Pt|P̃t),

as suggested by the theory of large deviations? To illustrate these points, we return to our simple
example.

For this very particular system, the fluctuation relation (1.5) essentially fixes the law of the random
variable Snτ . Indeed, since Snτ is Gaussian under the law of the stationary process (as a linear
combination of Gaussian random variables ξk), its pdf Pnτ is completely determined by the mean sn
and variance σ2

n of Snτ . A simple calculation based on (1.5) shows that σ2
n = 2sn, whence it follows

that
Pnτ (s) =

1√
4πsn

e−(s−sn)2/4s2n , (1.18)

where we set

sn = 〈Snτ 〉st =
1

kBT

(
1− η
1 + η

n+ 1

)
2z2

C
.

We conclude that

enτ (α) = Entα(Pnτ |P̃nτ ) = log

∫
e−αsPnτ (s)ds = −α(1− α)sn, (1.19)

8
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and hence

e(α) = lim
n→∞

1

nτ
enτ (α) = −α(1− α)s, s =

1

kBT

1− η
1 + η

2z2

Cτ
.

A direct calculation using (1.18) implies that, for any open set S ⊂ R,

Pnτ
[
Snτ

nτ
∈ S

]
≈ e−nτ infs∈S I(s) as n→∞,

where the rate function

I(s) = sup
α

(αs− e(−α)) =
(s− s)2

4s

satisfies the fluctuation relation (1.17). The large-time symmetry function for Snτ is

s(s) = I(−s)− I(s) = s.

Step 3: Relating the canonical entropic functional to a relevant dynamical or thermodynamical
quantity

Denoting by Ut = zt/C the voltage and using (1.10), the work performed on the system by the
external current I in the period ]kτ, (k + 1)τ [ is equal to

δWk =

∫ τ

0
UtIdt =

∫ τ

0

zt
C
Idt = (1− η)

zzk
C
− (1− τ/τ0 − η)

z2

C
.

Thus, we can rewrite

Snτ

nτ
=

1

kBT

[
2

1 + η
(wn − w) + 2

1− η
1 + η

τ0

τ
w +

1

n

2z

Cτ

zn + ηz0

1 + η

]
,

where

wn =
Wnτ

nτ
, Wnτ =

n−1∑
k=0

δWk, w = 〈wn〉st =
z2

Cτ0
= RI2.

Wnτ is the work performed by the external current during the period [0, nτ ]. Accordingly, wn is
the average injected power and w is its expected stationary value. It follows from the first law of
thermodynamics that the heat dissipated by the resistorR in the thermostat during the interval [0, nτ+
0[ is given by

Qnτ = −
(
z2
n

2C
− z2

0

2C

)
+Wnτ ,

and so we may also write

Snτ

nτ
=

1

kBT

[
2

1 + η
(qn − q) + 2

1− η
1 + η

τ0

τ
q +

1

n

(
2z

Cτ

zn + ηz0

1 + η
+

z2
n − z2

0

Cτ(1 + η)

)]
,

where
qn =

Qnτ

nτ
, q = 〈qn〉st = w,

denote the average dissipated power and its expected stationary value.

9
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Thus, up to a multiplicative and additive constant and a “small” (i.e., formally O(n−1)) correction,
Snτ/nτ is the time averaged power injected in the system by the external forcing and the time aver-
aged power dissipated into the heat reservoir during the time period [0, nτ + 0[.

Step 4: Deriving a large deviation principle for physically relevant quantities

The problem encountered here stems from the fact that the relation between St and a physically
relevant quantity (denoted by St) typically involves some “boundary terms”, which depend on the
state of the system at the initial time 0 and final time t. In cases where these boundary terms are
uniformly bounded as t → ∞, one finds that St satisfies the same large deviation principle as St.
This is what happens, for example, in strongly chaotic dynamical systems over a compact phase space
(e.g., under the Gallavotti–Cohen chaotic hypothesis); we refer the reader to [JPR, Section 10] for a
discussion of this case. However, unbounded boundary terms can compete with the tails of the law
of St, which may lead to complications, as our example shows.

Given the Gaussian nature of wn, it is an easy exercise to show that the entropic functional directly
related to work and defined by

Snτ
w

nτ
=
Snτ

nτ
− 1

n

1

kBT

2z

Cτ

zn + ηz0

1 + η
=

1

kBT

[
2

1 + η
(wn − w) + 2

1− η
1 + η

τ0

τ
w

]
,

has a cumulant generating function which satisfies

lim
n→∞

1

nτ
log〈e−αSnτw 〉st = e(α),

for all α ∈ R. It follows that Snτ
w satisfies the very same large deviation estimates as Snτ . However,

note that unlike function (1.19), the finite-time cumulant generating function log〈e−αSnτw 〉st does not
satisfy the Gallavotti–Cohen symmetry (1.6). Only in the large time limit do we recover this sym-
metry. A simple change of variable allows us to write down the cumulant generating function of the
work Wnτ ,

ework(α) = lim
n→∞

1

nτ
log〈e−αWnτ/kBT 〉st = −α

(
1− α1− η2

2τ/τ0

)
w

kBT
.

We conclude that the work Wnτ satisfies the large deviations estimate

Pnτ
[

1

nτ

Wnτ

kBT
∈ W

]
≈ e−nτ infw∈W Iwork(w)

for all open setsW ⊂ R with the rate function

Iwork(w) =
1

4

(
w − w

kBT

)2 kBT

w

2τ/τ0

1− η2
.

The symmetry function for work is thus

swork(w) = Iwork(−w)− Iwork(w) =
2τ/τ0

1− η2
w.

Note that, as the kick period τ approaches zero, we recover the universal fluctuation relation (1.17),
i.e., swork(w) = w.

10
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Consider now the entropic functional

Snτ
h

nτ
=
Snτ

nτ
− 1

n

1

kBT

(
2z

Cτ

zn + ηz0

1 + η
+

z2
n − z2

0

Cτ(1 + η)

)
(1.20)

=
1

kBT

[
2

1 + η
(qn − q) + 2

1− η
1 + η

τ0

τ
q

]
,

related to the dissipated heat. The explicit evaluation of a Gaussian integral shows that its cumulant
generating function is given by

1

nτ
log〈e−αSnτh 〉st =

 e(α)− 1

2nτ

[
log

(
1− α2

α2
n

)
+
anα+ bn
α2
n − α2

α3

]
if |α| < αn;

+∞ otherwise;

where an and bn are bounded (in fact converging) sequences and

αn =
1

2

1 + η

(1− η2n)
1
2

.

The divergence of the cumulant generating function for |α| ≥ αn is of course due to the competition
between the tail of the Gaussian law pn and the quadratic terms in Snτ

h .

Note that the sequence αn is monotone decreasing to its limit

αc =
1 + η

2
,

and it follows that

lim
n→∞

1

nτ
log〈e−αSnτh 〉st =

{
e(α) if |α| < αc;

+∞ if |α| > αc.

The unboundedness of the boundary terms involving z2
0 and z2

n in (1.20) leads to a breakdown of
the Gallavotti–Cohen symmetry for |α − 1

2 | > |αc − 1
2 |. More dramatically, the limiting cumulant

generating function is not steep, i.e., its derivative fails to diverge as α approaches ±αc. Under such
circumstances, the derivation of a global large deviation principle for nonlinear dynamical systems is
a difficult problem which remains largely open and deserves further investigations. For linear systems,
however, as shown in [JPS], it is sometimes possible to exploit the Gaussian nature of the process to
achieve this goal. Indeed, following the strategy developped in Section 3.4, one can show that Snτ

h

satisfies a large deviation principle with rate function

Ih(s) = sup
|α|<αc

(αs− e(−α)) =


I(s−) + (s− s−)I ′(s−) for s < s−;

I(s) for s ∈ [s−, s+];

I(s+) + (s− s+)I ′(s+) for s > s+;

where
s− = −e′(αc) = −ηs, s+ = −e′(−αc) = (2 + η)s.

Performing a simple change of variable, we conclude that the cumulant generating function of the
heat Qnτ satisfies

eheat(α) = lim
n→∞

1

nτ
log〈e−αQnτ/kBT 〉st =

{
ework(α) for |α| < 1;

+∞ for |α| > 1.

11
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heat

work

-3 -1 1 3

-2

-1

1

2
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-2
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1

2

Figure 2: The symmetry functions (i.e., twice the odd part of the rate function) of work and heat for
the circuit of Figure 1 in the limit τ → 0 (the unit on the abscissa is RI2/kBT ).

The corresponding large deviations estimate reads

Pnτ
[

1

nτ

Qnτ

kBT
∈ Q

]
≈ e−nτ infq∈Q Iheat(q)

for all open sets Q ⊂ R with the rate function

Iheat(q) = sup
|α|<1

(αq − eheat(−α)) = Ih

(
2

1 + η
q + 2

1− τ/τ0 − η
1 + η

τ0

τ

q

kBT

)
,

which satisfies what is called in the physics literature an extended fluctuation relation [Fa1, Fa2, CvZ1,
CvZ2, Vi, HRS, HS, HR, NE] with the symmetry function

sheat(q) = Iheat(−q)− Iheat(q) =



2q
q+ + q−
q+ − q−

for 0 ≤ q ≤ −q−;

−q
2 − 2qq+ + q2

−
q+ − q−

for − q− < q ≤ q+;

q+ + q− for q > q+;

where

q− = −RI
2

kBT

(
1− η2

τ/τ0
− 1

)
, q+ =

RI2

kBT

(
1− η2

τ/τ0
+ 1

)
.

Thus, the linear behavior persists for small fluctuations |q| ≤ |q−|, but saturates to the constant values
∓(q+ + q−) for |q| > q+, the crossover between these two regimes being described by a parabolic
interpolation. Note also that, as the kick period τ approaches zero, q∓ → (1∓ 2)q/kBT . In this limit
the symmetry function sheat(q) agrees with the conclusions of [ZCC] (see Figure 2). 2

As this example shows, the main problem in understanding the mathematical status and physical
implications of fluctuation relations in oscillator networks and other boundary driven Hamiltonian
systems stems from the lack of compactness of phase space and its consequence: the unboundedness

12
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of the observable describing the energy transfers between the system and the reservoirs (i.e., the last
term in the right-hand side of Eq. (1.20)). We will show that one can achieve complete control of
these boundary terms by an appropriate change of drift (a Girsanov transformation) in the Langevin
equation describing the dynamics of harmonic networks. This change is parametrized by the maximal
solution of a one-parameter family of algebraic Riccati equation naturally associated to deformations
of the Markov semigroup of the system. For a network of N oscillators, our approach reduces the
calculation of the limiting cumulant generating function of the canonical functional St and its per-
turbations by quadratic boundary terms to the determination of some spectral data of the 4N × 4N
Hamiltonian matrix of the above-mentioned Riccati equations. Combining this asymptotic informa-
tion with Gaussian estimates of the finite time cumulant generating functions, we are able to derive
a global large deviation principle for arbitrary quadratic boundary perturbations of St. We stress that
our scheme is completely constructive and well suited to numerical calculations.

The remaining parts of this paper are organized as follows. In Section 2 we introduce a general class
of harmonic networks and the stochastic processes describing their nonequilibrium dynamics. Sec-
tion 3 contains our main results. There, we consider more general framework and study the large
time asymptotics of the entropic functional St canonically associated to stochastic differential equa-
tions with linear drift satisfying some structural constraints (fluctuation–dissipation relations). We
prove a global large deviation principle for this functional and show, in particular, that it satisfies the
Gallavotti–Cohen fluctuation theorem. We then consider perturbations of St by quadratic boundary
terms and show that they also satisfy a global large deviation principle. This applies, in particular,
to the heat released by the system in the reservoirs. We turn back to harmonic networks in Section 4
where we apply our results to specific examples. Finally, Section 5 collects the proofs of our results.

Acknowledgements. This research was supported by the CNRS collaboration grant RESSPDE.
The authors gratefully acknowledge the support of NSERC and ANR (grants 09- BLAN-0098 and
ANR 2011 BS01 015 01). The work of C.-A.P. has been carried out in the framework of the Labex
Archimède (ANR-11-LABX-0033) and of the A*MIDEX project (ANR-11-IDEX-0001-02), funded
by the “Investissements d’Avenir” French Government programme managed by the French National
Research Agency (ANR). The research of AS was carried out within the MME-DII Center of Excel-
lence and supported by the RSF grant 14-49-00079.

2 The model

We consider a collection of one-dimensional harmonic oscillators indexed by a finite set I. The
configuration space RI is endowed with its Euclidean structure and the phase space Ξ = RI ⊕ RI is
equipped with its canonical symplectic 2-form dp ∧ dq. The Hamiltonian is given by

Ξ 3 (p, q) 7→ h(p, q) = 1
2 |p|2 + 1

2 |ωq|2, (2.1)

where | · | is the Euclidean norm and ω : RI → RI is a non-singular linear map. Time-reversal of the
Hamiltonian flow of h is implemented by the anti-symplectic involution of Ξ given by

θ : (p, q) 7→ (−p, q). (2.2)

We consider the stochastic perturbation of the Hamiltonian flow of h obtained by coupling a non-
empty subset of the oscillators, indexed by ∂I ⊂ I, to Langevin heat reservoirs. The reservoir coupled
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to the ith oscillator is characterized by two parameters: its temperature ϑi > 0 and its relaxation rate
γi > 0. We encode these parameters in two linear maps: a bijection ϑ : R∂I → R∂I and an injection
ι : R∂I → RI = R∂I ⊕ RI\∂I defined by

ϑ : (ui)i∈∂I 7→ (ϑiui)i∈∂I , ι : (ui)i∈∂I 7→ (
√

2γiui)i∈∂I ⊕ 0.

The external force acting on the ith oscillator has the usual Langevin form

fi(p, q) = (2γiϑi)
1
2 ẇi − γipi, (2.3)

where the ẇi are independent white noises.

In mathematically more precise terms, we shall deal with the dynamics described by the following
system of stochastic differential equations

dq(t) = p(t)dt, dp(t) = −
(

1
2 ιι
∗p(t) + ω∗ωq(t)

)
dt+ ιϑ

1
2 dw(t), (2.4)

where ∗ denotes conjugation w.r.t. the Euclidean inner products and w is a standard R∂I-valued
Wiener process over the canonical probability space (W,W,W). We denote by {Wt}t≥0 the as-
sociated natural filtration.

To the Hamiltonian (2.1) we associate the graph G = (I, E) with vertex set I and edges

E = {{i, j} ⊂ I | (ω∗ω)ij 6= 0}.

To avoid trivialities, we shall always assume that G is connected.

As explained in the introduction, we shall construct the canonical entropic functional of the process
(p(t), q(t)) and relate it to the heat released by the network into the thermal reservoir. We end this
section with a calculation of the latter quantity.

Applying Itô’s formula to the Hamiltonian h we obtain the expression

dh(p(t), q(t)) =
∑
i∈∂I

γi
(
ϑi − pi(t)2

)
dt+ (2γiϑi)

1
2 pi(t)dwi(t)

which describes the change in energy of the system. The ith term on the right-hand side of this identity
is the work performed on the network by the ith Langevin force (2.3). Since these Langevin forces
describe the action of heat reservoirs, we shall identify

δQi(t) = γi
(
ϑi − pi(t)2

)
dt+ (2γiϑi)

1
2 pi(t)dwi(t) (2.5)

with the heat injected in the network by the ith reservoir. A direct application of the fundamental
thermodynamic relation between heat and entropy leads to consider dSi(t) = −ϑ−1

i δQi(t) as the
entropy dissipated into the ith reservoir. Accordingly, the total entropy dissipated in the reservoirs
during the time interval [0, t] is given by the functional

St = −
∑
i∈∂I

∫ t

0

δQi(s)

ϑi
=
∑
i∈∂I

∫ t

0

(
−(2γiϑ

−1
i )

1
2 pi(s)dwi(s)− γi(1− ϑ−1

i pi(s)
2)ds

)
. (2.6)

For a lack of better name, we shall call the physical quantity described by this functional the thermo-
dynamic entropy (TDE), in order to distinguish it from various information theoretic entropies that
will be introduced latter.
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3 Abstract setup and main results

It turns out that a large part of the analysis of the process (2.4) and its entropic functionals is inde-
pendent of the details of the model and relies only on its few structural properties. In this section we
recast the harmonic networks in a more abstract framework, retaining only the structural properties of
the original system which are necessary for our analysis.

Notations and conventions. Let E and F be real or complex Hilbert spaces. L(E,F ) denotes the set
of (continuous) linear operators A : E → F and L(E) = L(E,E). For A ∈ L(E,F ), A∗ ∈ L(F,E)
denotes the adjoint of A, ‖A‖ its operator norm, RanA ⊂ F its range and KerA ⊂ E its kernel.
We denote the spectrum of A ∈ L(E) by sp(A). A is non-negative (resp. positive), written A ≥ 0
(resp. A > 0), if it is self-adjoint and sp(A) ∈ [0,∞[ (resp. sp(A) ⊂]0,∞[). We write A ≥ B
whenever A − B ∈ L(E) is non-negative. The relation ≥ defines a partial order on L(E). The
controllable subspace of a pair (A,Q) ∈ L(E) × L(F,E) is the smallest A-invariant subspace of E
containing RanQ. We denote it by C(A,Q). If C(A,Q) = E, then (A,Q) is said to be controllable.
We denote by C∓ the open left/right half-plane. A ∈ L(E) is said to be stable/anti-stable whenever
sp(A) ⊂ C∓.

We start by rewriting the equation of motion (2.4) in a more compact form. Setting

x =

[
p
ωq

]
, A =

[
−1

2 ιι
∗ −ω∗

ω 0

]
, Q =

[
ι
0

]
ϑ

1
2 , (3.1)

Eq. (2.4) takes the form
dx(t) = Ax(t)dt+Qdw(t), (3.2)

and functional (2.6) becomes

St = −
∫ t

0
ϑ−1Q∗x(s) · dw(s) + 1

2

∫ t

0
|ϑ−1Q∗x(s)|2ds− 1

2 t tr(Qϑ−1Q∗). (3.3)

Note that the vector field Ax splits into a conservative (Hamiltonian) part Ωx and a dissipative
part −Γx defined by

Ω = 1
2(A−A∗) =

[
0 −ω∗
ω 0

]
, (3.4)

Γ = −1
2(A+A∗) = 1

2Qϑ
−1Q∗. (3.5)

These operators satisfy the relations

Ω∗ = θΩθ = −Ω, Γ∗ = θΓθ = Γ. (3.6)

The solution of the Cauchy problem associated to (3.2) with initial condition x(0) = x0 can be written
explicitly as

x(t) = etAx0 +

∫ t

0
e(t−s)AQdw(s). (3.7)

This relation defines a family of Ξ-valued Markov processes indexed by the initial condition x0 ∈ Ξ.
This family is completely characterized by the data

(A,Q, ϑ, θ) ∈ L(Ξ)× L(∂ Ξ,Ξ)× L(∂ Ξ)× L(Ξ), (3.8)
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where Ξ and ∂ Ξ are finite-dimensional Euclidean vector spaces and (A,Q, ϑ, θ) is subject to the
following structural constraints:

Ker (A−A∗) ∩KerQ∗ = {0}, A+A∗ = −Qϑ−1Q∗, ϑ > 0, Q∗Q > 0,

θ = θ∗ = θ−1, θQ = ±Q, θAθ = A∗, [ϑ,Q∗Q] = 0.
(3.9)

In the remaining parts of Section 3, we shall consider the family of processes (3.7), which are strong
solutions of SDE (3.2), associated with the data (3.8) satisfying (3.9).

Remark 3.1 The concrete models of the previous section fit into the abstract setup defined by (3.2),
(3.8), and (3.9) with Ker (A− A∗) = {0} and θQ = −Q. We have weakened the first condition and
included the case θQ = +Q in (3.9) in order to encompass the quasi-Markovian models introduced
in [EPR1, EPR2]. There, the Langevin reservoirs are not directly coupled to the network, but to
additional degrees of freedom described by dynamical variables r ∈ RJ , where J is a finite set. The
augmented phase space of the network is Ξ = RJ ⊕ RI ⊕ RI , and ∂ Ξ = RJ . The equations of
motion take the form (3.2) with

x =

 r
p
ωq

 , A =

 −1
2 ιι
∗ −Λ∗ 0

Λ 0 −ω∗
0 ω 0

 , Q =

 ι
0
0

ϑ 1
2 ,

where ι : RJ → RJ is bijective and Λ : RJ → RI injective. The time reversal map in this case is
given by

θ =

 I 0 0
0 −I 0
0 0 I

 .
Writing the system internal energy as H(x) = 1

2 |p|2 + 1
2 |ωq|2 + 1

2 |r|2, the calculation of the previous
section yields the following formula for the total entropy dissipated into the reservoirs

St + 1
2 |ϑ−

1
2 r(t)|2 − 1

2 |ϑ−
1
2 r(0)|2, (3.10)

where St is given by (3.3).

Let P(Ξ) be the set of Borel probability measures on Ξ and denote by P t(x, · ) ∈ P(Ξ) the transition
kernel of the process (3.7). For bounded or non-negative measurable functions f on Ξ and ν ∈ P(Ξ)
we write

ν(f) =

∫
f(x)ν(dx), ft = P tf =

∫
P t( · ,dy)f(y), νt = νP t =

∫
ν(dy)P t(y, · ),

so that ν(ft) = νt(f). A measure ν is invariant if νt = ν for all t ≥ 0. We denote the actions of
time-reversal by

f̃ = Θf = f ◦ θ, ν̃ = νΘ = ν ◦ θ,
so that ν(f̃) = ν̃(f). A measure ν is time-reversal invariant if ν̃ = ν. The generator L of the Markov
semigroup P t acts on smooth functions as

L = 1
2∇ ·B∇+Ax · ∇, (3.11)
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where
B = QQ∗. (3.12)

We further denote by Px0 the induced probability measure on the path space C(R+,Ξ) and by Ex0
the associated expectation. Considering x0 as a random variable, independent of the driving Wiener
process w and distributed according to ν ∈ P(Ξ), we denote by Pν and Eν the induced path space
measure and expectation. In the language of statistical mechanics, functions f on Ξ are the observ-
ables of the system, ν is its initial state, and the flow t 7→ νt describes its time evolution. Invariant
measures thus correspond to steady states of the system.

The following result is well known (see Chapter 6 in the book [DPZ] and the papers [EZ, MNV]). For
the reader convenience, we provide a sketch of its proof in Section 5.1.

Theorem 3.2 (1) Under the above hypotheses, the operator

M :=

∫ ∞
0

esABesA
∗
ds

is well defined and non-negative, and its restriction to RanM satisfies the inequality

ϑmin = min sp(ϑ) ≤M
∣∣
RanM

≤ max sp(ϑ) = ϑmax. (3.13)

Moreover, the centred Gaussian measure µ with covariance M is invariant for the Markov pro-
cesses associated with (3.2).

(2) The invariant measure µ is unique iff the pair (A,Q) is controllable. In this case, the mixing
property holds in the sense that, for any f ∈ L1(Ξ,dµ), we have

lim
t→+∞

P tf = µ(f),

where the convergence holds in L1(Ξ, dµ) and uniformly on compact subsets of Ξ.

(3) Let x(t) be defined by relation (3.7), in which the initial condition x0 is independent of w and is
distributed as µ. Then x(t) is a centred stationary Gaussian process. Moreover, its covariance
operator defined by the relation (η1,K(t, s)η2) = Eµ

{
(x(t), η1)(x(s), η2)

}
has the form

K(t, s) = e(t−s)+AMe(t−s)−A∗ . (3.14)

Remark 3.3 In the harmonic network setting, if ϑ = ϑ0I for some ϑ0 ∈]0,∞[ (i.e., the reservoirs
are in a joint thermal equilibrium at temperature ϑ0), then it follows from (3.13) that M = ϑ, which
means that µ is the Gibbs state at temperature ϑ0 induced by the Hamiltonian h.

In the sequel, we shall assume without further notice that process (3.7) has a unique invariant mea-
sure µ, i.e., that the following hypothesis holds:

Assumption (C) The pair (A,Q) is controllable.

Remark 3.4 To make contact with [MNV], note that in terms of Stratonovich integral the TDE func-
tional (3.3) is given by

St = −
∫ t

0
ϑ−1Q∗x(s) ◦ dw(s) + 1

2

∫ t

0
|ϑ−1Q∗x(s)|2ds.

This identity is a standard result of stochastic calculus (see, e.g., Section II.7 in [Pr]) and is used as a
definition of the entropy current in [MNV].
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3.1 Entropies and entropy production

In this section we introduce information theoretic quantities which play an important role in our
approach to fluctuation relations. We briefly discuss their basic properties and in particular their
relations with the TDE St.

Let ν1 and ν2 be two probability measures on the same measurable space. If ν1 is absolutely continu-
ous w.r.t. ν2, the relative entropy of the pair (ν1, ν2) is defined by

Ent(ν1|ν2) = −
∫

log

(
dν1

dν2

)
dν1.

We recall that Ent(ν1|ν2) ∈ [−∞, 0], with Ent(ν1|ν2) = 0 iff ν1 = ν2 (see, e.g., [OP]).

Suppose that ν1 and ν2 are mutually absolutely continuous. For α ∈ R, the Rényi [Re] relative
α-entropy of the pair (ν1, ν2) is

Entα(ν1|ν2) = log

∫ (
dν1

dν2

)α
dν2.

The function R 3 α 7→ Entα(ν1|ν2) ∈] −∞,∞] is convex. It is non-positive on [0, 1], vanishes for
α ∈ {0, 1}, and is non-negative on R\]0, 1[. It is real analytic on ]0, 1[ and vanishes identically on
this interval iff ν1 = ν2. Finally,

Ent1−α(ν1|ν2) = Entα(ν2|ν1) (3.15)

for all α ∈ R.

Let ν ∈ P(Ξ) be such that ν(|x|2) < ∞ (recall that in our abstract framework the Hamiltonian is
h(x) = 1

2 |x|2). The Gibbs–Shannon entropy of νt = νP t is defined by

SGS(νt) = −
∫

log

(
dνt
dx

)
νt(dx). (3.16)

The Gibbs–Shannon entropy is finite for all t > 0 (see Lemma 5.4 (1) below) and is a measure of the
internal entropy of the system at time t.

To formulate our next result (see Section 5.2 for its proof) we define

P+(Ξ) =

{
ν ∈ P(Ξ)

∣∣∣∣ ∫ e
1
2
m|x−a|2ν(dx) <∞ for some m > 0 and a ∈ Ξ

}
.

Note that any Gaussian measure on Ξ belongs to P+(Ξ).

Proposition 3.5 Let a non-negative operator β ∈ L(Ξ) be such that1

βQ = Qϑ−1, θβθ = β. (3.17)

Define the quadratic form
σβ(x) = 1

2x · Σβx, Σβ = [Ω, β], (3.18)

and a reference measure µβ on Ξ by

dµβ
dx

(x) = e−
1
2
|β

1
2 x|2 . (3.19)

Then the following assertions hold.
1An operator β satisfying (3.17) always exists. For instance, one can define β by the relations βx = Qϑ−1y if x = Qy

for some y ∈ ∂Ξ and βx = x if x⊥RanQ.
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(1) µβΘ = µβ and Θσβ = −σβ .

(2) Let Lβ denote the formal adjoint of the Markov generator (3.11) w.r.t. the inner product of the
Hilbert space L2(Ξ, µβ). Then

ΘLβΘ = L+ σβ. (3.20)

(3) The TDE (3.3) can be written as

St = −
∫ t

0
σβ(x(s))ds+ log

dµβ
dx

(x(t))− log
dµβ
dx

(x(0)). (3.21)

(4) Suppose that Assumption (C) holds. Then for any ν ∈ P+(Ξ) the de Bruijn relation

d

dt
Ent(νt|µ) = 1

2νt(|Q∗∇ log
dνt
dµ
|2) (3.22)

holds for t large enough. In particular, Ent(νt|µ) is non-decreasing for large t.

(5) Under the same assumptions

d

dt

(
SGS(νt) + Eν [St]

)
= 1

2νt(|Q∗∇ log
dνt
dµβ
|2) (3.23)

holds for t large enough.

Remark 3.6 Part (2) states that our system satisfies a generalized detailed balance condition as de-
fined in [EPR2] (see also [BL]).

Let us comment on the physical interpretation of Part (3) in the harmonic network setting. Let
I = ∪k∈KIk be a partition of the network and denote by πk the orthogonal projection on RI with
range RIk . Defining

hk(p, q) = 1
2 |πkp|2 + 1

2 |ωπkq|2, vk,l(q) = 1
2q · (πkω∗ωπl + πlω

∗ωπk)q,

for k, l ∈ K, we decompose the network into |K| clusters Rk with internal energy hk, interacting
through the potentials vk,l. Denote by

h̃k(p, q) = hk(p, q) + 1
2

∑
l 6=k

vk,l(q)

the total energy stored in Rk. Assume that all the reservoirs attached to Rk, if any, are at the same
temperature, i.e.,

i ∈ Ik ∩ ∂I ⇒ ϑι∗πk = ϑiι
∗πk, (3.24)

and for k ∈ K let βk ≥ 0 be such that βk = ϑ−1
i whenever i ∈ Ik ∩ ∂I (see Figure 3). Defining the

non-negative operator β by
1
2x · βx =

∑
k∈K

βkh̃k(p, q), (3.25)

we observe that (3.17) holds as a consequence of (3.24) and the time-reversal invariance of h̃k. The
corresponding reference measure µβ is, up to irrelevant normalization, a local Gibbs measure where
each clusterRk is in equilibrium at the inverse temperatures βk.
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Itô’s formula yields the local energy balance relation

dh̃k(x(t)) = −1
4p(t) · (πkω∗ω − ω∗ωπk)q(t)dt+

∑
i∈Ik∩∂I

δQi(t), (3.26)

where δQi(t) is given by (2.5). The last term on the right-hand side of this identity is the total heat
injected into subsystemRk by the reservoirs attached to it. Thus, we can identify

jk(t) =
∑
l 6=k

jk→l(t), jk→l(t) = 1
4p(t) · (πkω∗ωπl − πlω∗ωπk)q(t),

with the total flux of energy flowing out of Rk into its environment which is composed of the other
subsystems Rl 6=k. Multiplying Eq. (3.26) with βk, summing over k, integrating over [0, t] and com-
paring the result with (2.6) we obtain

St = −
∑
k∈K

βk

∫ t

0
jk(t)dt+ log

dµβ
dx

(x(t))− log
dµβ
dx

(x(0)).

Comparison with (3.21) yields

σβ(x(t)) =
∑
k∈K

βkjk(t) = 1
2

∑
k 6=l

(βk − βl)jk→l(t),

which, according to the heat-entropy relation, is the total inter-cluster entropy flux. Two different
ways of partitioning the system and assigning reference local temperatures to each subsystems leads
to total entropy dissipation which only differs by a boundary term

σβ(x(t))− σβ′(x(t)) =
∑
k∈K

βkjk(t)−
∑
k∈K′

β′kj
′
k(t) =

d

dt
log

dµβ
dµβ′

(x(t)),

provided the local inverse temperatures βk, β′k are consistent with the temperatures of the reservoirs.

Eq. (3.23) can be read as an entropy balance equation. Its left-hand side is the sum of the rate of
increase of the internal Gibbs–Shannon entropy of the system and of the TDE flux leaving the sys-
tem. Thus, the quantity on the right-hand side of Eq. (3.23) can be interpreted as the total entropy
production rate of the process. Using Eqs. (3.16) and (3.21), we can rewrite Eq. (3.23) as

d

dt
Eν [Ep(ν, t)] = νt(−σβ) +

d

dt
Ent(νt|µβ) = 1

2νt(|Q∗∇ log
dνt
dµβ
|2), (3.27)

where the entropy production functional Ep is defined by

Ep(ν, t) = −
∫ t

0
σβ(x(s))ds− log

dνt
dµβ

(x(t)) + log
dν

dµβ
(x(0))

= St − log
dνt
dx

(x(t)) + log
dν

dx
(x(0)).

(3.28)

In the physics literature, the quantity

ςstoch(t) = − log
dνt
dx

(x(t)),
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ϑ1

ϑ3

ϑ2

ϑ4

ϑ6
ϑ5

R1, β1 R4, β4

R5, β5

R2, β2 R3, β3

Figure 3: A partition of the network. Black disks represents heat reservoirs. In this situation one has,
β−1

1 = ϑ1 = ϑ3, β−1
2 = ϑ4 = ϑ5 = ϑ6, β−1

4 = ϑ2. β3 ≥ 0 and β5 ≥ 0 arbitrary.

is sometimes called stochastic entropy (see, e.g., [Se, Section 2.4]). In the case ν = µ, i.e., for the
stationary process, stochastic entropy does not contribute to the expectation of Ep(µ, t), and Eq. (3.28)
yields

1

t
Eµ[Ep(µ, t)] =

1

t
Eµ[St] = −µ(σβ), (3.29)

so that (3.27) reduces to

−µ(σβ) = 1
2µ(|Q∗∇ log

dµ

dµβ
|2), (3.30)

where the right-hand side is the steady state entropy production rate. In the following, we set

ep = −µ(σβ). (3.31)

By (3.29) this quantity is independent of the choice of β ∈ L(Ξ) satisfying Conditions (3.17). The
relation (3.30) shows that ep ≥ 0. Computing the Gaussian integral on the right-hand side of (3.30)
yields

ep = 1
2tr(ϑ−1(MQ−Qϑ)∗M−1(MQ−Qϑ)ϑ−1) = 1

2‖M−
1
2 (MQ−Qϑ)ϑ−

1
2 ‖22, (3.32)

where ‖ · ‖2 denotes the Hilbert-Schmidt norm. Thus, ep > 0 iff MQ − Qϑ 6= 0. By Remark 3.3,
the latter condition implies in particular that the eigenvalues of ϑ (i.e., the temperatures ϑi) are not all
equal. Part (2) of the next proposition provides a converse. For the proof see Section 5.3.

Proposition 3.7 (1)
ep = 0⇔MQ = Qϑ⇔ [Ω,M ] = 0⇔ µΘ = µ.

In particular, the steady state entropy production rate vanishes iff the steady state µ is time-
reversal invariant and invariant under the (Hamiltonian) flow etΩ.
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(2) Let ϑ1, ϑ2 be two distinct eigenvalues of ϑ and denote by π1, π2 the corresponding spectral pro-
jections. If C(Ω, Qπ1) ∩ C(Ω, Qπ2) 6= {0}, then ep > 0.

Remark 3.8 The time-reversal invariance µΘ = µ of the steady state is equivalent to θMθ = M .
For Markovian harmonic networks, the latter condition is easily seen to imply

µ(piqj) = 0, (i, j ∈ I),

i.e., the statistical independence of simultaneous positions and momenta. In the quasi-Markovian
case, θMθ = M implies

µ(piqj) = µ(pirk) = µ(qjrk) = 0, (i, j ∈ I, k ∈ J ).

3.2 Path space time-reversal

Given τ > 0, the space-time statistics of the process (3.7) in the finite period [0, τ ] is described
by (Xτ ,X τ ,Pτν), where Pτν is the measure induced by the initial law ν ∈ P(Ξ) on the path-space
Xτ = C([0, τ ],Ξ) equipped with its Borel σ-algebra X τ . Path space time-reversal is given by the
involution

Θτ : x = {x(t)}t∈[0,τ ] 7→ x̃ = {θx(τ − t)}t∈[0,τ ]

of Xτ . The time reversed path space measure P̃τν is defined by

P̃τν = Pτν ◦Θτ .

Since
Ẽτν [f(x(0))] = Eτν [f(θx(τ))] = νP τΘ(f), (3.33)

P̃τν describes the statistics of the time reversed process x̃ started with the law νP τΘ. It is therefore
natural to compare it with PτνP τΘ. The following result (proved in Section 5.4) provides a connection
between the functional Ep( · , τ) and time-reversal of the path space measure.

Set

P1
loc(Ξ) =

{
ζ ∈ P(Ξ)

∣∣∣∣ dζ

dx
+

∣∣∣∣∇dζ

dx

∣∣∣∣ ∈ L2
loc(Ξ,dx)

}
.

Proposition 3.9 For any τ > 0 and any ν ∈ P1
loc(Ξ), P̃τν is absolutely continuous w.r.t. PτνP τΘ and

log
dP̃τν

dPτνP τΘ

= Ep(ν, τ) ◦Θτ = −Sτ − log
dντ
dx

(θx(0)) + log
dν

dx
(θx(τ)). (3.34)

Remark 3.10 The above result is a mathematical formulation of [MNV, Section 3.1] in the frame-
work of harmonic networks. Rewriting (3.34) as

log
dPτν

dPτνP τΘ ◦Θτ
= Ep(ν, τ) = Sτ + log

dν

dx
(x(0))− log

dντ
dx

(x(τ)),

we obtain Eq. (3.12) of [MNV]. Proposition 3.9 is a consequence of Girsanov formula, the generalized
detailed balance condition (3.20), and the fact that the time-reversed process x̃ is again a diffusion.
Apart from the last fact, which was proven in [PH], the main technical difficulty in its proof is to check
the martingale property of the exponential of the right-hand side of (3.34).
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Remark 3.11 It is an immediate consequence of Eq. (5.13) below that νP τ ∈ P1
loc(Ξ) for any ν ∈

P(Ξ) and τ > 0.

Equipped with Eq. (3.34) it is easy to transpose the relative entropies formulas of the previous section
to path space measures. As a first application, let us compute the relative entropy of PτηΘ w.r.t. P̃τν :

Ent(P̃τν |PτηΘ) = Ẽτν

[
− log

dP̃τν
dPτηΘ

]
= Ẽτν

[
− log

dP̃τν
dPτνP τΘ

+ log
dPτηΘ

dPτνP τΘ

]

= Ẽτν
[
−Ep(ν, τ) ◦Θτ + log

dη

dντ
(θx(0))

]
= −Eτν [Ep(ν, τ)] + Ent(ντ |η).

If ν ∈ P+(Ξ) then (3.27) yields

−Ent(P̃τν |PτνP τΘ) = Eτν [Ep(ν, τ)] = 1
2

∫ τ

0
νt(|Q∗∇ log

dνt
dµβ
|2)dt,

which, according to the previous section, is the entropy produced by the process during the period
[0, τ ]. Setting ν = µ, we obtain

−Ent(P̃τµ|PτµΘ) = ep(µ)τ.

Together with Proposition 3.7 (1), this relation proves

Theorem 3.12 The following statements are equivalent:

(1) Pτµ ◦Θτ = Pτµ for all τ > 0, i.e., the stationary process (3.7) is reversible.

(2) Pτµ ◦Θτ = Pτµ for some τ > 0.

(3) ep = 0.

3.3 The canonical entropic functional

We are now in position to deal with the first step in our scheme: the construction of the canonical
entropic functional Sτ associated to (Xτ ,X τ ,Pτµ,Θτ ). By Proposition 3.9, Rényi’s relative α-entropy
per unit time of the pair (Pτµ, P̃τµ),

Entα(Pτµ|P̃τµ) = logEµ
[
e−αS

τ ]
,

is the cumulant generating function of

Sτ = log
dPτµ
dP̃τµ

= Sτ − log
dµ

dx
(θx(τ)) + log

dµ

dx
(x(0)). (3.35)

In the following, we shall set

eτ (α) =
1

τ
logEµ

[
e−αS

τ ]
, (3.36)

which, by construction, satisfies the Gallavotti–Cohen symmetry eτ (1− α) = eτ (α).

Before formulating our main result on the large time asymptotics of eτ (α), we need several technical
facts which will be proved in Section 5.5.
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Jakšić, Pillet, Shirikyan

Theorem 3.13 Suppose that Assumption (C) holds.

(1) For β ∈ L(Ξ) satisfying Conditions (3.17), the map

R 3 ω 7→ E(ω) = Q∗(A∗ − iω)−1Σβ(A+ iω)−1Q (3.37)

takes values in the self-adjoint operators on the complexification of ∂Ξ. As such, it is continuous
and independent of the choice of β.

(2) Set

ε− = min
ω∈R

min sp(E(ω)), ε+ = max
ω∈R

max sp(E(ω)), κc =
1

ε+
− 1

2
.

The following alternative holds: either κc = ∞ in which case E(ω) = 0 for all ω ∈ R, or
1
2 < κc <∞, ε− < 0, 0 < ε+ < 1, and

1

ε−
+

1

ε+
= 1.

(3) Set Ic =]1
2 − κc, 1

2 + κc[ = ] 1
ε−
, 1
ε+

[. The function

e(α) = −
∫ ∞
−∞

log det (I − αE(ω))
dω

4π
(3.38)

is analytic on the cut plane Cc = (C \R)∪ Ic. It is convex on the open interval Ic and extends to
a continuous function on the closed interval Ic. It further satisfies

e(1− α) = e(α) (3.39)

for all α ∈ Cc,  e(α) ≤ 0 for α ∈ [0, 1];

e(α) ≥ 0 for α ∈ Ic\]0, 1[;

and in particular e(0) = e(1) = 0. Moreover

ep = −e′(0) = e′(1),

and either ep = 0, κc = ∞, and e(α) vanishes identically, or ep > 0, κc < ∞, e(α) is strictly
convex on Ic, and

lim
α↓ 1

2
−κc

e′(α) = −∞, lim
α↑ 1

2
+κc

e′(α) = +∞. (3.40)

(4) If ep > 0, then there exists a unique signed Borel measure ς on R, supported on R \ Ic, such that∫ |ς|(dr)
|r| <∞,

and

e(α) = −
∫

log
(

1− α

r

)
ς(dr).
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(5) For α ∈ R define

Kα =

[
−Aα QQ∗

Cα A∗α

]
, (3.41)

where
Aα = (1− α)A− αA∗, Cα = α(1− α)Qϑ−2Q∗. (3.42)

For all ω ∈ R and α ∈ R one has

det(Kα − iω) = |det(A+ iω)|2 det(I − αE(ω)).

Moreover, for α ∈ Ic,

e(α) = 1
4tr(Qϑ−1Q∗)− 1

4

∑
λ∈sp(Kα)

|Reλ|mλ, (3.43)

where mλ denotes the algebraic multiplicity of λ ∈ sp(Kα).

Remark 3.14 We shall prove, in Proposition 5.5 (11), that

κc ≥ κ0 =
1

2

ϑmax + ϑmin

ϑmax − ϑmin
. (3.44)

This lower bound is sharp, i.e., there are networks for which equality holds (see Theorem 4.2 (3)).

Remark 3.15 It follows from (3.44) that κc = ∞ for harmonic networks at equilibrium, i.e., when-
ever ϑmin = ϑmax = ϑ0 > 0. Up to the controllability assumption of Proposition 3.7 (2), these are
the only examples with κc =∞ (see also Remark 5.6 and Section 4).

Remark 3.16 Remark 2 after Theorem 2.1 in [JPS] applies to Part (4) of Theorem 3.13.

In the sequel it will be convenient to consider the following natural extension of the function e(α).

Definition 3.17 The function
R 3 α 7→ e(α) ∈]−∞,+∞]

is given by (3.38) for α ∈ Ic and e(α) = +∞ for α ∈ R \ Ic.

This definition makes R 3 α 7→ e(α) an essentially smooth closed proper convex function (see [Ro]).

The main result of this section relates the spectrum of the matrix Kα, through the function e(α), to
the large time asymptotics of the Rényi entropy (3.36) and the cumulant generating function of the
canonical entropic functional St.

Proposition 3.18 Under Assumption (C) and with Definition 3.17 one has

lim
τ→∞

eτ (α) = e(α), (3.45)

for all α ∈ R.
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A closer look at the proof of Proposition 3.18 in Section 5.7 gives more. For any x ∈ Ξ and α ∈ Ic

lim
τ→∞

Ex
[
e−αS

τ−τe(α)
]

= fα(x) = cαe−
1
2
x·Tαx,

see [MT, Section 20.1.5] and references therein. The functions α 7→ cα ∈ [0,∞[ and α 7→ Tα ∈ L(Ξ)
are real analytic on Ic, continuous on Ic, cα > 0 for α ∈ Ic, and Tα > M−1 for α ∈ Ic. Moreover,
the convergence also holds in L1(Ξ, dµ) and is exponentially fast for α ∈ Ic. For α ∈ Ic and as
τ →∞, one has

eτ (α) = e(α) +
1

τ
gτ (α) = e(α) +

1

τ

(
logµ(fα) +O(e−ε(α)τ )

)
,

where ε(α) > 0 for α ∈ Ic. However, cα vanishes on ∂Ic and hence the "prefactor" gτ (α) diverges
as α→ ∂Ic. Nevertheless, (3.45) holds because

−∞ = lim
τ→∞

lim
α→∂Ic

1

τ
gτ (α) 6= lim

α→∂Ic
lim
τ→∞

1

τ
gτ (α) = 0.

Like in our introductory example, the occurrence of singularities in the "prefactor" gτ (α) is related
to the tail of the law of St. This phenomenon was observed by Cohen and van Zon in their study
of the fluctuations of the work done on a dragged Brownian particle and its heat dissipation [CvZ1]
(see also [CvZ2, Vi] for more detailed analysis). In their model, which is closely related to ours, the
cumulant generating function of the dissipated heat eτ (α) diverges for α2 ≥ (1− e−2τ )−1 and hence

lim
τ→∞

eτ (α) = +∞ for |α| > 1.

This leads to a breakdown of the Gallavotti–Cohen symmetry and to an extended fluctuation relation.
We will come back to this point in the next section and see that this is a general feature of the TDE
functional St (see Eq. (3.64) below). Proposition 3.18 and Theorem 3.13 (3) show that the canonical
entropic functional St does not suffer from this defect: its limiting cumulant generating function e(α)
satisfies Gallavotti–Cohen symmetry for all α ∈ R.

3.4 Large deviations of the canonical entropic functional

We now turn to Step 2 of our scheme. We recall some fundamental results on the large deviations
of a family (ξt)t≥0 of real-valued random variables (the Gärtner-Ellis theorem, see, e.g., [dH, Theo-
rem V.6]). We shall focus on the situations relevant for our discussion of entropic fluctuations. We
refer the reader to [dH, DZ] for more general exposition.

By Hölder’s inequality, the cumulant generating function

R 3 α 7→ Λt(α) =
1

t
logE[eαξt ] ∈]−∞,∞],

is convex and vanishes at α = 0. It is finite on some (possibly empty) open interval and takes the
value +∞ on the (possibly empty) interior of its complement.

Remark 3.19 The above definition follows the convention used in the mathematical literature on large
deviations. Note, however, that in the previous section we have adopted the convention of the physics
literature on entropic fluctuations where the cumulant generating function of an entropic functional ξt
is defined by α 7→ t−1 logE[e−αξt ]. This clash of conventions is the origin of various minus signs
occurring in Theorems 3.20 and 3.28 below.
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The function
R 3 α 7→ Λ(α) = lim sup

t→∞
Λt(α) = lim

t→∞
sup
s≥t

Λs(α) ∈ [−∞,∞]

is convex and vanishes at α = 0. Let D be the interior of its effective domain {α ∈ R |Λ(α) < ∞},
and assume that 0 ∈ D. Then D is a non-empty open interval, Λ(α) > −∞ for all α ∈ R, and the
function D 3 α 7→ Λ(α) is convex and continuous. The Legendre transform

Λ∗(x) = sup
α∈R

(αx− Λ(α)) = sup
α∈D

(αx− Λ(α))

is convex and lower semicontinuous, as supremum of a family of affine functions. Moreover, Λ(0) = 0
implies that Λ∗ is non-negative. The large deviation upper bound

lim sup
t→∞

1

t
logP

[
1

t
ξt ∈ C

]
≤ − inf

x∈C
Λ∗(x) (3.46)

holds for all closed sets C ⊂ R.

Assume, in addition, that on some finite open interval 0 ∈ D0 =]α−, α+[⊂ D the function D0 3
α 7→ Λ(α) is real analytic and not linear. Then Λ is strictly convex and its derivative Λ′ is strictly
increasing on D0. We denote by x∓ the (possibly infinite) right/left limits of Λ′(α) at α = α∓. By
convexity,

Λ(α) ≥ Λ(α0) + (α− α0)Λ′(α0) (3.47)

for any α0 ∈ D0 and α ∈ R, and

Λ(α±) ≥ Λ± = lim
D03α→α±

Λ(α).

Since Λ∗ is non-negative, it follows that Λ∗(Λ′(0)) = 0. One easily shows that (3.47) also implies

Λ∗(x) = sup
α∈D0

(αx− Λ(α))

for x ∈ E =]x−, x+[. If the limit
lim
t→∞

Λt(α)

exists for all α ∈ D0, then it coincides with Λ(α), and the large deviation lower bound

lim inf
t→∞

1

t
logP

[
1

t
ξt ∈ O

]
≥ − inf

x∈O∩E
Λ∗(x) (3.48)

holds for all open sets O ⊂ R. Note that in cases where x− = −∞ and x+ = +∞ one has E = R
and convexity implies Λ(α) = +∞ for α ∈ R \ [α−, α+].

We shall say that the family (ξt)t≥0 satisfies a local LDP on E with rate function Λ∗ if (3.46) holds
for all closed sets C ⊂ R and (3.48) holds for all open sets O ⊂ R. If the latter holds with E = R,
we say that this family satisfies a global LDP with rate function Λ∗.

By the above discussion, Proposition 3.18 and Theorem 3.13 (3) immediately yield:

Theorem 3.20 Suppose that Assumption (C) holds. Then, under the law Pµ, the family (St)t≥0 satis-
fies a global LDP with rate function (see Figure 4)

I(s) = sup
−α∈Ic

(αs− e(−α)). (3.49)
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s

I(s)

ep

e(α)

+∞

1 1
2 + κc

1
2 − κc

α

Figure 4: The cumulant generating function e(α) and the rate function I(s) for the canonical entropic
functional of a harmonic network satisfying Assumption (C) and ep > 0. Notice the bias due to the
symmetry I(−s) = I(s) + s.

It follows from the Gallavotti–Cohen symmetry (3.39) that the function R 3 s 7→ I(s) + 1
2s ∈ [0,∞]

is even, i.e., the universal fluctuation relation

s(s) = I(−s)− I(s) = s, (3.50)

holds for all s ∈ R.

Remark 3.21 If ep > 0, then the strict convexity and analyticity of the function e(α) stated in The-
orem 3.13 (3) imply that the rate function I(s) is itself real analytic and strictly convex. Denoting by
s 7→ `(s) the inverse of the function α 7→ −e′(−α), we derive

I(s) = s`(s)− e(−`(s)), I ′(s) = `(s),

and the Gallavotti–Cohen symmetry translates to `(−s) + `(s) = −1.

3.5 Intermezzo: A naive approach to the cumulant generating function of St

Before dealing with perturbations of the functional St, we briefly digress from the main course of our
scheme in order to better motivate what will follow. We shall try to compute the cumulant generating
function of the TDE functional St by a simple Perron-Frobenius type argument.

By Itô calculus, for any f ∈ C2(Ξ) one has

d(e−αS
t
f(x(t))) = e−αS

t [
(Lαf)(x(t))dt+

(
Q∗(∇f)(x(t)) + αϑ−1Q∗x(t)f(x(t))

)
· dw(t)

]
,

where
Lα = 1

2

(
∇ ·B∇+ 2Aαx · ∇ − x · Cαx+ αtr(Qϑ−1Q∗)

)
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is the deformation of the Fokker-Planck operator (3.11), and Aα, B, Cα are given by (3.12), (3.42).
Note that the structural relations (3.9) imply

ΘLαΘ = L∗1−α, (3.51)

where L∗α denotes the formal adjoint of Lα. Assuming Lα to have a non-vanishing spectral gap, a
naïve application of Girsanov formula leads to

Eµ
[
e−αS

t
]

= µ(etLα1) = etλα
(
µ(Ψα)

∫
Ψ1−α(x)dx+ o(1)

)
, (t→∞). (3.52)

where Ψα is the properly normalized eigenfunction of Lα to its dominant eigenvalue λα. It follows
that

lim
t→∞

1

t
logEµ

[
e−αS

t
]

= λα,

the Gallavotti–Cohen symmetry λ1−α = λα being a direct consequence of (3.51).

Given the form of Lα, the Gaussian Ansatz

Ψα(x) = e−
1
2
x·Xαx

is mandatory. Insertion into the eigenvalue equation LαΨα = λαΨα leads to the following equation
for the real symmetric matrix Xα,

XαBXα −XαAα −A∗αXα − Cα = 0, (3.53)

while the dominant eigenvalue is given by

λα = 1
2

(
αtr(Qϑ−1Q∗)− tr(BXα)

)
. (3.54)

There are two difficulties with this naïve argument. The first one is that it is far from obvious that
Girsanov theorem applies here. The second one is again related to the "prefactor" problem. In fact
we shall see that Eq. (3.53) does not have positive definite solutions for α ≤ 0, making the right-hand
side of (3.52) infinite for α ≥ 1. Nevertheless, the above calculation reveals Eq. (3.53) and (3.54)
which will play a central role in what follows.

3.6 More entropic functionals

In this section we deal with step 3 of our scheme. The main result, Proposition 3.22 below, concerns
the large time behavior of cumulant generating functions of the kind

R 3 α 7→ gt(α) =
1

t
logEν

[
e−α[St+Φ(x(t))−Ψ(x(0))]

]
,

where Φ and Ψ are quadratic forms on the phase space Ξ,

Φ(x) = 1
2x · Fx, Ψ(x) = 1

2x ·Gx, (3.55)

and the initial measure ν ∈ P(Ξ) is Gaussian. We then apply this result to some entropic functionals
of physical interest:
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(1) The steady state TDE (recall Eq. (3.35)),

St = St + log
dµ

dx
(θx(t))− log

dµ

dx
(x(0)), (3.56)

with ν = µ.

(2) The steady state TDE for quasi-Markovian networks (3.10) which we can rewrite as

St
qM = St + 1

2 |ϑ−1/2πQx(t)|2 − 1
2 |ϑ−1/2πQx(0)|2, (3.57)

where πQ denotes the orthogonal projection to RanQ = ∂Ξ, with ν = µ.

(3) Transient TDEs, i.e., the functionals St and St
qM, but in the transient process started with a Dirac

measure ν = δx0 .

(4) The steady state entropy production functional

Ep(µ, t) = St + log
dµΘ

dµ
(x(t))

with ν = µ.

(5) The canonical entropic functional for the transient process, started with the non-degenerate Gaus-
sian measure ν ∈ P(Ξ),

Stν = log
dPtν
dP̃tν

= log
dPtµ
dP̃tµ

+ log
dPtν
dPtµ

− log
dP̃tν
dP̃tµ

= St − log
dν

dµ
(θx(t)) + log

dν

dµ
(x(0)).

To formulate our general result, we need some facts about the matrix equation (3.53).

Define a mapRα : L(Ξ)→ L(Ξ) by

Rα(X) = XBX −XAα −A∗αX − Cα, (3.58)

where Aα, B and Cα are defined by (3.12) and (3.42). The equation Rα(X) = 0 is an algebraic
Riccati equation for the unknown self-adjoint X ∈ L(Ξ). We refer the reader to the monographs [LR,
AFIJ] for an in depth discussion of such equations.

A solution X of the Riccati equation is called minimal (maximal) if it is such that X ≤ X ′ (X ≥ X ′)
for any other solution X ′ of the equation. We shall investigate the Riccati equation in Section 5.6. At
this point we just mention that, under Assumption (C), it has a unique maximal solution Xα for any
α ∈ Ic, with the special values

X0 = 0, X1 = θM−1θ. (3.59)

Proposition 3.22 Suppose that Assumption (C) is satisfied and let ν be the Gaussian measure on Ξ
with mean a and covariance N ≥ 0. Denote by Pν the orthogonal projection on RanN and by N̂ the
inverse of the restriction of N to its range. Let F,G ∈ L(Ξ) be self-adjoint and define Φ, Ψ by (3.55).

(1) For t > 0 the function

R 3 α 7→ gt(α) =
1

t
logEν [e−α(St+Φ(x(t))−Ψ(x(0)))]

is convex. It is finite and real analytic on some open interval It =]α−(t), α+(t)[3 0 and infinite
on its complement. Moreover, the following alternatives hold:
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• Either α−(t) = −∞ or limα↓α−(t) g
′
t(α) = −∞.

• Either α+(t) = +∞ or limα↑α+(t) g
′
t(α) = +∞.

(2) Set

I+ = {α ∈ Ic | θX1−αθ + α(X1 + F ) > 0},

I− = {α ∈ Ic | N̂ + Pν(Xα − α(G+ θX1θ))|RanN > 0},

with the proviso that I− = Ic whenever N = 0. Then I∞ = I− ∩ I+ is a (relatively) open
subinterval of Ic containing 0.

(3) If X1 + F > 0 and either N = 0 or N̂ + Pν(X1 − θX1θ −G)|RanN > 0, then [0, 1] ⊂ I∞.

(4) For α ∈ I∞ one has
lim
t→∞

gt(α) = e(α). (3.60)

(5) Set α− = inf I∞ < 0 and α+ = supI∞ > 0. Then,

lim
t→∞

α±(t) = α±, (3.61)

and for any α ∈ R \ [α−, α+],
lim
t→∞

gt(α) = +∞. (3.62)

Remark 3.23 The existence and value of the limit (3.60) for α ∈ ∂I∞ is a delicate problem whose
resolution requires additional information on the two subspaces

Ker (θX1−αθ + α(X1 + F )), Ker (N̂ + Pν(Xα − α(G+ θX1θ))|RanN )

at the points α ∈ ∂I∞. Since, as we shall see in the next section, this question is irrelevant for the
large deviations properties of the functional St + Φ(x(t))−Ψ(x(0)), we shall not discuss it further.

Remark 3.24 We shall see in Section 5.6 that the maximal solution Xα of the Riccati equation is
linked to the function e(α) through the identity e(α) = λα, where λα is given by Eq. (3.54). Thus,
the large time behavior of the function α 7→ gt(α) is completely characterized by the maximal solu-
tion Xα through this formula and the two numbers α±. Riccati equations play an important role in
various areas of engineering mathematics, e.g., control and filtering theory. For these reasons, very
efficient algorithms are available to numerically compute their maximal/minimal solutions. Hence,
our approach is well designed for numerical investigation of concrete models.

Steady state dissipated TDE According to Eq. (3.56) and (3.59), the case of TDE dissipation in
the stationary process corresponds to the choice

N̂ = θX1θ, F = −X1, G = −θX1θ,

and it follows directly from Proposition 5.5 (2) and (4) below that

I+ = {α ∈ Ic |X1−α > 0} = [1
2 − κc, 1[.
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Setting α− = inf{α ∈ Ic |Xα + θX1θ > 0}, we have either α− ∈]1
2 − κc, 0[ and

I∞ =]α−, 1[,

or α− = 1
2 − κc and

I∞ = [α−, 1[.

Suppose that 1
2 − κc ≤ −1 and let α ∈ [1

2 − κc,−1]. From Proposition 5.5 (10) we deduce that
Xα ≤ αX1. Since X1 = θM−1θ > 0, it follows that

Xα + θX1θ ≤ αX1 + θX1θ = α(X1 − θX1θ) + (1 + α)θX1θ ≤ α(θM−1θ −M−1). (3.63)

Observe that the right-hand side of this inequality is odd under conjugation by θ. Moreover, Proposi-
tion 3.7 (1) implies that it vanishes iff ep = 0. It follows that sp(Xα + θX1θ)∩]−∞, 0] 6= ∅. Thus,
we can conclude that one always has α+ = 1 and α− ≥ −1, with strict inequality whenever ep > 0.

By Proposition 3.22,

eTDE,st(α) = lim
t→∞

1

t
logEµ[e−αS

t
] =

{
e(α) for α ∈]α−, 1[

+∞ for α 6∈ [α−, 1].
(3.64)

An explicit evaluation of the resulting Gaussian integral further shows that

eTDE,st(1) = lim
t→∞

1

t
logEµ[e−S

t
] =

1

2
tr(Qϑ−1Q∗) > 0.

The Gallavotti–Cohen symmetry is broken in the sense that it fails outside the interval ]0, 1[, in par-
ticular eTDE,st(0) = e(0) = 0 < eTDE,st(1). Note also that

lim inf
α→1

eTDE,st(α) = e(1) = 0 < eTDE,st(1) < lim sup
α→1

eTDE,st(α) = +∞,

i.e., the limiting cumulant generating function for TDE dissipation rate in the stationary process is
neither lower semicontinuous nor upper semicontinuous.

Remark 3.25 We shall see in Section 5.6 (see Remark 5.6) that in the case of thermal equilibrium,
i.e., ϑ = ϑ0I for some ϑ0 ∈]0,∞[, one has Xα = αϑ0I and hence X−1 + θX1θ = 0. Thus, in this
case, α− = −1 and since e(α) vanishes identically by Proposition 3.13 (3),

eTDE,st(α) =

{
0 for |α| < 1

+∞ for |α| > 1.

Remark 3.26 According to Eq. (3.57), for quasi-Markovian networks the steady-state TDE dissipa-
tion corresponds to

N̂ = θX1θ, F = −X1 + πQϑ
−1πQ, G = θ(−X1 + πQϑ

−1πQ)θ.

Since θπQ = ±πQ = πQθ, one has

[0, 1[⊂ I+ = {α ∈ Ic |X1−α + απQϑ
−1πQ > 0} ⊂ [1

2 − κc, 1[,

provided ∂Ξ 6= Ξ. The inequality (3.63) yields

(I − πQ)(Xα + θX1θ − απQϑ−1πQ)(I − πQ) ≤ α(I − πQ)(θM−1θ −M−1)(I − πQ),

for 1
2 − κc ≤ α ≤ −1. From the Lyapunov equation (5.4) one easily deduces that

(I − πQ)(θM−1θ −M−1)(I − πQ) = 0

iff θMθ = M so that the above argument still applies and (3.64) holds with St replaced by St
qM and

α− ≥ −1 with strict inequality whenever ep > 0.
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Transient dissipated TDE Consider now the functional St for the process started with the Dirac
measure ν = δx0 for some x0 ∈ Ξ. This corresponds to

N = 0, F = −X1, G = −θX1θ,

and in this case
I+ = [1

2 − κc, 1[, I− = Ic,

and hence I∞ = [1
2 − κc, 1[. Proposition 3.22 yields a cumulant generating function

eTDE,tr(α) = lim
t→∞

1

t
logEx0 [e−αS

t
] =

{
e(α) for α ∈]1

2 − κc, 1[

+∞ for α 6∈ [1
2 − κc, 1],

(3.65)

which does not depend on the initial condition x0.

Remark 3.27 For quasi-Markovian networks it may happen that I∞ =]α−, 1[ with α− > 1
2 − κc.

For later reference, let us consider the case2 κc = κ0 (recall Remark 3.14). We deduce from Proposi-
tion 5.5 (12) that

X1−α + απQϑ
−1πQ ≥

1− α
ϑmax

(I − πQ) +
∆

ϑminϑmax
(α− 1

2 + κ0)πQ > 0,

for α ∈ [1
2 − κ0, 0]. Thus, in this case we have I∞ = [1

2 − κc, 1[ as in the Markovian case.

Steady state entropy production rate Motivated by [MNV], where the functional Ep(µ, t) plays
a central role, we shall also investigate the large time asymptotics of its cumulant generating function

eep,t(α) =
1

t
logEµ

[
e−αEp(µ,t)

]
,

in the stationary process. We observe that this function coincides with a Rényi relative entropy, namely

eep,t(α) = Entα(P̃tµΘ|Ptµ),

so that the symmetry (3.15) yields

eep,t(1− α) = Entα(Ptµ|P̃tµΘ) = Entα(P̃tµ|PtµΘ) =
1

t
logEµΘ

[
e−αEp(µΘ,t)

]
.

The large time behavior of eep,t(α) follows from Proposition 3.22 with the choice

N̂ = θX1θ, F = θX1θ −X1, G = 0.

Thus,

I+ = {α ∈ Ic |X1−α + αX1 > 0}, I− = {α ∈ Ic |Xα + (1− α)θX1θ > 0},
and since we can write Xα + (1 − α)θX1θ = θ(Y1−α + W1−α)θ with Y1−α = X1−α + θXαθ and
W1−α = (1− α)X1 −X1−α, it follows from Proposition 5.5 (10) that

I∞ = {α ∈ Ic |X1−α + αX1 > 0}.
In particular the limit

eep(α) = lim
t→∞

eep,t(α),

coincides with e(α) for all α ∈ R iff the following condition holds:
2We shall see in Section 4.2 that this is the case for a large class of linear chains.
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Condition (R) X1−α + αX1 > 0 for all α ∈ Ic.

This condition involves maximal solutions of two algebraic Riccati equations. Except in some special
cases (see Proposition 5.5 (12)), its validity is not ensured by general principles (the known compar-
ison theorems for Riccati equations do not apply) and we shall leave it as an open question. We will
come back to it in Section 4 in context of concrete examples.

Transient canonical entropic functional Assuming for simplicity that the covariance N of the
initial condition ν ∈ P(Ξ) is positive definite, Proposition 3.22 applies to the cumulant generating
function of Stν with

N̂ = N−1, F = θGθ = θN−1θ −X1.

It follows that

I∞ = {α ∈ Ic |Xα + (1− α)N−1 > 0 and X1−α + αN−1 > 0},

so that α− = 1− α+ = 1
2 − κν for some κν > 1

2 and

eν(α) = lim
t→∞

1

t
Eν
[
e−αS

t
ν

]
=

{
e(α) for |α− 1

2 | < κν ;

+∞ for |α− 1
2 | > κν .

Note that by the construction of Stν the Gallavotti–Cohen symmetry holds for all times. One has
κν = κc and hence eν(α) = e(α) for all α ∈ R, provided

(κc − 1
2)X−1

1
2

+κc
< N < −(κc + 1

2)X−1
1
2
−κc

.

3.7 Extended fluctuation relations

We finally deal with the 4th and last step of our scheme: we derive an LDP for the the entropic
functionals considered in the previous section and illustrate its use in obtaining extended fluctuation
relations for various physical quantities of interest. We start with a complement to the discussion of
Section 3.4.

In most cases relevant to entropic functionals of harmonic networks, the generating function Λ is real
analytic and strictly convex on a finite interval D0 =]α−, α+[, is infinite on R \ [α−, α+], and the
interval E =]x−, x+[ is finite. In such cases Λ± are both finite and (3.47) implies that the Legendre
transform of Λ is given by

Λ∗(x) = sup
α∈R

(αx− Λ(α)) =


xα− − Λ− for x ≤ x−;

x`(x)− Λ(`(x)) for x ∈]x−, x+[;

xα+ − Λ+ for x ≥ x+;

where ` : E → D0 is the reciprocal function to Λ′. Thus, Λ∗ is real analytic on E, affine on R\E and
C1 on R. The Gärtner-Ellis theorem only provides a local LDP on E for which the affine branches
of Λ∗ are irrelevant. However, exploiting the Gaussian nature of the underlying measure P, it is
sometimes possible to extend this local LDP to a global one, with the rate function Λ∗. Inspired by
the earlier work of Bryc and Dembo [BD], we have recently obtained such an extension for entropic
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functionals of a large class of Gaussian dynamical systems [JPS]. The next result is an adaptation of
the arguments in [BD, JPS] and applies to the functional

ξt = St + Φ(x(t))−Ψ(x(0)),

under the law Pν , with the hypothesis and notations of Proposition 3.22. We set (recall (3.40))

η− =

{
−∞ if α+ = 1

2 + κc;

−e′(α+) if α+ < 1
2 + κc;

η+ =

{
+∞ if α− = 1

2 − κc;
−e′(α−) if α− > 1

2 − κc.

Theorem 3.28 (1) If Assumption (C) holds then, under the law Pν , the family (ξt)t≥0 satisfies a
global LDP with the rate function

J(s) =


I(η−)− (s− η−)α+ = −sα+ − e(α+) for s ≤ η−;

I(s) for s ∈]η−, η+[;

I(η+)− (s− η+)α− = −sα− − e(α−) for s ≥ η+;

(3.66)

where I(s) is given by (3.49). In particular, if ep > 0, then it follows from the strict convexity of
I(s) that

J(−s)− J(s) < I(−s)− I(s) = s,

for s > max(−η−, η+).

(2) Under the same assumptions, the family (ξt)t≥0 satisfies the Central Limit Theorem: For any
Borel set E ⊂ R,

lim
t→∞

Pν
[
ξt − Eν [ξt]√

ta
∈ E
]

= n1(E),

where a = e′′(0) and n1 denotes the centered Gaussian measure on R with variance 1.

If I∞ = Ic, then we are in the same situation as in Section 3.4 and ξt has the same large fluctuations
as the canonical entropic functional St. In particular it also satisfies the Gallavotti–Cohen fluctuation
theorem. However, in the more likely event that I∞ is strictly smaller than Ic, then (see Figure 5) the
function g(α) = lim supt→∞ gt(α) only coincides with e(α) on ]α−, α+[ and the rate function J(s)
differs from I(s) outside the closure of the interval ]η−, η+[. Unless α− = 1 − α+ (in which case
η− = −η+ and J(−s) − J(s) = s for all s ∈ R) the Gallavoti-Cohen symmetry is broken and the
universal fluctuation relation (3.50) fails. The symmetry function s(s) = J(−s)− J(s) then satisfies
an “extended fluctuation relation”.

Combining Theorem 3.28 with the results of Section 3.6 we obtain global LDPs for steady state and
transient dissipated TDE. Let us discuss their features in more detail.

Steady state dissipated TDE Assuming ep > 0, we have −1 < αTDE,st− < 0 and αTDE,st+ = 1,
hence ηTDE,st− = −e′(1) = −ep and ηTDE,st+ = −e′(αTDE,st−) > ep. In this case, the symmetry
function is

sTDE,st(s) =


s for 0 ≤ s ≤ ep;

s− I(s) for ep ≤ s ≤ ηTDE,st+;

e(αTDE,st−) + (1 + αTDE,st−)s for s ≥ ηTDE,st+;
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g(α)

+∞

α

α− α+1

J(s)

−e′(0)

s

η+η−

slope −α+

slope −α−

slope −η−

slope −η+

Figure 5: The cumulant generating function g(α) = lim supt→∞ gt(α) and the rate function J(s) for
the functionals (ξt)t≥0 of Theorem 3.28.

and in particular sTDE,st(s) < s for s > ep. The slope of the affine branch of sTDE,st satisfies

s′TDE,st(s) = 1 + αTDE,st− ∈]0, 1[, (s ≥ ηTDE,st+),

so that s 7→ sTDE,st(s) is strictly increasing.

In the equilibrium case (ϑmin = ϑmax) one has αTDE,st∓ = ∓1 and e(α) vanishes identically. Hence
the rate function for steady state dissipated TDE is the universal function

JTDE,st(s) = |s|,
and sTDE,st(s) = 0 for all s ∈ R.

Transient dissipated TDE Assuming again ep > 0, we have αTDE,tr− = 1
2−κc and αTDE,tr+ = 1,

so that ηTDE,tr− = −e′(1) = −ep and ηTDE,tr+ = −e′(1
2 − κc) = +∞. The symmetry function

reads

sTDE,tr(s) =

{
s for 0 ≤ s ≤ ep;

s− I(s) for s ≥ ep;

which coincides with the steady state heat dissipation for 0 ≤ s ≤ ηTDE,st+. However, the strict
concavity of the function s− I(s) implies

sTDE,tr(s) < sTDE,st(s)

for all s > ηTDE,st+. By Remark 3.21,

d

ds
(s− I(s)) = 1− `(s) = 0

iff s = −e′(−1) > −e′(0) = ep. Thus, whenever 1
2−κc < −13 the function [0,∞[3 s 7→ sTDE,tr(s)

has a unique maximum at s = −e′(−1), and the concavity of s− I(s) implies that sTDE,tr becomes
negative for large enough s. In the opposite case where 1

2 − κc > −1 the symmetry function sTDE,tr

is strictly monotone increasing (see Figure 7 in Section 4.1 for an explicit example of this somewhat
surprising fact.)

3This corresponds to the near equilibrium regime.
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1

53

2

4

6

Figure 6: A triangular network and a contour plot of 1/κc as function of the parameters (u, v). See
the text for details.

4 Examples

In this section we turn back to harmonic networks in the setup of Section 2. We denote by {δi}i∈I the
canonical basis of the configuration space RI .

We start with two general facts which reduce the phase space controllability condition (C) and the
non-vanishing of ep to configuration space controllability (see Section 5.10 for a proof).

Lemma 4.1 (1) If Kerω = {0}, then (A,Q) is controllable iff (ω∗ω, ι) is controllable.

(2) Denote by πi, i ∈ ∂I, the orthogonal projection on Ker (ϑ− ϑi). Let Ci = C(ω∗ω, ιπi). If there
exist i, j ∈ ∂I such that ϑi 6= ϑj and Ci ∩ Cj 6= {0}, then ep(µ) > 0.

4.1 A triangular network

Consider the triangular network of Figure 6 where I = Z6 and ∂I = Z6 \ 2Z6 (the indices arithmetic
is modulo 6). The potential

1
2q · ω2q = 1

2

∑
i∈I

q2
i + a

∑
i∈I

qiqi+1 + b
∑
i∈∂I

qiqi+2,

is positive definite provided |a| < 1
2 and 2a2 − 1

2 < b < 1 − 4a2. One easily checks that a 6= 0
implies Ran ι ∨ Ranω2ι = RI . Thus Assumption (C) is verified under these conditions. Noting that
δ2 ∈ C1 ∩ C3, we conclude that ep > 0 if ϑ1 6= ϑ3. By symmetry, ep > 0 iff

∆ = ϑmax − ϑmin > 0.

We shall fix the parameters of the model to the following values

a =
1

2
√

2
, b =

1

4
, γ1 = γ3 = γ5 = 1, ϑ =

1

|∂I|
∑
i∈∂I

ϑi,
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Figure 7: The numerically computed rate function JTDE,tr(s) and the corresponding symmetry func-
tion sTDE,tr(s) for the transient TDE dissipation of the triangular network (both the argument s and
the value of these functions are in the units of the corresponding steady state entropy production rate
ep).

the “relative temperatures” being parametrized by

ϑ1 = ϑ(1− u), ϑ3 = ϑ(1 + 1
2(u+ 3v)), ϑ5 = ϑ(1 + 1

2(u− 3v)).

Under these constraints, the simplex {(u, v) | 0 ≤ u ≤ 1, 0 ≤ v ≤ u} is a fundamental domain for
the action of the symmetry group S3 of the network which corresponds to ϑmin = ϑ1, ϑmax = ϑ3.
Factoring ϑ = ϑϑ̂, one easily deduces from (3.37) that the matrix E(ω) and hence the cumulant
generating function e(α) do not depend on ϑ. We have performed our numerical calculations with
ϑ = 1. The thermodynamic drive of the system is the ratio % = ∆/ϑ = 3

2(u+ v) ∈ [0, 3].

Figure 6 shows the reciprocal of κc as a function of (u, v). It was obtained by numerical calculation
of the eigenvalues of the Hamiltonian matrix Kα. The lower-left and upper-right corners of the plot
correspond to % = 0 and % = 3 respectively. Its right edge is the singular limit ϑmin = 0. Our results
are compatible with the two limiting behaviors

lim
%↓0

κc =∞, lim
ϑmin↓0

κc = 1
2 .

The first limit, which corresponds to thermal equilibrium ϑmin = ϑmax = ϑ, follows from the lower
bound (3.44). Computing the generating function e(α) from Eq. (3.43), and its Legendre transform,
we have obtained the symmetry function sTDE,tr(s) for transient TDE dissipation at three points on
the line v = 0.3(1 − u) where κc = 1.4, 1.5 and 1.6 respectively. The result, displayed in Figure 7
confirm our discussion in Section 3.7.
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Figure 8: Contour plot of min sp(X1−α + αX1) as function of (u, v) and some sections along the
lines v = 1 +m(u− 1) for the triangular network.

Solving the Riccati equation (3.58) one can investigate the validity of Condition (R). Figure 8 shows a
plot of min sp(X1−α+αX1) as function of (u, v) and a few sections along the lines v = 1+m(u−1).
It appears that Condition (R) is clearly satisfied for all temperatures.

4.2 Jacobi chains

In our framework, a chain of L oscillators with nearest neighbour interactions coupled to heat baths
at its two ends (see Figure 9) is described by I = {1, . . . , L}, ∂I = {1, L}, and the potential energy

1
2 |ωq|2 = 1

2

L∑
i=1

biq
2
i +

L−1∑
i=1

aiqiqi+1, (4.1)

where, without loss of generality, we may assume ω to be self-adjoint. We parametrize the temperature
and relaxation rates of the baths by

ϑ = 1
2(ϑ1 + ϑL), ∆ = |ϑL − ϑ1|, γ =

√
γ1γL, δ = log

γ1

γL
, κ0 =

ϑ

∆
,

and introduce the parity operator

S : RI → RI
(qi)i∈I 7→ (qL+1−i)i∈I .

To formulate our main result (see Section 5.11 for its proof) we state

Assumption (J) ω > 0 and â = a1a2 · · · aL−1 6= 0.

Assumption (S) The chain is symmetric, i.e., [S, ω2] = 0 and δ = 0.

Theorem 4.2 Under Assumption (J), the following hold for the harmonic chain with potential (4.1):
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Figure 9: A linear chain coupled to two heat baths.

Figure 10: The critical value κc/κ0 as a function of δ for an homogeneous chain.

(1) Assumption (C) is satisfied.

(2) If ∆ 6= 0, then the covariance of the steady state µ satisfies

ϑmin < M < ϑmax,

and ep > 0.

(3) If Assumption (S) also holds, then κc = κ0 and Condition (R) is satisfied.

Remark 4.3 For a class of symmetric quasi-Markovian anharmonic chains, Rey-Bellet and Thomas
have obtained in [RT3] a local LDP for various entropic functionals of the form St+Ψ(x(t))−Ψ(x(0))
under the law Px0 , x0 ∈ Ξ. In view of their Hypothesis (H1) (more precisely, the condition k2 ≥ k1 ≥
2), their results should apply in particular to harmonic chains satisfying Assumptions (J) and (S). They
proved that the cumulant generating function of these functionals are finite and satisfy the Gallavotti–
Cohen symmetry on the interval ]1

2 − κ0,
1
2 + κ0[. The lower bound of this interval is consistent with

Part (4) of Theorem 4.2 and Remark 3.27, whereas the upper bound is different from our conclusions
in Section 3.7 on the transient TDE. There, we found that the cumulant generating function diverges
for α > 1. In view of this, it appears that the analysis of [RT3] does not apply to the harmonic case.

Remark 4.4 We believe that Condition (S) is essential for Part (4) since the proof indicates that for
non-symmetric chains κc > κ0 is generic. Figure 10 shows a plot of κc vs δ for a homogeneous chain
with L = 4, bi = 1, ai = 1

2 , γ = 2, ϑ = 4 and ∆ = 2.
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5 Proofs

Even though the processes induced by Eq. (3.2) take values in a real vector space, it will be sometimes
more convenient to work with complex vector spaces. With this in mind, we start with some general
remarks and notational conventions concerning complexifications.

Let E be a real Hilbert space with inner product 〈 · , · 〉. We denote by CE = {x+ iy |x, y ∈ E} the
complexification of E. This complex vector space inherits a natural Hilbertian structure with inner
product

(x+ iy, u+ iv) = 〈x, u〉+ 〈y, v〉+ i〈x, v〉 − i〈y, u〉.
We denote by | · | the induced norm. Any A ∈ L(E,F ) extends to an element of L(CE,CF ) which
we denote by the same symbol: A(x + iy) = Ax + iAy. If A is a self-adjoint/non-negative/positive
element of L(E), then this extension is a self-adjoint/non-negative/positive element of L(CE). The
conjugation CE : x + iy 7→ x − iy is a norm-preserving involution of CE. For z ∈ CE and
A ∈ L(CF,CE) we set z = CEz and A = CEACF . We identify E with the set {z ∈ CE | z = z}
of real elements of CE. Likewise, L(F,E) is identified with the set {A ∈ L(CF,CE) |A = A} of
real elements of L(CF,CE). A subspace V ⊂ CE is real if it is invariant under CE . V is real iff
there exists a subspace V0 ⊂ E such that V = CV0. If A ∈ L(CF,CE) is real, then RanA and
KerA are real subspaces of CE and CF . Finally, we note that if (A,Q) ∈ L(E) × L(F,E), then
the controllability subspace of the corresponding pair in L(CE) × L(CF,CE) is the real subspace
CC(A,Q) ⊂ CE. In particular (A,Q) is controllable as a pair of R-linear maps iff it is controllable
as a pair of C-linear maps.

Note that

ξ(t) =

∫ t

0
e(t−s)AQdw(s) (5.1)

is a centered Gaussian random variable with covariance

Mt =

∫ t

0
esAQQ∗esA

∗
ds. (5.2)

The next lemma concerns some elementary properties of this operator.

Lemma 5.1 Assume that (A,Q, ϑ, θ) ∈ L(Ξ) × L(∂Ξ,Ξ) × L(∂Ξ) × L(Ξ) satisfies the structural
relations (3.9) and let Mt be given by Eq. (5.2).

(1) RanMt = C(A,Q) for all t > 0.

(2) The subspace C(A,Q) is invariant for both A and A∗, and sp(A|C(A,Q)), sp(A∗|C(A,Q)) ⊂ C−.
In particular, there exist constants C ≥ 1 and δ′ ≥ δ > 0 such that

C−1e−δ
′t|x| ≤ |etAx| ≤ Ce−δt|x| for x ∈ C(A,Q),

and the function t 7→Mt converges to a limit M as t→ +∞.

(3) RanM = C(A,Q) = C(A∗, Q).

(4) A|C(A,Q)⊥ = −A∗|C(A,Q)⊥ and etA|C(A,Q)⊥ is unitary.
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(5) The following inequality holds for all t ≥ 0 :

ϑmin(I − etAetA
∗
) ≤Mt ≤ ϑmax(I − etAetA

∗
) ≤ ϑmax. (5.3)

In particular,
ϑmin ≤M |RanM ≤ ϑmax,

and if all the reservoirs are at the same temperature ϑ0, then M |RanM = ϑ0.

(6) M −Mt = etAMetA
∗ ≥ 0 and (M −Mt)|RanM > 0.

(7) M satisfies the Lyapunov equation

AM +MA∗ +QQ∗ = 0. (5.4)

(8) If (A,Q) is controllable, then RanM = Ξ and M is the only solution of (5.4). Moreover, for any
τ > 0 there exists a constant Cτ such that

0 < M−1
t −M−1 ≤ Cτe−2δt for all t ≥ τ .

Proof. (1) Fix t > 0. From the relation

x ·Mtx =

∫ t

0
|Q∗esA∗x|2ds

we deduce that KerMt = ∩s∈[0,t]KerQ∗esA
∗
. This relation is easily seen to be equivalent to

KerMt =
⋂
n≥0

KerQ∗A∗n, (5.5)

and hence to
RanMt =

∨
n≥0

RanAnQ. (5.6)

The right-hand side of the last relation is included in any A-invariant subspace containing RanQ, and
therefore coincides with the controllability subspace C(A,Q).

(2) The invariance of the subspace C(A,Q) under A follows from the definition. To prove its invari-
ance under A∗, it suffices to recall the relation

A+A∗ = −Qϑ−1Q∗. (5.7)

We now prove that the spectra of the restrictions ofA and A∗ to C(A,Q) are subsets of C−. It suffices
to consider the case of A.

Pick α ∈ sp(A) and let z ∈ CΞ \ {0} be a corresponding eigenvector. It follows from (5.7) that

2Reα|z|2 = (z, (A+A∗)z) = −|ϑ−1/2Q∗z|2,

which implies Reα ≤ 0. If Reα = 0, then Q∗z = 0 and (5.7) yields A∗z = −αz which fur-
ther implies Q∗A∗nz = (−α)nQ∗z = 0 for all n ≥ 0. Eq. (5.5) then gives z ∈ KerMt and so
sp(A|RanMt) ⊂ C−. The remaining statements are elementary consequences of this fact and the
observation that Mt vanishes on C(A,Q)⊥.
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(3) The proof of the relation RanM = C(A,Q) is exactly the same as that of (1). The relation
C(A,Q) = C(A∗, Q) is a simple consequence of (5.7).

(4) Combining (5.5) with (5.7), we deduce Ker (A+ A∗) = KerQ∗ ⊃ C(A,Q)⊥. Thus A and −A∗
coincide on C(A,Q)⊥.

(5) From Eq. (5.7) we deduce∫ t

0
esAQϑ−1Q∗esA

∗
ds = −

∫ t

0

d

ds
esAesA

∗
ds = I − etAetA

∗
,

from which we infer
ϑ−1

maxMt ≤ I − etAetA
∗ ≤ ϑ−1

minMt.

This is equivalent to (5.3). Restricting these inequalities to C(A,Q) and taking the limit t→∞ yields
the desired result.

(6) The first assertion follows directly from the definition of M and the group property of etA. The
second assertion is a consequence of Parts (3) and (5) which imply

(M −Mt)|RanM = etAMetA
∗ |RanM ≥ ϑminetAetA

∗ |RanM > 0.

(7) Follows from Part (6) and Eq. (5.2) by differentiation.

(8) Any solution N of (5.4) is easily seen to satisfy

N −Mt = etANetA
∗

for all t ≥ 0.

Letting t→ +∞ and using the exponential decay of etA and etA
∗

(see (2) in the case C(A,Q) = Ξ),
we see that N = M . The second assertion follows from the identity

M−1
t −M−1 = M−t (M −Mt)M

−1

and the inequalities Mt ≥ cτ > 0 for t ≥ τ and ‖Mt −M‖ ≤ Ce−2δt for t ≥ 0. �

5.1 Sketch of the proof of Theorem 3.2

(1) The fact that M is well defined and satisfies (3.13) was established in Lemma 5.1. Let us prove
the invariance of µ.

We fix a random variable x0 that is independent of w and is distributed by the law µ. We wish to show
that the law of the process

x(t) = etAx0 + ξ(t), (5.8)

where ξ is given by (5.1), coincides with µ for all t ≥ 0. To this end, we note that both terms in (5.8)
are centred Gaussian random variables with covariances etAMetA

∗
and Mt, respectively. Since they

are independent, x(t) is also a centred Gaussian random variable with covariance etAMetA
∗

+ Mt.
This operator coincides with M in view of Lemma 5.1 (6). Hence, the law of x(t) coincides with µ.

(2) If the pair (A,Q) is controllable, then for any initial condition x0 independent of w the corre-
sponding solution (5.8) converges in law to µ. It follows that µ is the only invariant measure. On
the other hand, if the pair (A,Q) is not controllable, then, by Lemma 5.1, the subspace KerM =
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C(A,Q)⊥ 6= {0} is invariant for the group {etA}, whose restriction to it is a unitary. The lat-
ter has infinitely many invariant measures (e.g., the normalized Lebesgue measure on any sphere
{x ∈ C(A,Q)⊥ | |x| = R} is invariant).

To prove the mixing property, we write

P tf(x) = Ef
(
etAx+ ξ(t)

)
=

∫
Ξ
f(y)nt(x, y) dy,

where nt(x, y) denotes the density of the Gaussian measure with mean value etAx and covarianceMt:

nt(x, y) = det(2πMt)
−1/2 exp

{
−1

2

(
y − etAx,M−1

t (y − etAx
)}
.

The required convergence follows now from assertions (6) and (8) of Lemma 5.1 and the Lebesgue
theorem on dominated convergence.

(3) The fact that process (3.7) is centred and Gaussian follows from linearity of the equation. Let
us calculate its covariance operator K(t, s). It is a straightforward to check that a stationary solution
of (3.2) defined on the whole real line can be written as

ξ̂(t) =

∫ t

−∞
e(t−r)AQdw(r),

where w(t) stands for a two-sided R∂I-valued Brownian motion. Assuming without loss of generality
that t > s, for any η1, η2 ∈ Ξ we write

(η1,K(t, s)η2) = E
{

(ξ̂(t), η1

)(
ξ̂(s), η2

)}
= E

{∫ t

−∞

(
e(t−r)AQdw(r), η1

) ∫ s

−∞

(
e(s−r)AQdw(r), η2

)}
=

∫ s

−∞

(
Q∗e(t−r)A∗η1, Q

∗e(s−r)A∗η2

)
dr

=

∫ +∞

0

(
η1, e

(t−s+u)AQQ∗euA
∗
η2

)
du = (η1, e

tAMη2).

This implies the required relation (3.14) and completes the proof of Theorem 3.2. 2

For later use, we now formulate and prove two other auxiliary results. We start with a few technical
facts. Consider the scale of spaces

H+ ⊂ H ⊂ H−,

where H = L2(R) ⊗ CΞ, H+ is the Sobolev space H1(R) ⊗ CΞ, and H− = H−1(R) ⊗ CΞ is its
dual w.r.t. the duality induced by the inner product of H. To simplify notations, we shall also use
the symbols H, H± to denote the corresponding real Hilbert spaces (the meaning should remain clear
from the context). For x ∈ H, we denote by

x̂(ω) =

∫
x(s)e−iωsds
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its Fourier transform. Since, under Assumption (C), A is stable, we can use

‖x‖± =

(∫
|(A− iω)±1x̂(ω)|2 dω

2π

) 1
2

as norms on H±. For τ > 0, we denote by Πτ the operator of multiplication with the characteristic
function of the interval [0, τ ]. Thus, Πτ is an orthogonal projection in H whose range Hτ will be
identified with the Hilbert space L2([0, τ ])⊗ CΞ.

Lemma 5.2 Under Assumption (C) the following hold.

(1) The Volterra integral operator

(Rx)(s) =

∫ s

−∞
e(s−s′)Ax(s′)ds′

maps isometrically H− onto H and H onto H+. By duality, its adjoint

(R∗x)(s) =

∫ ∞
s

e(s′−s)A∗x(s′)ds′,

has the same properties.

(2) ΠτR is Hilbert-Schmidt, with norm

‖ΠτR‖2 =

(
τ

∫ ∞
0

tr(etA
∗
etA)dt

) 1
2

.

(3) For t0 ∈ [0, τ ], the Hilbert–Schmidt norm of the map Rt0 : H → Ξ defined by Rt0x = (Rx)(t0)
is given by

‖Rt0‖2 =

(∫ t0

0
tr(etA

∗
etA)dt

) 1
2

.

Proof. (1) Follows from our choice of the norms on H± and the fact that (Rx)̂ (ω) = (iω−A)−1x̂(ω).

(2) ΠτR is an integral operator with kernel 1[0,τ ](s)θ(s − s′)e(s−s′)A, where 1[0,τ ] denotes the char-
acteristic function of the interval [0, τ ] and θ the Heaviside step function. Its Hilbert-Schmidt norm is
given by

‖ΠτR‖22 =

∫ τ

0
ds

∫ s

−∞
ds′ tr(e(s−s′)A∗e(s−s′)A) = τ

∫ ∞
0

dt tr(etA
∗
etA).

(3) Follows from a simple calculation. 2

Given τ > 0, consider the process {x(t)}t∈[0,τ ] started with a Gaussian measure ν ∈ P(Ξ). Let a ∈ Ξ
be the mean of ν and 0 ≤ N ∈ L(Ξ) its covariance. Denote by ( · | · ) the inner product of Hτ .

Lemma 5.3 Let Tτ : Ξ 3 v 7→ esAv ∈ Hτ and define

Dτ =
[
TτN

1
2 ΠτRQ

]
: Ξ⊕ ∂H→ Hτ ,

where ∂H = L2(R)⊗∂Ξ, and the operator Q acts on ∂H by the relation (Qy)(t) = Qy(t) for t ∈ R.
Then, under Assumption (C), the following properties hold for any τ > 0:
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(1) Dτ is Hilbert-Schmidt and has a unique continuous extension to Ξ⊕ H−.

(2) Kτ = DτD∗τ is a non-negative trace class operator on Hτ with integral kernel

Kτ (s, s′) = e(s−s′)+A(e(s∧s′)ANe(s∧s′)A∗ +Ms∧s′)e
(s−s′)−A∗ , (5.9)

and there exists a constant Cν , depending on A, B and N but not on τ , and such that

Kτ ≤ Cν , ‖Kτ‖1 ≤ Cντ,

where ‖ · ‖1 denotes the trace norm.

(3) The process {x(t)}t∈[0,τ ] is Gaussian with mean Tτa and covariance Kτ , i.e.,

Eν [ei(x|u)] = ei(Tτa|u)− 1
2

(u|Kτu) (5.10)

for all u ∈ Hτ .

Proof. (1) Tτ is clearly finite rank and it follows from Lemma 5.2 (2) that the operator Dτ is Hilbert-
Schmidt. Lemma 5.2 (1) further implies that it extends by continuity to Ξ⊕ H−.

(2) It follows immediately that

Kτ = DτD∗τ = TτNT
∗
τ + ΠτRQQ

∗R∗Πτ |Hτ (5.11)

is non-negative and trace class. Formula (5.9) can be checked by an explicit calculation.

Defining the function u ∈ Hτ to be zero outside [0, τ ], we can invoke Plancherel’s theorem to trans-
late (5.11) into

(u|Kτu) =

∣∣∣∣∫ ∞
−∞

N
1
2 (A∗ + iω)−1û(ω)

dω

2π

∣∣∣∣2 +

∫ ∞
−∞
|Q∗(A∗ + iω)−1û(ω)|2 dω

2π
.

By Lemma 5.1, Assumption (C) implies sp(A) ∩ iR = ∅ and we conclude that

Kτ ≤
∫ ∞
−∞
‖N 1

2 (A∗ + iω)−1‖2 dω

2π
+ sup
ω∈R
‖Q∗(A∗ + iω)−1‖2 <∞.

Finally, it is well known [Si1, Theorem 3.9] that the trace norm of a non-negative trace class integral
operator with continuous kernel Kτ (s, s′) is given by

‖Kτ‖1 = tr(K1) =

∫ τ

0
tr(Kτ (s, s))ds =

∫ τ

0
tr(esANesA

∗
+Ms)ds ≤ τ (C tr(N) + tr(M)) ,

where C depends only on A.

(3) By Eq. (3.7) we have, for u ∈ Hτ ,

(x|u) = (Tτx(0)|u) +

∫ τ

0

[∫ t

0
e(t−s)AQdw(s)

]
· u(t)dt = x(0) · T ∗τ u+

∫ τ

0
Q∗(R∗u)(s) · dw(s)

so that
Eν [ei(x|u)] = W[ei

∫ τ
0 Q∗(R∗u)(s)·dw(s)]

∫
eix·T ∗τ uν(dx).
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Evaluating Gaussian integrals we get∫
eix·T ∗τ uν(dx) = eia·T ∗τ u− 1

2
T ∗τ u·NT ∗τ u = ei(Tτa|u)− 1

2
(u|TτNT ∗τ u),

and
W[ei

∫ τ
0 Q∗(R∗u)(s)·dw(s)] = e−

1
2

(u|RQQ∗R∗u),

which provide the desired identity. 2

5.2 Proof of Proposition 3.5

We start with some results on the Markov semigroup

(P tf)(x) =

∫
f(etAx+M

1
2
t y)n(dy). (5.12)

For a multi-index α = (α1, α2, . . .) ∈ Ndim Ξ and p ∈ [1,∞] set

|α| =
∑
i

αi, ∂α =
∏
i

∂αixi ,

and define

Ap =

{
ψ ∈ C∞(Ξ)

∣∣∣∣ |∂αψ| ∈ Lp(Ξ, dµ) for all α ∈ Ndim Ξ

}
.

Lemma 5.4 Suppose that Assumption (C) holds.

(1) For any ν ∈ P(Ξ) and t > 0, νt is absolutely continuous w.r.t. Lebesgue measure. Its Radon-
Nikodym derivative

dνt
dx

(x) = det(2πMt)
− 1

2

∫
e−

1
2
|M
− 1

2
t (x−etAy)|2ν(dy) (5.13)

is strictly positive and SGS(νt) > −∞. Moreover, if ν(|x|2) <∞, then SGS(νt) <∞.

(2) For any ν ∈ P(Ξ), any t > 0, and any multi-index α,

∂α
dνt
dx
∈ L1(Ξ, dx) ∩ L∞(Ξ,dx).

(3) For t > 0, M̃t = M − etÃMetÃ
∗
> 0, and

M̃−1
t = M−1 + etA

∗
M−1
t etA. (5.14)

(4) P t is a contraction semigroup on Lp(Ξ,dµ) for any p ∈ [1,∞]. Its adjoint w.r.t. the duality
〈f |g〉µ = µ(fg) is given by

(P t∗ψ)(x) =

∫
ψ(etÃx+ M̃

1
2
t y)n(dy). (5.15)

In particular, P t∗ is positivity improving.
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(5) For all t > 0, P t∗L∞(Ξ,dµ) ⊂ A∞.

(6) For p ∈ [1,∞[, Ap is a core of the generator of P t∗ on Lp(Ξ, dµ) and this generator acts on
ψ ∈ Ap as

L∗ψ =
1

2
∇ ·B∇ψ + Ãx · ∇ψ. (5.16)

(7) For ν ∈ P+(Ξ) and p ∈ [1,∞[ there exists tν,p > 0 such that dνt
dµ ∈ Ap for all t > tν,p.

(8) For ν ∈ P+(Ξ) there exist tν,∞ > 0, Cν and δν > 0 such that∣∣∣∣log
dνt
dµ

(x)

∣∣∣∣ ≤ Cνe−δνt(1 + |x|2)

for t ≥ tν,∞.

Proof. (1) We deduce from Eq. (5.12) that for any bounded measurable function f on Ξ one has

νt(f) = ν(P tf) =

∫
f(etAx+M

1
2
t y)ν(dx)n(dy)

= det(2πMt)
− 1

2

∫
f(y)e−

1
2
|M
− 1

2
t (y−etAx)|2ν(dx)dy,

from which we conclude that νt is absolutely continuous w.r.t. Lebesgue measure with Radon-
Nikodym derivative given by Eq. (5.13). It follows immediately that

dνt
dx

(x) ≤ det(2πMt)
− 1

2 ,

which implies the lower bound

SGS(νt) ≥
1

2
log det(2πMt) > −∞.

To derive an upper bound, let r be such that Br = {x ∈ Ξ | |x| < r} satisfies ν(Br) >
1
2 . Then one

has

dνt
dx

(x) ≥ 1

2
det(2πMt)

− 1
2 inf
z∈Br

e−
1
2
|M
− 1

2
t (x−etAz)|2

≥ 1

2
det(2πMt)

− 1
2 e−

1
2
‖M−1

t ‖ supz∈Br |(x−etAz)|2

≥ 1

2
det(2πMt)

− 1
2 e−

1
2
‖M−1

t ‖(|x|+R‖etA‖)2 ,

from which we conclude that
log

dνt
dx

(x) ≥ −Ct(1 + |x|2)

for some constant Ct > 0, and hence

SGS(νt) ≤ Ct(1 + ν(|x|2)).

(2) From Eq. (5.13) we deduce that

∂α
dνt
dx

(x) =

∫
pα,t(x− etAy)e−

1
2
|M
− 1

2
t (x−etAy)|2ν(dy),
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where pα,t denotes a polynomial whose coefficients are continuous functions of t ∈]0,∞[. It follows
that

sup
x∈Ξ

∣∣∣∣∂αdνt
dx

(x)

∣∣∣∣ ≤ sup
z∈Ξ
|pα,t(z)|e−

1
2
|M
− 1

2
t z|2 <∞,

and ∫ ∣∣∣∣∂αdνt
dx

(x)

∣∣∣∣ dx ≤ ∫ |pα,t(z)|e− 1
2
|M
− 1

2
t z|2dz <∞.

(3) From Lemma 5.1 (5) we get

etA
∗
M−1etA = (M + e−tAMte

−tA∗)−1 < M−1.

The strict positivity of M̃t follows from

M̃t = M −M(etA
∗
M−1etA)M > M −MM−1M = 0.

Using again Lemma 5.1 (5), it is straightforward to check the last statement of Part (3).

(4) For f ∈ L1(Ξ,dµ) we have

‖P tf‖L1(Ξ,dµ) = µ(|P tf |) ≤ µ(P t|f |) = µ(|f |) = ‖f‖L1(Ξ,dµ).

The representation (5.12) shows that P t is a contraction on L∞(Ξ,dµ). The Riesz-Thorin interpola-
tion theorem yields that P t is a contraction on Lp(Ξ,dµ) for all p ∈ [1,∞]. To get a representation
of the adjoint semigroup P t∗, we start again with Eq. (5.12),

〈ψ|P tf〉µ =

∫
ψ(y)f(etAy +M

1
2
t x)n(dx)µ(dy)

=

∫
ψ(y)f(etAy + x)

e−
1
2
|M
− 1

2
t x|2

det(2πMt)
1
2

e−
1
2
|M−

1
2 y|2

det(2πM)
1
2

dxdy

=

∫
ψ(y)f(x)

e−
1
2
|M
− 1

2
t (x−etAy)|2

det(2πMt)
1
2

e−
1
2
|M−

1
2 y|2

det(2πM)
1
2

dxdy

=

∫
ψ(y)f(x)

e−
1
2
|M
− 1

2
t (x−etAy)|2

det(2πMt)
1
2

e
1
2

(|M−
1
2 x|2−|M−

1
2 y|2)µ(dx)dy,

to conclude that
(P t∗ψ)(x) = det(2πMt)

− 1
2

∫
e−φt(x,y)ψ(y)dy,

where, taking (5.14) into account,

φt(x, y) =
1

2
x · (M−1

t −M−1)x+
1

2
y · M̃−1

t y − etA
∗
M−1
t x · y.

Using Lemma 5.1 (5) and (5.14) one shows that

φt(x, e
tÃx+ z) =

1

2
z · M̃−1

t z, (5.17)

which leads to

(P t∗ψ)(x) = det(2πMt)
− 1

2

∫
e−

1
2
|M̃
− 1

2
t z|2ψ(etÃx+ z)dz.
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Noticing that Mt = (I − etAetÃ)M and M̃t = (I − etÃetA)M we conclude that det(Mt) = det(M̃t)
and Eq. (5.15) follows.

(5) Rewriting Eq. (5.15) as

(P t∗ψ)(x) = det(2πMt)
− 1

2

∫
e−

1
2
|M̃
− 1

2
t (z−etÃx)|2ψ(z)dz, (5.18)

we derive that for any multi-index α,

(∂αP t∗ψ)(x) =

∫
pα,t(z − etÃx)e−

1
2
|M̃
− 1

2
t (z−etÃx)|2ψ(z)dz,

where pα,t is a polynomial whose coefficients are continuous functions of t ∈]0,∞[. For ψ ∈
L∞(Ξ,dµ) this yields

∥∥∂αP t∗ψ∥∥
L∞(Ξ,dµ)

≤ ‖ψ‖L∞(Ξ,dµ)

∫
|pα,t(z)|e−

1
2
|M̃
− 1

2
t z|2dz,

where the integral on the right-hand side is finite for all t > 0.

(6) Ap is dense in Lp(Ξ, dµ) for p ∈ [1,∞[. For ψ ∈ Ap, Eq. (5.15) yields

(∂αP t∗ψ)(x) =
∑
|α′|=|α|

Cα,α′(t)

∫
(∂α

′
ψ)(etÃx+ M̃

1
2
t y)n(dy) =

∑
|α′|=|α|

Cα,α′(t)(P
t∗∂α

′
ψ)(x),

where the Cα,α′ are continuous functions of t. As a consequence of Part (4), Ap invariant under the
semigroup P t∗ and Part (6) follows from the core theorem (Theorem X.49 in [RS2]) and a simple
calculation.

(7) Assuming ν(em|x−a|
2/2) <∞, we deduce from Eq. (5.13) that for any m′ < m

dνt
dµ

(x) = det(M−1Mt)
− 1

2

∫
e−φt(x,y)ν ′(dy),

where
φt(x, y) =

1

2
(|M−

1
2

t (x− etAy)|2 +m′|y − a|2 − |M− 1
2x|2),

and ν ′ is such that ν ′(eε|x−a|
2
) <∞ for ε > 0 small enough. It follows that

∂α
dνt
dµ

(x) =

∫
pα,t(x, y)e−φt(x,y)ν ′(dy),

where pα,t is a polynomial of degree |α| whose coefficients are continuous functions of t ∈]0,∞[. An
elementary calculation shows that

φt(x) = inf
y∈Ξ

φt(x, y) = |M−
1
2

t x|2−|M− 1
2x|2+m′|a|2−|(m′+etA

∗
M−1
t etA)−

1
2 (m′a+etA

∗
M−1
t x)|2,

and since
∫
|pα,t(x, y)|ν ′(dy) ≤ Cα,t(1 + |x|2|α|) for some constant Cα,t we have∣∣∣∣∂αdνt

dµ
(x)

∣∣∣∣ ≤ Cα,t(1 + |x|2|α|)e−φt(x).
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This gives the estimate∥∥∥∥∂αdνt
dµ

∥∥∥∥p
Lp(Ξ,dµ)

≤ Cpα,t
∫

(1 + |x|2|α|)pe−p(φt(x)+ 1
2p
|M−

1
2 x|2)

dx,

where the last integral is finite provided the quadratic form

|M−
1
2

t x|2 − (1− p−1)|M− 1
2x|2 − |(m′ + etA

∗
M−1
t etA)−

1
2 etA

∗
M−1
t x|2

is positive definite. Since M−1
t −M−1 > 0, this holds if

M−1
t etA(m′ + etA

∗
M−1
t etA)−1etA

∗
M−1
t ≤ 1

p
M−1.

Finally, the last inequality holds for large t since the left-hand side is exponentially small as t→∞.

(8) By Lemma 5.1 (1), ‖etA‖ = O(e−δt) as t→∞. Repeating the previous analysis with m′ = e−δt

we get, for large enough t > 0,

log
dνt
dµ

(x) ≤ 1

2
tr(logM − logMt) + log

∫
e

1
2
m′|x−a|2ν(dx)− φt(x).

One easily shows that tr(logM − logMt) = O(e−2δt) and |φt(x)| = O(e−δt)(1 + |x|2). Finally,
since ∫

e
1
2
m′|x−a|2ν(dx) = 1 +O(m′)

as m′ → 0, we derive the upper bound

log
dνt
dµ

(x) ≤ O(e−δt)(1 + |x|2).

To get a lower bound we set m′ = 0 and note that the ball Bt = {x ∈ Ξ |m|x− a|2 ≤ δt} satisfies

1− ν(Bt) =

∫
Ξ\Bt

ν(dx) ≤
∫

Ξ\Bt
e−m|x−a|

2
em|x−a|

2
ν(dx) ≤ e−δt

∫
em|x−a|

2
ν(dx) = O(e−δt).

Since logM > logMt we get

log
dνt
dµ

(x) ≥ − sup
y∈Bt

φt(x, y) + log(ν(Bt)).

It is straightforward to check that

sup
y∈Bt

φt(x, y) = O(e−δt)(1 +O(t
1
2 ))(1 + |x|2),

and therefore
− log

dνt
dµ

(x) ≤ O(e−εt)(1 + |x|2)

for any ε < δ. �

We are now ready to prove Proposition 3.5. Writing the polar decomposition Q = V (Q∗Q)
1
2 , the

existence of β ∈ L(Ξ) satisfying (3.17) easily follows from the structural relations [ϑ,Q∗Q] = 0 and
θQ = ±Q.
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(1) Follows from Condition (3.17) and Eq. (3.6).

(2) From Eq. (3.11) we deduce that the formal adjoint of L w.r.t. the inner product of L2(Ξ,dx) is

LT =
1

2
∇ ·B∇−∇ ·Ax.

It follows from the structural relations (3.9) and Condition (3.17) that

Lβ = e
1
2
|β

1
2 x|2LT e−

1
2
|β

1
2 x|2 =

1

2
(∇− βx) ·B(∇− βx)− (∇− βx) ·Ax

=
1

2
∇ ·B∇− (A+Qϑ−1Q∗)x · ∇ − 1

2
tr(Qϑ−1Q∗ +A+A∗) +

1

2
x · (Qϑ−2Q∗ + βA+A∗β)x

=
1

2
∇ ·B∇+A∗x · ∇ − σβ(x).

The desired identity thus follows from (3.9) and Part (1).

(3) The Itô formula gives

d
(

1
2x(t) · Cx(t)

)
= x(t) · Cdx(t) + 1

2tr(CB)dt

= 1
2x(t) · (CA+A∗C)x(t)dt+ 1

2tr(CB)dt+ x(t) · CQdw(t).

Therefore, since log
dµβ
dx (x) = −1

2x · βx, we have

d log
dµβ
dx

(xt) = −1
2x(t) · (βA+A∗β)x(t)dt− 1

2tr(βQQ∗)dt− x(t) · βQdw(t).

Using (3.17) and the decomposition A = Ω− 1
2Q
∗ϑ−1Q, we deduce

d log
dµβ
dx

(xt) = 1
2x(t) · (Ωβ − βΩ)x(t)dt+ 1

2 |Q∗βx(t)|2dt− 1
2tr(Qϑ−1Q∗)dt−Q∗βx(t) · dw(t),

and, observing that∇ log
dµβ
dx (x) = −βx, the result follows from Eq. (3.3) and Condition (3.17).

(4) Let ν ∈ P+(Ξ) and denote by ψt the density of νt w.r.t. µ. By Lemma 5.4, ψt is a strictly
positive element of A2 for large enough t. For ε > 0 we have log ε ≤ log(ψt + ε) ≤ ψt + ε− 1, and
hence log(ψt + ε) ∈ L2(Ξ, dµ). Thus, sε(ψt) = −ψt log(ψt + ε) ∈ L1(Ξ, dµ), and the monotone
convergence theorem yields

Ent(νt|µ) = lim
ε↓0

µ(sε(ψt)).

From

sε(ψt(x))− sε(ψs(x)) =

∫ t

s
s′ε(ψu(x))(L∗ψu)(x)du

we infer

µ(sε(ψt))− µ(sε(ψs)) =

∫ t

s
〈s′ε(ψu)|L∗ψu〉µdu.

Since ψu and s′ε(ψu) = −1 − log(ψu + ε) + ε(ψu + ε)−1 are elements of A2 we can integrate by
parts, using Eq. (5.16), to get

〈s′ε(ψu)|L∗ψu〉µ = 〈fε(ψu)||Q∗∇ψu|2〉µ + 〈gε(ψu)|(Ã−A)x · ∇ψu〉µ,
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where

fε(ψ) =
1

2

ψ + 2ε

(ψ + ε)2
, gε(ψ) =

1

2

ε2

(ψ + ε)2
.

Since fε ≥ 0 and decreases as a function of ε, the monotone convergence theorem yields

lim
ε↓0

∫ t

s
〈fε(ψu)||Q∗∇ψu|2〉µdu = 1

2

∫ t

s
〈ψ−1

u ||Q∗∇ψu|2〉µdu = 1
2

∫ t

s
νu(|Q∗∇ logψu|2)du.

Since 0 < gε ≤ 1
2 , the dominated convergence theorem gives

lim
ε↓0

∫ t

s
〈gε(ψu)|(Ã−A)x · ∇ψu〉µdu = 0.

We conclude that for s sufficiently large and t > s

Ent(νt|µ)− Ent(νs|µ) = lim
ε↓0

(µ(sε(ψt))− µ(sε(ψs))) = 1
2

∫ t

s
νu(|Q∗∇ logψu|2)du,

and Eq. (3.22) follows.

(5) Eq. (3.3) gives

Eν [St] = 1
2

∫ t

0
νs

(∣∣∣∣Q∗∇ log
dµβ
dx

∣∣∣∣2
)

ds− 1
2 t tr(Qϑ−1Q∗).

Since SGS(νt) = Ent(νt|µ) + νt(ϕ), where

ϕ(x) = − log
dµ

dx
(x) = 1

2 |M−
1
2x|2 + 1

2 log det(2πM),

Eq. (3.22) implies

d

dt
(SGS(νt) + Eν [St]) = νt

(
1
2

∣∣∣∣Q∗∇ log
dνt
dµ

∣∣∣∣2 + Lϕ+ 1
2

∣∣∣∣Q∗∇ log
dµβ
dx

∣∣∣∣2 − 1
2tr(Qϑ−1Q∗)

)
.

A simple calculation yields Lϕ = −1
2 |Q∗∇ log dµ

dx |2 + 1
2tr(Qϑ−1Q∗) and hence

d

dt
(SGS(νt) + Eν [St]) = 1

2νt

(∣∣∣∣Q∗∇ log
dνt
dµ

∣∣∣∣2 +

∣∣∣∣Q∗∇ log
dµβ
dx

∣∣∣∣2 − ∣∣∣∣Q∗∇ log
dµ

dx

∣∣∣∣2
)

= 1
2νt

(∣∣∣∣Q∗∇ log
dνt
dµβ

∣∣∣∣2
)

+ νt

(
∇ log

dνt
dx
·B∇ log

dµ

dµβ

)
.

An integration by parts shows that

νt

(
∇ log

dνt
dx
·B∇ log

dµ

dµβ

)
= −νt

(
∇ ·B∇ log

dµ

dµβ

)
= tr

(
B(M−1 − β)

)
,

and, since BM−1 − Bβ = −A −MAM−1 + A + A∗, we have tr(B(M−1 − β)) = 0. The result
follows.
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5.3 Proof of Proposition 3.7

(1) Since the first equivalence is provided by (3.32), it suffices to show the sequence of implications

MQ = Qϑ⇒ [Ω,M ] = 0⇒ µΘ = µ⇒ ep = 0. (5.19)

Writing Ω = A+ 1
2Qϑ

−1Q∗ and invoking Lemma 5.1 (6) (the covariance of the steady state satisfies
the Lyapunov equation B +AM +MA∗ = 0) one easily derives

[Ω,M ] = 1
2

(
(MQ−Qϑ)ϑ−1Q∗ +Qϑ−1(MQ−Qϑ)∗

)
,

which proves the first implication in (5.19). The last identity, rewritten as [A − A∗,M ] = 0, further
implies that

0 = AM+MA∗+B = A∗M+MA+B = θAθM+MθA∗θ+θBθ = θ(AθMθ+θMθA∗+B)θ,

from which we deduce that θMθ is also solution of the Lyapunov equation. Lemma 5.1 (7) allows us
to conclude that θMθ = M which is clearly equivalent to µΘ = µ and proves the second implication
in (5.19). Finally, from (3.29) we deduce that if µΘ = µ, then

ep = −µ(σβ) = −1
2tr(M [Ω, β]) = 1

2tr(β[Ω,M ])

= 1
2tr(θβ[Ω,M ]θ) = 1

2tr(β[θΩθ, θMθ]) = −1
2tr(β[Ω, θMθ]) = −ep,

which gives the last implication.

(2) Let ϑ1, ϑ2 ∈ sp(ϑ) be such that ϑ1 6= ϑ2 and Cϑ1 ∩ Cϑ2 3 u 6= 0. Assume that ep = 0. By
Part (1) this implies MQ = Qϑ and [Ω,M ] = 0. By construction, there exist polynomials f1, f2 and
vectors v1, v2 ∈ Ξ such that

f1(Ω)Qπϑ1v1 = u = f2(Ω)Qπϑ2v2.

The first equality in the above formula yields

Mu = Mf1(Ω)Qπϑ1v1 = f1(Ω)MQπϑ1v1 = f1(Ω)Qϑπϑ1v1 = ϑ1f1(Ω)Qπϑ1v1 = ϑ1u.

Similarly, the second one yields Mu = ϑ2u. Since u 6= 0, this contradicts the assumption ϑ1 6= ϑ2.

5.4 Proof of Proposition 3.9

Let τ > 0, ν ∈ P1
loc(Ξ), set

ψt =
dντ−t

dx
,

and note that since ψτ + |∇ψτ | ∈ L2
loc(Ξ, dx), it follows from Lemma 5.4 that∫ τ

0

(
‖fψt‖22 + ‖f∇ψt‖22

)
dt <∞ (5.20)

for all f ∈ C∞0 (Ξ). We consider the process x = {x(t)}t∈[0,τ ] which is the solution of the SDE (3.2)
with initial law ν. By Theorem 2.1 in [PH], the estimate (5.20) implies that the process x = {xt}t∈[0,τ ]

with xt = xτ−t is a diffusion satisfying the SDE

dx(t) = b(x(t), t)dt+Qdw(t)
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with initial law νP τ, drift b(x, t) = −Ax+B∇ logψt(x), and a standard ∂ Ξ-valued Wiener process
w(t). Since θQ = ∓Q, the time-reversed process x̃ = Θτ (x) = {θx(t)}t∈[0,τ ] satisfies

dx̃(t) = b̃(x̃(t), t)dt+Qdw̃(t)

with initial law νP τΘ, drift b̃(x, t) = θb(θx, t), and standard Wiener process w̃(t) = ∓w(t). Using
the structural relations (3.9) and A+A∗ = −QQ∗β we derive

b̃(x, t) = Ax+QQ∗∇ log φt(x), φt = Θ

(
dµβ
dx

)−1

ψt,

and conclude that we can rewrite the original SDE (3.2) as

dx(t) = b̃(x(t), t)dt+Q(dw(t)−Q∗∇ log φt(x(t))dt). (5.21)

Set

η(t) =

∫ t

0
Q∗∇ log φs(x(s)) · dw(s),

and let Z(t) = E(η)(t) denote its stochastic exponential. We claim that

EτνP τΘ[Z(t)] = 1 (5.22)

for all t ∈ [0, τ ]. Delaying the proof of this claim and applying Girsanov theorem we conclude that

w(t)−
∫ t

0
Q∗∇ log φs(x(s))ds

is a standard Wiener process under the law EτνP τΘ[Z(τ) · ], so that Eq. (5.21) implies

dP̃τν
dPτνP τΘ

= Z(τ). (5.23)

Using Itô calculus, one derives from Eq. (3.2) that

Q∗∇ log φt(x(t)) · dw(t) = d log φt(x(t))− ((∂t + L) log φt)(x(t))dt

= d log φt(x(t))−
(

(∂t + L)φt
φt

(x(t))− 1
2 |Q∗∇ log φt(x(t))|2

)
dt,

from which we obtain

η(t)− 1
2 [η](t) = log φt(x(t))− log φ0(x(0))−

∫ t

0

(
(∂s + L)φs

φs

)
(x(s))ds.

The generalized detailed balance condition (3.20) further yields

(∂s + L)φs = −σβφs,

so that

η(t)− 1
2 [η](t) = log

dντ−t
dµβ

(θx(t))− log
dντ
dµβ

(θx(0)) +

∫ t

0
σβ(x(s))ds,
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from which we conclude that

Z(t) = exp
[
η(t)− 1

2 [η](t)
]

=

(
dντ
dµβ

(θx(0))

)−1 dντ−t
dµβ

(θx(t)) exp

(∫ t

0
σβ(x(s))ds

)
, (5.24)

and in particular that Z(τ) = exp(Ep(ν, τ)) ◦Θτ . From (5.23) we finally get

dP̃τν
dPτνP τΘ

= exp[Ep(ν, τ)] ◦Θτ .

It remains to prove the claim (5.22). Set ζ = νP τΘ and observe that it suffices to show that
Eζ [Z(t)] ≥ 1 for t ∈ [0, τ ] since Eζ [Z(t)] ≤ 1 is a well known property of the stochastic expo-
nential. The proof of this fact relies on a sequence of approximations.

The inequality Eζ [Z(t)] ≤ 1 gives that for s, s′, t ∈ [0, τ ] and bounded measurable f, g one has

|Eζ [Z(t)f(x(s))g(x(s′))]| ≤ ‖f‖∞‖g‖∞. (5.25)

Here and in the following we denote by ‖ · ‖p the norm of Lp(Ξ,dx). The duality between Lp(Ξ,dx)
and Lq(Ξ, dx) will be written 〈 · | · 〉. Next, we note that Eq. (5.24) implies

Eζ [Z(t)g(x(0))f(x(t))]

= Eζ

[(
dντ
dµβ

(θx(0))

)−1

g(x(0))
dντ−t
dµβ

(θx(t))f(x(t)) exp

(∫ t

0
σβ(x(s))ds

)]

=

∫
g(x)χ(x)Ex

[
χ(x(t))−1ψt(θx(t))f(x(t))eV (t)

]
dx = 〈g|χP tσχ−1ψ̃tf〉,

where we have set

V (t) =

∫ t

0
σβ(x(s))ds, χ =

dµβ
dx

, ψ̃t = Θψt,

and
(P tσf)(x) = Ex[eV (t)f(x(t))].

It follows from the estimate (5.25) that ‖χP tσχ−1ψ̃tf‖1 ≤ ‖f‖∞. For n,m > 0 we define

σn,m(x) =


−n if σβ(x) ≤ −n;

σβ(x) if − n ≤ σβ(x) ≤ m;

m if σβ(x) ≥ m;

σm(x) =

{
σβ(x) if σβ(x) ≤ m;

m if σβ(x) ≥ m;

and set

Vn,m(t) =

∫ t

0
σn,m(x(s))ds, Vm(t) =

∫ t

0
σm(x(s))ds.

Since

lim
n→∞

σn,m(x) = σm(x), σn,m(x) ≤ m
lim
m→∞

σm(x) = σβ(x), σm(x) ≤ σβ(x),
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for all x ∈ Ξ, we have

lim
n→∞

eVn,m(t) = eVm(t), eVn,m(t) ≤ emt,

lim
m→∞

eVm(t) = eV (t), eVm(t) ≤ eV (t),

Pζ-almost surely. Hence, the dominated convergence theorem yields

〈g|χP tσχ−1ψ̃tf〉 = Eζ
[
χ(x(0))ψ̃0(x(0))−1g(x(0))χ(x(t))−1ψ̃t(x(t))f(x(t))eV (t)

]
= lim

m→∞
lim
n→∞

Eντ−t
[
χ(x(0))ψ̃0(x(0))−1g(x(0))χ(x(t))−1ψ̃t(x(t))f(x(t))eVn,m(t)

]
= lim

m→∞
lim
n→∞

〈g|χP tσn,mχ−1ψ̃tf〉,

where, by the Feynman-Kac formula,

(P tσn,mf)(x) = Ex[eVn,m(t)f(x(t))] = (et(L+σn,m)f)(x)

defines a quasi-bounded semigroup on L2(Ξ,dx). In the following, we assume that f ∈ C∞0 (Ξ) is
non-negative. It follows from Eq. (5.13) that χ−1ψ̃tf ∈ C∞0 (Ξ) ⊂ Dom (L) = Dom (L+ σn,m) and
we can write

〈g|χP tσn,mχ−1ψ̃tf〉 = 〈g|ψ̃tf〉+

∫ t

0
〈g|χ(L+ σn,m)P sσn,mχ

−1ψ̃tf〉ds.

Denote by LT the adjoint of L on L2(Ξ,dx) which acts on C∞0 (Ξ) as LT = 1
2∇ · B∇ − ∇ · Ax.

Assuming g ∈ C∞0 , we get

〈g|χP tσn,mχ−1ψ̃tf〉 = ντ−tΘ(gf) +

∫ t

0
〈χ−1(LT + σn,m)χg|χP sσn,mχ−1ψ̃tf〉ds.

The generalized detailed balance condition (3.20) yields

χ−1LTχg = Θ(L+ σβ)Θg = (ΘLΘ− σβ)g,

and it follows that

〈χ−1(LT + σn,m)χg|χP sσn,mχ−1ψ̃tf〉 = 〈(ΘLΘ + σn,m − σβ)g|χP sσn,mχ−1ψ̃tf〉.

Since g is compactly supported, if n and m are sufficiently large we have (σn,m − σβ)g = 0 and so

〈g|χP tσn,mχ−1ψ̃tf〉 = ντ−tΘ(gf) +

∫ t

0
〈ΘLΘg|χP sσn,mχ−1ψ̃tf〉ds.

Taking the limits n→∞ and m→∞ we get that

〈g|χP tσχ−1ψ̃tf〉 = ντ−tΘ(fg) +

∫ t

0
〈ΘLΘg|χP sσχ−1ψ̃tf〉ds

holds for all f, g ∈ C∞0 (Ξ). For k > 0 set

gk(x) = (1 + e|x|
2/2k)−1,

57
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and let ρ ∈ C∞0 (R) be such that 0 ≤ ρ ≤ 1, ρ′ ≤ 0, ρ(x) = 1 for x ≤ 0 and ρ(x) = 0 for x ≥ 1.
Define gk,r ∈ C∞0 (Ξ) by gk,r(x) = gk(x)ρ(〈x〉 − r). One easily checks that

lim
r→∞

‖gk,r − gk‖∞ + ‖L(gk,r − gk)‖∞ = 0,

and noticing that gk and gk,r are Θ-invariant, it follows that

〈gk|χP tσχ−1ψ̃tf〉 = ντ−tΘ(gkf) +

∫ t

0
〈ΘLgk|χP sσχ−1ψ̃tf〉ds.

Using the fact that

(Lgk)(x) ≥ − 1

8k
tr(B),

and the monotone convergence theorem we conclude that

〈1|χP tσχ−1ψ̃tf〉 = lim
k→∞
〈gk|χP tσχ−1ψ̃tf〉

≥ lim
k→∞

ντ−tΘ(gkf)− 1

8k
tr(B)

∫ t

0
〈1|χP sσχ−1ψ̃tf〉ds = ντ−t(f).

Finally, letting f converge to 1 monotonically, we deduce

Eζ [Z(t)] = lim
f↗1

Eζ [Z(t)f(x(t))] = lim
f↗1
〈1|χP tσχ−1ψ̃tf〉 ≥ lim

f↗1
ντ−t(f) = ντ−t(1) = 1.

This completes the proof of the claim (5.22).

5.5 Proof of Theorem 3.13

(1) We start with some algebraic preliminaries. For ω ∈ R, set

R(ω) = ϑ−1Q∗(A+ iω)−1Q, U(ω) = I +R(ω),

and note that since the matrices A, Q and ϑ are real one has

CR(ω)C = R(−ω), CU(ω)C = U(−ω), (5.26)

where C denotes complex conjugation on C∂Ξ. Further note that

det(U(ω)) = det(I + (A+ iω)−1Qϑ−1Q∗) =
det(A∗ − iω)

det(A+ iω)
,

from which we deduce that
|det(U(ω))| = 1. (5.27)

From the relations(
I + ϑ−1Q∗(A− iω)−1Q

)−1
= I −

(
I + ϑ−1Q∗(A− iω)−1Q

)−1
ϑ−1Q∗(A− iω)−1Q

= I − ϑ−1Q∗
(
I + (A− iω)−1Qϑ−1Q∗

)−1
(A− iω)−1Q

= I − ϑ−1Q∗
(
A− iω +Qϑ−1Q∗

)−1
Q

= I + ϑ−1Q∗(A∗ + iω)−1Q

= I + ϑ−1Q∗θ(A∗ + iω)−1θQ

= I + ϑ−1Q∗(A+ iω)−1Q = I +R(ω)
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we also get
U(−ω)−1 = U(ω). (5.28)

Writing

E(ω) = Q∗(A∗ − iω)−1

(
(−A∗ − 1

2
Qϑ−1Q∗ + iω)β + β(−A− 1

2
Qϑ−1Q∗ − iω)

)
(A+ iω)−1Q

= Q∗
(
−(A∗ − iω)−1β − β(A+ iω)−1 − (A∗ − iω)−1Qϑ−2Q∗(A+ iω)−1

)
Q

= −R(ω)−R(ω)∗ −R(ω)∗R(ω) = I − (I +R(ω))∗(I +R(ω)) = I − U(ω)∗U(ω),

shows that E(ω) is indeed independent of the choice of β. The continuity of ω 7→ E(ω) follows from
Assumption (C) and Lemma 5.1 (1) which ensures that iR ∩ sp(A) = ∅.

(2) Invoking Relation (5.28) we infer

E(ω) = I − U(ω)∗U(ω) = U(ω)∗(U(−ω)∗U(−ω)− I)U(ω) = −U(ω)∗E(−ω)U(ω),

and

I − αE(ω) = U(ω)∗ (U(−ω)∗U(−ω) + αE(−ω))U(ω) = U(ω)∗(I − (1− α)E(−ω))U(ω).

Combining the last identity with Eq. (5.26) and (5.27) yields

det(I − αE(ω)) = det(I − (1− α)E(ω)). (5.29)

The simple estimate ‖(A+ iω)−1‖2 ≤ c(1 + ω2)−
1
2 implies

‖E(ω)‖1 ∈ L1(R, dω), lim
ω→±∞

‖E(ω)‖ = 0. (5.30)

Thus, the eigenvalues of E(ω), which are continuous functions of ω, tend to zero as ω → ±∞.
Since (5.29) implies that I − E(ω) is unimodular, 1 6∈ sp(E(ω)) for any ω ∈ R and we conclude
that E(ω) < 1 for all ω ∈ R. From (5.29) we further deduce that the elements of sp(E(ω)) \ {0}
can be paired as (ε, ε′) with 0 < ε < 1 and ε′ = −ε/(1 − ε) < 0. Moreover, since the function
]0, 1[3 ε 7→ −ε/(1− ε) is monotone decreasing, one has

ε−(ω) = min sp(E(ω)) = − ε+(ω)

1− ε+(ω)
, ε+(ω) = max sp(E(ω)).

Thus, the following alternative holds: either

ε− = min
ω∈R

ε−(ω) = 0 = max
ω∈R

ε+(ω) = ε+,

and hence E(ω) = 0 for all ω ∈ R, or

ε+ ∈]0, 1[, ε− = − ε+

1− ε+
∈]0,−∞[,

and hence
1

ε−
+

1

ε+
= 1.

This proves Part (2).
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(3) By Part (2), det(I − αE(ω)) 6= 0 for α ∈ Cc and hence the function

Cc 3 α 7→ log det(I − αE(ω))

is analytic. Moreover, an elementary analysis shows that for any compact subset K ⊂ Cc there is a
constant CK such that

sup
α∈K
‖E(ω)(I − αE(ω))−1‖1 ≤ CK‖E(ω)‖1.

For any α ∈ Cc one has

log det(I − αE(ω)) = −
∫ α

0
tr(E(ω)(I − γE(ω))−1)dγ,

and since the integration path from 0 to α lies in Cc there is a constant Cα <∞ such that

| log det(I − αE(ω))| ≤ Cα ‖E(ω)‖1.

By (5.30) and Fubini’s theorem

e(α) = −
∫ ∞
−∞

log det(I − αE(ω))
dω

4π
=

∫ α

0

(∫ ∞
−∞

tr(E(ω)(I − γE(ω))−1)
dω

4π

)
dγ.

It follows that Cc 3 α 7→ e(α) is analytic and that

e′(α) =

∫ ∞
−∞

tr(E(ω)(I − αE(ω))−1)
dω

4π
,

e′′(α) =

∫ ∞
−∞

tr(E(ω)(I − αE(ω))−1E(ω)(I − αE(ω))−1)
dω

4π
.

Since I −αE(ω) > 0 for α ∈ Ic, the last formula shows in particular that e′′(α) ≥ 0 for α ∈ Ic, and
so the function Ic 3 α 7→ e(α) is convex. Going back to the alternative of Part (2), we conclude that
either e(α) vanishes identically, or is strictly convex on Ic. The symmetry e(1 − α) = e(α) follows
from Eq. (5.29) and, since e(0) = e(1) = 0, convexity implies that e(α) ≤ 0 for α ∈ [0, 1] and
e(α) ≥ 0 for α ∈ Ic \ [0, 1]. By Plancherel’s theorem∫ ∞

−∞
(A+ iω)−1QQ∗(A∗ − iω)−1 dω

2π
=

∫ ∞
0

etAQQ∗etA
∗
dt = M,

and so

e′(0) = −e′(1) =

∫ ∞
−∞

tr(Σβ(A+ iω)−1QQ∗(A∗ − iω)−1)
dω

4π
= 1

2tr(ΣβM) = µ(σβ) = −ep.

Assume that ε+ > 0. By Lemma 5.1 (1), A is stable and hence E(ω) is an analytic function of ω
in a strip |Imω| < δ. By (5.30) there is a compact subset K of this strip such that ε+(ω) < ε+ for
all ω ∈ R \ K. By regular perturbation theory the eigenvalues of E(ω) are analytic in K, except
for possibly finitely many exceptional points where some of these eigenvalues cross. Thus, there is
a strip S = {ω | |Im (ω)| < δ′} such that all exceptional points of E(ω) in S ∩ K are real. Since
E(ω) is self-adjoint for ω ∈ R, its eigenvalues are analytic at these exceptional points (see, e.g., [Ka,
Theorem 1.10]). We conclude that the eigenvalues of E(ω) are analytic in S ∩K. It follows that the
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function R 3 ω 7→ ε+(ω) reaches its maximum ε+ on a finite subsetM ⊂ K ∩ R. To each m ∈ M
let us associate δm > 0, to be chosen later, in such a way that the intervals Om =]m− δm,m+ δm[ are
pairwise disjoint. Setting

em(α) = −
∫
Om

log det(I − αE(ω))
dω

4π
= −

∑
j

∫
Om

log(1− αεj(ω))
dω

4π
, (5.31)

where the sum runs over all repeated eigenvalues of E(ω), we can decompose

e(α) =
∑
m∈M

em(α) + ereg(α),

where the function α 7→ ereg(α) is analytic at α = 1
2 + κc. Since Ic 3 α 7→ e(α) is convex, to prove

that it has a continuous extension to α = 1
2 + κc and that its derivative diverges to +∞ as α ↑ 1

2 + κc,
it suffices to show that for all m ∈M the function em(α) remains bounded and its derivative diverges
to +∞ in this limit. The same argument links the behavior of e(α) and e′(α) as α ↓ 1

2 − κc to the
minima of ε−(ω), and we shall only consider the case α ↑ 1

2 + κc.

Let m ∈ M and consider an eigenvalue ε(ω) of E(ω) which takes the maximal value ε+ at ω = m.
There is an integer n ≥ 1 and a function f , analytic at m, such that f(m) > 0 and

ε(ω) = ε+ − (ω −m)2nf(ω).

Moreover, we can chose δm > 0 such that f is analytic in Om and

inf
ω∈Om

f(ω) > 0, sup
ω∈Om

f(ω) <∞, inf
ω∈Om

ε(ω) > 0.

Setting

η =

(
1

α
− ε+

) 1
2n

=

(
1
2 + κc − α
(1

2 + κc)α

) 1
2n

,

so that η ↓ 0⇔ α ↑ 1
2 + κc, we can write

1− αε(ω) = αη2n

(
1 +

(
ω −m

η

)2n

f(ω)

)
= α(ω −m)2n

((
η

ω −m

)2n

+ f(ω)

)

and since ∫
|ω−m|≤η

log

[
αη2n

(
1 +

(
ω −m

η

)2n

f(ω)

)]
dω = O(η log η),

∫
η≤|ω−m|≤δm

log

[
α(ω −m)2n

((
η

ω −m

)2n

+ f(ω)

)]
dω = O(1),

as η ↓ 0, it follows that ∫
Om

log(1− αε(ω))dω = O(1)
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as α ↑ 1
2 + κc. Since the contributions to the sum on the right-hand side of Eq. (5.31) arising from

eigenvalues ofE(ω) that do not reach the maximal value ε+ at m are analytic at α = 1
2 +κc, it follows

that em(α) remains bounded as α ↑ 1
2 + κc.

Let us now consider the derivative e′m(α). Setting η = 1
2 + κc − α, we can write∫

Om

ε(ω)

1− αε(ω)
dω =

∫
Om

(
η +

f(ω)

ε(ω)ε+
(ω −m)2n

)−1

dω.

Since

D = sup
ω∈Om

f(ω)

ε(ω)ε+
> 0,

we get ∫
Om

ε(ω)

1− αε(ω)
dω ≥ 2

∫ δm

0

dω

η + ω2nD
≥ Cη−1+

1
2n →∞,

as η ↓ 0. Since again the contributions of the eigenvalues of E(ω) which do not reach the maximal
value ε+ at m are analytic at α = 1

2 + κc, it follows that e′m(α)→∞ as α ↑ 1
2 + κc.

(4) For any bounded continuous function f : [ε−, ε+]→ C one has∣∣∣∣∫ ∞
−∞

tr(E(ω)f(E(ω)))
dω

4π

∣∣∣∣ ≤ ‖f‖∞ ∫ ∞
−∞
‖E(ω)‖1

dω

4π
.

Hence, by the Riesz-Markov representation theorem there is a regular signed Borel measure % on
[ε−, ε+] such that ∫ ∞

−∞
tr(E(ω)f(E(ω)))

dω

4π
=

∫
f(ε)%(dε),

and ∫
|%|(dε) ≤

∫ ∞
−∞
‖E(ω)‖1

dω

4π
<∞.

For α ∈ Cc the function

fα : [ε−, ε+] 3 ε 7→ −1

ε
log(1− αε)

is continuous and we can write

e(α) = −
∫ ∞
−∞

tr(E(ω)fα(E(ω)))
dω

4π
=

∫
fα(ε)d%(ε). (5.32)

We can now proceeds as the proof of Theorem 2.4 (2) in [JPS].

(5) We start with some simple consequences of Assumption (C). The reader is referred to Section 4
of [LR] for a short introduction to the necessary background material. Since Aα = A + αQϑ−1Q∗,
the pair (Aα, Q) is controllable for all α. The relation A∗α = −A1−α shows that the same is true for
the pair (A∗α, Q). Thus, one has⋂

n≥0

Ker (Q∗Anα) =
⋂
n≥0

Ker (Q∗A∗nα ) = {0} (5.33)
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for all α. This implies that if Q∗u = 0 and (Aα − z)u = 0 or (A∗α − z)u = 0, then u = 0, i.e., no
eigenvector of Aα or A∗α is contained in KerQ∗.

Assume that z ∈ sp(Aα) and let u 6= 0 be a corresponding eigenvector. Since

Aα +A∗α = 2(α− 1
2)Qϑ−1Q∗,

taking the real part of (u, (Aα − z)u) = 0 yields

(α− 1
2)|ϑ− 1

2Q∗u|2 = Re z|u|2.

Thus, controllability of (Aα, Q) implies sp(Aα) ⊂ C± for ±(α− 1
2) > 0.

For α ∈ R \ {1
2} and ω ∈ R, Schur’s complement formula yields

det(Kα − iω) =
det
(
I + α(1− α)Q∗(A∗α − iω)−1Qϑ−2Q∗(Aα + iω)−1Q

)
det ((Aα + iω)−1) det ((A∗α − iω)−1)

,

and using the relations

(Aα + iω)−1 = (A+ iω)−1(I + αQϑ−1Q∗(A+ iω)−1)−1,

(A∗α − iω)−1 = (I + α(A∗ − iω)−1Qϑ−1Q∗)−1(A∗ − iω)−1,

one easily derives
det(Kα − iω) = |det(A+ iω)|2 det(I − αE(ω)). (5.34)

Writing Eq. (3.41) as

Kα =

[
−A QQ∗

0 A∗

]
+

[
−αQϑ−1Q∗ 0

α(1− α)Qϑ−2Q∗ αQϑ−1Q∗

]
,

one derives that the identity (5.34), as the equality between two polynomials, extends to all α ∈ C.

By Part (2), we conclude that sp(Kα) ∩ iR = ∅ for α ∈ Cc. It follows from the regular perturbation
theory that the spectral projection Pα of Kα for the part of its spectrum in the open right half-plane is
an analytic function of α in the cut plane Cc (see, e.g., [Ka, Section II.1]). For α ∈ R, Kα is R-linear
on the real vector space Ξ ⊕ Ξ. Thus, its spectrum is symmetric w.r.t. the real axis. Observing that
JKα +K∗αJ = 0, where J is the unitary operator

J =

[
0 I
−I 0

]
,

we conclude that the spectrum of Kα is also symmetric w.r.t. the imaginary axis. It follows that for
α ∈ Ic

1
2

∑
λ∈sp(Kα)

|Reλ|mλ = tr(PαKα). (5.35)

Denoting the resolvent of Kα by Tα(z) = (z −Kα)−1, we have

Pα =

∮
Γ+

Tα(z)
dz

2πi
,
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where Γ+ ⊂ C+ is a Jordan contour enclosing sp(Kα) ∩ C+ which can be chosen so that it also
encloses sp(−A) = sp(K0) ∩ C+. Thus, we can rewrite (5.35) as

1
2

∑
λ∈sp(Kα)

|Reλ|mλ =

∮
Γ+

zτα(z)
dz

2πi
,

with τα(z) = tr(Tα(z)).

An elementary calculation yields the following resolvent formula

Tα(z) = T0(z) +

[
−αr(z)QD(z)(I +R~(z))ϑ−1Q∗r(z) r(z)Q(I −D(z))Q∗r~(z)

−λr~(z)Qϑ−1(I +R(z))D(z)ϑ−1Q∗r~(z) αr~(z)Qϑ−1(I +R(z))D(z)Q∗r~(z)

]
,

where
r(z) = (A+ z)−1, r~(z) = (A∗ − z)−1,

R(z) = ϑ−1Q∗r(z)Q, R~(z) = Q∗r~(z)Qϑ−1,

and
D(z) =

(
I + α(R(z) +R~(z) +R~(z)R(z))

)−1
.

It follows that
τα(z) = τ0(z) + tr

(
D(z)α∂z((I +R~(z))(I +R(z))

)
.

Thus, for small enough α ∈ C and z ∈ Γ+ we have

τα(z) = τ0(z) + ∂z log det
(
I + α(R(z) +R~(z) +R~(z)R(z))

)
.

Since

T0(z) =

[
r(z) −r(z)QQ∗r~(z)

0 −r~(z)

]
,

the fact that Γ+ encloses sp(−A) ⊂ C+ but no point of sp(A∗) ⊂ C− implies∮
Γ+

z τ0(z)
dz

2πi
=

∮
Γ+

z tr
(
(z +A)−1 + (z −A∗)−1

) dz

2πi
= −tr(A) =

1

2
tr(Qϑ−1Q∗),

and hence∮
Γ+

zτα(z)
dz

2πi
=

1

2
tr(Qϑ−1Q∗)−

∮
Γ+

log det(I + α(R(z) +R~(z) +R~(z)R(z)))
dz

2πi
.

Noting that
R(z) +R~(z) +R~(z)R(z) = −Q∗(A∗ − z)−1Σβ(A+ z)−1Q,

and deforming the contour Γ+ to the imaginary axis (which is allowed due to the decay of the above
expression as |z| → ∞) yields

tr(KαPα) = 1
2tr(Qϑ−1Q∗) +

∫ ∞
−∞

log det(I − αE(ω))
dω

2π
.

Since both sides of the last identity are analytic functions of α, this identity extends to all α ∈ Cc and
the proof of Theorem 3.13 is complete.
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5.6 The algebraic Riccati equation

This section is devoted to the study the algebraic Riccati equation

Rα(X) = XBX −XAα −A∗αX − Cα = 0

which plays a central role in the proof of Proposition 3.18. We summarize our results in the following
proposition.

Proposition 5.5 Under Assumption (C) the following hold:

(1) For α ∈ Ic the Riccati equation Rα(X) = 0 has a unique maximal solution which we denote by
Xα. It also has a unique minimal solution, which is given by −θX1−αθ. Moreover,

Dα = Aα −BXα

is stable and
Yα = Xα + θX1−αθ > 0.

(2) The function Ic 3 α 7→ Xα ∈ L(Ξ) is real analytic, concave, and satisfies{
Xα < 0 for α ∈]1

2 − κc, 0[;

Xα > 0 for α ∈]0, 1
2 + κc[.

(5.36)

Moreover,X0 = 0 and X1 = θM−1θ.

(3) If, for some α ∈ Ic,X ∈ L(Ξ) is a self-adjoint solution ofRα(X) = 0 and sp(Aα−BX) ⊂ C−,
then X is the unique maximal solution ofRα(X) = 0.

(4) If κc <∞, then the limits

X 1
2
−κc = lim

α↓ 1
2
−κc

Xα, X 1
2

+κc
= lim

α↑ 1
2

+κc
Xα,

exist and are non-singular. They are the maximal solutions of the corresponding limiting Riccati
equationsR 1

2
±κc(X 1

2
±κc) = 0.

(5) If X ∈ L(Ξ) is self-adjoint and satisfiesRα(X) ≤ 0 for some α ∈ Ic, then X ≤ Xα.

(6) For all α ∈ Ic the pair (Dα, Q) is controllable and sp(Dα) = sp(Kα) ∩ C−. Moreover, for any
β ∈ L(Ξ) satisfying Conditions (3.17) one has

e(α) = 1
2tr(Dα + 1

2Qϑ
−1Q∗) = −1

2tr(Q∗(Xα − αβ)Q). (5.37)

(7) For t > 0 set

Mα,t =

∫ t

0
esDαBesD

∗
αds > 0.

Then for all α ∈ Ic
lim
t→∞

M−1
α,t = inf

t>0
M−1
α,t = Yα ≥ 0,

and Ker (Yα) is the spectral subspace of Dα corresponding to its imaginary eigenvalues.
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(8) Set ∆α,t = M−1
α,t − Yα. For all α ∈ Ic, one has

etD
∗
αM−1

α,t e
tDα = θ∆1−α,tθ, (5.38)

and

lim
t→∞

1

t
log det(∆α,t) = 4e(α)− tr(Qϑ−1Q∗).

In particular, for α ∈ Ic, ∆α,t → 0 exponentially fast as t→∞.

(9) Let D̃α = θD1−αθ. Then

YαetD̃α = etD
∗
αYα

for all α ∈ Ic and t ∈ R.

(10) Let Wα = αX1 −Xα. Then{
Wα ≤ 0 for |α− 1

2 | ≤ 1
2 ;

Wα ≥ 0 for 1
2 ≤ |α− 1

2 | ≤ κc;

and Yα +Wα > 0 for all α ∈ Ic.

(11) Set ϑ = 1
2(ϑmax + ϑmin) and ∆ = ϑmax − ϑmin. Then the following lower bound holds

κc ≥ κ0 =
ϑ

∆
>

1

2
.

Moreover, the maximal solution satisfies

Xα ≥
{
αϑ−1

min for α ∈ [1
2 − κ0, 0];

αϑ−1
max for α ∈ [0, 1

2 + κ0].
(5.39)

(12) Assume that κc = κ0 and that the steady state covariance satisfies the strict inequalities (re-
call (3.13))

ϑmin < M < ϑmax.

Then Condition (R) is satisfied.

Remark 5.6 In the equilibrium case ϑmin = ϑmax = ϑ0 it follows from Part (11) that κc =∞. One
easily checks that in this case

Xα = αϑ−1
0 I, θX1−αθ = (1− α)ϑ−1

0 I, Yα = ϑ−1
0 I, Wα = 0, Dα = A.

Proof. For the reader convenience, we have collected the well known results on algebraic Riccati
equations needed for the proof in the Appendix.

We denote by H the complex Hilbert space CΞ⊕ CΞ on which the Hamiltonian matrix Kα acts and
introduce the unitary operators

Θ =

[
0 θ
θ 0

]
,
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acting on the same Hilbert space. We have already observed in the proof of Theorem 3.13 that for
α ∈ R the spectrum of Kα is symmetric w.r.t. the real axis and the imaginary axis. The time-reversal
covariance relations

θAαθ = A∗α = −A1−α, θBθ = B∗ = B, θCαθ = C∗α = Cα = C1−α, (5.40)

which follow easily from the definitions of the operatorsAα,B,Cα (recall Eq. (3.1), (3.12) and (3.42)),
further yield ΘKα −K∗1−αΘ = 0 which implies

sp(Kα) = sp(K1−α). (5.41)

(1) By Theorem 3.13 (5), sp(Kα) ∩ iR = ∅ for α ∈ Ic and the existence and uniqueness of the
minimal/maximal solution ofRα(X) = 0 follows from Corollary A.3. The relation between minimal
and maximal solutions follows from the identity

Rα(θXθ) = θR1−α(−X)θ,

which is a direct consequence of Eq. (5.40). The maximal solution Xα is related to the spectral
subspaceH−(Kα) of Kα for the part of its spectrum in the open left half-plane C− by

H−(Kα) = Ran

[
I
Xα

]
, (5.42)

see Section A.3. In particular sp(Dα) = sp(K) ∩ C−.

The matrix Yα = Xα − θX1−αθ is called the gap of the equation Rα(X) = 0. It is obviously non-
negative. It has the remarkable property that for any solution X , Ker (Yα) is the spectral subspace of
Aα − BX for the part of its spectrum in iR (Theorem A.7 (1)). Since sp(Dα) ⊂ C−, we must have
Yα > 0.

(2) One deduces from Eq. (5.42) that the spectral projection of Kα for the part of its spectrum in C+

is given by

Pα =

[
I
Xα

]
Y −1
α

[
θX1−αθ I

]
=

[
I − Y −1

α Xα Y −1
α

Xα(I − Y −1
α Xα) XαY

−1
α

]
.

As already noticed in the proof of Theorem 3.13, Pα is an analytic function of α in the cut plane
Cc ⊃ Ic. It follows that Y −1

α and XαY
−1
α are real analytic on Ic. The same holds for Yα and

Xα = XαY
−1
α Yα.

To prove concavity we shall invoke the implicit function theorem to compute the first and second
derivatives X ′α and X ′′α of the maximal solution. To this end, we must show that the derivative DRα
of the map X 7→ Rα(X) at X = Xα is injective. A simple calculation shows that

DRα : Z 7→ −ZDα −D∗αZ.

By (1) one has sp(Dα) ⊂ C− for α ∈ Ic. It follows that for any L ∈ L(Ξ) the Lyapunov equation
DRαZ = L has the unique solution

Z =

∫ ∞
0

etD
∗
αL etDαdt
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(see, e.g., Section 5.3 in [LR]). This ensures the applicability of the implicit function theorem and a
straightforward calculation yields the following expressions valid for all α ∈ Ic:

X ′α =

∫ ∞
0

etD
∗
α (XαBβ + βBXα + (1− 2α)βBβ) etDαdt, (5.43)

X ′′α = −2

∫ ∞
0

etD
∗
α(X ′α − β)B(X ′α − β)etDαdt. (5.44)

From (5.44) we deduce X ′′α ≤ 0 which yields concavity.

We shall now prove the inequalites (5.36), using again the Lyapunov equation. Indeed, one can rewrite
the Riccati equationRα(Xα) = 0 in the following two distinct forms:

XαAα +A∗αXα = XαBXα − Cα, (5.45)

XαDα +D∗αXα = −XαBXα − Cα. (5.46)

Recall that Condition (C) implies sp(Aα) ⊂ C− for α < 0 (as established at the beginning of the
proof of Theorem 3.13 (5)). It follows from Eq. (5.45) that

Xα = −
∫ ∞

0
etA
∗
α(XαBXα − Cα)etAαdt ≤ α(1− α)

∫ ∞
0

etA
∗
αQϑ−2Q∗etAαdt. (5.47)

Since (A∗α, Q) is controllable, we can conclude that Xα < 0 for α ∈]1
2 − κc, 0[.

Similarly, for α > 1, sp(Aα) ⊂ C+ and Eq. (5.45) leads to

Xα =

∫ ∞
0

e−tA
∗
α(XαBXα − Cα)e−tAαdt ≥ α(α− 1)

∫ ∞
0

e−tA
∗
αQϑ−2Q∗e−tAαdt. (5.48)

Controllability again yields Xα > 0 for α ∈]1, 1
2 + κc[.

Finally, for α ∈]0, 1[ we use Eq. (5.46) and the fact that Dα is stable (established in Part (1)) to obtain

Xα =

∫ ∞
0

etD
∗
α(XαBXα + Cα)etDαdt ≥ α(1− α)

∫ ∞
0

etD
∗
αQϑ−2Q∗etDαdt.

It follows that Xα ≥ 0 for α ∈]0, 1[. To show that Xα > 0, let u ∈ KerXα. From (5.45) we infer
(u,Cαu) = 0 and hence u ∈ KerCα = KerQ∗. Using (5.45) again, we deduce Aαu ∈ KerXα.
Thus, we conclude that u ∈ KerQ∗Anα for all n ≥ 0 and (5.33) yields that u = 0.

From X0 = limα↑0Xα ≤ 0 and X0 = limα↓0Xα ≥ 0, we deduce X0 = 0.

To prove the last assertion, we deduce from (5.45) and identities A1 = −A∗ = −θAθ, C1 = 0, that
M̂ = θX−1

1 θ satisfies the Lyapunov equation AM̂ + M̂A∗ +B = 0. Since A is stable, this equation
has a unique solution and Lemma 5.1 (5) yields M̂ = M .

(3) is a well known property of the Riccati equation (Theorem A.6 (3)).

(4) Since Xα is concave and vanishes at α = 0, the function α 7→ Xα − αX ′0 is monotone decreas-
ing/increasing for α negative/positive. Thus, to prove the existence of the limits X 1

2
±κc it suffices to

show that the set {Xα |α ∈ Ic} is bounded in L(Ξ). For positive α, this follows directly from Part (2)
which implies 0 ≤ Xα ≤ αX ′0. For negative α, taking the trace on both sides of the first equality in
Eq. (5.47) and using the fact that Cα ≤ 0, we obtain

tr(Xα) = −
∫ ∞

0
tr((XαBXα − Cα)etA

∗
αetAα)dt ≥ −tr(XαBXα − Cα)

∫ ∞
0
‖etAα‖2dt.
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Thus, an upper bound on tr(XαBXα − Cα) will conclude the proof. Taking the trace of Riccati’s
equation yields

tr(XαBXα − Cα) = tr(Xα(Aα +A∗α)) = (2α− 1)tr(XαQϑ
−1Q∗) ≤ 2α− 1

ϑmin
tr(X̂α),

where X̂α = Q∗XαQ. Combining the last inequality with the estimate

tr(X̂α)2 ≤ |∂I|tr(X̂2
α) = |∂I|tr(Q∗XαQQ

∗XαQ) ≤ |∂I| ‖Q‖2tr(XαBXα)

yields a quadratic inequality for tr(X̂α) which gives

tr(X̂α) ≥ −(1− 2α)|∂I| ‖Q‖2ϑ−1
min.

Summing up, we have obtained the required lower bound

tr(Xα) ≥ −(1− 2α)2|∂I| ‖Q‖2ϑ−2
min

∫ ∞
0
‖etAα‖2dt.

By continuity, we clearly have R 1
2
±κc(X 1

2
±κc) = 0. Continuity also implies that sp(D 1

2
±κc) ⊂ C−

and the maximality of X 1
2
±κc follows from Part (3).

Since C 1
2
±κc ≤ 0, the fact that X 1

2
±κc is regular follows from the same argument we have used to

prove the regularity of Xα for α ∈]0, 1[.

(5) is another well known property of the Riccati equation (Theorem A.7 (3)).

(6) SinceDα = A+Q(αϑ−1Q∗−Q∗Xα), the controllability of (Dα, Q) follows from that of (A,Q).
The relation between sp(Kα) and sp(Dα) is a direct consequence of the relation

−Kα

[
I
Xα

]
=

[
I
Xα

]
Dα,

which follows from Eq. (5.42). Formula (5.37) is obtained by combining this information with
Eq. (3.43). The last assertion is deduced from controllability of (Dα, Q) in the same way as in the
proof of Lemma 5.1 (1).

(7) To prove the existence of the limit, we note that (6) implies that for any α ∈ Ic and t0 > 0 the
function [t0,∞[3 t 7→ M−1

α,t takes strictly positive values and is bounded and decreasing. Thus, we
have

Zα = lim
t→∞

M−1
α,t = inf

t>0
M−1
α,t ≥ 0.

Since M−1
α,t is easily seen to satisfy the differential Riccati equation

d

dt
M−1
α,t = −

(
M−1
α,tBM

−1
α,t +M−1

α,tDα +D∗αM
−1
α,t

)
, (5.49)

it follows that for any t > 0 and τ ≥ 0

M−1
α,t −M−1

α,t+τ =

∫ τ

0

(
M−1
α,t+sBM

−1
α,t+s +M−1

α,t+sDα +D∗αM
−1
α,t+s

)
ds.

Letting t→∞, we conclude that Zα satisfies

ZαBZα + ZαDα +D∗αZα = 0. (5.50)
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Expressing the last equation in terms of Vα = θ(Zα−Xα)θ and using (5.40), we deriveR1−α(Vα) =
0. By a well known property of Lyapunov equation (see, e.g., Theorem 4.4.2 in [LR]), one has
sp(Dα + BM−1

α,t ) ⊂ C+ for all t > 0, which implies sp(Dα + BZα) ⊂ C+. Since Dα + BZα =

−θ(A1−α − BVα)θ, we have sp(A1−α − BVα) ⊂ C−. From Part (3) we conclude that Vα is the
maximal solution to the Riccati equationR1−α(X) = 0, i.e., that Vα = X1−α. Thus,

Zα = Xα + θX1−αθ = Yα,

is the gap of the Riccati equation. It is a well known property of this gap that Ker (Yα) is the spectral
subspace of Dα associated to its imaginary eigenvalues (Theorem A.7 (1)).

(8) Combining (5.49) and (5.50), one shows that ∆α,t = M−1
α,t − Yα satisfies the differential Riccati

equation
d

dt
∆α,t = −∆α,tB∆α,t + ∆α,tD̃α + D̃∗α∆α,t, (5.51)

where D̃α = −(Aα +BθX1−αθ) = θD1−αθ. Since

∆−1
α,t = (I −Mα,tYα)−1Mα,t,

we further have limt→0 ∆−1
α,t = 0. We deduce that Sα,t = ∆−1

α,t satisfies the linear Cauchy problem

d

dt
Sα,t = B − D̃αSα,t − Sα,tD̃∗α, Sα,0 = 0,

whose solution is easily seen to be given by

Sα,t =

∫ t

0
e−sD̃αBe−sD̃

∗
αds = θ

(∫ t

0
e−sD1−αBe−sD

∗
1−αds

)
θ

= θe−tD1−α

(∫ t

0
esD1−αBesD

∗
1−αds

)
e−tD

∗
1−αθ

= θe−tD1−αM1−α,te
−tD∗1−αθ.

We thus conclude that
∆α,t = θetD

∗
1−αM−1

1−α,te
tD1−αθ,

which immediately yields (5.38).

Since ∆α,t is strictly positive for t > 0, we infer from Eq. (5.51) that

d

dt
log det(∆α,t) = tr(∆̇α,t∆

−1
α,t) = −tr(∆α,tB − D̃α − D̃∗α)

= −tr(Q∗∆α,tQ) + 2tr(D1−α).

By Part (3) and Theorem 3.13 (5), we have

tr(D1−α) = −1

2

∑
λ∈sp(K1−α)

|Reλ|mλ = 2e(1− α)− 1

2
tr(Qϑ−1Q∗) = 2e(α)− 1

2
tr(Qϑ−1Q∗).

Since ∆α,t → 0 for t→∞, given ε > 0 there exists t0 > 0 such that

4e(α)− tr(Qϑ−1Q∗)− ε ≤ d

dt
log det(∆α,t) ≤ 4e(α)− tr(Qϑ−1Q∗)
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for all t > t0. It is straightforward to derive from these estimates that

lim
t→∞

1

t
log det(∆α,t) = 4e(α)− tr(Qϑ−1Q∗).

(9) Using (5.40), one rewrites the Riccati equation (5.50) as

D∗αYα = −Yα(Dα +BYα) = −Yα(Aα +B(Yα −Xα))

= −Yα(Aα +BθX1−αθ) = −Yαθ(−A1−α +BX1−α)θ

= YαθD1−αθ = YαD̃α.

Thus, the result immediately follows from the fact that

d

dt
etD

∗
αYαe−tD̃α = etD

∗
α(D∗αYα − YαD̃α)e−tD̃α = 0.

(10) For any u ∈ Ξ we infer from Parts (2) and (4) that the function α 7→ (u,Wαu) is convex, real
analytic on the interval Ic, and continuous on its closure. Since it vanishes for |α − 1

2 | = 1
2 one

has either (u,Wαu) = 0 for all α ∈ Ic or (u,Wαu) < 0 for |α − 1
2 | < 1

2 and (u,Wαu) > 0 for
1
2 < |α− 1

2 | ≤ κc. This proves the first assertion.

Since Yα+Wα = αX1+θX1−αθ, we deduce from Part (2) that Yα+Wα > 0 for |α−1
2 | ≤ 1

2 . Consider
now 1

2 < |α− 1
2 | ≤ κc. If u ∈ Ξ is such that (u,Wαu) > 0, then Part (7) yields (u, (Yα+Wα)u) > 0.

Thus, it remains to consider the case of u ∈ Ξ such that (u,Wαu) = 0 for all α ∈ Ic. Using (5.44)
we get that

(u,W ′′αu) = −(u,X ′′αu) = 2

∫ ∞
0
|Q∗(X ′α − β)etDαu|2dt = 0

for α ∈ Ic. Since QQ∗(X ′α − β) = −D′α, this further implies D′αetDαu = 0 for all (α, t) ∈ Ic × R.
Duhamel’s formula

d

dα
etDαu =

∫ t

0
e(t−s)DαD′αesDαuds = 0

allows us to conclude that etDαu = etD0u = etAu, a relation which extends by continuity to all
(α, t) ∈ Ic × R. Thus,

lim
t→∞

etDαu = lim
t→∞

etAu = 0,

which, using (7) again, further implies that u 6∈ Ker (Yα) and hence (u, (Yα+Wα)u) = (u, Yαu) > 0.

(11) For λ ∈ R, one has

Rα(λI) = Qϑ−1 (λϑ− (α− 1)) (λϑ− α)ϑ−1Q∗,

so that Rα(λI) ≤ 0 iff α − 1 ≤ λϑ ≤ α. It follows that P = {(α, λ) ∈ R2 |Rα(λI) ≤ 0} is the
closed parallelogram limited by the 4 lines (see Figure 11)

λ =
α

ϑmax
, λ =

α

ϑmin
, λ =

α− 1

ϑmax
, λ =

α− 1

ϑmin
.

The projection of P on the α-axis is the closed interval [1
2 − κ0,

1
2 + κ0]. Thus, Theorem A.5 implies

that the Riccati equation has a self-adjoint solution for all α ∈ [1
2 − κ0,

1
2 + κ0]. By Theorem A.6 (2)

71
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α

λ

1

1
2 − κ0

1
2 + κ0

Figure 11: The parallelogram P .

it also has a maximal solution Xα which, by Theorem A.7 (3), satisfies the lower bound (5.39). From
this lower bound we further deduce that for α ∈ [0, 1

2 + κ0[, the gap satisfies

Yα = Xα + θX1−αθ ≥
α

ϑmax
+

1− α
ϑmin

=
∆

ϑmaxϑmin

(
1
2 + κ0 − α

)
> 0.

Since KerY 1
2

+κc
6= {0} by Parts (6) and (7), we conclude that κc ≥ κ0.

(12) The concavity of Rα = Xα + (1 − α)X1 and the fact that R0 = R1 = X1 > 0 imply that for
|α − 1

2 | ≤ 1
2 one has Rα ≥ X1 > 0. For 1

2 < α − 1
2 ≤ κ0, Part (11) gives Xα ≥ αϑ−1

max. Since
M > ϑmin, Part (2) yields X1 = θM−1θ < ϑ−1

min and hence

Rα >
α

ϑmax
+

1− α
ϑmin

=
κ0 − (α− 1

2)

∆(κ2
0 − 1

4)
≥ 0.

The case −κ0 ≤ α− 1
2 < −1

2 is similar. 2

5.7 Proof of Proposition 3.18

5.7.1 A Girsanov transformation

By Proposition 5.5, for α ∈ Ic we have A = Dα +QQ∗(Xα − αβ), and we can rewrite the equation
of motion (3.2) as

dx(t) = Dαx(t)dt+Qdwα(t), (5.52)

where

wα(t) = w(t)−
∫ t

0
Q∗(αβ −Xα)x(s)ds.

Let Zα(t) be the stochastic exponential of the local martingale

ηα(t) =

∫ t

0
Q∗(αβ −Xα)x(s) · dw(s).
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Combining the Riccati equation with the relations βQQ∗ = QQ∗β = Qϑ−1Q and βQQ∗β =
Qϑ−2Q∗, we derive

1

2
|Q∗(αβ −Xα)x|2 = −ασβ(x)− (αβ −Xα)x ·Ax,

and we can write the quadratic variation of ηα as

1

2
[ηα](t) = −α

∫ t

0
σβ(x(s))ds−

∫ t

0
(αβ −Xα)x(s) ·Ax(s)ds.

Hence

ηα(t)− 1

2
[ηα](t) =

∫ t

0
(αβ −Xα)x(s) · dx(s) + α

∫ t

0
σβ(x(s))ds.

The Itô calculus and Proposition 3.5 (3) give

ηα(t)− 1

2
[ηα](t) = −

(
λαt+ αSt + χα(x(t))− χα(x(0))

)
,

with λα = 1
2tr(QQ∗(αβ −Xα)) and

χα(x) =
1

2
x ·Xαx.

Finally, we note that Proposition 5.5 (6) yields

λα = −1

2
tr(Q∗(Xα − αβ)Q) = e(α).

Lemma 5.7 The process

Zα(t) = E(ηα)(t) = e−[e(α)t+αSt+χα(x(t))−χα(x(0))] (5.53)

is a Px-martingale for all x ∈ Ξ.

Proof. We wish to apply the Girsanov theorem; see Section 3.5 in [KS]. However, it is not clear that
the Novikov condition is satisfied on a given finite interval. To overcome this difficulty, we follow the
argument used in the proof of Corollary 5.14 in [KS, Chapter 3].

Fix τ > 0. By Lemma 5.3, {x(t) − etAx}t∈[0,τ ] is a centered Gaussian process under the law Px.
Since ∫ s′

s
|Q∗(αβ −Xα)x(t)|2dt ≤ C|s− s′|

(
|x|2 + sup

t∈[0,τ ]
|x(t)− etAx|2

)
for some constant C, Fernique’s theorem implies that there exists δ > 0 such that

Ex

[
exp

(
1

2

∫ s′

s
|Q∗(αβ −Xα)x(t)|2dt

)]
<∞,

provided 0 ≤ s ≤ s′ ≤ τ and s′ − s < δ. Novikov criterion implies that under the same conditions,

Ex
[E(ηα)(s′)

E(ηα)(s)

∣∣∣∣Ws

]
= Ex

[
exp

(∫ s′

s
Q∗(αβ −Xα)x(t) · dw(t)− 1

2

∫ s′

s
|Q∗(αβ −Xα)x(t)|2dt

)∣∣∣∣Ws

]
= 1.
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For 0 ≤ s ≤ s′ ≤ s′′ ≤ τ , s′ − s < δ and s′′ − s′ < δ we deduce

Ex
[E(ηα)(s′′)

E(ηα)(s)

∣∣∣∣Ws

]
= Ex

[E(ηα)(s′′)

E(ηα)(s′)

E(ηα)(s′)

E(ηα)(s)

∣∣∣∣Ws

]
= Ex

[
Ex
[E(ηα)(s′′)

E(ηα)(s′)

∣∣∣∣Ws′

] E(ηα)(s′)

E(ηα)(s)

∣∣∣∣Ws

]
= Ex

[E(ηα)(s′)

E(ηα)(s)

∣∣∣∣Ws

]
= 1,

and an induction argument gives

Ex [E(ηα)(τ)] = Ex
[E(ηα)(τ)

E(ηα)(0)

∣∣∣∣W0

]
= 1.

Since τ > 0 is arbitrary, the proof is complete. 2

The previous lemma allows us to apply Girsanov theorem and to conclude that {wα(t)}t∈[0,τ ] is a
standard Wiener process under the law Qτ

α,ν [ · ] = Eν [Zα(τ) · ]. This change of measure will be our
main tool in the next section.

5.7.2 Completion of the proof

From Eq. (3.35) and the results of the previous section we deduce that for α ∈ Ic,

et(α) =
1

t
logEµ

[(
dµ

dx
(θx(t))

)α(dµ

dx
(x(0))

)−α
e−αS

t

]

=
1

t
logEµ

[
Zα(t)

(
dµ

dx
(θx(t))

)α(dµ

dx
(x(0))

)−α
e−χα(x(0))+χα(x(t))+e(α)t

]

= e(α) +
1

t
logQt

α,µ

[(
dµ

dx
(θx(t))

)α(dµ

dx
(x(0))

)−α
e−χα(x(0))+χα(x(t))

]
,

where χα(x) = 1
2x ·Xαx. Denoting by Qtα the Markov semigroup associated with Eq. (5.52), we can

write
et(α) = e(α) +

1

t
log〈ηα|Qtαξα〉,

where

ηα(x) =

(
dµ

dx
(x)

)1−α
e−χα(x), ξα(x) =

(
dµ

dx
(θx)

)α
eχα(x). (5.54)

Thus, to prove Eq. (3.45) we must show that the “prefactor” 〈ηα|Qtαξα〉 satisfies

lim
t→∞

1

t
log〈ηα|Qtαξα〉 = 0.

To this end, let us note that the Markov semigroup for (3.7) can be written as

(P tf)(x) =

∫
X
f(etAx+M

1
2
t y)n(dy), (5.55)
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where n denotes the centered Gaussian measure on X with covariance I . For α ∈ Ic, this yields the
representation

(Qtαf)(x) = det(2πMα,t)
− 1

2

∫
e−

1
2
|M
− 1

2
α,t (y−etDαx)|2f(y)dy. (5.56)

Using Eq. (5.54), a simple calculation leads to

〈ηα|Qtαξα〉 = det(2πMα,t)
− 1

2 det(2πM)−
1
2

∫
e−

1
2
z·Nα,tzdz = det(M−1

α,t )
1
2 det(M−1)

1
2 det(Nα,t)

− 1
2 ,

provided

Nα,t =

[
θ(Y1−α +W1−α + ∆1−α,t)θ −etD

∗
αM−1

α,t

−M−1
α,t e

tDα Yα +Wα + ∆α,t

]
is positive definite. By Schur’s complement formula, we have

det(Nα,t) = det(Yα +Wα + ∆α,t) det(Y1−α +W1−α + ∆1−α,t − Tα,t),

where
Tα,t = θ(etD

∗
αM

− 1
2

α,t )M
− 1

2
α,t (Yα +Wα + ∆α,t)

−1M
− 1

2
α,t (M

− 1
2

α,t etDα)θ.

It follows that

〈ηα|Qtαξα〉 = (det(M) det(Mα,t) det(Yα +Wα + ∆α,t) det(Y1−α +W1−α + ∆1−α,t − Tα,t))−
1
2 .

For any α ∈ Ic, Proposition 5.5 implies that Yα +Wα > 0 while, as t→∞, M
− 1

2
α,t ↘ Y

1
2
α , ∆α,t ↘ 0

and ‖M−
1
2

α,t etDα‖ ↘ 0 monotonically (and exponentially fast for α ∈ Ic ). It follows that

f(α) = lim
t→∞
〈ηα|Qtαξα〉 =

(
det(Yα)

det(M) det(Yα +Wα) det(Y1−α +W1−α)

) 1
2

. (5.57)

For α ∈ Ic, Yα > 0, and we conclude that

lim
t→∞

1

t
log〈ηα|Qtαξα〉 = 0. (5.58)

Consider now the limiting cases α = 1
2 ± κc. We shall denote by C and r generic positive constants

which may vary from one expression to the other. Since Yα is singular, one has log det(M−1
α,t ) →

−∞. However, the obvious estimate ‖etDα‖ ≤ C(1 + t)r implies Mα,t ≤ C(1 + t)r and hence
M−1
α,t ≥ C(1 + t)−r from which we conclude that

lim
t→∞

1

t
log det(M−1

α,t ) = 0. (5.59)

It follows that (5.58) also holds in the limiting cases α = 1
2 ± κc.

By Hölder’s inequality R 3 α 7→ et(α) is a convex function. The above analysis shows that it is a
proper convex function differentiable on Ic for any t > 0, and such that limt→∞ et(α) = e(α) for
α ∈ Ic. Since limα↑ 1

2
+κc

e′(α) = +∞ by Theorem 3.13 (3), the fact that

lim
t→∞

et(α) = +∞

for α ∈ R \ Ic is a consequence of the following lemma and the symmetry (3.39).
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Lemma 5.8 Let (ft)t>0 be a family of proper convex functions ft : R→]−∞,∞] with the following
properties:

(1) For each t > 0, ft is differentiable on ]a, b[.

(2) The limit f(α) = limt→∞ ft(α) exists for α ∈]a, b[ and is differentiable on ]a, b[.

(3) limα↑b f
′(α) = +∞.

Then, for all α > b, one has limt→∞ ft(α) = +∞.

Proof. By convexity, for any γ ∈]a, b[ and any α ∈ R one has

ft(α) ≥ ft(γ) + (α− γ)f ′t(γ),

and Properties (1) and (2) further imply

lim
t→∞

f ′t(γ) = f ′(γ).

It follows that
lim inf
t→∞

ft(α) ≥ f(γ) + (α− γ)f ′(γ). (5.60)

As a limit of a family of convex functions, f is convex on ]a, b[ and, hence, infγ∈]a,b[ f(γ) > −∞.
Thus, Property (3) and Inequality (5.60) yield

lim inf
t→∞

ft(α) ≥ lim inf
γ↑b

f(γ) + (α− γ)f ′(γ) = +∞ for all α > b.

2

5.8 Proof of Proposition 3.22

(1) The required properties of the function gt(α) are consequences of more general results concern-
ing integrals of exponentials of quadratic forms with respect to a Gaussian measure on an infinite-
dimensional space. However, we shall derive here more detailed information about gt(α) which will
be used later (see the proof of Theorem 3.28).

We shall invoke Lemmata 5.2 and 5.3, and use the notations introduced in their proofs. By Proposi-
tion 3.5, we can write

gt(α) =
1

t
log

∫
e−

α
2

(x|Ltx)γt(dx),

where γt is the Gaussian measure on Ht with mean Tta and covariance Kt = DtD∗t . The convexity of
gt is a consequence of Hölder’s inequality. The operator Lt, given by

(Ltx)(s) = −Σβx(s) + δ(s− t)(F +X1 − β)x(t)− δ(s)(G+ θX1θ − β)x(0), (5.61)

maps H+ to H− in such a way that (x|Lty) = (Ltx|y) for all x, y ∈ RanDt. It follows that the
operator St = D∗tLtDt acting in the space Ξ⊕ ∂H is self-adjoint, and a simple calculation shows that
St−D∗t [β,Ω]Dt is finite rank, so that St is trace class. Using explicit formulas for Gaussian measures,
we derive

gt(α) = − 1

2t
log det(I + αSt)−

α

2t
(Tta|LtTta) +

α2

2t
(D∗tLtTta|(I + αSt)−1D∗tLtTta) (5.62)
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if I +αSt > 0, and gt(α) = +∞ otherwise. Set s−(t) = min sp(St) ≤ 0, s+(t) = max sp(St) ≥ 0,
and

α−(t) =

{
−s+(t)−1 if s+(t) > 0;

−∞ if s+(t) = 0;
α+(t) =

{
−s−(t)−1 if s−(t) < 0;

+∞ if s−(t) = 0;

so that I + αSt > 0 iff α ∈ It =]α−(t), α+(t)[. Analyticity of gt on It follows from the Fredholm
theory (e.g., see [Si1]), and a simple calculation yields

g′t(α) =− 1

2t
tr((I + αSt)−1St)−

1

2t
(Tta|LtTta)

+
α

2t
(D∗tLtTta|

(
(I + αSt)−1 + (I + αSt)−2

)
D∗tLtTta).

(5.63)

Suppose α+(t) < ∞ and denote by P− the spectral projection of St associated to its minimal eigen-
value s−(t) < 0. By the previous formula, for any α ∈ [0, α+(t)[ one has

g′t(α) ≥ 1

2t

tr(P−)

α+(t)− α −
1

2t
tr((I + αSt)−1St(I − P−))− 1

2t
(Tta|LtTta),

which implies that g′t(α)→ +∞ as α→ α+(t). The analysis of the lower bound α−(t) is similar.

(2) Is a simple consequence of the continuity and concavity of the maps

Ic 3 α 7→ Fα = θX1−αθ+α(X1 +F ), Ic 3 α 7→ Gα = N̂ +Pν(Xα−α(G+θX1θ))|Ran (N),

and the fact that F0 = θX1θ > 0 and G0 = N̂ + PνX1|RanN > 0.

(3) If X1 +F > 0 and N̂ +Pν(X1−G− θX1θ)|RanN > 0, then we also have F1 > 0 and G1 > 0
and the result is again a consequence of the concavity of Fα and Gα.

(4) Proceeding as in the proof of Proposition 3.18, we start from the expression

gt(α) = e(α) +
1

t
log〈ηα|Qtαξα〉,

where
ηα(dx) = e−

1
2
x·(Xα−α(G+θX1θ))xν(dx), ξα(x) = e−

1
2
x·(−Xα+α(F+X1))x.

Setting

Cα,t =

[
Gα + Pνθ∆1−α,tθ|RanN −PνetD

∗
αM−1

α,t

−M−1
α,t e

tDα |RanN Fα + ∆α,t

]
,

cα,t = 1
2a·(Xα−α(G+θX1θ)+θ∆1−α,tθ)a, bα,t =

[
Pν(Xα − α(G+ θX1θ) + θ∆1−α,tθ)a

−M−1
α,t e

tDαa

]
,

evaluation of a Gaussian integral leads to

〈ηα|Qtαξα〉 = det(2πN̂−1)−
1
2 det(2πMα,t)

− 1
2

∫
Ran (N)⊕Ξ

e−
1
2
z·Cα,tz−z·bα,t−cα,tdz (5.64)

= det(N̂
1
2 ) det(Mα,t)

− 1
2 det(Cα,t)

− 1
2 e

1
2
bα,t·C−1

α,tbα,t−cα,t ,
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provided Cα,t > 0. By Schur’s complement formula, the last condition is equivalent to

Fα + ∆α,t > 0, Gα + Pνθ∆1−α,tθ|RanN − Tα,t > 0,

where
Tα,t = Pν(etD

∗
αM

− 1
2

α,t )M
− 1

2
α,t (Fα + ∆α,t)

−1M
− 1

2
α,t (M

− 1
2

α,t etDα)|RanN .

Moreover, one has

det(Cα,t) = det(Fα + ∆α,t) det(Gα + Pνθ∆1−α,tθ|RanN − Tα,t).

For α ∈ I∞, it follows from Proposition 5.5 that

lim
t→∞

Tα,t = 0,

and Fα + ∆α,t and Gα + Pνθ∆1−α,tθ|RanN − Tα,t are both positive definite for large t. As in the
proof of Proposition 3.18 we can conclude that

lim
t→∞

1

t
log〈ηα|Qtαξα〉 = 0.

(5) Suppose that α+ < 1
2 + κc. If α ∈]α+,

1
2 + κc], then the matrix Cα,t acquires a negative

eigenvalue as t increases. Consequently, the integral in (5.64) diverges and gt(α) = +∞ for large t,
proving (3.62). The case α− > 1

2−κc and α ∈ [1
2−κc, α−[ is similar. Suppose now that α+ = 1

2 +κc.
Since e′(α) → ∞ as α ↑ 1

2 + κc by Theorem 3.13 (3), Lemma 5.8 applies to gt and yields (3.62)
again. The same argument works in the case α− = 1

2 − κc.
Combined with Parts (1) and (4), the above analysis shows that for any α < α+ one has α+(t) ≥ α
for large enough t while for any α > α+, α+(t) ≤ α for large enough t. We deduce

α+ ≤ lim inf
t→∞

α+(t) ≤ lim sup
t→∞

α+(t) ≤ α+,

and (3.61) follows. 2

5.9 Proof of Theorem 3.28

We use the notation of Proposition 3.22 and its proof. We start with a few technical facts that will be
used in the proof.

Lemma 5.9 Assume that Condition (C) holds and that ep > 0. Then, for some constants c > 0 and
T > 0, the following hold true.

(1) ‖St‖ ≤ c and ‖St‖1 ≤ ct for t ≥ T .

(2) The function gt(α) has an analytic continuation from It to the cut plane C \ (] − ∞, α−(t)] ∪
[α+(t),∞]). Moreover, for any compact subset K ⊂ C\ (]−∞, α−]∪ [α+,∞]) there is TK > 0
such that

sup
α∈K
t≥TK

|gt(α)| <∞.
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(3) For t ≥ T the interval It is finite and is mapped bijectively to R by the function g′t. In the
following, we set

αs,t = (g′t)
−1(s)

for t ≥ T and s ∈ R.

(4) Let
s± = lim

I∞3α→α±
e′(α),

and suppose that s ∈]−∞, s−] (resp. s ∈ [s+,+∞[). Then we have

lim
t→∞

αs,t = α− (resp. α+), lim inf
t→∞

gt(αs,t) ≥ e(α−) (resp. e(α+)). (5.65)

(5) For t ≥ T and s ∈]−∞, s−] ∪ [s+,+∞[, let

Ms,t =
1

t
St(I + αs,tSt)−1, bs,t =

1

t
(I + αs,tSt)−

3
4D∗tLtTta.

The operator Ms,t is trace class on Ξ⊕ ∂H, with trace norm

‖Ms,t‖1 ≤ c+ |s|,

and bs,t ∈ Ξ⊕ ∂H is such that
lim
t→∞
‖bs,t‖ = 0.

Proof. (1) Writing (5.61) as

(Ltx)(s) = L(1)x(s) + δ(s− t)L(2)x(t) + δ(s)L(3)x(0)

with L(j) ∈ L(Ξ), we decompose St = D∗tLtDt = S(1)
t + S(2)

t + S(3)
t . Lemma 5.3 (4) yields

‖S(1)
t ‖ ≤ ‖L(1)‖ ‖Dt‖2 = ‖L(1)‖ ‖Kt‖ ≤ c1,

‖S(1)
t ‖1 = tr(D∗t |L(1)|Dt) ≤ ‖L(1)‖tr(DtD∗t ) = ‖L(1)‖‖Kt‖1 ≤ c1t,

for t ≥ 0. A simple calculation further gives S(2)
t = D̃∗tL(2)D̃t, S(3)

t = D̃∗0L(3)D̃0, where

D̃s =
[

esAN
1
2 RsQ

]
.

It follows from Lemma 5.2 (3) that

‖S(2)
t ‖ ≤ ‖S

(2)
t ‖1 = tr(D̃∗t |L(2)|D̃t) ≤ ‖L(2)‖tr(D̃tD̃∗t ) = ‖L(2)‖tr(etANetA

∗
+RtQQ

∗R∗t ) ≤ c2,

and
‖S(3)

t ‖ ≤ ‖S
(3)
t ‖1 = tr(D̃∗0|L(3)|D̃0) ≤ ‖L(3)‖tr(D̃0D̃∗0) = ‖L(3)‖tr(N) ≤ c3,

for t ≥ 0. We conclude that ‖St‖ ≤ c1 + c2 + c3 and ‖St‖1 ≤ (c1 + c2 + c3)t for t ≥ 1.

(2) Since gt(0) = 0 for all t > 0, it suffices to show that the function g′t has the claimed properties.
By definition,

C \ (]−∞, α−(t)] ∪ [α+(t),∞]) ⊂ {α ∈ C | − α−1 6∈ sp(St)}, (5.66)
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and the analyticity of g′t on this set follows directly from Eq. (5.63). Let K ⊂ C \ (] − ∞, α−] ∪
[α+,∞]) be compact. By Proposition 3.22 (5) (6) there exists TK ≥ T such that

dist(K, ]−∞, α−(t)] ∪ [α+(t),∞]) ≥ δ > 0 (5.67)

for all t ≥ TK . By Part (1), ‖αSt‖ ≤ 1
2 so that ‖(I + αSt)−1‖ ≤ 2 for all t ≥ T and all α ∈ C

satisfying |α| ≤ (2c)−1. By the spectral theorem, it follows from (5.66) and(5.67) that

‖(I + αSt)−1‖ ≤ 2c

δ

for all t ≥ TK and all α ∈ K such that |α| ≥ (2c)−1. Hence ‖(I + αSt)−1‖ is bounded on K
uniformly in t ≥ TK . The boundedness of g′t now easily follows from Eq. (5.63) and Part (1).

(3) By Part (5) of Proposition 3.22, if T > 0 is large enough then the interval It is finite for all t ≥ T .
By Part (1) of the same Proposition, the function g′t is strictly increasing on It and maps this interval
onto R.

(4) We consider s ≥ s+, the case s ≤ s− is similar. Since αs,t ∈ It, Part (5) of Proposition 3.22 gives

α = lim inf
t→∞

αs,t ≤ lim sup
t→∞

αs,t ≤ lim
t→∞

α+(t) = α+.

Suppose that α < α+. Invoking convexity, we deduce from the definition of αs,t and Part (4) of
Proposition 3.22

s = lim inf
t→∞

g′t(αs,t) ≤ lim inf
t→∞

g′t(α) = e′(α).

The strict convexity of e(α) leads to s ≤ e′(α) < s+ which contradicts our hypothesis and yields the
first relation in (5.65).

To prove the second one, notice that for any γ ∈ [0, α+[ one has γ < αs,t ≤ α+(t) provided t is large
enough. By convexity

gt(αs,t) ≥ gt(γ) + (αs,t − γ)g′t(γ) ≥ gt(γ) + (αs,t − γ)g′t(0),

and letting t→∞ yields

lim inf
t→∞

gt(αs,t) ≥ e(γ) + (α+ − γ)e′(0).

Taking γ → α+ gives the desired inequality.

(5) We consider s ≥ s+, the case s ≤ s− is again similar. By Part (3), if T > 0 is large enough then
αs,t ∈]0, α+(t)[⊂ It for all t ≥ T . Since I + αSt > 0 for α ∈ It, Part (1) allows us to conclude

‖M+
s,t‖1 =

1

t
tr(S+

t (I + αs,tS+
t )−1) ≤ 1

t
‖S+

t ‖1 ≤
1

t
‖St‖1 ≤ c.

By Eq. (5.63) and the definition of αs,t we have

s = −1

2
tr(Ms,t)−

1

2t
a · T ∗t LtTta+

tαs,t
2

(bs,t|((I + αs,tSt)
1
2 + (I + αs,tSt)−

1
2 )bs,t),

from which we deduce

‖M−s,t‖1 = s+ ‖M+
s,t‖1 +

1

t
a · T ∗t LtTta− tαs,t(bs,t|((I +αs,tSt)

1
2 + (I +αs,tSt)−

1
2 )bs,t). (5.68)
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One easily checks that

lim
t→∞

1

t
‖T ∗t LtTt‖ = 0,

so that ‖M−s,t‖1 ≤ s + 2c and hence ‖Ms,t‖1 = ‖M−s,t‖1 + ‖M+
s,t‖1 ≤ |s| + 3c for t large enough.

Finally, from (5.68) we derive

‖bs,t‖2 ≤
1

2
(bs,t|((I+αs,tSt)

1
2 +(I+αs,tSt)−

1
2 )bs,t) ≤

1

2tαs,t

(
s+

1

2
tr(Ms,t) +

1

2t
a · T ∗t LtTta

)
,

from which we conclude that ‖bs,t‖ → 0 as t→∞. 2

(1) By Proposition 3.22 (4) one has

lim
t→∞

1

t
logEν [eαηt ] = e(−α),

for −α ∈ I∞. By the Gärtner-Ellis theorem, the local LDP holds on the interval ]η−, η+[ with the
rate function

I(s) = sup
α∈R

(αs− e(−α)).

Note that I(s) = supα∈I∞(αs − e(−α)) for s ∈]η−, η+[. To prove that the global LDP holds we
must show that for all open sets O ⊂ R

lim inf
t→∞

1

t
logPν

[ηt
t
∈ O

]
≥ − inf

s∈O
J(s).

By a simple and well known argument (see, e.g., [dH, Section V.2]), it suffices to show that for any
s ∈ R

lim
ε↓0

lim inf
t→∞

1

t
logPν [|η̂t| < ε] ≥ −J(s),

where η̂t = ηt
t − s. The latter holds for any s ∈]η−, η+[ by the Gärtner-Ellis theorem. Next, we

observe that whenever α± = 1
2 ± κc, then by Proposition 3.22 (4) we have η± = ±∞. Thus, it

suffices to consider the cases where α− > 1
2 − κc or/and α+ < 1

2 + κc. We shall only discuss the
second case, the analysis of the first one is similar.

Fix s ≤ η− and set αt = −α−s,t so that g′t(−αt) = −s and, by Lemma 5.9 (3),

lim
t→∞

αt = −α+, lim inf
t→∞

gt(−αt) ≥ e(α+). (5.69)

Defining the tilted probability P̂tν on C([0, t],Ξ) by

dP̂tν
dPtν

= eαtηt−tgt(−αt),

we immediately get the estimate

Ptν [|η̂t| < ε] ≥ e−t(sαt+ε|αt|−gt(−αt))P̂tν [|η̂t| < ε] ,

and hence,
1

t
logPtν [|η̂t| < ε] ≥ gt(−αt)− sαt − ε|αt|+

1

t
log P̂tν [|η̂t| < ε] . (5.70)
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We claim that for any sufficiently small ε > 0,

pε = lim inf
t→∞

P̂tν [|η̂t| < ε] > 0. (5.71)

Using (5.69) we derive from (5.70) that

lim inf
t→∞

1

t
logPtν [|η̂t| < ε] ≥ e(α+) + sα+ − ε|α+|,

provided ε > 0 is small enough. Letting ε ↓ 0, we finally get

lim
ε↓0

lim inf
t→∞

1

t
logPtν [|η̂t| < ε] ≥ e(α+) + sα+,

which, in view of (3.66), is the desired relation.

Thus, it remains to prove our claim (5.71). To this end, note that for λ ∈ R,

Êtν
[
e−iλη̂t

]
= Etν

[
e(αt−iλ/t)ηt−tgt(−αt)−iλg′t(−αt)

]
= et(gt(−αt+iλ/t)−gt(−αt)−ig′t(−αt)λ/t),

and a simple calculation using Eq. (5.62), (5.63) yields

Êtν
[
e−iλη̂t

]
=
(

det(I + iλM−s,t)
−1eiλtr(M−s,t)−λ2(b−s,t|(I+iλM−s,t)−1b−s,t)

) 1
2
. (5.72)

Let S(R,Ξ) be the Schwartz space of rapidly decaying Ξ-valued smooth functions on R and S ′(R,Ξ)
its dual w.r.t. the inner product of H. Denote by γ̂ the centered Gaussian measure on K− = Ξ ⊕
S ′(R,Ξ) with covariance I and let

η̃t(k) = −1

2
(k|M−s,tk − 2b−s,t).

By Lemma 5.9 (5), |η̂t(k)| <∞ for γ̂-a.e. k ∈ K− and

ηt =

∫
η̃t(k)γ̂(dk) = −1

2
tr(M−s,t).

It follows that for λ ∈ R,∫
e−iλ(η̂t(k)−ηt)γ̂(dk) =

(
det(I + iλM−s,t)

−1eiλtr(M−s,t)−λ2(b−s,t|(I+iλM−s,t)−1b−s,t)
) 1

2
,

and comparison with (5.72) allows us to conclude that the law of η̂t under P̂tν coincides with the one
of η̃t − ηt under γ̂, so that

pε = lim inf
t→∞

γ̂ [|η̃t − ηt| < ε] .

For m > 0 let Pm denote the spectral projection of Ms,t for the interval [−m,m] and define

ζ<t (k) = −1

2
(Pmk|M−s,tk − 2b−s,t) +

1

2
tr(PmM−s,t),

ζ>t (k) = −1

2
((I − Pm)k|M−s,tk − 2b−s,t) +

1

2
tr((I − Pm)M−s,t),
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so that η̃t − ηt = ζ<t + ζ>t and γ̂[ζ<t ] = γ̂[ζ>t ] = 0. Since ζ<t and ζ>t are independent under γ̂, we
have

pε ≥ lim inf
t→∞

γ̂
[
|ζ<t | < ε/2

]
γ̂
[
|ζ>t | < ε/2

]
. (5.73)

The Chebyshev inequality gives

γ̂
[
|ζ<t | < ε/2

]
= 1− γ̂

[
|ζ<t | ≥ ε/2

]
≥ 1− 4

ε2
γ̂
[
|ζ<t |2

]
.

Choosing m = 1
3(c+ |s|)ε2, the estimate

γ̂
[
|ζ<t |2

]
=

1

2
tr(PmM

2
s,t) + ‖Pmbs,t‖2 ≤

1

2
‖PmMs,t‖ ‖Ms,t‖1 + ‖bs,t‖2 ≤

m

2
(c+ |s|) + ‖bs,t‖2,

together with Lemma 5.9 (5) shows that

lim inf
t→∞

γ̂
[
|ζ<t | < ε/2

]
≥ 1− 2m

(c+ |s|)ε2 =
1

3
.

To deal with the second factor on the right-hand side of (5.73) we first note that (I − Pm)|Ms,t| ≥
m(I − Pm), so that, using again Lemma 5.9 (5),

Nm = tr(I − Pm) ≤ 1

m
tr((I − Pm)|Ms,t|) ≤

‖Ms,t‖1
m

≤ c+ |s|
m

=
3

ε2
.

Setting

εj =
|µj |
c+ |s|ε, (j = 1, . . . , Nm),

where the µj denote the repeated eigenvalues of (I−Pm)Ms,t we have
∑

j εj ≤ ε and hence, passing
to an orthonormal basis of eigenvectors of (I − Pm)Ms,t, we obtain

γ̂
[
|ζ>t | < ε/2

]
= nNm

∣∣∣∣∣∣
Nm∑
j=1

µjk
2
j − 2bjkj − µj

∣∣∣∣∣∣ < ε

 ≥ Nm∏
j=1

n1

[∣∣∣∣k2 − 2
bj
µj
k − 1

∣∣∣∣ < εj
|µj |

]
,

where nN denotes the centered Gaussian measure of unit covariance on RN and the bj ∈ R are such
that |bj | ≤ ‖bs,t‖. An elementary analysis shows that if |b| ≤ 1 and 0 < δ ≤ 1, then

n1

[
|k2 − 2bk − 1| < δ

]
≥ δ

e
√

6π
.

Thus, provided ε < c+ |s|, we can conclude that

lim inf
t→∞

γ̂
[
|ζ>t | < ε/2

]
≥
(

ε

e(c+ |s|)
√

6π

)3ε−2

> 0,

which shows that pε > 0 and concludes the proof of Part (2).

(2) According to Bryc’s lemma (see [Br] or [JOPP, Section 4.8.4]) the Central Limit Theorem for
the family (ηt)t>0 holds, provided that the generating function gt has an analytic continuation to the
disc Dε = {α ∈ C | |α| < ε} for some ε > 0 and satisfies the estimate

sup
α∈Dε
t>t0

|gt(α)| <∞,

for some t0 > 0. These properties clearly follow from Lemma 5.9 (2).
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5.10 Proof of Lemma 4.1

(1) Let
C =

∨
j≥0

Ran (ω∗ω)jι

be the controllable subspace of (ω∗ω, ι). From (3.1) and (3.4) we derive

Ω2jQ = (−1)j
[

(ω∗ω)jι
0

]
ϑ

1
2 ,

and hence ∨
j≥0

Ran (Ω2jQ) = C ⊕ {0}.

The last relation and Ω(C ⊕ {0}) = {0} ⊕ ω∗C yield that the controllable subspace of (Ω, Q) is
C ⊕ ω∗C. Since A = Ω − 1

2Qϑ
−1Q∗, (A,Q) has the same controllable subspace. Finally, since

Kerω = {0}, we conclude that C ⊕ ω∗C = Ξ iff C = RI .

(2) The same argument yields C(Ω, Qπi) = Ci ⊕ ω∗Ci. Thus if 0 6= u ∈ Ci ∩ Cj , we have 0 6=
u⊕ 0 ∈ C(Ω, Qπi) ∩ C(Ω, Qπj) and the result follows from Proposition 3.7 (2).

5.11 Proof of Theorem 4.2

(1) By assumption (J), the Jacobi matrix

ω2 =



b1 a1 0 0 · · · 0 0
a1 b2 a2 0 0 0
0 a2 b3 a3 0 0
...

. . . . . . . . .
...

0 0 0
. . . . . . aL−2 0

0 0 0 0
. . . bL−1 aL−1

0 0 0 0 · · · aL−1 bL


,

is positive and ai 6= 0 for all i ∈ I. Denote by {δi}i∈I the canonical basis of RI . Starting with the
obvious fact that Ran (ι) = span({δi | i ∈ ∂I}), a simple induction yields∨

0≤j≤k
Ran (ω2jι) = span({δi | dist(i, ∂I) ≤ k}).

Hence the pair (ω2, ι) is controllable.

(2) The argument in the proof of Part (1) yields C1 = CL = RI and the first statement follows
directly from Proposition 3.7 (2). To prove the second one, we may assume that ϑmin = ϑ1 and
ϑmax = ϑL. From Theorem 3.2 (3) we already know that ϑ1 ≤M ≤ ϑL and that

M − ϑ1 = ϑ1

∫ ∞
0

etAQ(ϑ−1
1 − ϑ−1)Q∗etA

∗
dt.
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Since ϑ−1
1 − ϑ−1 ≥ 0 it follows that

Ker (M − ϑ1) ⊂
⋂
n≥0

Ker (ϑ−1
1 − ϑ−1)Q∗A∗n =

∨
n≥0

AnQδ1

⊥ = C⊥1 = {0},

which implies M − ϑ1 > 0. A similar argument shows that ϑ2 −M > 0.

(3) Set κ = α− 1
2 and κ0 = ϑ

∆ > 1
2 . Writing

iν−Kα =

[
Ω + iν 0

0 Ω + iν

]
+

[
Qϑ−

1
2 0

0 Qϑ−
1
2

][
κ −ϑ

(κ2 − 1
4)ϑ−1 −κ

][
ϑ−

1
2Q∗ 0

0 ϑ−
1
2Q∗

]
,

one derives det(iν −Kα) = det(Ω + iν)2 det(I + Σ(iν)), where

Σ(z) =

[
κR(z) −R(z)ϑ

(κ2 − 1
4)R(z)ϑ−1 −κR(z)

]
, R(z) = ϑ−

1
2Q∗(Ω + z)−1Qϑ−

1
2 . (5.74)

A simple calculation further gives

det(Ω + iν) = det(ω2 − ν2), R(iν) = iνι∗(ω2 − ν2)−1ι.

Denote by D(ν2) the adjugate of ω2 − ν2. Expressing (ω2 − ν2)−1 with Cramer’s formula and
observing that D1L(ν2) = DL1(ν2) = â, we get

R(iν) =
2γiν

d(ν2)

[
b(ν2)e

1
2
δ â

â c(ν2)e−
1
2
δ

]
, (5.75)

where

b(ν2) = D11(ν2), c(ν2) = DLL(ν2), d(ν2) = det(ω2 − ν2),

are polynomials in ν2 with real coefficients. Inserting (5.75) into (5.74), an explicit calculation of
det(I + Σ(iν)) yields

det(iν−Kα) =

(
d(ν2) + (γν)2 b(ν

2)c(ν2)− â2

d(ν2)

)2

+(γν)2
(

eδ/2b(ν2)− e−δ/2c(ν2)
)2
−4â2κ

2 − κ2
0

κ2
0 − 1

4

(γν)2.

By the Desnanot-Jacobi identity,

b(ν2)c(ν2)− â2

d(ν2)
= det(ω̃2 − ν2) = d̃(ν2),

where ω̃2 is the matrix obtained from ω2 by deleting its first and last rows and columns. Thus, we
finally obtain

det(iν −Kα) =
(
d(ν2) + (γν)2d̃(ν2)

)2
+ (γν)2

(
eδ/2b(ν2)− e−δ/2c(ν2)

)2
− 4â2κ

2 − κ2
0

κ2
0 − 1

4

(γν)2,
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where b, c, d and d̃ are polynomials with real coefficients. Since d(0) = det(ω2) > 0, Kα is regular
for all α ∈ R and we can rewrite the eigenvalue equation as

g(ν2) =
κ2 − κ2

0

κ2
0 − 1

4

, (5.76)

where the rational function

g(x) =
1

4â2

[
(d(x) + γ2xd̃(x))2

γ2x
+
(

eδ/2b(x)− e−δ/2c(x)
)2
]

has real coefficients, a simple pole at 0, a pole of order 2L at infinity and is non-negative on ]0,∞[. It
follows that

κc =

√
κ2

0 + g0(κ2
0 −

1

4
),

where
g0 = min

x∈]0,∞[
g(x).

Since κ0 >
1
2 , we conclude that κc ≥ κ0, with equality iff g0 = 0.

Under Assumption (S) the polynomials b and c coincide and δ = 0. Thus, g0 = 0 iff the polynomial

f(x) = d(x) + γ2xd̃(x) (5.77)

has a positive zero. If L is odd, then this property follows immediately from the fact that

f(0) = det(ω2) > 0, f(x) = (−x)L +O(xL−1) < 0 (x→∞).

A more elaborate argument is needed in the case of even L. We shall invoke the deep connection
between spectral analysis of Jacobi matrices and orthogonal polynomials. We refer the reader to [Si2]
for a detailed introduction to this vast subject.

Let ρ be the spectral measure of ω2 for the vector δ1. The argument in the proof of Part (1) shows
that δ1 is cyclic for ω2. Thus, ω2 is unitarily equivalent to multiplication by x on L2(R, ρ(dx))
and in this Hilbert space δ1 is represented by the constant polynomial p0 = 1. Starting with δ2 =
a−1

1 (ω2−b1)δ1 = p1(ω2)δ1, a simple induction shows that there are real polynomials {pk}k∈{0,...,L−1}
satisfying the recursion

akpk−1(x) + (bk+1 − x)pk(x) + ak+1pk+1(x) = 0, (k ∈ {0, . . . , L− 2}, p−1 = 0, p0 = 1),
(5.78)

and such that δk = pk−1(ω2)δ1. Thus, these polynomials form an orthonormal basis of L2(R, ρ(dx))
such that

〈δk|(ω2 − x)−1δj〉 =

∫
pk−1(λ)pj−1(λ)

λ− x ρ(dλ). (5.79)

For 1 ≤ j ≤ k ≤ L, define

d[j,k](x) = det(x− J[j,k]), J[j,k] =



bj aj 0 0 · · · 0 0
aj bj+1 aj+1 0 0 0
0 aj+1 bj+2 aj+2 0 0
...

. . . . . . . . .
...

0 0 0
. . . . . . ak−2 0

0 0 0 0
. . . bk−1 ak−1

0 0 0 0 · · · ak−1 bk


.
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Laplace expansion of the determinant Pk+1(x) = d[1,k+1](x) on its last row yields the recursion

Pk+1(x) = (x− bk+1)Pk(x)− a2
kPk−1(x).

Comparing this relation with (5.78) one easily deduces

a1 · · · ak pk(x) = Pk(x), (k ∈ {1, . . . , L− 1}), d(x) = PL(x). (5.80)

Polynomials of the second kind {qk}k∈{0,...L−1} associated to the measure ρ are defined by

qk(x) =

∫
pk(λ)− pk(x)

λ− x ρ(dx). (5.81)

Note in particular that q0(x) = 0 and q1(x) = a−1
1 . Applying the recursion relation (5.78) to both

sides of this definition, we obtain

akqk−1(x) + (bk+1 − x)qk(x) + ak+1qk+1(x) =

∫
pk(λ)ρ(dλ) = 0, (k ∈ {1, . . . , L− 2}).

Set q̃k(x) = a1qk+1(x) and observe that these polynomials satisfy the recursion

ak+1q̃k−1(x) + (bk+2 − x)q̃k(x) + ak+2q̃k+1(x) = 0, (k ∈ {0, . . . , L− 3}, q̃−1 = 0, q̃0 = 1).

Comparing this Cauchy problem with (5.78) and repeating the argument leading to (5.80) we deduce
that a2 · · · ak+1 q̃k(x) = d[2,k+1](x), so that

a1 · · · ak qk(x) = d[2,k](x), (k ∈ {2, . . . , L− 1}).

In particular, we can rewrite Definition (5.77) as

f(x) = PL(x) + γ2xqL−1(x). (5.82)

Taking now Assumption (S) into account we derive from (5.79) that for any z ∈ C \ sp(ω2),∫ |pL−1(λ)|2
λ− z ρ(dλ) = 〈δL|(ω2 − z)−1δL〉

= 〈Sδ1|(ω2 − z)−1Sδ1〉 = 〈δ1|(ω2 − z)−1δ1〉 =

∫
ρ(dλ)

λ− z ,

from which we conclude that |pL−1(λ)| = 1 for all λ ∈ sp(ω2). Denote by λL ≥ λL−1 ≥ · · · ≥ λ1

the eigenvalues of ω2 = J[1,L] and by µL−1 ≥ µL−2 ≥ · · · ≥ µ1 that of J[1,L−1]. It is a well known
property of Jacobi matrices (or equivalently of orthogonal polynomials) that

λL < µL−1 < λL−1 < · · · < µ1 < λ1

(see Figure 12). These interlacing inequalities and the previously established property allow us to
conclude that

pL−1(λj) = (−1)j , p′L−1(λ1) < 0.
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1

−1

x

PL

pL−1

λ1

µ1

Figure 12: The zeros of the polynomials PL and pL−1 interlace.

From Eq. (5.82) and Definition (5.81), we deduce

f(λ1) = γ2λ1

p′L−1(λ1)ρ({λ1}) +
L−1∑
j=2

pL−1(λ1)− pL−1(λj)

λ1 − λj
ρ({λj})


= γ2λ1

p′L−1(λ1)ρ({λ1})− 2

1
2
L−1∑
j=1

ρ({λ2j})
λ1 − λ2j

 < 0,

which, together with f(0) > 0, shows that f has a positive root.

By Proposition 5.5 (12), the validity of Condition (R) follows from Part (2) and the fact that κc = κ0.

Appendix: Basic theory of the algebraic Riccati equation

In this appendix, for the reader convenience we briefly expose the basic results on algebraic Riccati
equation used in this work. We refer the reader to [LR, AFIJ, Sc] for detailed expositions and proofs.

Let h be a d-dimensional complex Hilbert space. We denote by ( · , · ) the inner product of h. We
equip the vector spaceH = h⊕ h with the Hilbertian structure induced by h and the symplectic form

ω(x⊕ y, x′ ⊕ y′) = (x⊕ y, J(x′ ⊕ y′)) = (x, y′)− (y, x′).

The symplectic complement of V ⊂ H is the subspace Vω = {v |ω(u, v) = 0 for all u ∈ V}. A
subspace V ⊂ H is isotropic if V ⊂ Vω and Lagrangian if V = Vω. V is Lagrangian iff it is
isotropic and d-dimensional. For Y,Z ∈ L(h), we denote by Y ⊕ Z the element of L(h,H) defined
by (Y ⊕ Z)x = Y x⊕ Zx. In the block-matrix notation,

Y ⊕ Z =

[
Y
Z

]
, (Y ⊕ Z)∗ =

[
Y ∗ Z∗

]
.
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The graph of X ∈ L(h) is the d-dimensional subspace ofH defined by

G(X) = RanGX , GX = I ⊕X.

A subspace V ⊂ H is a graph iff V ∩ ({0} ⊕ h) = {0⊕ 0}.
The algebraic Riccati equation associated to the triple (A,B,C) of elements of L(h) is the following
quadratic equation for the unknown self-adjoint X ∈ L(h):

R(X) = XBX −XA−A∗X − C = 0. (A.1)

In the following, we shall assume that C is self-adjoint, that B ≥ 0 and that the pair (A,B) is
controllable. We denote by R(A,B,C) the set of self-adjoint elements of L(h) satisfying Eq. (A.1),
which we can also write as

R(X) = G∗XLGX = 0, L =

[
C A∗

A −B∗
]
.

A.1 Existence of self-adjoint solutions

The Hamiltonian associated to the Riccati equation (A.1) is the unique element of L(H) such that
(u, Lv) = ω(u,Kv) for all u, v ∈ H. One easily checks that

K =

[
−A B
C A∗

]
.

Note that since L = L∗, K is ω-skew adjoint:

ω(u,Kv) + ω(Ku, v) = ω(u,Kv)− ω(v,Ku) = (u, Lv)− (v, Lu) = 0. (A.2)

The first result we recall is a characterization of the set R(A,B,C).

Theorem A.1 (Theorem 7.2.4 in [LR]) The map X 7→ G(X) is a bijection from R(A,B,C) onto
the set of K-invariant Lagrangian subspaces ofH.

The following are elementary symplectic geometric properties of projections:

Lemma A.2 (1) The range of a projection P ∈ L(H) is isotropic iff P ∗JP = 0 and Lagrangian iff
I − P = J∗P ∗J .

(2) Denote by Pκ the spectral projection of K for κ ∈ sp(K). Then JPκJ∗ = P ∗−κ and in particular
RanPκ is isotropic iff κ 6∈ iR.

(3) Let Σ ⊂ sp(K) be such that Σ ∩ (−Σ) = ∅. Then the spectral subspace of K for Σ is isotropic.

Note that JK+K∗J = 0, which implies that the spectrum ofK, including multiplicities, is symmetric
w.r.t. the imaginary axis. If sp(K) ∩ iR = ∅, then the spectral subspace of K for Σ = sp(K) ∩
C+ is d-dimensional and hence, by Lemma A.2 (3), Lagrangian. Thus, Theorem A.1 yields (see
Theorems 7.2.4 and 7.5.1 in [LR])

Corollary A.3 If sp(K) ∩ iR = ∅, then R(A,B,C) 6= ∅.
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Remark A.4 In cases where sp(K) ∩ iR 6= ∅, and under our controllability assumption, a neces-
sary and sufficient condition for the existence of self-adjoint solution is that all Jordan blocks of K
corresponding to eigenvalues in iR are even-dimensional. For the Riccati equations arising in our
analysis of harmonic networks, the singular case sp(Kα)∩ iR 6= ∅ only occurs at the boundary points
α = 1

2 ± κc. There, the existence of solutions follows by continuity (Part (4) of Theorem 5.5).

Another powerful criterion for the existence of self-adjoint solutions is the following

Theorem A.5 (Theorem 9.1.1 in [LR]) If there exists a self-adjoint X ∈ L(h) such thatR(X) ≤ 0,
then R(A,B,C) 6= ∅.

A.2 Extremal solutions

The set R(A,B,C) inherits the partial order of L(h). A minimal/maximal solution of (A.1) is a
minimal/maximal element of R(A,B,C). Clearly, a minimal/maximal solution, if it exists, is unique.

Theorem A.6 Assume that R(A,B,C) 6= ∅.

(1) R(A,B,C) is compact.

(2) R(A,B,C) contains a minimal element X− and a maximal element X+. In the following, we set

D∓ = A−BX∓.

(3) X ∈ R(A,B,C) is minimal/maximal iff sp(A−BX) ⊂ C±.

(4) R(A,B,C) = X− + R(D−, B, 0) = X+ −R(−D+, B, 0).

Parts (2) and (3) are stated as Theorems 7.5.1 in [LR]. Part (4) follows from simple algebra. Since
X 7→ R(X) is continuous, R(A,B,C) is closed. Its boundedness follows from from Part (4) and the
fact that

‖X −X−‖1 = tr(X −X−) ≤ tr(X+ −X−),

for all X ∈ R(A,B,C). The Heine-Borel theorem thus yields Part (1).

A.3 The gap

In this section, we assume that R(A,B,C) 6= ∅ and use the notations introduced in Theorem A.6.

The gap of the Riccati equation (A.1) is the non-negative element of L(h) defined by

Y = X+ −X−.

We set K = KerY , so that K⊥ = RanY . For X ∈ L(h), we define

DX = A−BX.

Theorem A.7 (1) For any X ∈ R(A,B,C), K is the spectral subspace of DX for sp(DX) ∩ iR
and K⊥ is the spectral subspace of D∗X for sp(D∗X) \ iR. Moreover, DX |K is independent of
X ∈ R(A,B,C).
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(2) The mapX 7→ KerX is a bijection from R(D−, B, 0) onto the set of all D−-invariant subspaces
containing the spectral subspace of D− to the part of its spectrum in iR. Moreover, X ≤ X ′ iff
KerX ′ ⊂ KerX .

(3) IfR(X) ≤ 0 for some self-adjoint X ∈ L(h), then X− ≤ X ≤ X+.

(4) IfR(X) < 0 for some self-adjoint X ∈ L(h), then sp(K) ∩ iR = ∅.

The first and last Assertions of Part (1) is Theorem 7.5.3 in [LR]. The second Assertion is dual to the
first one. Part (2) is a special case of Theorem 1 and Part (3) is Theorem 14(b) in [Sc]. Part (4) is the
first assertion of Theorem 9.1.3 in [LR].

Note that Theorem A.1 implies that for X ∈ R(A,B,C) one has

−KGX = GXDX ,

so that sp(DX) = sp(−K|G(X)). Whenever sp(K) ∩ iR = ∅, it follows that sp(DX) ∩ iR = ∅ and
hence K = {0} and Y > 0. By Part (3) of Theorem A.6, we further have sp(D+) ⊂ C− so that GX+

is the spectral subspace of K to the part of its spectrum in C−.

A.4 Real Riccati equations and real solutions

In this section, we assume that E is a d-dimensional real Hilbert space and (A,B,C) a triple of
elements of L(E) such that (A,B) is controllable, B ≥ 0, and C self-adjoint.

Denote by h = CE the complexification of E equipped with its natural Hilbertian structure and con-
jugation C. The C-linear extensions of A, B and C to h (which we denote by the same symbols) are
such that (A,B) is controllable, B ≥ 0, and C is self-adjoint on h. Let R(A,B,C) be the set of
self-adjoint solutions of (A.1), interpreted as a Riccati equation in L(h), and define

RR(A,B,C) = {X ∈ R(A,B,C) |X = X}.

Clearly, RR(A,B,C) is the set of real self-adjoint solutions of (A.1) viewed as a Riccati equation on
L(E).

Theorem A.8 (1) If R(A,B,C) 6= ∅, then its minimal/maximal element is real and hence coincides
with the minimal/maximal element of RR(A,B,C).

(2) Under the same assumption, the gap Y = X+ −X− is real and so is K = KerY .

(3) For any X ∈ RR(A,B,C), K is the spectral subspace of DX for sp(DX) ∩ iR and K⊥ is the
spectral subspace of D∗X for sp(D∗X) \ iR. Moreover, DX |K is independent of X ∈ R(A,B,C).

To prove Part (1), note that X ∈ R(A,B,C) whenever X ∈ R(A,B,C). In particular, one has
X+ ∈ R(A,B,C) and hence X+ −X+ ≥ 0. It follows that

‖X+ −X+‖1 = tr(X+ −X+) = tr(X+ −X∗+) = 0.

The remaining statements are simple consequences of the reality of X±.
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[CG] Chetrite, R., and Gawędzki, K.: Fluctuation relations for diffusion processes. Commun.
Math. Phys. 282, 469–518 (2008).

[CvZ1] Cohen, E.G.D., and van Zon, R.: Extension of the fluctuation theorem. Phys. Rev. Lett. 91,
110601 (2003).

[CvZ2] Cohen, E.G.D., and van Zon, R.: Extended heat-fluctuation theorems for a system with
deterministic and stochastic forces. Phys. Rev. E 69, 056121 (2004).

[dH] den Hollander, F.: Large Deviations. Fields Institute Monographs, AMS, Providence,
Rhodes Island, 2000.

93

http://arxiv.org/abs/1409.5425
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