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Abstract. We consider a general network of harmonic oscillators driven out of thermal equilib-
rium by coupling to several heat reservoirs at different temperatures. The action of the reservoirs
is implemented by Langevin forces. Assuming the existence and uniqueness of the steady state of
the resulting process, we construct a canonical entropy production functional S* which satisfies
the Gallavotti—-Cohen fluctuation theorem. More precisely, we prove that there exists k. > %
such that the cumulant generating function of S* has a large-time limit e(«) which is finite on
a closed interval [% — Ke, % + K., infinite on its complement and satisfies the Gallavotti-Cohen
symmetry e(1 — a)) = e(a) for all @ € R. Moreover, we show that e(«) is essentially smooth,
i.e., that¢’(a) - Fooasa — % T Ke. It follows from the Girtner-Ellis theorem that S? satisfies
a global large deviation principle with a rate function I(s) obeying the Gallavotti-Cohen fluctua-
tion relation I(—s) — I(s) = s for all s € R. We also consider perturbations of S* by quadratic
boundary terms and prove that they satisfy extended fluctuation relations, i.e., a global large de-
viation principle with a rate function that typically differs from I(s) outside a finite interval. This
applies to various physically relevant functionals and, in particular, to the heat dissipation rate of
the network. Our approach relies on the properties of the maximal solution of a one-parameter
family of algebraic matrix Riccati equations. It turns out that the limiting cumulant generating
functions of S* and its perturbations can be computed in terms of spectral data of a Hamiltonian
matrix depending on the harmonic potential of the network and the parameters of the Langevin
reservoirs. This approach is well adapted to both analytical and numerical investigations.
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1 Introduction

Boundary driven mechanical systems are paradigmatic in nonequilibrium statistical mechanics. Ex-
istence and uniqueness of nonequilibrium steady states have been extensively studied for a variety
of such systems: harmonic [ ] and anharmonic [BK] crystals, 1-dimensional chains of anhar-

monic oscillators [ s s , , , Ca, ], rotors [ , ] and other Hamil-
tonian systems [EY, , , ]. More general Hamiltonian networks have been considered
in [EZ, , ]. In this paper, we shall study stochastically driven networks of harmonic oscilla-

tors which are the simplest models in the last category. The questions of existence and uniqueness of
the steady state is well understood in such systems. Estimates of the rate of relaxation to the steady
state are also available [RT2, AE]. The focus of this work is on the concept of entropy production and
its fluctuations, although our approach can be extended to cover the fluctuations of energy/entropy
fluxes between individual heat reservoirs and the network. The universal fluctuation relations sat-
isfied by the entropy production rate (or phase-space contraction rate) in transient [ , BES] and
stationary [ , ] processes have been one of the central issues in the recent developments of
nonequilibrium statistical mechanics. Various approaches to these relations have been proposed in the
literature and we refer the reader to [RM, Se, , Ma, , , s ] for reviews and detailed
discussions. The interested reader should also consult [ ], where fluctuation relations are derived
for boundary driven anharmonic chains, and [JPS] for a discussion of these topics in the framework
of Gaussian dynamical systems. For theoretical and experimental works dealing specifically with
mechanically driven harmonic systems we refer the reader to [ , , ].

In this paper we follow the scheme advocated in [JPR, ] and fully elaborated in [ ]. The
details are as follows.

Consider a probability space (€2, P, P) equipped with a measurable involution © : © — €2. Suppose
that the measures P and P = P o © are equivalent. We define the canonical entropic functional of the
quadruple (2, P, P, ©) by

S(w) = log = (w), (1.1)

and denote by P the law of this random variable under IP. Since

dPo © dP
d o9( ) = log 75 (w) = —S(w), (1.2)

S o00(w) =log

the support of P is symmetric w.r.t. the origin. It reduces to {0} whenever P = P. In the opposite
case the symmetry © is broken and the well known fact that the relative entropy of P w.r.t. P, given

by
Ent(P|B) = /s —/sP(ds)
R
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is strictly negative (it vanishes iff P = @) shows that the law P favors positive values of S. To obtain
a more quantitative statement of this fact, it is useful to consider Rényi’s relative a-entropy

Ent, (P|P) = log / *SWIP(dw).
Q

Note that Ento(P|P) = Ent, (P|P) = 0, and since the function R > o Ent, (P|P) is convex
by Holder’s inequality, one has Ent,(P|P) < 0 for o € [0,1]. It is straightforward to check that
Ent, (P|P) is a real-analytic function of o on some open interval containing ]0, 1] and infinite on
the (possibly empty) complement of its closure. In particular, it is strictly convex on its analyticity
interval.

From the definition of P and Relation (1.2) we deduce

Ent, (PP) = log/ @30 WIP(dyw) = log/ e~ WP(dw) = log/ e_aS(‘”)g(w)@(dw),
Q Q Q

dP
(1.3)
and the definition of S yields
—aS(w) dp ™ (1-a)S(w)p P
log | e — (w)P(dw) =1log [ e P(dw) = Enty_o(P|P).
Q dP 0
It follows that Rényi’s entropy satisfies the symmetry relation
Enti_o(P|P) = Ento(P|P), (1.4)

which, in applications to dynamical systems, will turn into the so-called Gallavotti-Cohen symmetry.
The second equality in Eq. (1.3) allows us to express Rényi’s entropy in terms of the law P as

Ent, (P|P) = e(a) = log/ReasP(ds).

Note that, up to the sign of c, e(«) is the the cumulant generating function of the random variable S.
Denoting by P the law of —S under P, the symmetry (1.4) leads to

/R e® P(ds) = / e~ P(ds) = /R e (1= p(ds) = / e®e *P(ds),

R R

from which we obtain ~

dP

@(8) =e ° (15)
on the common support of P and P. Thus, negative values of .S are exponentially suppressed by the
universal weight e™®. In the physics literature such an identity is called a fluctuation relation or a
fluctuation theorem for the quantity described by S. Most often .S is a measure of the power injected
in a system or of the rate at which it dissipates heat in some thermostat. The equivalent symmetry of

the cumulant generating function e(«) of S which follows from the symmetry (1.4) of Rényi’s entropy

e(l—a) =e(a) (1.6)
is referred to as the Gallavotti—-Cohen symmetry. The name symmetry function is sometimes given to

5(s) = log j]];(s)
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In terms of this function, the fluctuation relation is expressed as
s(s) =s.
The above-mentioned fact that

0 = Ent; (P|P) = log/ e *P(ds),
R

rewritten as

/ e *P(ds) =1, (1.7)
R

constitute the associated Jarzynski identity and the strict negativity of relative entropy
0 < —Ent(P|P) = /sP(ds), (1.8)

becomes Jarzynski’s inequality.

In all known applications of the above scheme to nonequilibrium statistical mechanics, the space
(Q,P,P) describes the space-time statistics of the physical system under consideration over some
finite time interval [0, ¢] (in the following, we shall denote by a superscript or a subscript the depen-
dence of various objects on the length ¢ of the considered time interval). The involution ©! is related
to time-reversal and the canonical entropic functional S* to entropy production or phase space con-
traction. The fluctuation relation (1.5) as a fingerprint of time-reversal symmetry breaking and the
strict inequality in (1.8) is a signature of nonequilibrium.

The practical implementation of our scheme to nonequilibrium statistical mechanics requires 4 distinct
steps which will structure our treatment of thermally driven harmonic networks. In order to clearly
formulate the purpose of each of these steps, we illustrate the procedure at hand on a very simple
model of electrical RC-circuit described in Figure 1. We shall not provide detailed proofs of our
claims in this example since they all reduce to elementary calculations. We refer the reader to [ ]
for a detailed physical analysis and to [GC] for experimental verification of the fluctuation relations
for this system.

Step 1: Construction of the canonical entropic functional

The internal energy of the circuit of Figure 1 is stored in the electric field within the capacitor and is

given by
52
F=— 1.9
Yak (1.9)

where z denotes the charge on the plate of the capacitor and C is the capacitance. The equation of

motion for z is v
. 2t t
Zr=1——+—
' RC " R’
where [ is the constant current fed into the circuit and V; the electromotive force (emf) generated by

the Johnson—Nyquist thermal noise within the resistor R. Integrating the equation of motion gives

1 t
2 = e WHRC, 4 (1-— e*t/Ro)RCI + R/ e~ (t=9)/RCY g, (1.10)
0
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Figure 1: A parallel RC circuit is fed with a constant current . The resistor R is in contact with a
heat bath at temperature 7". The Johnson—Nyquist thermal noise in this resistor generates a fluctuat-
ing electromotive force V' which contributes to the potential difference U = RIr + V driving the
capacitor C.

To simplify our discussion (and to avoid stochastic integrals and the technicalities related to time-
reversal), we shall assume that V; has the form

i &po(t — k),

k=1

oy \

where 7 < 79 = RC and & denotes a sequence of i.i.d. centered Gaussian random variables with
variance 2. Sampling the charge at times n7 + 0 yields a sequence zq, 21, 22, . .. satisfying the

recursion relation
Ze+1 =Nz + (L —10)Z + &kt
where z = Itg and n = e~ T/, According to (1.10), the charge between two successive kicks is
given by
Zhrrs = 0z 4 (1—e7/™)z,  5€]0,7]. (1.11)

Assuming z to be independent of {{y}, the sequence zo, 21, 22 . . . is a Markov chain with transition

kernel
1

p(2'|z) = oo

One easily checks that the unique invariant measure for this chain has the pdf

o~ (&'—nz—(1-n)2)?/20% (1.12)

1 )2 2 2
_ (2—2)*(1—n?)/20 1.13
(2) = e . .
pt() 5 2/(1 2) ( )

In the case I = 0 (no external forcing), according to the zero'™™ law of thermodynamics, the system
should relax to its thermal equilibrium at the temperature I" of the heat bath. Thus, in this case the
invariant measure should be the equilibrium Gibbs state of the circuit at temperature 7" which, by (1.9),
has the pdf

1 o=3/2aTC

peal?) = T

kp denoting Boltzmann’s constant. This requirement fixes the value of variance of £;’s and

o = kgTC(1 —n?).
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One can show (see Section 8 in [Bi]) that, in the limit 7 — 0, the covariance of the fluctuating emf V;
converges to
(VsVy) = 2kpTRO(s — t),

in accordance with the Johnson-Nyquist formula ([Ny], see also [vK, Section IX.2]). For I # 0,
Eq. (1.13) describes a nonequilibrium steady state (NESS) of the system. In the following, we shall
consider the stationary Markov chain started with the invariant measure and denote by (- )s; the cor-
responding expectation.

The pdf of a finite segment Z,, = (2, ..., z,) € R™"! of the stationary process is given by
Pn(Zn) = p(znlzn-1) - - - p(21]20)Pst (20), (1.14)
which is the Gaussian measure on R"*! with mean and covariance
(st =2, (2k2j)st — (z)st(2g)se = kpT Ce™IF=alT/m0,
We chose the involution © : R"*! — R"*! to be the composition of charge conjugation z — —z
with time-reversal of the Markov chain,

©:(20y--+r2n) = (—2n,.. ., —20).

The time-reversed process is the Markov chain which assigns the weight (1.14) to the reversed segment
©(Z,,). Thus, the transition kernel p(z’|z) and invariant measure pg(z) of the time-reversed process
must satisfy

P(—z0| — 21) - P(=2n—1| — 2n)Pst (—2n) = P(2n]2n—-1) - - - P(21|20)Pst (20) (1.15)

forallm > 1and Z,, € R"t!. For n = 1, this equation becomes

B(—20| — 21)Pst(21) = p(z1]20)pst (20)- (1.16)
Integrating both sides over z; gives
Pst(—20) = pst(20),
from which we further deduce
st (20)
pst(21

One then easily checks that (1.15) is indeed satisfied for all n > 1. Note that in the case I = 0 one
has

p(—20| — z1) = p(21]20)

~—

p(=2|=2) =p(l2),  pa(2) =pa(-2),
and it follows that p(z’|z) = p(2'|2), Eq. (1.16) turning into the detailed balance condition. In this
case, the time-reversed process coincides with the direct one: in thermal equilibrium, the time-reversal
symmetry holds. However, in the nonequilibrium case / # 0, time-reversal invariance is broken and
Pst(2) # pst(2).
We are now ready to describe the canonical entropic functional. Applying our general scheme to the
marginal P™” of the finite segment Z,, (which has the pdf p,,), we can write (1.1) as

dPpPnT Pn(Zn) P(2nl2n-1) - - p(21]20)Pst(20)
ST =log——(Zy,) =log ——— =1
a2 =108 L 612, T b — 21) P on | — 2o ()
n—1
:Zlog p(zk+1|zk) + log Pst(zo) '
=0 p(—2k| = zk+1) Pst(—2n)
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Egs. (1.12) and (1.13) yield
p()2) L (P2 g,
1 = — oz _
ng(—z|—z’) T TC (z+ 2z ),

log pst(z0) 1 (z% 23
pst(_zn) kT C

from which we deduce

an— 1_"72 k Zn+7720 22
kT BT 1+ ne 1+ | C
Step 2: Deriving a large deviation principle
From a more mathematical point of view, as stressed by Gallavotti—Cohen [ , ], the interesting

question is whether the entropic functional S? satisfies a large deviation principle in the limit ¢t — oo.
More precisely, is it possible to control the large fluctuations of S* by a rate function R 3 s — I(s)
such that

P |:1st e S:| ~ e—tinfses I(s)
t )
as t — oo for any open set S C R ? Moreover, does this rate function satisfy the relation
I(—s)=1(s)+ s, (1.17)

which is the limiting form of (1.5), for all s € R? Finally, can one relate this rate function to the
large-time asymptotics of Rényi’s entropy via a Legendre transformation

I(s) = sup (as — e(—a)), e(a) = limsup — Enta(]P’t\IP’t)

aEeR t—00

as suggested by the theory of large deviations? To illustrate these points, we return to our simple
example.

For this very particular system, the fluctuation relation (1.5) essentially fixes the law of the random
variable S™7. Indeed, since S™ is Gaussian under the law of the stationary process (as a linear
combination of Gaussian random variables &), its pdf P™" is completely determined by the mean s,
and variance afb of S™. A simple calculation based on (1.5) shows that afl = 25, whence it follows

that .
P"(s) = \/ﬁe—“—?nw@%, (1.18)

1 (1—-n 272
Sn = (S")gp = —— 1) =,
Sn = (5" s kBT<1+77n+)C

where we set

We conclude that

enr (@) = Ento(P™|P"7) = log/eO‘SP’”(s)ds = —a(l — a)sp,, (1.19)



Entropic fluctuations in thermally driven harmonic networks

and hence i
. _ _ 1 1-n2z
e(a) o nh~>ngo Eenﬁr(a) - —O[(l - Oé)S, s = kBiTmE

A direct calculation using (1.18) implies that, for any open set S C R,

Sn’l’ .
P |: € S:| ~ o T infses I(s) as n — 0o,
nr
where the rate function
(s —3)
I(s) = sup(as — e(—a)) = —
« 48

satisfies the fluctuation relation (1.17). The large-time symmetry function for S™7 is

Step 3: Relating the canonical entropic functional to a relevant dynamical or thermodynamical
quantity

Denoting by U; = z;/C the voltage and using (1.10), the work performed on the system by the
external current [ in the period |k7, (k + 1)7[is equal to

T T = =2
2t ZZ Z

= Idt = —Jdt=(1—-n)— — (1 — —n)=.
Wy /OUtd /oc'd ( 7))0 (1—71/m0 TI)C

Thus, we can rewrite

gnT 1 2 ( 7)+21—77T07+12§Zn+7720
=—|—(w, — W —— Wt -,
nt kT [1+n " 14+n7 nCr 1+n
where .
WwnT n— 52
= W™ =N " §W, W= =~ = RI*
Wn T kZ_O k> w <wn>st CT()

W™ is the work performed by the external current during the period [0, n7]. Accordingly, w, is
the average injected power and w is its expected stationary value. It follows from the first law of
thermodynamics that the heat dissipated by the resistor R in the thermostat during the interval [0, nT+
0[ is given by

nTt Z’?L 2(2) nt
< —‘<w‘w>+w ’

and so we may also write

SnT 1 2 _ l—nm_ 1 /(22 2z,+nz 22 — 22
= | D) 2 g (T e )
nt kT |1+n 1+nT n\Crt 1+n Ct(1+4n)
where o
qn = ) q:<QH>st:my
nr

denote the average dissipated power and its expected stationary value.
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Thus, up to a multiplicative and additive constant and a “small” (i.e., formally O(n~1)) correction,
S™ /nT is the time averaged power injected in the system by the external forcing and the time aver-
aged power dissipated into the heat reservoir during the time period [0, n7 + 0].

Step 4: Deriving a large deviation principle for physically relevant quantities

The problem encountered here stems from the fact that the relation between S* and a physically
relevant quantity (denoted by &) typically involves some “boundary terms”, which depend on the
state of the system at the initial time O and final time ¢. In cases where these boundary terms are
uniformly bounded as t — oo, one finds that & satisfies the same large deviation principle as S°.
This is what happens, for example, in strongly chaotic dynamical systems over a compact phase space
(e.g., under the Gallavotti-Cohen chaotic hypothesis); we refer the reader to [JPR, Section 10] for a
discussion of this case. However, unbounded boundary terms can compete with the tails of the law
of S*, which may lead to complications, as our example shows.

Given the Gaussian nature of w,,, it is an easy exercise to show that the entropic functional directly
related to work and defined by
Gy S 1 1 2Z zp+n2 1 2 o 1—n1_
=— —— — = (wy, — W) +2———w|,
nr nt nkpTCr 1+n kT |1+n

has a cumulant generating function which satisfies

. 1 —a@nT
nh—>Holo - log(e™ v )¢t = e(a),
for all @ € R. It follows that G} satisfies the very same large deviation estimates as S"7. However,
note that unlike function (1.19), the finite-time cumulant generating function log(e =%+ )y does not
satisfy the Gallavotti-Cohen symmetry (1.6). Only in the large time limit do we recover this sym-
metry. A simple change of variable allows us to write down the cumulant generating function of the
work W7,

€Work(OC) = lim 710g<e oW /kBT>St =« <1 - 2T/ZO> ]‘JBT'

We conclude that the work W7 satisfies the large deviations estimate

1 nTt
}P}’RT [ W

- c W ~ e—?’LT inwaW Iwork(w)
nrt /fBT :|

for all open sets VW C R with the rate function

1 w \? kT 27/
I == — .
The symmetry function for work is thus
27 /T
5vvork(w) = work(_w) - Iwork(w) = 1 /,qo2w

Note that, as the kick period 7 approaches zero, we recover the universal fluctuation relation (1.17),
i.e., Sywork (W) = w.

10
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Consider now the entropic functional

(G A B | 2Z zn + 2o zg — zg (1.20)
nt  nt  nkgT \Cr 1+n Cr(1+n) '
1 2 _ 1—777'07
= |2 (g, — D
k:BT[lJrn(q” 2 qu],

related to the dissipated heat. The explicit evaluation of a Gaussian integral shows that its cumulant
generating function is given by

1 a? ana +b ,
—asy e(a) — pyi [log <1 - 052> + n;la?’] if || < ap;

1 2
- st — n ap — &

log(e
nr

400 otherwise;

where a,, and b,, are bounded (in fact converging) sequences and

1 1+n

2 (1 =)z

Ay =

The divergence of the cumulant generating function for || > «, is of course due to the competition
between the tail of the Gaussian law p,, and the quadratic terms in G},

Note that the sequence o, is monotone decreasing to its limit

147
Qe = T7
and it follows that
1 nr e(a) if |o| < ag;
lim — log(e *®h" ) = () . . ’
n—0o NT +oo if o] > ac.

The unboundedness of the boundary terms involving zg and 22 in (1.20) leads to a breakdown of
the Gallavotti-Cohen symmetry for |ow — 3| > |ae — 1|. More dramatically, the limiting cumulant
generating function is not steep, i.e., its derivative fails to diverge as a approaches +a.. Under such
circumstances, the derivation of a global large deviation principle for nonlinear dynamical systems is
a difficult problem which remains largely open and deserves further investigations. For linear systems,
however, as shown in [JPS], it is sometimes possible to exploit the Gaussian nature of the process to
achieve this goal. Indeed, following the strategy developped in Section 3.4, one can show that G},"
satisfies a large deviation principle with rate function

I(s_)+ (s—s_)I'(s—) fors<s_;
Iy(s) = sup (as—e(—a)) =4 I(s) fors € [s_, s4];
I(s4)+ (s —s4)'(s4) fors> sy
where
5=~ =5, sy =—¢(—ac) = (2+ ).

Performing a simple change of variable, we conclude that the cumulant generating function of the
heat Q" satisfies

3 1 — nt
eheat(a) - nh—{go E 10g<e @ /kBT>st =

ework(@)  for |o] < 1;
+oo  for |af > 1.

11
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Figure 2: The symmetry functions (i.e., twice the odd part of the rate function) of work and heat for
the circuit of Figure 1 in the limit 7 — 0 (the unit on the abscissa is R1 2 JkBT).

The corresponding large deviations estimate reads

nt kgT

for all open sets @ C R with the rate function

+2

I - — eheat(—)) = I
heat(Q) sup (aq eheat( Oé)) h 1+?7q 1+n - kBT

lo|<1

( 2 l—7/70—nm7170 q )

which satisfies what is called in the physics literature an extended fluctuation relation [Fal, Fa2, ,
> V1, , HS, HR, NE] with the symmetry function

.
2t T 1 for 0 < g < —q_;
a9+ — q-
2 2
5heat(Q) = Iheat(_Q) - Iheat(Q) = —w for — qg— < q< q+;
d+ — g—
q+ +q- for g > q4;
where , N 5 5
RI 1-— RI 1-—
- =—"7" T 1), 4= 17— T 1),
/{TBT 7’/7’0 k‘BT 7‘/7’0

Thus, the linear behavior persists for small fluctuations |¢| < |g—|, but saturates to the constant values
F(g+ + g-) for |¢| > ¢4+, the crossover between these two regimes being described by a parabolic
interpolation. Note also that, as the kick period 7 approaches zero, g+ — (1 F 2)g/kgT. In this limit
the symmetry function spe,¢(¢) agrees with the conclusions of [ ] (see Figure 2). O

As this example shows, the main problem in understanding the mathematical status and physical
implications of fluctuation relations in oscillator networks and other boundary driven Hamiltonian
systems stems from the lack of compactness of phase space and its consequence: the unboundedness
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of the observable describing the energy transfers between the system and the reservoirs (i.e., the last
term in the right-hand side of Eq. (1.20)). We will show that one can achieve complete control of
these boundary terms by an appropriate change of drift (a Girsanov transformation) in the Langevin
equation describing the dynamics of harmonic networks. This change is parametrized by the maximal
solution of a one-parameter family of algebraic Riccati equation naturally associated to deformations
of the Markov semigroup of the system. For a network of NV oscillators, our approach reduces the
calculation of the limiting cumulant generating function of the canonical functional S and its per-
turbations by quadratic boundary terms to the determination of some spectral data of the 4N x 4N
Hamiltonian matrix of the above-mentioned Riccati equations. Combining this asymptotic informa-
tion with Gaussian estimates of the finite time cumulant generating functions, we are able to derive
a global large deviation principle for arbitrary quadratic boundary perturbations of S?. We stress that
our scheme is completely constructive and well suited to numerical calculations.

The remaining parts of this paper are organized as follows. In Section 2 we introduce a general class
of harmonic networks and the stochastic processes describing their nonequilibrium dynamics. Sec-
tion 3 contains our main results. There, we consider more general framework and study the large
time asymptotics of the entropic functional S? canonically associated to stochastic differential equa-
tions with linear drift satisfying some structural constraints (fluctuation—dissipation relations). We
prove a global large deviation principle for this functional and show, in particular, that it satisfies the
Gallavotti—-Cohen fluctuation theorem. We then consider perturbations of S? by quadratic boundary
terms and show that they also satisfy a global large deviation principle. This applies, in particular,
to the heat released by the system in the reservoirs. We turn back to harmonic networks in Section 4
where we apply our results to specific examples. Finally, Section 5 collects the proofs of our results.

Acknowledgements. This research was supported by the CNRS collaboration grant RESSPDE.
The authors gratefully acknowledge the support of NSERC and ANR (grants 09- BLAN-0098 and
ANR 2011 BSO01 015 01). The work of C.-A.P. has been carried out in the framework of the Labex
Archimede (ANR-11-LABX-0033) and of the A*MIDEX project (ANR-11-IDEX-0001-02), funded
by the “Investissements d’ Avenir” French Government programme managed by the French National
Research Agency (ANR). The research of AS was carried out within the MME-DII Center of Excel-
lence and supported by the RSF grant 14-49-00079.

2 The model

We consider a collection of one-dimensional harmonic oscillators indexed by a finite set Z. The
configuration space R” is endowed with its Euclidean structure and the phase space = = RZ @& R” is
equipped with its canonical symplectic 2-form dp A dq. The Hamiltonian is given by

=3 (p,q) — h(p,q) = 3|p|* + 3|wq|?, (2.1)

where | - | is the Euclidean norm and w : R — RZ is a non-singular linear map. Time-reversal of the
Hamiltonian flow of h is implemented by the anti-symplectic involution of = given by

0:(p,q) — (=p,q)- (2.2)

We consider the stochastic perturbation of the Hamiltonian flow of i obtained by coupling a non-
empty subset of the oscillators, indexed by 0Z C Z, to Langevin heat reservoirs. The reservoir coupled
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to the i*" oscillator is characterized by two parameters: its temperature ¥; > 0 and its relaxation rate
;> 0. We encode these parameters in two linear maps: a bijection ¥ : R%Z — R and an injection
v :RIZ — RT = RIZ ¢ RT\IT defined by

U (wi)icor — (Vitts)icot, v (ui)icar — (v 2vius)icaz @ 0.

The external force acting on the i oscillator has the usual Langevin form

Filp,q) = (2i0) 24 — vips, (2.3)

where the w; are independent white noises.

In mathematically more precise terms, we shall deal with the dynamics described by the following
system of stochastic differential equations

dq(t) = p(t)dt, dp(t) = — (2 p(t) + w*wq(t)) dt + w2 dw(t), (2.4)

where * denotes conjugation w.r.t. the Euclidean inner products and w is a standard R%Z-valued
Wiener process over the canonical probability space (W, W, W). We denote by {W;};>¢ the as-
sociated natural filtration.

To the Hamiltonian (2.1) we associate the graph G = (Z, £) with vertex set Z and edges

E={{i,j} CZ|(w'w)i; # 0}.
To avoid trivialities, we shall always assume that G is connected.

As explained in the introduction, we shall construct the canonical entropic functional of the process
(p(t),q(t)) and relate it to the heat released by the network into the thermal reservoir. We end this
section with a calculation of the latter quantity.

Applying Itd’s formula to the Hamiltonian h we obtain the expression

dh(p Z ’Yz v; ) dt + (27i)
1€0T

SIS

Di (t)dwi (t)

which describes the change in energy of the system. The i*" term on the right-hand side of this identity
is the work performed on the network by the i*" Langevin force (2.3). Since these Langevin forces
describe the action of heat reservoirs, we shall identify

1
(SQl(t) = (19Z — pi(t)2) dt + (2’}’&9@)5 ( )dwz( ) (2.5)
with the heat injected in the network by the i*! reservoir. A direct application of the fundamental
thermodynamic relation between heat and entropy leads to consider dS;(t) = —; '6Q;(t) as the

entropy dissipated into the i*" reservoir. Accordingly, the total entropy dissipated in the reservoirs
during the time interval [0, ¢] is given by the functional

Z/ 5Q1 / — (2992 pi(s)dwi (s >_’7i(1—?9i_1pi(8)2)d8>. (2.6)

1€0T 1€0L

For a lack of better name, we shall call the physical quantity described by this functional the thermo-
dynamic entropy (TDE), in order to distinguish it from various information theoretic entropies that
will be introduced latter.
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3 Abstract setup and main results

It turns out that a large part of the analysis of the process (2.4) and its entropic functionals is inde-
pendent of the details of the model and relies only on its few structural properties. In this section we
recast the harmonic networks in a more abstract framework, retaining only the structural properties of
the original system which are necessary for our analysis.

Notations and conventions. Let E and F be real or complex Hilbert spaces. L(E, F’) denotes the set
of (continuous) linear operators A : £ — F and L(F) = L(E,E). For A€ L(E,F), A* € L(F,E)
denotes the adjoint of A, ||A|| its operator norm, Ran A C F its range and Ker A C F its kernel.
We denote the spectrum of A € L(E) by sp(A). A is non-negative (resp. positive), written A > 0
(resp. A > 0), if it is self-adjoint and sp(A) € [0,00] (resp. sp(A) C]0,00]). We write A > B
whenever A — B € L(F) is non-negative. The relation > defines a partial order on L(E). The
controllable subspace of a pair (A, Q) € L(F) x L(F, E) is the smallest A-invariant subspace of E
containing Ran ). We denote it by C(A, Q). If C(A, Q) = E, then (A, Q) is said to be controllable.
We denote by C the open left/right half-plane. A € L(E) is said to be stable/anti-stable whenever
sp(A) C C+.

We start by rewriting the equation of motion (2.4) in a more compact form. Setting

1, % *
|p | —sut —w e 1
x—[wq}, A_[ i’ 0 ]’ Q_[O]ﬁ’ G-b

Eq. (2.4) takes the form
dz(t) = Az(t)dt + Qdw(t), (3.2)

and functional (2.6) becomes
t ¢
6! = —/ 971Q*x(s) - dw(s) + ;/ WL Q x(s)*ds — St tr(QU Q). (3.3)
0 0

Note that the vector field Ax splits into a conservative (Hamiltonian) part Qx and a dissipative
part —I"z defined by

Q:;(A—A*)z[g _5"} (3.4)
I'=-3(A+A%)=1iQv Q" (3.5)

These operators satisfy the relations
Q" =600 = -Q, I*=60re=r. (3.6)

The solution of the Cauchy problem associated to (3.2) with initial condition 2:(0) = x( can be written
explicitly as

t
z(t) = eag + / et =)4Qdw(s). (3.7)
0

This relation defines a family of =-valued Markov processes indexed by the initial condition ¢ € =.
This family is completely characterized by the data

(A,Q,9,0) € L(Z) x L(OE,E) x L(OE) x L(Z), (3.8)
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where = and 0 = are finite-dimensional Euclidean vector spaces and (A, @, ¥, 0) is subject to the
following structural constraints:

Ker (A — A")NKerQ* = {0}, A+ A*=-Qv'Q*, ¥>0, Q*Q>0,
(3.9)
0=0"=0"", 0Q=+Q, 0A0=A", [J,Q°Q]=0.

In the remaining parts of Section 3, we shall consider the family of processes (3.7), which are strong
solutions of SDE (3.2), associated with the data (3.8) satisfying (3.9).

Remark 3.1 The concrete models of the previous section fit into the abstract setup defined by (3.2),
(3.8), and (3.9) with Ker (A — A*) = {0} and 6Q = —@Q. We have weakened the first condition and
included the case 0Q) = +(@ in (3.9) in order to encompass the quasi-Markovian models introduced
in [ , ]. There, the Langevin reservoirs are not directly coupled to the network, but to
additional degrees of freedom described by dynamical variables » € R, where 7 is a finite set. The
augmented phase space of the network is Z = RY @ RT @ RZ, and 0= = R7. The equations of
motion take the form (3.2) with

r —%LL* —A* 0 L )
r = b ) A= A 0 —w* ) Q = 0 1957
wq 0 w 0 0

where ¢ : RY — RY is bijective and A : RY — RZ injective. The time reversal map in this case is
given by

I 0 0
0=10 -1 O
0 0 I

Writing the system internal energy as H(z) = 3|p|? + 3|wg|? + |r|?, the calculation of the previous

section yields the following formula for the total entropy dissipated into the reservoirs
&+ Lo zr(t)2 — L2 (0))%, (3.10)

where &' is given by (3.3).

Let P (=) be the set of Borel probability measures on = and denote by P!(z, - ) € P(Z) the transition
kernel of the process (3.7). For bounded or non-negative measurable functions f on = and v € P(2)
we write

v(f) = / f@w(dr),  fi=Pif = / P dy)f(y), =P = / v(dy) PH(y, -),

so that v(f;) = 1+(f). A measure v is invariant if 4 = v for all ¢ > 0. We denote the actions of
time-reversal by B
f=0Of=fo, v=v0=vof,

so that v(f) = 7(f). A measure v is time-reversal invariant if 7 = v. The generator L of the Markov
semigroup P! acts on smooth functions as

L=1V-BV+Az-V, (3.11)
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where

B =QQ". (3.12)
We further denote by P, the induced probability measure on the path space C(R™, =) and by E,,
the associated expectation. Considering = as a random variable, independent of the driving Wiener
process w and distributed according to v € P(E), we denote by P, and E, the induced path space
measure and expectation. In the language of statistical mechanics, functions f on = are the observ-
ables of the system, v is its initial state, and the flow ¢ — 1, describes its time evolution. Invariant
measures thus correspond to steady states of the system.

The following result is well known (see Chapter 6 in the book [ ] and the papers [EZ, 1). For
the reader convenience, we provide a sketch of its proof in Section 5.1.

Theorem 3.2 (1) Under the above hypotheses, the operator
o0
M = / A Be*A ds
0

is well defined and non-negative, and its restriction to Ran M satisfies the inequality
Umin = minsp(v) < M’RanM < maxsp(9¥) = Umax- (3.13)

Moreover, the centred Gaussian measure |, with covariance M is invariant for the Markov pro-
cesses associated with (3.2).

(2) The invariant measure y is unique iff the pair (A, Q) is controllable. In this case, the mixing
property holds in the sense that, for any f € L'(Z,du), we have

Jim P'f = u(f),

where the convergence holds in L*(Z, dyu) and uniformly on compact subsets of =.

(3) Ler x(t) be defined by relation (3.7), in which the initial condition x is independent of w and is
distributed as p. Then x(t) is a centred stationary Gaussian process. Moreover, its covariance
operator defined by the relation (1, K (t, s)n2) = E, { (2( z(s),m2) } has the form

K(t,s) = e(t_S)JFAMe(t_S)*A*. (3.14)

Remark 3.3 In the harmonic network setting, if 9 = J¢I for some ¥y €]0, oo (i.e., the reservoirs
are in a joint thermal equilibrium at temperature 1), then it follows from (3.13) that M = 9, which
means that p is the Gibbs state at temperature 1y induced by the Hamiltonian h.

In the sequel, we shall assume without further notice that process (3.7) has a unique invariant mea-
sure [, i.e., that the following hypothesis holds:

Assumption (C) The pair (A, Q) is controllable.

Remark 3.4 To make contact with [ ], note that in terms of Stratonovich integral the TDE func-
tional (3.3) is given by

/0 1Q*x(s) o dw(s /19 LQ*x(s)|*ds.

This identity is a standard result of stochastic calculus (see, e.g., Section 1.7 in [Pr]) and is used as a
definition of the entropy current in [ 1.
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3.1 Entropies and entropy production

In this section we introduce information theoretic quantities which play an important role in our
approach to fluctuation relations. We briefly discuss their basic properties and in particular their
relations with the TDE &¢.

Let v1 and v, be two probability measures on the same measurable space. If v is absolutely continu-
ous W.L.t. 1o, the relative entropy of the pair (1, 12) is defined by

d
Ent(v|1va) = — /log (dZD du;.

We recall that Ent (v |v2) € [—00, 0], with Ent(v|ve) = 0iff 11 = 14 (see, e.g., [OP]).

Suppose that vy and v, are mutually absolutely continuous. For @ € R, the Rényi [Re] relative

Oé—CIltI'Opy of the pair (1/1, 1/2) is
Nl (V1 |V2) = 108 e Vy.
! dl/jz

The function R 3 a — Ent, (v1]v2) €] — 00, 00] is convex. It is non-positive on [0, 1], vanishes for
a € {0, 1}, and is non-negative on R\]0, 1]. It is real analytic on ]0, 1] and vanishes identically on
this interval iff 2y = 1. Finally,

Enty_q(v1|v2) = Entq (v2|vr) (3.15)
for all & € R.

Let v € P(Z) be such that v(|z|?) < oo (recall that in our abstract framework the Hamiltonian is
h(z) = 3|z|?). The Gibbs—Shannon entropy of v, = vP! is defined by

d
Sas(v) = —/log (divt) vy (dz). (3.16)

The Gibbs—Shannon entropy is finite for all ¢ > 0 (see Lemma 5.4 (1) below) and is a measure of the
internal entropy of the system at time ¢.

To formulate our next result (see Section 5.2 for its proof) we define

PL(E) = {1/ € P(2)

1 2
/62””3“ v(dz) < oo for some m > 0 and a € E} .
Note that any Gaussian measure on = belongs to P (Z).

Proposition 3.5 Let a non-negative operator 3 € L(Z) be such that'

BR=Qu~",  089=0p. (3.17)
Define the quadratic form
og(z) = 3z -Sgz,  Xg=[Q,4, (3.18)
and a reference measure g on = by
d 1
%(m) — e 3187, (3.19)

Then the following assertions hold.

' An operator 3 satisfying (3.17) always exists. For instance, one can define 3 by the relations Sz = Q¥ 'y if z = Qy
for some y € 9= and Sz = z if x L Ran Q.
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() pug® = pg and Oog = —og.

(2) Let LP denote the formal adjoint of the Markov generator (3.11) w.r.t. the inner product of the
Hilbert space L*(Z, j13). Then

OLPO = L + op. (3.20)
(3) The TDE (3.3) can be written as
t d d
& = —/ o5(z(s))ds + log 22 (x(t)) — log —2 (2(0)). (3.21)
0 dx dx

—_
—

(4) Suppose that Assumption (C) holds. Then for any v € P, (Z) the de Bruijn relation

d . dv.
&Ent(ytm) = 11(|Q*Vlog d—'ut|2) (3.22)

holds for t large enough. In particular, Ent(v|p) is non-decreasing for large t.

(5) Under the same assumptions

d 0 — 1, (10 dw o
a7 (Ses() + B/ (&) = 5u(1Q"Vlog 3 %) (3.23)

holds for t large enough.

Remark 3.6 Part (2) states that our system satisfies a generalized detailed balance condition as de-
fined in [ ] (see also [BL]).

Let us comment on the physical interpretation of Part (3) in the harmonic network setting. Let
T = UgexZy be a partition of the network and denote by 7 the orthogonal projection on RZ with
range R7*. Defining

hi(p,q) = %’MP\Q + %|W7TkQI27 Uk,l(Q) = %Q‘ (mpw*wm + mw*wmy)g,

for k,1 € K, we decompose the network into | K| clusters Ry with internal energy hy, interacting
through the potentials vy, ;. Denote by

hie(p,q) = hi(p, @) + 5 Y vka(q)
I£k
the total energy stored in R;. Assume that all the reservoirs attached to Ry, if any, are at the same

temperature, i.e.,
1 €L, NOT = I my, = 9wy, (3.24)

and for k € K let 8 > 0 be such that 5, = 29;1 whenever ¢ € Z;, N 07 (see Figure 3). Defining the
non-negative operator (5 by

3o Br =Y Behi(p.q), (3.25)

keK

we observe that (3.17) holds as a consequence of (3.24) and the time-reversal invariance of Bk. The
corresponding reference measure fig is, up to irrelevant normalization, a local Gibbs measure where
each cluster Ry, is in equilibrium at the inverse temperatures .
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1t6’s formula yields the local energy balance relation

dhg(2(t) = —1p(t) - (mw'w — w'wm)g(t)dt + > 0Qu(t), (3.26)
1€ NOT

where §Q;(t) is given by (2.5). The last term on the right-hand side of this identity is the total heat
injected into subsystem R, by the reservoirs attached to it. Thus, we can identify

= ik(t),  jeoi(t) = ip(t) - (mewwm — mwtwm)g(t),
1£k

with the total flux of energy flowing out of Ry into its environment which is composed of the other
subsystems ;. Multiplying Eq. (3.26) with 3}, summing over k, integrating over [0, t] and com-
paring the result with (2.6) we obtain

dpg dpg
=3 [ w0+ tog L2 (1) — 1o 2 a(0).
ek
Comparison with (3.21) yields
= Biik(t) = 3> _(Br — B)ir—ni(1),
keK ey

which, according to the heat-entropy relation, is the total inter-cluster entropy flux. Two different
ways of partitioning the system and assigning reference local temperatures to each subsystems leads
to total entropy dissipation which only differs by a boundary term

oa(e(t)) — o (e(t) = 3 Bin(t) = 3 Ak(t) = > log 2 (o(t)),

keK keK’ dpgr

provided the local inverse temperatures [, 3}, are consistent with the temperatures of the reservoirs.

Eq. (3.23) can be read as an entropy balance equation. Its left-hand side is the sum of the rate of
increase of the internal Gibbs—Shannon entropy of the system and of the TDE flux leaving the sys-
tem. Thus, the quantity on the right-hand side of Eq. (3.23) can be interpreted as the total entropy
production rate of the process. Using Egs. (3.16) and (3.21), we can rewrite Eq. (3.23) as

d d dv,
FEED(w )] = vi(=0p) + T Ent(lug) = §14(1Q7V log dﬂ; ), (3.27)
where the entropy production functional Ep is defined by
t du dv
Bp(v.8) = ~ [ oa(als))ds — log 3 (a(0) +1og 1 - (2(0)
0 g g (3.28)
dy, V¢ dv

=6'-1 +1 0)).
Ogd(()) Ogd(())
In the physics literature, the quantity

dv,
gstoch(t) = - IOg T;(x(t))a
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O
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o

Figure 3: A partition of the network. Black disks represents heat reservoirs. In this situation one has,
ﬁl_l = = Vs, 52_1 =19y =95 = Vs, ﬂ4_1 =15. B3 > 0 and S5 > 0 arbitrary.

is sometimes called stochastic entropy (see, e.g., [Se, Section 2.4]). In the case v = u, i.e., for the
stationary process, stochastic entropy does not contribute to the expectation of Ep(u, t), and Eq. (3.28)
yields

1 1
;Eu[Ep(u,t)] = gIEM[Gt] = —u(op), (3.29)
so that (3.27) reduces to
dp
1 * 2
—u(op) = su(|Q*V log —1*), (3.30)
(75) = $u( ik

where the right-hand side is the steady state entropy production rate. In the following, we set

ep = —u(og). (3.31)

By (3.29) this quantity is independent of the choice of 8 € L(E) satisfying Conditions (3.17). The
relation (3.30) shows that ep > 0. Computing the Gaussian integral on the right-hand side of (3.30)
yields

ep = 2r(@H(MQ — QU M~ (MQ — QO)9™ ") = LM~ (MQ — Q)92 |3, (3.32)

where || - ||2 denotes the Hilbert-Schmidt norm. Thus, ep > 0 iff M @Q — Q¥ # 0. By Remark 3.3,
the latter condition implies in particular that the eigenvalues of ¢ (i.e., the temperatures v;) are not all
equal. Part (2) of the next proposition provides a converse. For the proof see Section 5.3.

Proposition 3.7 (1)
ep=0&MQ=QV < [Q M =0< ub = pu.

In particular, the steady state entropy production rate vanishes iff the steady state i is time-

reversal invariant and invariant under the (Hamiltonian) flow etf,
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(2) Let 91,92 be two distinct eigenvalues of ¥ and denote by w1, wo the corresponding spectral pro-
jections. If C(Q, Qm1) N C(Q, Qma) # {0}, then ep > 0.

Remark 3.8 The time-reversal invariance u® = p of the steady state is equivalent to MO = M.
For Markovian harmonic networks, the latter condition is easily seen to imply

i.e., the statistical independence of simultaneous positions and momenta. In the quasi-Markovian
case, 0M6 = M implies

w(pig;) = p(pirk) = plgre) =0, (i,j €L, ke J).

3.2 Path space time-reversal

Given 7 > 0, the space-time statistics of the process (3.7) in the finite period [0, 7] is described
by (X7, X7,P7), where P, is the measure induced by the initial law v € P(Z) on the path-space
X™ = C([0,7],Z) equipped with its Borel o-algebra X7. Path space time-reversal is given by the
involution

Oz = {x(t)}tE[O,‘r] = & = {0x(T - t)}te[O,T]
of X7. The time reversed path space measure IET, is defined by
Pl =P oO".
Since

Ej[f(x(0))] = E][f(0x(r))] = vPTO(f), (3.33)

f”; describes the statistics of the time reversed process & started with the law v P7©. It is therefore
natural to compare it with [P} ., 5. The following result (proved in Section 5.4) provides a connection
between the functional Ep( -, 7) and time-reversal of the path space measure.

Set

ey

Ph(®) = {cePE)| 5

' dc‘ Lloc ‘—‘adx)}

Proposition 3.9 Forany 7 > 0 and any v € P (), ]@Z is absolutely continuous w.r.t. P}, . o and

d}P’T d d
log v~ = Ep(v,7) 007 = —67 — log dI;T (62(0)) + log é(ex(f)). (3.34)
Remark 3.10 The above result is a mathematical formulation of [ , Section 3.1] in the frame-
work of harmonic networks. Rewriting (3.34) as
dP;, . dv dv;
log W =Ep(v,7) = & + log a(x(O)) — log E(fc(ﬂ)a
we obtain Eq. (3.12) of [ ]. Proposition 3.9 is a consequence of Girsanov formula, the generalized

detailed balance condition (3.20), and the fact that the time-reversed process & is again a diffusion.
Apart from the last fact, which was proven in [PH], the main technical difficulty in its proof is to check
the martingale property of the exponential of the right-hand side of (3.34).
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Remark 3.11 It is an immediate consequence of Eq. (5.13) below that vP7 € ”Pﬁ)C(E) for any v €
P(Z) and T > 0.

Equipped with Eq. (3.34) it is easy to transpose the relative entropies formulas of the previous section
to path space measures. As a first application, let us compute the relative entropy of P’/ o w.r.t. P

T |7 T ~7V- T dﬁﬁ’/— dPZ@
Ent(P}|P7g) = E; |—log P =E] |—log P g + log ETZ
n vPT vPT

d
=E] I:—Ep(l/, 7)o O + log i

A (62(0))| = B (B0 7))+ But(v- ).
If v € P () then (3.27) yields

~ T . dy,
~Ent BB pro) = E [Ep(v 7)) = § [ 0(1Q"Vlog TP,
0

which, according to the previous section, is the entropy produced by the process during the period
[0, 7]. Setting v = p, we obtain N
~Ent(B}[Ple) = ep(u)r.

Together with Proposition 3.7 (1), this relation proves
Theorem 3.12 The following statements are equivalent:

(1) IP; 00T = IP’; forall T > 0, i.e., the stationary process (3.7) is reversible.
(2) P, 0O =P}, for some T > 0.

3) ep=0.

3.3 The canonical entropic functional

We are now in position to deal with the first step in our scheme: the construction of the canonical
entropic functional S™ associated to (X7, X7, Py, ©7). By Proposition 3.9, Rényi’s relative c-entropy

per unit time of the pair (P}, IF’;),
Ento(P7[PT) = log E, [e™*%"],

is the cumulant generating function of

dP7, du du
T = 1 ~'u = T — 1 - 1 N . :
S og i S g = (0x(7)) + log 1o (z(0)) (3.35)
In the following, we shall set
1 -
er(a) = - logE, [e™*"], (3.36)

which, by construction, satisfies the Gallavotti-Cohen symmetry e, (1 — «) = e, ().

Before formulating our main result on the large time asymptotics of e, («), we need several technical
facts which will be proved in Section 5.5.
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Theorem 3.13 Suppose that Assumption (C) holds.

)

2)

3)

“4)

24

For B € L(Z) satisfying Conditions (3.17), the map
Rowr Bw)=Q*(A* —iw) ' S5(A +iw)1Q (3.37)

takes values in the self-adjoint operators on the complexification of O=. As such, it is continuous
and independent of the choice of 5.

Set

1 1
e_ = minminsp(F(w)), £+ = maxmaxsp(E(w)), Ke=— — =.
weR weR e 2

The following alternative holds: either k. = oo in which case E(w) = 0 for all w € R, or
%</<cc<oo,5_<0,0<€+<1,and

1 1
— +—=1.
E_ E4

Set Jc =]3 — e, 5 + ke[=], i[ The function

e(a) = — /OO logdet (I — aF(w)) i—: (3.38)

—0o0

is analytic on the cut plane €. = (C\ R) U J,. It is convex on the open interval 3. and extends to
a continuous function on the closed interval J.. It further satisfies

e(l—a)=-ec(a) (3.39)

forall o € €,
e(a) <0 fora€[0,1];

e() 20 fora €T3:\]0,1];

and in particular e(0) = e(1) = 0. Moreover

and either ep = 0, k. = 0o, and e(a) vanishes identically, or ep > 0, k. < o0, e(a) is strictly
convex on 3., and
lim €'(a) = —o0, lim €'(a) = +o0. (3.40)

a\l/%_ﬁc OCT%-F,‘{C

Ifep > 0, then there exists a unique signed Borel measure s on R, supported on R\ 3., such that
d
JECED
7]
e(a) = — /log (1 - g) ¢(dr).
T

and
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(5) For a € R define

_ | —Aa QQ7
Ka_[ ol ] (3.41)

where
Ay =(1—a)A—aA*,  Cy=a(l—a)Qv Q" (3.42)

Forall w € R and o« € R one has
det(K, — iw) = | det(A + iw)[* det(I — aE(w)).

Moreover, for a € J,

e(a) = Jtr(@'Q") =1 Y [ReAmy, (3.43)

A€sp(Ka)

where my, denotes the algebraic multiplicity of X € sp(K,).

Remark 3.14 We shall prove, in Proposition 5.5 (11), that

_ 1 ﬂmax + ﬁmin

N 5 rlgmax - ﬁmin ' (344)

Ke 2

R0
This lower bound is sharp, i.e., there are networks for which equality holds (see Theorem 4.2 (3)).

Remark 3.15 It follows from (3.44) that k. = co for harmonic networks at equilibrium, i.e., when-
ever Umin = Ymax = Yo > 0. Up to the controllability assumption of Proposition 3.7 (2), these are
the only examples with k. = oo (see also Remark 5.6 and Section 4).

Remark 3.16 Remark 2 after Theorem 2.1 in [JPS] applies to Part (4) of Theorem 3.13.

In the sequel it will be convenient to consider the following natural extension of the function e(«).
Definition 3.17 The function

R > aw— e(a) € — oo, +00]
is given by (3.38) for & € J. and e(a) = +o0 fora € R\ J..

This definition makes R > « +— e(«) an essentially smooth closed proper convex function (see [Ro]).

The main result of this section relates the spectrum of the matrix K, through the function e(«), to
the large time asymptotics of the Rényi entropy (3.36) and the cumulant generating function of the
canonical entropic functional S*.

Proposition 3.18 Under Assumption (C) and with Definition 3.17 one has

lim e, (a) = e(a), (3.45)

T—00

forall o« € R.
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A closer look at the proof of Proposition 3.18 in Section 5.7 gives more. For any € = and « € J,.

lim E, {efaS"'—‘re(a)] _ fa(x> _ coéeféa:-Ta:z:7
T—00

see [MT, Section 20.1.5] and references therein. The functions o — ¢,, € [0, 00[and o — T, € L(E)
are real analytic on J., continuous on J., ¢, > 0 for o € J., and T, > M~ for a € J... Moreover,
the convergence also holds in L'(Z, du) and is exponentially fast for o € J.. For a € J. and as
T — 00, one has

er(0) = e(0) + 2g7(0) = e(@) + = (log u(f) + Oe~)).

where e(a) > 0 for a € J.. However, ¢, vanishes on 9J. and hence the "prefactor" g,(«) diverges
as a — 0J.. Nevertheless, (3.45) holds because

oo = Jim B Zorlo) # lim Jim Zo.0) =0
Like in our introductory example, the occurrence of singularities in the "prefactor" g,(«) is related
to the tail of the law of S?. This phenomenon was observed by Cohen and van Zon in their study
of the fluctuations of the work done on a dragged Brownian particle and its heat dissipation [ ]
(see also [ , Vi] for more detailed analysis). In their model, which is closely related to ours, the
cumulant generating function of the dissipated heat e, (o) diverges for a? > (1 — e~27)~! and hence

lim e,(a) = +oo for |a] > 1.
T—00

This leads to a breakdown of the Gallavotti-Cohen symmetry and to an extended fluctuation relation.
We will come back to this point in the next section and see that this is a general feature of the TDE
functional &¢ (see Eq. (3.64) below). Proposition 3.18 and Theorem 3.13 (3) show that the canonical
entropic functional S? does not suffer from this defect: its limiting cumulant generating function e(c)
satisfies Gallavotti-Cohen symmetry for all o € R.

3.4 Large deviations of the canonical entropic functional

We now turn to Step 2 of our scheme. We recall some fundamental results on the large deviations
of a family (&;)¢>0 of real-valued random variables (the Gértner-Ellis theorem, see, e.g., [dH, Theo-
rem V.6]). We shall focus on the situations relevant for our discussion of entropic fluctuations. We
refer the reader to [dH, DZ] for more general exposition.

By Holder’s inequality, the cumulant generating function
1
R>a— Aa) = : log E[e®*] €] — 00, o0],

is convex and vanishes at @ = 0. It is finite on some (possibly empty) open interval and takes the
value 400 on the (possibly empty) interior of its complement.

Remark 3.19 The above definition follows the convention used in the mathematical literature on large
deviations. Note, however, that in the previous section we have adopted the convention of the physics
literature on entropic fluctuations where the cuamulant generating function of an entropic functional &,
is defined by o~ t~!logE[e~@]. This clash of conventions is the origin of various minus signs
occurring in Theorems 3.20 and 3.28 below.
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The function

R > a— A(a) = limsup Ay(a) = lim sup Ag(a) € [—00, 0]
t—oo =00 g>¢

is convex and vanishes at & = 0. Let D be the interior of its effective domain {« € R| A(«) < oo},
and assume that 0 € D. Then D is a non-empty open interval, A(a) > —oo for all @ € R, and the
function D > o — A(«) is convex and continuous. The Legendre transform

A*(z) = sup(az — A(a)) = sup (ax — A(a))
aeR a€D

is convex and lower semicontinuous, as supremum of a family of affine functions. Moreover, A(0) = 0
implies that A* is non-negative. The large deviation upper bound

1 1
liiiigp glogP [t& € C’] < —IIIGIEA*(ZE) (3.46)
holds for all closed sets C' C R.

Assume, in addition, that on some finite open interval 0 € Dy =]a_, a4 [C D the function Dy >
a +— A(«) is real analytic and not linear. Then A is strictly convex and its derivative A’ is strictly
increasing on Dy. We denote by x+ the (possibly infinite) right/left limits of A’(«) at & = as. By
convexity,

A(Oz) > A(Oéo) + (a — ao)Al(ao) (3.47)

for any ag € Dp and o € R, and
Alar)>Ar = lim  Aa).

Since A* is non-negative, it follows that A*(A’(0)) = 0. One easily shows that (3.47) also implies

A (z) = Sup (az — Aa))

forx € E =|z_, x4 ]. If the limit
lim A¢(o)
t—o0

exists for all & € Dy, then it coincides with A(«), and the large deviation lower bound

1 1
o1 1 N X .
llggftlogp[tfteO] > mel(l)lgEA (z) (3.48)
holds for all open sets O C R. Note that in cases where x_ = —oo and x4 = +oco one has £ = R

and convexity implies A(a) = oo fora € R\ [a—, a].

We shall say that the family (&;)¢>0 satisfies a local LDP on E with rate function A* if (3.46) holds
for all closed sets C' C R and (3.48) holds for all open sets O C R. If the latter holds with ¥ = R,
we say that this family satisfies a global LDP with rate function A*.

By the above discussion, Proposition 3.18 and Theorem 3.13 (3) immediately yield:

Theorem 3.20 Suppose that Assumption (C) holds. Then, under the law P, the family (S%)¢>0 satis-
fies a global LDP with rate function (see Figure 4)

I(s) = sup (as —e(—aq)). (3.49)

—a€J,
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1 %-‘rlﬁlg ep

Figure 4: The cumulant generating function e(«) and the rate function I(s) for the canonical entropic
functional of a harmonic network satisfying Assumption (C) and ep > 0. Notice the bias due to the
symmetry [(—s) = I(s) + s.

It follows from the Gallavotti-Cohen symmetry (3.39) that the function R > s +— I(s) + 15 € [0, 00]
is even, i.e., the universal fluctuation relation
s(s) =1I(—s)—I(s) =s, (3.50)

holds for all s € R.

Remark 3.21 If ep > 0, then the strict convexity and analyticity of the function e(«) stated in The-
orem 3.13 (3) imply that the rate function I(s) is itself real analytic and strictly convex. Denoting by
s — {(s) the inverse of the function o — —e’(—a), we derive

I(s) = st(s) — e(~L(s)),  I'(s) = (),

and the Gallavotti—-Cohen symmetry translates to ¢(—s) + £(s) = —1.

3.5 Intermezzo: A naive approach to the cumulant generating function of &'

Before dealing with perturbations of the functional S, we briefly digress from the main course of our
scheme in order to better motivate what will follow. We shall try to compute the cumulant generating
function of the TDE functional &! by a simple Perron-Frobenius type argument.

By Itd calculus, for any f € C?(Z) one has

d(e= f(a () = e [(Laf) (@()dt + (Q(VF)(@(t) + a9~ Qx(t) f(x(t))) - dw(®)]

where
L, = % (V BV +2A,x-V —2-Cupx + oztr(Qﬁ_lQ*))
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is the deformation of the Fokker-Planck operator (3.11), and A,, B, C, are given by (3.12), (3.42).
Note that the structural relations (3.9) imply

©L.O = L] (3.51)

1—a»

where L7, denotes the formal adjoint of L,. Assuming L, to have a non-vanishing spectral gap, a
naive application of Girsanov formula leads to

E, [e—aet} — p(etla1) = oo <M(\1za) / Uy _o(z)de + 0(1)> (= o0). (3.52)

where W, is the properly normalized eigenfunction of L, to its dominant eigenvalue \,. It follows
that

. 1 _ Gt
Jim 7 log eS| = Ao,
the Gallavotti—-Cohen symmetry A\;_, = A, being a direct consequence of (3.51).

Given the form of L., the Gaussian Ansatz
1
\I’Q(ZL‘) e—§ac~Xaac

is mandatory. Insertion into the eigenvalue equation L, V¥, = A,V leads to the following equation
for the real symmetric matrix X,

XoBXy — XaAa — AL X, — Co, =0, (3.53)
while the dominant eigenvalue is given by
Ao = 3 (atr(QV'Q*) — tr(BX,)) . (3.54)

There are two difficulties with this naive argument. The first one is that it is far from obvious that
Girsanov theorem applies here. The second one is again related to the "prefactor” problem. In fact
we shall see that Eq. (3.53) does not have positive definite solutions for o < 0, making the right-hand
side of (3.52) infinite for & > 1. Nevertheless, the above calculation reveals Eq. (3.53) and (3.54)
which will play a central role in what follows.

3.6 More entropic functionals

In this section we deal with step 3 of our scheme. The main result, Proposition 3.22 below, concerns
the large time behavior of cumulant generating functions of the kind

RS a gila) =~ logE, [e-ols' +#E)-¥@)]
t
where ® and W are quadratic forms on the phase space =,
®(z) =iz Fz, U(z) = 32 - Gu, (3.55)

and the initial measure v € P(Z) is Gaussian. We then apply this result to some entropic functionals
of physical interest:
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(1) The steady state TDE (recall Eq. (3.35)),

t_ ot dp e
&' =5"+log dm(ex(t)) log dw(:zr(O)), (3.56)

with v = p.
(2) The steady state TDE for quasi-Markovian networks (3.10) which we can rewrite as
&in = 6" + Lo 2 mga(t))? — $197 P rqa(0)?, (3.57)
where ¢ denotes the orthogonal projection to Ran @ = 0=, with v = p.

(3) Transient TDEs, i.e., the functionals &* and GZM, but in the transient process started with a Dirac
measure v = Og,.
(4) The steady state entropy production functional

du®
Bp(p, 1) = 8 +log = = (a(0)

with v = p.

(5) The canonical entropic functional for the transient process, started with the non-degenerate Gaus-
sian measure v € P(2),

dpt dp? dpt dpt dv dv
Sf,:lo Y = log —% +1o YV _log —=% = St —log — (0z(t)) + log — (2(0)).
gdPZ ngPZ ngPL ngP’,ﬂ gdu( (1) gdu( (0))

To formulate our general result, we need some facts about the matrix equation (3.53).
Define amap R, : L(E) — L(Z) by

Ra(X)=XBX — XA, — A, X — Cl,, (3.58)
where A,, B and C,, are defined by (3.12) and (3.42). The equation R, (X) = 0 is an algebraic

Riccati equation for the unknown self-adjoint X € L(Z). We refer the reader to the monographs [I.R,
] for an in depth discussion of such equations.

A solution X of the Riccati equation is called minimal (maximal) if it is such that X < X' (X > X')
for any other solution X’ of the equation. We shall investigate the Riccati equation in Section 5.6. At
this point we just mention that, under Assumption (C), it has a unique maximal solution X, for any
a € 7., with the special values

Xo =0, X, =0M~1o. (3.59)

Proposition 3.22 Suppose that Assumption (C) is satisfied and let v be the Gaussian measure on =
with mean a and covariance N > 0. Denote by P, the orthogonal projection on Ran N and by N the
inverse of the restriction of N to its range. Let F, G € L(Z) be self-adjoint and define ®, ¥ by (3.55).

(1) Fort > O the function
RS a o gi(a) = = log By [e-o(5+ @)~ 0)
t

is convex. It is finite and real analytic on some open interval 3, =]a_(t), a4 (t)[> 0 and infinite
on its complement. Moreover, the following alternatives hold:
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e Either a_(t) = —o0 orlim, o _ (1) gi(a) = —o0.

e Either a,(t) = +o0 or limapa, (1) gi(ar) = +o0.

(2) Set
I, ={a€T.|0X1_ o+ (X1 + F) >0},
I_={a €T, |N+P,(Xo — (G +0X10))|rann > 0},
with the proviso that 3_ = J. whenever N = 0. Then Joo = J_ N3 is a (relatively) open

subinterval of J.. containing 0.
(3) If X1 + F > 0 and either N = 0 or N + P,(X1 — 0X10 — G)|ran n > 0, then [0,1] C Juo.
(4) For a € J one has
lim g;(a) = e(a). (3.60)

t—o0

(5) Seta— =infJo < 0and ay = supJee > 0. Then,

Jim ax(t) = ax, (3.61)
and for any o € R\ [a—, oy},
tle gt(a@) = +o0. (3.62)

Remark 3.23 The existence and value of the limit (3.60) for a € 07 is a delicate problem whose
resolution requires additional information on the two subspaces

Ker (0X1_00 4+ a(X1 + F)), Ker (N + P,(Xo — a(G + 0X10))|ran v)

at the points o € 9J. Since, as we shall see in the next section, this question is irrelevant for the
large deviations properties of the functional S + ®(z(¢)) — ¥(z(0)), we shall not discuss it further.

Remark 3.24 We shall see in Section 5.6 that the maximal solution X, of the Riccati equation is
linked to the function e(«) through the identity e(a) = A,, where A, is given by Eq. (3.54). Thus,
the large time behavior of the function « — g¢(«) is completely characterized by the maximal solu-
tion X, through this formula and the two numbers a+. Riccati equations play an important role in
various areas of engineering mathematics, e.g., control and filtering theory. For these reasons, very
efficient algorithms are available to numerically compute their maximal/minimal solutions. Hence,
our approach is well designed for numerical investigation of concrete models.

Steady state dissipated TDE According to Eq. (3.56) and (3.59), the case of TDE dissipation in
the stationary process corresponds to the choice

N=06x0, F=-X,, G=-0X10,
and it follows directly from Proposition 5.5 (2) and (4) below that

I ={a€Te|Xi—a >0} = [ — ke, 1[.
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Setting o~ = inf{a € J. | X4 4+ 0X160 > 0}, we have either a_ €]1 — k., 0[ and
Joo Z]Oé_, 1[7
or av_ :%—mcand
Joo = [, 1].
Suppose that % — ke < —landlet a € [% — K¢, —1]. From Proposition 5.5 (10) we deduce that
Xo < aXy. Since X1 = M 16 > 0, it follows that
Xo+60X10 <aX,+60X10=a(X; —0X10)+ 1+ )X 10 < a(0M9— M1, (3.63)

Observe that the right-hand side of this inequality is odd under conjugation by 6. Moreover, Proposi-
tion 3.7 (1) implies that it vanishes iff ep = 0. It follows that sp(X,, + 6X160)N] — oo, 0] # . Thus,
we can conclude that one always has ;. = 1 and a— > —1, with strict inequality whenever ep > 0.
By Proposition 3.22,
1 . e(a) fora €la_, 1]
etpEst(@) = lim ~logE,[e™*®'] = (3.64)
st(c) Pareiin ul ] +oo fora ¢ a_,1].

An explicit evaluation of the resulting Gaussian integral further shows that

_ 1 -Gt _ 1 —1yx
eTDE,st(l) = tlirgo Zlog E#[e ] = 5’61“(@?9 Q ) > 0.
The Gallavotti-Cohen symmetry is broken in the sense that it fails outside the interval ]0, 1], in par-
ticular erpg gt (0) = e(0) = 0 < erprst(1). Note also that
liminf erprsi (@) = e(1) = 0 < erprst(1) < limsup erpg g (o) = +00,
a—1 a—1

i.e., the limiting cumulant generating function for TDE dissipation rate in the stationary process is
neither lower semicontinuous nor upper semicontinuous.

Remark 3.25 We shall see in Section 5.6 (see Remark 5.6) that in the case of thermal equilibrium,
i.e., ¥ = Yol for some ¥y €]0, 00|, one has X, = adgl and hence X_; + 6X16 = 0. Thus, in this
case, a— = —1 and since e(«) vanishes identically by Proposition 3.13 (3),
0 for |a| < 1
eTpEst(a) = {
+oo for o] > 1.

Remark 3.26 According to Eq. (3.57), for quasi-Markovian networks the steady-state TDE dissipa-
tion corresponds to
N=0X10, F=-X\+m0 'ng, G=0(-X1+mngd 'm).
Since O = £mg = w0, one has
0,1[C T4 = {a €Te| Xi—a + amd 'mg > 0} C [& — ke, 1],
provided 9= # =. The inequality (3.63) yields
(I —70)(Xa + 0X10 — argdtro)(I — 7g) < a(l — 7g)(OM 10 — M) (I — mg),
— ke < a < —1. From the Lyapunov equation (5.4) one easily deduces that
(I —7mo)(OM 0 — M1)(I —mg) =0

iff YM 6O = M so that the above argument still applies and (3.64) holds with & replaced by GéM and
a_ > —1 with strict inequality whenever ep > 0.

1
for 5
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Transient dissipated TDE Consider now the functional &' for the process started with the Dirac
measure v = d,, for some xg € =. This corresponds to

N=0, F=-X;, G=-0X0,

and in this case
j-f— = [% — Re, 1[7 J_= jCa

and hence J = [% — Ke, 1[. Proposition 3.22 yields a cumulant generating function

1 , e(a) fora €)% — ke, 1]
etpB (@) = lim - log Egy[e™@] = 2 (3.65)
’ t—oo t +oo fora & [L— ke 1],

which does not depend on the initial condition x.

Remark 3.27 For quasi-Markovian networks it may happen that Joo =]a_, 1[ with a— > 1 — k..
For later reference, let us consider the case’ k. = kg (recall Remark 3.14). We deduce from Proposi-
tion 5.5 (12) that

1-— A
X1 +amgdtng > 3 a(] —mQ) +

max ﬁminﬂmax

(a—%+;@o)7rQ >0,

for o € [ — ko, 0]. Thus, in this case we have Jo, = [3 — ¢, 1[ as in the Markovian case.

Steady state entropy production rate Motivated by [ ], where the functional Ep(pu,t) plays
a central role, we shall also investigate the large time asymptotics of its cumulant generating function

€ept(Q) = %log E, [e*aEp(“’t)} ,
in the stationary process. We observe that this function coincides with a Rényi relative entropy, namely
eept(a) = Enta(fnZGWZ)a
so that the symmetry (3.15) yields
eept(l —a) = Enta(IP’Z@Z@) = Enta(]?’Z|PfL@) = %log E.e [e*“Ep(“G’t)] )
The large time behavior of e, ;(v) follows from Proposition 3.22 with the choice
N=0Xx0, F=0X0-X,, G=0.
Thus,
. ={a€T.|X1_a+aX; >0}, J_={a €. |Xo+(1-a)fXx6 >0}

and since we can write X, + (1 — @)0X10 = 0(Yi_o + Wi_o)0 with Y1_, = X1, + 0X,0 and
Wi—a = (1 — a)X; — X1_q, it follows from Proposition 5.5 (10) that

Joo = {a €T.| X1 o +aX; > 0}.

In particular the limit
eep(r) = tllglo €ep,t(a),

coincides with e(«) for all & € R iff the following condition holds:

2We shall see in Section 4.2 that this is the case for a large class of linear chains.
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Condition (R) X;_,, + aX; > Oforall « € J,.

This condition involves maximal solutions of two algebraic Riccati equations. Except in some special
cases (see Proposition 5.5 (12)), its validity is not ensured by general principles (the known compar-
ison theorems for Riccati equations do not apply) and we shall leave it as an open question. We will
come back to it in Section 4 in context of concrete examples.

Transient canonical entropic functional Assuming for simplicity that the covariance N of the
initial condition v € P(E) is positive definite, Proposition 3.22 applies to the cumulant generating
function of S!, with

N=N"1'  F=0Go=0N"10- X,.

It follows that

Jo={a €T, | Xo+(1—-a)N'>0and X;_o+aN"' >0},

so that ar_ :1—a+:%—/<;l,forsomenl,>%and

1
i) = i 3.

[e—aSﬂ _ { e(a) for o — 1| < ry;

400 for | — | > Ky.

Note that by the construction of S?, the Gallavotti-Cohen symmetry holds for all times. One has
Ky = k¢ and hence e, () = e(«) for all @ € R, provided

(Ke — %)Xl_1 <N < —(ke+ %)Xl_1
2

§+/€c 5—Kc

3.7 Extended fluctuation relations

We finally deal with the 4*® and last step of our scheme: we derive an LDP for the the entropic
functionals considered in the previous section and illustrate its use in obtaining extended fluctuation
relations for various physical quantities of interest. We start with a complement to the discussion of
Section 3.4.

In most cases relevant to entropic functionals of harmonic networks, the generating function A is real
analytic and strictly convex on a finite interval Dy =]a_, a4 [, is infinite on R \ [a—, oy ], and the
interval £ =]z_, z [ is finite. In such cases A are both finite and (3.47) implies that the Legendre
transform of A is given by

ra_ —A_ forx < x_;

A (x) = zlé%(ax —Aa) =4q zl(z)— A(l(x)) forx €lx_,xi[;

ray — Ay forx > x4 ;

where ¢ : E — Dy is the reciprocal function to A’. Thus, A* is real analytic on E, affine on R\ F and
C' on R. The Girtner-Ellis theorem only provides a local LDP on E for which the affine branches
of A* are irrelevant. However, exploiting the Gaussian nature of the underlying measure P, it is
sometimes possible to extend this local LDP to a global one, with the rate function A*. Inspired by
the earlier work of Bryc and Dembo [BD], we have recently obtained such an extension for entropic
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functionals of a large class of Gaussian dynamical systems [JPS]. The next result is an adaptation of
the arguments in [BD, ] and applies to the functional

& =S+ (x(t)) — ¥(x(0)),
under the law PP,,, with the hypothesis and notations of Proposition 3.22. We set (recall (3.40))

—0 ifour:%—l—fic; 400 ifa,:%—/-@c;
= —e(ay) ifog < 3+ kg = —e'(a-) ifa >3 — ke

Theorem 3.28 (1) If Assumption (C) holds then, under the law P, the family (&)i>o satisfies a
global LDP with the rate function
I(n-) — (s = n-)ay = —say — e(ay) fors <7
J(s) =14 1(s) Jor s €]n—, n4; (3.66)
(1) = (s =)o = —sa_ —e(a) fors > ny:

where I(s) is given by (3.49). In particular, if ep > 0, then it follows from the strict convexity of
1(s) that
J(=s)—J(s) < I(—s)—I(s) =s,

for s > max(—n_,ny).

(2) Under the same assumptions, the family (&)¢>o satisfies the Central Limit Theorem: For any
Borel set £ C R,

lim P, [&4\/1?%[@ € 5} =1 (&),

where a = €”(0) and ny denotes the centered Gaussian measure on R with variance 1.

If 3o = J., then we are in the same situation as in Section 3.4 and &; has the same large fluctuations
as the canonical entropic functional S*. In particular it also satisfies the Gallavotti-Cohen fluctuation
theorem. However, in the more likely event that J, is strictly smaller than 3., then (see Figure 5) the
function g(«) = limsup,_, ., g:(«) only coincides with e(a) on Ja—, oy [ and the rate function J(s)
differs from I(s) outside the closure of the interval |n_,n4[. Unless «— = 1 — a4 (in which case
n— = —ny and J(—s) — J(s) = s for all s € R) the Gallavoti-Cohen symmetry is broken and the
universal fluctuation relation (3.50) fails. The symmetry function s(s) = J(—s) — J(s) then satisfies
an “extended fluctuation relation”.

Combining Theorem 3.28 with the results of Section 3.6 we obtain global LDPs for steady state and
transient dissipated TDE. Let us discuss their features in more detail.

Steady state dissipated TDE Assuming ep > 0, we have —1 < atpgg— < 0 and aTpgsi+ = 1,
hence nrprst— = —€’'(1) = —ep and nTpE s+ = —€'(TDEst—) > ep. In this case, the symmetry
function is

S for 0 < s < ep;
STPDEst(s) =< s —I(s) forep < s < NTDEst+;

e(arpEst—) + (1 + arprst—)s for s > NrpEst+;
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Figure 5: The cumulant generating function g(a) = lim sup,_, . ¢:(c) and the rate function .J(s) for
the functionals (&;);>0 of Theorem 3.28.

and in particular sTpgst(s) < s for s > ep. The slope of the affine branch of sTpg 4 satisfies

stpEst(s) = 1 +arpesi- €]0,1[, (s > NTDEst+),
so that s — sTpE st (s) is strictly increasing.

In the equilibrium case (Umin = Ymax) one has apg s+ = F1 and e(«) vanishes identically. Hence
the rate function for steady state dissipated TDE is the universal function

JToEst(s) =5,

and stprst(s) = 0 forall s € R.

Transient dissipated TDE  Assuming again ep > 0, we have apg tr— = %—me and oTpE tr+ = 1,
so that nrpE - = —€/(1) = —ep and TR+ = —€ (% — Ke) = +00. The symmetry function
reads

s for 0 < s < ep;
s—1(s) fors > ep;

STDEtr(S) = {

which coincides with the steady state heat dissipation for 0 < s < nrpggsi+. However, the strict
concavity of the function s — I(s) implies

HTDE,tr(S) < ETDE,st(S)

for all s > nTpE st+. By Remark 3.21,

d

S s—1I(s)=1-£(s)=0

L(s—1(s) = 1~ s
iff s = —€/(—1) > —¢'(0) = ep. Thus, whenever 3 — . < —1° the function [0, 00[> s = STDE,t:(5)
has a unique maximum at s = —e’(—1), and the concavity of s — I(s) implies that sTpg » becomes

negative for large enough s. In the opposite case where % — ke > —1 the symmetry function $TpE tr
is strictly monotone increasing (see Figure 7 in Section 4.1 for an explicit example of this somewhat
surprising fact.)

3This corresponds to the near equilibrium regime.
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Figure 6: A triangular network and a contour plot of 1/, as function of the parameters (u,v). See
the text for details.

4 Examples

In this section we turn back to harmonic networks in the setup of Section 2. We denote by {J; };c7 the
canonical basis of the configuration space RZ.

We start with two general facts which reduce the phase space controllability condition (C) and the
non-vanishing of ep to configuration space controllability (see Section 5.10 for a proof).

Lemma 4.1 (1) If Kerw = {0}, then (A, Q) is controllable iff (w*w, ) is controllable.

(2) Denote by m;, i € JZ, the orthogonal projection on Ker (9 — ¥;). Let C; = C(w*w, vm;). If there
existi,j € Or such that ¥; # 9 and C; N Cj # {0}, then ep(p) > 0.

4.1 A triangular network

Consider the triangular network of Figure 6 where Z = Zg and 0Z = Zg \ 2Z¢ (the indices arithmetic
is modulo 6). The potential
30-Wqg=3 qu + GZQZ'QZ‘-H +b Z qiqi+2;
i€z i€z i€dT
is positive definite provided |a| < % and 2a? — % < b < 1 — 4a®. One easily checks that a # 0
implies Ran : V Ran w?: = RZ. Thus Assumption (C) is verified under these conditions. Noting that
02 € C1 N C3, we conclude that ep > 0 if ¥; # ¥3. By symmetry, ep > 0 iff

A = Ymax — Imin > 0.

We shall fix the parameters of the model to the following values

1 1 1
a = ) b:_7 71=73:75:17 ﬁ: 19'7
el o 2"
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Figure 7: The numerically computed rate function Jrpg +r(s) and the corresponding symmetry func-
tion sTpg, :(s) for the transient TDE dissipation of the triangular network (both the argument s and
the value of these functions are in the units of the corresponding steady state entropy production rate

ep).

the “relative temperatures” being parametrized by
D1 =91 —u), 93=9(1+%(u+3v), VU5=0(1+3(u-3v)).

Under these constraints, the simplex {(u,v) |0 < u < 1,0 < v < u} is a fundamental domain for
the action of the symmetry group Ss of the network which corresponds to Ymin = Y1, Imax = Us.
Factoring ¥ = 94, one easily deduces from (3.37) that the matrix F(w) and hence the cumulant
generating function e(«) do not depend on 9. We have performed our numerical calculations with
¥ = 1. The thermodynamic drive of the system is the ratio p = A/d = 2(u +v) € [0, 3].

Figure 6 shows the reciprocal of k. as a function of (u,v). It was obtained by numerical calculation
of the eigenvalues of the Hamiltonian matrix K. The lower-left and upper-right corners of the plot
correspond to ¢ = 0 and g = 3 respectively. Its right edge is the singular limit ¥,;, = 0. Our results
are compatible with the two limiting behaviors

lim k., = oo, lim k.= %
00 min

The first limit, which corresponds to thermal equilibrium ¥,in = Ymax = U, follows from the lower

bound (3.44). Computing the generating function e(«) from Eq. (3.43), and its Legendre transform,

we have obtained the symmetry function sTpg,,(s) for transient TDE dissipation at three points on

the line v = 0.3(1 — u) where k. = 1.4, 1.5 and 1.6 respectively. The result, displayed in Figure 7

confirm our discussion in Section 3.7.
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Figure 8: Contour plot of minsp(X;_, + aX1) as function of (u,v) and some sections along the
lines v = 1 + m(u — 1) for the triangular network.

Solving the Riccati equation (3.58) one can investigate the validity of Condition (R). Figure 8 shows a
plot of min sp(X;_o+aX7) as function of (u, v) and a few sections along the lines v = 1+m(u—1).
It appears that Condition (R) is clearly satisfied for all temperatures.

4.2 Jacobi chains

In our framework, a chain of L oscillators with nearest neighbour interactions coupled to heat baths
at its two ends (see Figure 9) is described by Z = {1, ..., L}, 0Z = {1, L}, and the potential energy

L L-1
3lwal® = 3 Z big? + Z @iGiGi+1, 4.1
i=1 i=1

where, without loss of generality, we may assume w to be self-adjoint. We parametrize the temperature
and relaxation rates of the baths by

[>u| S

T=1W1+9), A=WL—tl, F=AL, 6=log3—;, o

and introduce the parity operator

S: RT RZ
(@i)iez = (qL+1-i)iez-

To formulate our main result (see Section 5.11 for its proof) we state

Assumption (J) w > 0and ¢ = ajas---ar_1 # 0.

Assumption (S) The chain is symmetric, i.e., [S,w?] = 0 and § = 0.

Theorem 4.2 Under Assumption (J), the following hold for the harmonic chain with potential (4.1):
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LosF .

4 2 0 2 4

Figure 10: The critical value ./ as a function of § for an homogeneous chain.

(1) Assumption (C) is satisfied.
(2) If A # 0, then the covariance of the steady state | satisfies
79111in <M< 79111&)(5

and ep > 0.

(3) If Assumption (S) also holds, then k. = kg and Condition (R) is satisfied.

Remark 4.3 For a class of symmetric quasi-Markovian anharmonic chains, Rey-Bellet and Thomas
have obtained in [RT3] alocal LDP for various entropic functionals of the form S*+W (z(t))—¥(z(0))
under the law P, ), 9 € Z. In view of their Hypothesis (H1) (more precisely, the condition k3 > k; >
2), their results should apply in particular to harmonic chains satisfying Assumptions (J) and (S). They
proved that the cumulant generating function of these functionals are finite and satisfy the Gallavotti—
Cohen symmetry on the interval ]% — Ko, % + ko[- The lower bound of this interval is consistent with
Part (4) of Theorem 4.2 and Remark 3.27, whereas the upper bound is different from our conclusions
in Section 3.7 on the transient TDE. There, we found that the cumulant generating function diverges
for o > 1. In view of this, it appears that the analysis of [RT3] does not apply to the harmonic case.

Remark 4.4 We believe that Condition (S) is essential for Part (4) since the proof indicates that for

non-symmetric chains x. > kg is generic. Figure 10 shows a plot of . vs § for a homogeneous chain
with L =4,b; =1,0;, =3, 7=2,7=4and A = 2.
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5 Proofs

Even though the processes induced by Eq. (3.2) take values in a real vector space, it will be sometimes
more convenient to work with complex vector spaces. With this in mind, we start with some general
remarks and notational conventions concerning complexifications.

Let E be a real Hilbert space with inner product (-, - ). We denote by CE = {z + iy | z,y € E} the
complexification of E. This complex vector space inherits a natural Hilbertian structure with inner
product

(x + iy, u + ) = (z,u) + (y,v) + i{z,v) — (y,u).

We denote by | - | the induced norm. Any A € L(E, F) extends to an element of L(CE, CF') which
we denote by the same symbol: A(x + iy) = Az + iAy. If A is a self-adjoint/non-negative/positive
element of L(E), then this extension is a self-adjoint/non-negative/positive element of L(CE). The
conjugation Cg : x + iy — x — iy is a norm-preserving involution of CE. For z € CFE and
A € L(CF,CE) we set z = Cpz and A = CpACp. We identify E with the set {z € CE |z = z}
of real elements of CE. Likewise, L(F, E) is identified with the set {A € L(CF,CE)| A = A} of
real elements of L(CF,CE). A subspace V' C CE is real if it is invariant under Cg. V is real iff
there exists a subspace Vp C E such that V' = CV;. If A € L(CF,CE) is real, then Ran A and
Ker A are real subspaces of CE and CF. Finally, we note that if (4,Q) € L(E) x L(F, E), then
the controllability subspace of the corresponding pair in L(CE) x L(CF,CFE) is the real subspace
CC(A,Q) C CE. In particular (A, Q) is controllable as a pair of R-linear maps iff it is controllable
as a pair of C-linear maps.

Note that

t
£(t) = /0 el=4Qdw(s) (5.1)

is a centered Gaussian random variable with covariance
t *
M, = / Q% ds. (5.2)
0
The next lemma concerns some elementary properties of this operator.

Lemma 5.1 Assume that (A,Q,9,0) € L(Z) x L(0E,E) x L(0Z) x L(E) satisfies the structural
relations (3.9) and let M, be given by Eq. (5.2).

(1) Ran My = C(A, Q) forallt > 0.

(2) The subspace C(A, Q) is invariant for both A and A*, and sp(Alc(a,0)),sP(A*|ca,g)) C C-.
In particular, there exist constants C > 1 and &' > § > 0 such that

Cle ™ Ma| < |eMa| < Ce ™ z| forx € C(A,Q),
and the function t — M, converges to a limit M as t — +o0.
(3) RanM =C(A,Q) =C(A*, Q).

) Aleagyr = —A'lea,g)r and etA]C(AvQ)L is unitary.
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(5) The following inequality holds for allt > 0 :
ﬂmin(I - etAetA*) <M; < ﬁmax(l - etAetA*) < ﬁmax- (53)

In particular,
19min < M’RanM < ﬁmax:

and if all the reservoirs are at the same temperature ¥, then M |gan pr = Vo.
6) M — M; = e MetY" > 0 and (M — M;)|Ran ar > 0.
(7) M satisfies the Lyapunov equation

AM 4+ MA* +QQ* = 0. (5.4)

(8) If (A, Q) is controllable, then Ran M = = and M is the only solution of (5.4). Moreover, for any
7 > 0 there exists a constant C such that

0< Mt_1 —-Mt< CTe_z‘St forallt > .
Proof. (1) Fix t > 0. From the relation
t *
x- Mz = / 1Q*e* z|2ds
0

we deduce that Ker My = Ny¢[o gKer Q*e*A". This relation is easily seen to be equivalent to

Ker M; = (] Ker Q*A™, (5.5)
n>0
and hence to
Ran M; = \/ Ran A™(Q). (5.6)
n>0

The right-hand side of the last relation is included in any A-invariant subspace containing Ran (), and
therefore coincides with the controllability subspace C(A, Q).

(2) The invariance of the subspace C(A, @) under A follows from the definition. To prove its invari-
ance under A*, it suffices to recall the relation

A+ A" = —Qv Q. (5.7)

We now prove that the spectra of the restrictions of A and A* to C(A, Q) are subsets of C_. It suffices
to consider the case of A.

Pick @ € sp(A) and let z € CZ \ {0} be a corresponding eigenvector. It follows from (5.7) that
2Realz|? = (z, (A + A)z) = —[971/2Q* 2|2,

which implies Rea < 0. If Rea = 0, then Q*z = 0 and (5.7) yields A*z = —az which fur-
ther implies Q*A*"z = (—a)"Q*z = 0 for all n > 0. Eq. (5.5) then gives z € Ker M; and so
sp(A|ran ;) € C_. The remaining statements are elementary consequences of this fact and the
observation that M vanishes on C(A, Q) .
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(3) The proof of the relation Ran M = C(A, Q) is exactly the same as that of (1). The relation
C(A,Q) = C(A*,Q) is a simple consequence of (5.7).

(4) Combining (5.5) with (5.7), we deduce Ker (A 4+ A*) = Ker Q* D C(A,Q)*. Thus A and —A*
coincide on C(A, Q).

(5) From Eq. (5.7) we deduce

t t d
/ eSAQﬁ_lQ*eSA ds = _/ d7esAesA ds =1 — etAetA 7
0 0o ds

from which we infer
M, < T — et <97t M.

min

19—1

max

This is equivalent to (5.3). Restricting these inequalities to C(A, (0) and taking the limit ¢ — oo yields
the desired result.

(6) The first assertion follows directly from the definition of M and the group property of e*4. The
second assertion is a consequence of Parts (3) and (5) which imply

(M - Mt)|RanM = etAMetA* ’RanM > ﬂminetAetA* |RanM > 0.

(7) Follows from Part (6) and Eq. (5.2) by differentiation.
(8) Any solution IV of (5.4) is easily seen to satisfy

N — M, = " NetY"  forallt > 0.

Letting ¢ — 0o and using the exponential decay of !4 and e*4” (see (2) in the case C(4, Q) = ),
we see that N = M. The second assertion follows from the identity

M7V - M = M (M - My)MT!

and the inequalities M; > ¢, > 0 fort > 7 and || M; — M|| < Ce™2% for t > 0. O

5.1 Sketch of the proof of Theorem 3.2

(1) The fact that M is well defined and satisfies (3.13) was established in Lemma 5.1. Let us prove
the invariance of .

We fix a random variable x( that is independent of w and is distributed by the law u. We wish to show
that the law of the process
a(t) = eag + (1), (5.8)

where £ is given by (5.1), coincides with p for all £ > 0. To this end, we note that both terms in (5.8)
are centred Gaussian random variables with covariances €4 Me!4" and M, respectively. Since they
are independent, x(t) is also a centred Gaussian random variable with covariance e/ Me!4"™ 4 M;.
This operator coincides with M in view of Lemma 5.1 (6). Hence, the law of x(¢) coincides with .

(2) If the pair (A, Q) is controllable, then for any initial condition x( independent of w the corre-
sponding solution (5.8) converges in law to u. It follows that 4 is the only invariant measure. On
the other hand, if the pair (A, @) is not controllable, then, by Lemma 5.1, the subspace Ker M =
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C(A,Q)* # {0} is invariant for the group {e“}, whose restriction to it is a unitary. The lat-
ter has infinitely many invariant measures (e.g., the normalized Lebesgue measure on any sphere
{z € C(A,Q)* | |z| = R} is invariant).

To prove the mixing property, we write

Plf(z)=Ef(e“a+£(t) = | fyn(z,y)dy,

T

A

where n(, y) denotes the density of the Gaussian measure with mean value 'z and covariance M;:

_ 1 _
n(z,y) = det(2r M)~/ exp{—§ (y— et a, M7y — etAx) }

The required convergence follows now from assertions (6) and (8) of Lemma 5.1 and the Lebesgue
theorem on dominated convergence.

(3) The fact that process (3.7) is centred and Gaussian follows from linearity of the equation. Let
us calculate its covariance operator K (t, s). It is a straightforward to check that a stationary solution
of (3.2) defined on the whole real line can be written as

£t) = / MAQdw(r),

—0o0

where w(t) stands for a two-sided R9Z_valued Brownian motion. Assuming without loss of generality
that ¢ > s, for any 71,72 € Z we write

(1, K (t, s)n2) = B{(£(t),m) (€(s), m2) }
:E{/_ (e(t—r)Ade(r)ynl) /S (e(s—r)Ade(r)mZ)}

—00

N / (Q ey, Qe ) dr
e A A A
2/ (Ul,e(tﬂﬂ) QQ*e" my)du = (n1,e" Mny).
0

This implies the required relation (3.14) and completes the proof of Theorem 3.2. O

For later use, we now formulate and prove two other auxiliary results. We start with a few technical
facts. Consider the scale of spaces

ﬁ—‘,—cﬁcﬁ—;

where ) = L?(R) ® CZ, $, is the Sobolev space H'(R) ® CZ, and $_ = H ' (R) ® CE is its
dual w.r.t. the duality induced by the inner product of §). To simplify notations, we shall also use
the symbols $), . to denote the corresponding real Hilbert spaces (the meaning should remain clear
from the context). For x € §), we denote by

z(w) = /x(s)eiwsds
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its Fourier transform. Since, under Assumption (C), A is stable, we can use

)|+ = (/ (A — iw)ﬂfc(w)‘zc;:)%

as norms on $)+. For 7 > 0, we denote by II, the operator of multiplication with the characteristic
function of the interval [0, 7]. Thus, II; is an orthogonal projection in § whose range £, will be
identified with the Hilbert space L?([0, 7]) ® CZ.

Lemma 5.2 Under Assumption (C) the following hold.

(1) The Volterra integral operator
S
(Rx)(s) = / o555 (s")ds'
—0oQ
maps isometrically $)_ onto $ and ) onto $). By duality, its adjoint

(R*z)(s) = / h =04 2 (5)ds,

s

has the same properties.

(2) 11 R is Hilbert-Schmidt, with norm

1

0o . 5
g = ([T e o)
0

(3) Fortg € [0, 7], the Hilbert—Schmidt norm of the map Ry, : ) — Z defined by Ri,x = (Rz)(to)
is given by

to . 2
IRl = ([ et ear)
0

Proof. (1) Follows from our choice of the norms on £ and the fact that (Rz) (w) = (iw—A4) " &(w).

(2) I R is an integral operator with kernel 1f 1(5)0(s — s’ )els=5)4  where 1jo,r denotes the char-
acteristic function of the interval [0, 7] and 6 the Heaviside step function. Its Hilbert-Schmidt norm is
given by

1L R)||3 :/ ds/ ds’ tr(els=5) A" gls=5)4) :T/ dt tr(et"et).
0 —00 0

(3) Follows from a simple calculation. O

Given 7 > 0, consider the process {x(t) };¢[o,-] started with a Gaussian measure v € P(Z). Leta € =
be the mean of v and 0 < N € L(Z) its covariance. Denote by (- | - ) the inner product of ..

Lemma 5.3 Let T, : 23 v — v € 9, and define
D,=| T.N? TLRQ | :E®89 — 9,

where 0$) = L*(R) ® OZ, and the operator Q acts on 05 by the relation (Qy)(t) = Qy(t) fort € R.
Then, under Assumption (C), the following properties hold for any T > 0:
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(1) Dy is Hilbert-Schmidt and has a unique continuous extension to = @ H_.
(2) K+ = DDz is a non-negative trace class operator on ) with integral kernel
Ko (s, 8) = el )+ A(ANANGBANAT | yols=s) AT (5.9)
and there exists a constant Cy,, depending on A, B and N but not on 1, and such that
K <Cy, IK-I1 < Cyr,
where || - ||1 denotes the trace norm.

(3) The process {x(t) }1c(0,r is Gaussian with mean Tra and covariance K, i.e.,
Ey[ei(ac\u)] _ ei(TTa\u)—%(uUCTu) (5.10)

forallu € 9.

Proof. (1) T is clearly finite rank and it follows from Lemma 5.2 (2) that the operator D is Hilbert-
Schmidt. Lemma 5.2 (1) further implies that it extends by continuity to = & §)_.

(2) It follows immediately that
K =D;D; =T, NT; + 11, RQQ*R*I1, g, (5.11)

is non-negative and trace class. Formula (5.9) can be checked by an explicit calculation.

Defining the function u € ), to be zero outside [0, 7], we can invoke Plancherel’s theorem to trans-
late (5.11) into

dw|? O el ik e el odw
o + |Q"(A* + iw) " a(w)] )

o o

(ulkCru) = ‘/Z Nz (A* + iw) i(w)

By Lemma 5.1, Assumption (C) implies sp(A) NiR = () and we conclude that
> 1o o =1 2dw w( A% | s N—12
K, < [N2(A* +iw) ||*=—— +sup ||Q" (A" + iw) || < 0.
—00 27 weR

Finally, it is well known [Sil, Theorem 3.9] that the trace norm of a non-negative trace class integral
operator with continuous kernel K (s, s’) is given by

1K1 = tr(K1) = /OT tr(K,(s,s))ds = /0 tr(e*ANe*A" + M,)ds < 7 (Ctr(N) + tr(M)),

where C' depends only on A.
(3) By Eq. (3.7) we have, for u € .,
T t T
(z|u) = (Trx(0)|u) + / { / elt=940 dw(s)] cu(t)dt = z(0) - Tru + / Q*(R*u)(s) - dw(s)
0o LJo 0

so that
Ey[ei(x\u)] _ W[eifoT Q*(R*u)(s)'dw(s)] /eix'T:“V(dx).
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Evaluating Gaussian integrals we get

/eix.T:uy(dx) _ eia.Tj_‘uf%T:u.NT:u _ ei(T.,-a\u)f%(u\TTNT;fu)’

and
WletJo @ Eu)(s)dw(s)] — o=5(ulRQQ" R u)

which provide the desired identity. O

5.2 Proof of Proposition 3.5

We start with some results on the Markov semigroup
1
(P1)@) = [ Feo+ M) (.12

For a multi-index o = (a1, g, ...) € NU™Z and p € [1, o0] set

ol =Y ai, 9" =[],

7

and define

AP = {q,z) € ()

|0%p| € LP(Z,dp) forall o € NdimE} .

Lemma 5.4 Suppose that Assumption (C) holds.

(1) Forany v € P(Z) and t > 0, v is absolutely continuous w.r.t. Lebesgue measure. Its Radon-
Nikodym derivative

d _1

() = det(2mM,) > / o 3IM: @ )Py (5.13)
is strictly positive and Sgs(v¢) > —o0o. Moreover, if v(|x|?) < oo, then Sgs(vt) < oo.

(2) Foranyv € P(E), anyt > 0, and any multi-index «,

d
aad—”t e LY(2,dz) N L®(Z, dz).

x

(3) Fort >0, M, = M — A MetA™ > 0, and

Mt =M~ e M et (5.14)

(4) P! is a contraction semigroup on LP(Z,du) for any p € [1,00|. Its adjoint w.r.t. the duality
(flg)u = u(fg) is given by

(PP*)(z) = / etz + M y)n(dy). (5.15)

In particular, P'* is positivity improving.
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(5) Forallt > 0, P*L>®(Z,du) C A™.

(6) For p € [1,00[, AP is a core of the generator of P on LP(Z,du) and this generator acts on
Y e AP as

1 -
L*) = 5V - BV + Az - Vy. (5.16)
(7) Forv € PL(E) andp € [1,00] there exists t,,,, > 0 such that Cé—’:f € AP forallt > t, ).

(8) Forv € P, (E) there existt, o > 0, C, and 6, > 0 such that

dvy

‘log a (@] < G (L [

fort > 1, «.

Proof. (1) We deduce from Eq. (5.12) that for any bounded measurable function f on = one has

w(f) = v(P'f) = / f(ez + MFy)(de)n(dy)

_1
= det(27]M,) "2 /f(y)e—élMt F—e ) ) dy,

from which we conclude that v; is absolutely continuous w.r.t. Lebesgue measure with Radon-
Nikodym derivative given by Eq. (5.13). It follows immediately that
dl/t

(@< det(27M,) "2,

which implies the lower bound
1
Sas(v) > §logdet(27th) > —00.

To derive an upper bound, let r be such that B, = {z € Z||z| < r} satisfies (B,) > 1. Then one
has

1

det(Qﬂ'Mt)_% 1nf e_%‘Mt7§ (-T—etAz)|2
2EB,

dl/t
dz ()

Vv

N~ N~ N~

1 1

det(Qﬂ'Mt)_ie_E HMt_l | sup.cp, [(z—et42)|?

v

det(2m M)~ 2 e~ 3lIM: I (al+Rllet )2

from which we conclude that q
log <t (2) = ~Ci(1 + [af?)

for some constant C; > 0, and hence

Sas(v) < Ci(1+ v(|z]?)).

(2) From Eq. (5.13) we deduce that

d _
o Vi (IL‘) _ /pa,t(w _ etAy)efaMt

[N

z—etdy)|2
A (e=e"y)l v(dy),
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where p, + denotes a polynomial whose coefficients are continuous functions of ¢ €]0, co[. It follows
that

sup
TEE

/

(3) From Lemma 5.1 (5) we get

< sup [pa.t(2)]e

z€EZ

ath
0 E(a:)

and

"’a?w'dx < [ Ipaatale 87z < o
X

etA*MfletA _ (M + eftAMte*tA*)*l < ML
The strict positivity of ]\Z follows from
M; =M — M M~ 'e)M > M — MM~'M = 0.

Using again Lemma 5.1 (5), it is straightforward to check the last statement of Part (3).
(4) For f € L*(Z,du) we have

1P fllrzapy = (P F) < w(PHFD = m(1 D) = I1f11 2@, -

The representation (5.12) shows that P! is a contraction on L>°(Z, du). The Riesz-Thorin interpola-
tion theorem yields that P* is a contraction on LP(Z, dpu) for all p € [1, 00]. To get a representation
of the adjoint semigroup P*, we start again with Eq. (5.12),

([P ) = / B(y) f ey + M on(da)u(dy)

1 1
efélMt 2I|2 efé‘M jy‘2

- / YOIy + o) det(27]M,)2 det(2mM)2 dedy
S ) Vo JEE I ORI VL B
det(27th)% det(ZWM)%
10, E (ametty)?

- / P() () dzrdy

e 1 -1 —r
= [ Y(y)f(x ea (M7 2z[7 =M™ 2y| )N dz)dy,
/ Wit) det(2m]M,)2 (dz)

to conclude that

(P9 () = det(2n M)~ / PNy dy,

where, taking (5.14) into account,

1 — *
(MY =M Yo+ Sy M7y — e My,

¢t(xay) = = 2

53}'
Using Lemma 5.1 (5) and (5.14) one shows that
o (x, ety +z)==z" Mtflz, (5.17)

which leads to
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Noticing that M; = (I — e*4eA)M and M, = (I — eAet4) M we conclude that det(M;) = det (M)
and Eq. (5.15) follows.

(5) Rewriting Eq. (5.15) as
1 .
(PY)(x) = det(2mM,) 7 /eéMt * = D)y () dz, (5.18)

we derive that for any multi-index «,

1 ~
A

(0° P ) () = / Pa(z — eAp)e 3T 7 =<0y g,

where p,; is a polynomial whose coefficients are continuous functions of ¢t €]0,00[. For ¢y €
L*°(Z, dp) this yields

1

* _ LM 2,2
0P gy < Wiz [ pnalle 7 Fa,

where the integral on the right-hand side is finite for all ¢ > 0.
(6) AP is dense in LP(=Z,du) for p € [1, 0o[. For ¢ € AP, Eq. (5.15) yields

(8aPt* Z Caa /aa/¢)(et2x+]/\\4;; Z Caa Pt*aaw)()

la/|=|al lo/|=|cl

where the C, o are continuous functions of t. As a consequence of Part (4), AP invariant under the
semigroup P™* and Part (6) follows from the core theorem (Theorem X.49 in [ 1) and a simple
calculation.

(7) Assuming V(em|‘”_“|2/2) < 00, we deduce from Eq. (5.13) that for any m’ < m

%(m) = det(MﬁlMt)*% /e‘m(”’y)y’(dy),
w

where i )
_1 1
du(w,y) = S(IM; (2w — )2 +m'ly —af® — [M 22,
and o/ is such that 1/ (e97~9”) < oo for ¢ > 0 small enough. It follows that

dv
o' () = / Pot (2, 9)e= P EV (dy),

where p, ; is a polynomial of degree || whose coefficients are continuous functions of ¢ €]0, co[. An
elementary calculation shows that

71 * *
Or(x) = inf $y(a,y) = [My 2= M 2oy |af —|(m/+e M et ) 7 (mlaket M) P,
ye=

and since [ [pa+(z,y)|/ (dy) < Cat(1 + |2[?el) for some constant C., ; we have

dl/t
0% —
du (

x)‘ < Cpt(1 4 |z|Hel)e=9e@),
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This gives the estimate

’aadw ’

<cr, / (1+ [zl P+ 35 M By g
dellppzan ~ @
where the last integral is finite provided the quadratic form

M Faf — (L= p )M Ea — [’ + o4 M) bt A
is positive definite. Since M, ! — M~! > 0, this holds if
MtfletA(m/ n etA*MtfletA)—letA*Mtfl < ];M_l'
Finally, the last inequality holds for large ¢ since the left-hand side is exponentially small as ¢ — co.

(8) By Lemma 5.1 (1), |le*4|| = O(e™%) as t — co. Repeating the previous analysis with m/ = e~

we get, for large enough ¢ > 0,

1 /
log @( x) < itr(logM —log M) + log/eém |z_"|2v(dx) — o).

One easily shows that tr(log M — log M;) = O(e2%) and |¢;(x)| = O(e™%)(1 + |z|?). Finally,
since

/62 mle=a () = 1 4 O(m)
as m’ — 0, we derive the upper bound

th

1
og — i

() < O(e*) (1 + |z).
To get a lower bound we set m’ = 0 and note that the ball B; = {z € Z|m|z — a|* < 6t} satisfies

1—v(By) = / v(dz) < / e_m‘x_a‘Qemlx_“Fv(dx) < e_ét/emlx_“|2l/(dx) = O(e7%).
E\Bt E\Bt

Since log M > log M, we get

oy > — sup gule, ) + log(v(By)).

log
d,LL yGBt

It is straightforward to check that

1
sup ¢¢(z,y) = O(e ) (1 + O(t2))(1 + |z[?),
yEBy

and therefore

~log 7 (2) < O ) (1 +[af’)

for any € < 4. O

We are now ready to prove Proposition 3.5. Writing the polar decomposition @@ = V(Q* )%
existence of § € L(Z) satisfying (3.17) easily follows from the structural relations [}, Q*Q] = 0 a d

0Q = +Q.

51



Jaksié, Pillet, Shirikyan

(1) Follows from Condition (3.17) and Eq. (3.6).

(2) From Eq. (3.11) we deduce that the formal adjoint of L w.r.t. the inner product of LQ(E, dz) is
1
LT:§V-BV—V~A90.
It follows from the structural relations (3.9) and Condition (3.17) that

1 1
LB — o3lBZal [T o—5162a]* _ %(v — Bz) - B(V — Bz) — (V — Bz) - Az
1 1 1
=5V BV - (A4+QV'Q")x -V — 5tr(Qﬁ—lQ* + A4+ A%+ 37 (QU2Q* + BA+ A*B)x
1
= §V -BV + A%z -V — og(x).

The desired identity thus follows from (3.9) and Part (1).

(3) The It formula gives
d(3z(t) - Cx(t)) = z(t) - Cda(t) + 3tr(CB)dt
= %l‘(t) (CA+ A*C)z(t)dt + %tr(C’B)dt + x(t) - CQAw(t).

. d
Therefore, since log 2 (z) = —3x - Bz, we have

d
dlog %(azt) = —%x(t) (BA+ A*B)x(t)dt — %tr(ﬁQQ*)dt —x(t) - fQAw(t).
Using (3.17) and the decomposition A = 2 — %Q*ﬁle, we deduce

dlog %(xt) = 5z(t) - (B — FQ)z(t)dt + 3|Q* Bz (t)[*dt — 5tr(QU™'Q")dt — Q" Ba(t) - dw(?),

and, observing that V log %f (x) = —px, the result follows from Eq. (3.3) and Condition (3.17).

(4) Let v € P4 (E) and denote by v, the density of 14 w.r.t. u. By Lemma 5.4, 1), is a strictly
positive element of A for large enough t. For € > 0 we have log ¢ < log(t); + €) < 1)y + € — 1, and
hence log(v; + €) € L*(Z,dp). Thus, sc(1;) = —b;log(1y + €) € L'(Z,du), and the monotone
convergence theorem yields

Ent(v¢|p) = lgglﬂ(se(wt))-
From .
se(wn(@) = se(wn(w) = [ SL(ul@) (L ) (@)
we infer )

(s () — plse(ths)) = / (5" ()| L )l

Since 1, and s.(1,) = —1 — log(vy, + €) + €(tby, + €)~ ! are elements of A% we can integrate by
parts, using Eq. (5.16), to get

(L)L) = (fe@IQVul*) i + (e (W) [(A = A)z - Vb,
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where
1 9+ 2€ 1 €

fe(¥) = 2t 2 9e(¥) = ST o

Since f. > 0 and decreases as a function of €, the monotone convergence theorem yields

t t t
lim / ()| Q* Vb [*) pdu = L / (W 1Q* Vb [*) pdu = § / vu(|Q*V log ¢y |*)du

Since 0 < g < % the dominated convergence theorem gives

t ~
leligl (9e(Wu)|(A = A)z - Vipy) ydu = 0.

We conclude that for s sufficiently large and ¢t > s

But () — Bnt(vsl) = lim(u(se(0) — u(se(8))) = § [ u(1Q"V log s )

and Eq. (3.22) follows.

(5) Eqg. (3.3) gives

d
Ey[et]z% 7 (‘Q Vlog =

) ds — $ttr(QU'Q").
Since Sgs(v¢) = Ent(v|p) + vi(p), where

d
o(z) = —log di(x) — LM~ 2z + Llog det(2n M),
xT

Eq. (3.22) implies

2
—I—Lap—i—%

d
Q*Vlog o
dp

& (Sas(r) + B[S = v (; -

Q*Vlog —— d'uﬂ %tr(Qﬁ%)*)) .

A simple calculation yields Ly = —1|Q*V log 412 + 1tr(QY~'Q*) and hence

d
‘Q*Vlog ps?

£ (Basn) +,[87) = b ( L

1

An integration by parts shows that

‘Q Vlogd

de
x

2
dt du
log — lo .
) + (V 8 - BV dMB)

d
Q*Vlog a
dpg

dyy du du —1
- = — -BVlog— | = B(M™ —
vy <V1 Ch - BV log &7 ,B) vt (V V log d,ug) tr (B( B)) .

and, since BM~! — B8 = —A — MAM~' + A + A*, we have tr(B(M~! — 3)) = 0. The result
follows.

53



Jaksié, Pillet, Shirikyan

5.3 Proof of Proposition 3.7

(1) Since the first equivalence is provided by (3.32), it suffices to show the sequence of implications

MQ=QI=[Q,M =0=u0=pn=ep=0. (5.19)

Writing Q = A 4+ %Qﬁle* and invoking Lemma 5.1 (6) (the covariance of the steady state satisfies
the Lyapunov equation B + AM + M A* = 0) one easily derives

[, M] =5 (MQ—QU)I™Q" + QU™ (MQ — QV)*),

which proves the first implication in (5.19). The last identity, rewritten as [A — A*, M] = 0, further
implies that

0=AM+MA*+B=A"M+MA+B =0A0M+ MOA*0+0BO = (AOMO+0OMOA*+ B)0,

from which we deduce that M0 is also solution of the Lyapunov equation. Lemma 5.1 (7) allows us
to conclude that M 0 = M which is clearly equivalent to 4© = p and proves the second implication
in (5.19). Finally, from (3.29) we deduce that if 4© = p, then

ep = —p(op) = —5tr(M[Q, B]) = 3tr(B[Q, M])
= Ltr(68[Q, M10) = Ltr(8[696,0M6)) = —Ltr(B[, 6M6]) = —ep,

which gives the last implication.

(2) Let 91,92 € sp(v) be such that 91 # 3 and Cy, N Cy, > u # 0. Assume that ep = 0. By
Part (1) this implies M @Q = Q9 and [Q2, M| = 0. By construction, there exist polynomials fi, f2 and
vectors v, v2 € = such that

A Q)Qmy, v1 = u = fo(Q)Qmy,vs.
The first equality in the above formula yields
Mu = M f1(Q2)Qmy,v1 = f1(QMQmy,v1 = f1(Q)QImy,v1 = V1 f1(Q)Qmy,v1 = V1u.

Similarly, the second one yields Mwu = J9u. Since u # 0, this contradicts the assumption ¥ # 5.

5.4 Proof of Proposition 3.9

LetT > 0,v € PL_(2), set
. dvr 4

T/Jt— dz ;

and note that since 1, + |Vi,| € L2 (Z,dx), it follows from Lemma 5.4 that

loc

/O (I F9ell3 + 11FVeell3) dt < oo (5.20)

for all f € C§°(Z). We consider the process * = {z(t) };[o,r] Which is the solution of the SDE (3.2)
with initial law . By Theorem 2.1 in [PH], the estimate (5.20) implies that the process Z = {T¢ }4¢[o,7]
with T; = x,_, is a diffusion satisfying the SDE

dz(t) = b(z(t),t)dt + Qdw(t)
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with initial law v P7, drift b(z,t) = — Az + BV log ¢;(), and a standard 0 =-valued Wiener process
w(t). Since 0Q = FQ, the time-reversed process T = O7 () = {07 (t) }4¢[0 7 satisfies

dz(t) = b(E(t), t)dt + Qdw(t)

with initial law PO, drift b(x,t) = 6b(6x,t), and standard Wiener process @ (t) = Fw(t). Using
the structural relations (3.9) and A + A* = —QQ* 5 we derive

- d -1
b(z,t) = Az + QQ*Vlog ¢y (x), ¢ =0 ((ff) i,
and conclude that we can rewrite the original SDE (3.2) as
dz(t) = B(w(t), t)dt + Q(dw(t) — Q*V log ¢y (x(t))dt). (5.21)

Set
n(t) = / Q" log du(z(s)) - du(s),

and let Z(t) = £(n)(t) denote its stochastic exponential. We claim that
B prolZ(t)] =1 (5.22)

for all ¢ € [0, 7]. Delaying the proof of this claim and applying Girsanov theorem we conclude that
¢
w(t) = [ Q'Vlogu(a(s))ds
0

is a standard Wiener process under the law E7 .. 5[Z(7) -], so that Eq. (5.21) implies

dP7,
AP} pre

= Z(r). (5.23)

Using It6 calculus, one derives from Eq. (3.2) that
Q"Vlog ¢y (x(t)) - dw(t) = dlog ¢y(x(t)) — (9 + L) log ¢ ) (x(t))dt

— dlog du(x(t)) — (W(w(t)) 10"V log ¢t<x<t>>|2) dt,

from which we obtain

9s + L)s

0(0) = $010) = Yog (1) ~ og dn(a0) | (( - ><m<s>>ds.

The generalized detailed balance condition (3.20) further yields

(as + L)¢s = _Jﬁ¢87

so that
dv,

dpp

dvr ¢
dpg

(6z(t)) — log

() — 3ln)(t) = log (00))+ [ sfa(s)ds.

55



Jaksié, Pillet, Shirikyan

from which we conclude that

1 ¢
20 = exp [n(0) = 31ale)) = (G 0a0)) - Gt at)en ([ aplatoas). 629

and in particular that Z(7) = exp(Ep(v, 7)) o ©7. From (5.23) we finally get

dP7,
— = exp[Ep(v, 7)] 0 O7.
d]P)l/PT@
It remains to prove the claim (5.22). Set ( = vP"0© and observe that it suffices to show that

E¢[Z(t)] > 1 fort € [0,7] since E¢[Z(t)] < 1 is a well known property of the stochastic expo-
nential. The proof of this fact relies on a sequence of approximations.

The inequality E¢[Z(t)] < 1 gives that for s, s', ¢ € [0, 7] and bounded measurable f, g one has

(B¢ [Z(2)f(x(5))g(x (SN < [1£llsolglloc- (5.25)

Here and in the following we denote by || - ||, the norm of L”(=, dz). The duality between LP(=, dz)
and L9(E, dx) will be written ( - | - ). Next, we note that Eq. (5.24) implies

E¢[Z()g(x(0))f (x(t))]
-1 ¢
=E¢ i (02(0)) ) g(=(0)) dvr s (0z(t)) f(x(t)) exp | [ op(z(s))ds
dpp dpg 0

= /g(m’)x(fc)Ex () (02() S (2(1))e¥ O] dz = (gl PEx 0 f),
where we have set

t d .
Vi = [ostenas, x= G2 di=eu,

and
(PLA) (@) = Eyle”® f(a(t))].

It follows from the estimate (5.25) that ||XP§X_17th||1 < || f|loo- For n,m > 0 we define

—n if og(z) < —mn; ,
, op(x) if og(z) <m;
onm(x) =14 oglx) if —n <og(x) < m; om(z) = ,
] m if og(x) > m;
m if og(x) > m;
and set

Since
lim oy ;m(x) = om(2), onm(z) <m
n—oo
im0y (@) = 05(a) o) < 05(@),
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for all x € =, we have

lim Vo (®) = QVin(®), eVnm(®) < gt
n—oo
. Vin(t) _ V(¢ Vin(t V(t

[P;-almost surely. Hence, the dominated convergence theorem yields

(ghePEX T ) = B [x(2(0))d(2(0)) " g(x(0)x(@(8) " du(t) £ (2(t))e" |
= lim_lim By, [x(2(0))do((0)) " g(2(0))x(w(®)) " di(2(t) fw ()"0

m—0o00 N—00
= lim lim (g|xP. X' f),

M—00 N—00 ,m

where, by the Feynman-Kac formula,
(P, D) (@) =By e f(a(t)] = (e FHomm) ) ()

defines a quasi-bounded semigroup on L%(Z,dz). In the following, we assume that f € C§°(Z) is
non-negative. It follows from Eq. (5.13) that x !4, f € C§°(Z) C Dom (L) = Dom (L + o4, 1) and
we can write

~ ~ t ~
(gIXPy, X ef) = (glef) +/0 (GIX(L + onm) Py, X e f)ds.

Denote by LT the adjoint of L on L*(Z,dz) which acts on C§°(E) as LT = 1V - BV — V - Ax.
Assuming g € C3°, we get

~ t ~
(gIXPL, X0 f) = veaO(gf) + / XCUE" + onm)xgIXPy, X e f)ds.
0
The generalized detailed balance condition (3.20) yields
X 'LTxg = O(L+05)0g = (OLO — 05)g,
and it follows that
—17

X Uef).

Since g is compactly supported, if » and m are sufficiently large we have (o, — 08)g = 0 and so

X HET + 0nm)X9IXPE. XY f) = (OLO + 0pyn — 05)g|X P

n,m n,m

~ t ~
(P, X7 ) = vei®laf) + [ (OLOGINPS, X i) ds.
Taking the limits n — oo and m — co we get that
~ t ~
(gIXPox ™ f) = vr—©(f9) +/0 (OLOg|xPyx "W f)ds
holds for all f,g € C§°(Z). For k > 0 set

g(x) = (1 + elo?/2) =1,
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and let p € C°(R) be suchthat 0 < p < 1, p' <0, p(z) = 1forz < 0and p(z) = 0 forz > 1.

Define g, , € C§°(Z) by gi.r(x) = gr(z)p({x) — r). One easily checks that
i {|gr.r = gklloo + [1L(ghr = gk)llo = 0,
r—00

and noticing that g, and gy, ,- are ©-invariant, it follows that

~ t ~
(grIXPox " uf) = vr—©(gif) + /0 (OLgi|xPsx e f)ds.
Using the fact that

1
(Lgw)(x) = — (),

and the monotone convergence theorem we conclude that
(LxPox ™ ef) = lim (gelxPox ™" ¥ef)
k—o00
. 1 ¢ 17
> lim v ©(gf) — gtr(B) [ (UPex s )ds = vea( ),
k—o0 8k 0
Finally, letting f converge to 1 monotonically, we deduce

B Z(t)) = lim EZ(0) f(()] = lim (P of) > lim ve() = vea(1) = 1.

This completes the proof of the claim (5.22).

5.5 Proof of Theorem 3.13

(1) We start with some algebraic preliminaries. For w € R, set
Rw)=97'Q"(A+iw)™'Q,  Uw)=1+R(w),

and note that since the matrices A, () and ¢ are real one has

CR(w)C = R(—w), CU(w)C =U(~w), (5.26)
where C denotes complex conjugation on CO=. Further note that
LN _ det(A* — iw)
— I A 1 1r*y —
det(U(w)) = det(I + (A +iw) QU Q") Tot(A i)
from which we deduce that
|det(U(w))| = 1. 5.27)

From the relations
(T+97'Q" (A—iw) Q) =T - (I+97'Q* (A —iw)'Q) ' v 'Q" (A —iw)'Q
— T Q" (I + (A—iw) ' Q@) (A—iw)'Q
—T— 9 Q" (A—iw+QV'QY) ' Q
=T +97'Q"(A* +iw)'Q
=T +971Q*0(A* +iw)10Q
=T+ 97'Q"(A+iw)'Q =T + R(w)
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we also get
U(—w) ™t =U(w). (5.28)

Writing

B(w) = Q*(A* —iw) ™! ((—A* - %Qﬁ‘lQ* +iw)B+ B(—A — %Qﬁ_lQ* - iw)) (A +iw)'Q

_ Q* (_(A* _ iw)_lﬁ _ B(A + iw)_l o (A* o iw)_lQﬁ_2Q*(A + iw)_l) Q
=—Rw) - Rw)" —Rw)'Rw)=I—- I+ Rw))* I+ Rw)) =1—-U(w)U(w),

shows that F/(w) is indeed independent of the choice of 5. The continuity of w +— E(w) follows from
Assumption (C) and Lemma 5.1 (1) which ensures that iR N sp(A) = 0.

(2) Invoking Relation (5.28) we infer

and
I —aEw)=UWw)" (U(-w)'U(-w) + aF(—w))U(w) = U(w)* (I — (1 — o) E(—w))U (w).

Combining the last identity with Eq. (5.26) and (5.27) yields

det(I — aB(w)) = det(I — (1 — @) E(w)). (5.29)

The simple estimate ||(A + iw) ™ t||o < (1 + w2)*% implies

|E(w)|: € L'(R, dw), lim ||E(w)| = 0. (5.30)
w—rFo0
Thus, the eigenvalues of E(w), which are continuous functions of w, tend to zero as w — +oo.
Since (5.29) implies that [ — E(w) is unimodular, 1 ¢ sp(E(w)) for any w € R and we conclude
that F(w) < 1 for all w € R. From (5.29) we further deduce that the elements of sp(E(w)) \ {0}
can be paired as (¢,¢’) with 0 < ¢ < land &’ = —¢/(1 — ) < 0. Moreover, since the function
10,1[> € — —¢/(1 — €) is monotone decreasing, one has

e_(w) = minsp(E(w)) = —L(w), £4(w) = maxsp(E(w)).
1-ey(w)
Thus, the following alternative holds: either
e = glelﬁa_(w) =0= Ij}lgﬂ)g(€+(w) =eq,
and hence F(w) = 0 forall w € R, or
€+
€0, 1], - = = €0, — )
e B
and hence
1 1
— 4+ —=1.
E_ g4
This proves Part (2).
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(3) By Part (2), det(I — aF(w)) # 0 for a € €, and hence the function
¢. 3> aw logdet(I — aE(w))

is analytic. Moreover, an elementary analysis shows that for any compact subset ' C &, there is a
constant C'ir such that

aSlelgHE(w)(I — aB(w)) 'l < CxllEw)]l1-

For any o € €, one has

«
logdet(I — aFE(w)) = —/ tr(E(w)(I — yE(w))™Y)dy,
0
and since the integration path from 0 to « lies in €. there is a constant C, < co such that
[ log det(I — aB(w))| < Ca [|E@)]1-

By (5.30) and Fubini’s theorem

el) == [ togaert —ab@) P = [* ([ wtB@)r - vB@) ) 0

—00 —00 47T

It follows that €, > « — e(«) is analytic and that

¢a) = [ B - aB) )

)
o 47

oo

e’ () :/ tr(E(w)(I — aB(w)) 'E(w)(I — aE(w))_l)d—w.
oo 4

Since I — aF(w) > 0 for a € T, the last formula shows in particular that ¢”(«) > 0 for « € J, and
so the function J. 3 « — e(«) is convex. Going back to the alternative of Part (2), we conclude that
either e(«v) vanishes identically, or is strictly convex on J.. The symmetry e(1 — «) = e(a) follows
from Eq. (5.29) and, since e¢(0) = e(1) = 0, convexity implies that e(a) < 0 for o € [0, 1] and
e(a) > 0 for o € 3.\ [0, 1]. By Plancherel’s theorem

/OO (A +iw)tQQ*(A* — iw)_ld—w = /OO Q@ eV dt = M,

—0 27T 0

¢0) = —¢(1) = [ u(Ss4+ 1) Q@ (A — ) ) [ = bx(S5M) = p(ors) = —ep.

Assume that e, > 0. By Lemma 5.1 (1), A is stable and hence F(w) is an analytic function of w
in a strip [Imw| < d. By (5.30) there is a compact subset K of this strip such that e (w) < e for
all w € R\ K. By regular perturbation theory the eigenvalues of F(w) are analytic in K, except
for possibly finitely many exceptional points where some of these eigenvalues cross. Thus, there is
astrip S = {w||Im (w)| < ¢’} such that all exceptional points of F(w) in S N K are real. Since
E(w) is self-adjoint for w € R, its eigenvalues are analytic at these exceptional points (see, e.g., [Ka,
Theorem 1.10]). We conclude that the eigenvalues of E(w) are analytic in S N K. It follows that the
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function R 3 w — e (w) reaches its maximum ¢ on a finite subset M C K NR. To eachm € M
let us associate dy, > 0, to be chosen later, in such a way that the intervals Oy, =]m — dp, m + Oy [ are
pairwise disjoint. Setting

em(a) = — /log det(I — aE(w))j—: =-> / log(1 — aej(w))j—:, (5.31)
J Om

Om

where the sum runs over all repeated eigenvalues of F(w), we can decompose

e(a) = Z em() + ereg(),

meM

where the function o — eyeg(cv) is analytic at o« = % + Ke. Since J. 3 a — e(a) is convex, to prove
that it has a continuous extension to o = % + K. and that its derivative diverges to +o0o0 as o 1 % + Ke,
it suffices to show that for all m € M the function e, () remains bounded and its derivative diverges
to +00 in this limit. The same argument links the behavior of e(«) and €/(c) as o | § — ke to the
minima of e_ (w), and we shall only consider the case o 3 + K.

Let m € M and consider an eigenvalue £(w) of E(w) which takes the maximal value £ at w = m.
There is an integer n > 1 and a function f, analytic at m, such that f(m) > 0 and

fw) = ey — (@ — m)™ f(w).
Moreover, we can chose d, > 0 such that f is analytic in Oy, and

inf > 0, < 00, inf > 0.
nf f(w) wseu(g)m flw) < oo Jnf £(w)

Setting
1

1 i
(1 >2n %—i—/@c—a 2n
= — — & = -_— y
K « * (%‘i‘/ﬁ?c)a

sothatn |0 a T % + K¢, WE can write

1 - acew) = ar® (1 f(=m) f(w)> = afw —m? ((w ) f<w>>

and since
[ 2n
/ log |an®® (1 + (w ; m> f(w))] dw = O(nlogn),

log a(w—mﬁ“(( 7 >2n+f(w)>]dw=0(1),

w—m
N<|w—m|<dm -

as n J. 0, it follows that
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as o T % + K¢. Since the contributions to the sum on the right-hand side of Eq. (5.31) arising from
eigenvalues of F(w) that do not reach the maximal value £ at m are analytic at v = % + K., it follows
that ey, (a) remains bounded as o 1 1 + k.

Let us now consider the derivative e}, («). Setting n = % + K¢ — o, we can write

/ %dw = / <77 + S{OEC;; (w— m)2n> -1 dw.

Om Om

Since
f(w)

D = sup
weom E(W)e

S L
1 — ae(w) 0 ntwnD

> 0,

we get

Om

as 17 J. 0. Since again the contributions of the eigenvalues of F/(w) which do not reach the maximal
value £ at m are analytic at o = & + ., it follows that e}, (o) — co as a 1 1 + k.

(4) For any bounded continuous function f : [c_,e.] — C one has

[ wtErEen ] <1l [ 1N

Hence, by the Riesz-Markov representation theorem there is a regular signed Borel measure ¢ on
[e_, e4] such that

/OO tr(E(w)f(E(w)))i—: = /f(s)g(de),

—00

and

Jleltae) < [ 1@ <o

For o € €, the function

1
faile—,e4]2em = log(1 — ae)

is continuous and we can write
& d
cla) == [ ulB@LE)E = [ 640, 532

We can now proceeds as the proof of Theorem 2.4 (2) in [JPS].

(5) We start with some simple consequences of Assumption (C). The reader is referred to Section 4
of [LR] for a short introduction to the necessary background material. Since A, = A + aQv1Q*,
the pair (A,, Q) is controllable for all . The relation A}, = —A;_,, shows that the same is true for
the pair (A}, Q). Thus, one has

(] Ker (Q* A7) = (1] Ker (Q*A%") = {0} (5.33)

n>0 n>0
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for all . This implies that if Q*u = 0 and (A4 — 2)u = 0 or (A%, — 2)u = 0, then u = 0, i.e., no
eigenvector of A, or A}, is contained in Ker Q*.

Assume that z € sp(A,) and let u # 0 be a corresponding eigenvector. Since
Ao+ AL =2(a — $)QV Q™

taking the real part of (u, (Ay — 2)u) = 0 yields
(@ — H2Q uf? = Re z[uf>.

Thus, controllability of (44, Q) implies sp(A,) C Cy for £(a — 3) > 0.

For o € R\ {3} and w € R, Schur’s complement formula yields

det (I + (1l — a)Q* (A} — iw)1QU2Q*(An +iw)1Q)
det ((Aq + iw)~1) det ((Ax — iw)~1) ’

det(K, —iw) =

and using the relations

(Ag +iw) ™ = (A4 i) 1T 4+ aQ01Q* (A +iw) 1),
(Af —iw) ™ = (T +a(A* —iw) 'Y Q") 1 (A* —iw) ™!,

one easily derives
det(K,, — iw) = | det(A + iw)|* det(I — aE(w)). (5.34)

Writing Eq. (3.41) as
K o— —-A QQ* n —aQV Q" 0
10 A* a(l —a)QV2Q* aQV Q" |’
one derives that the identity (5.34), as the equality between two polynomials, extends to all o € C.

By Part (2), we conclude that sp(K,) NiR = () for a € €. It follows from the regular perturbation
theory that the spectral projection P, of K, for the part of its spectrum in the open right half-plane is
an analytic function of « in the cut plane €. (see, e.g., [Ka, Section II.1]). For o € R, K, is R-linear
on the real vector space = @ =. Thus, its spectrum is symmetric w.r.t. the real axis. Observing that
JK, + K} J = 0, where J is the unitary operator

0 I
=l
we conclude that the spectrum of K, is also symmetric w.r.t. the imaginary axis. It follows that for
a€J.
3D Red|my = tr(PaKa). (5.35)
Aesp(Ka)

Denoting the resolvent of K, by T, (2) = (2 — K,) ™!, we have

d
Poz = % Ta(z) Z.a
., 2mi
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where I';. C C is a Jordan contour enclosing sp(K,) N C4 which can be chosen so that it also
encloses sp(—A) = sp(Kp) N C,. Thus, we can rewrite (5.35) as

dz
% Z Re)\|m)\:7{ ZTa(Z)T,
Aesp(Ka) Iy m
p(Ka
with 7, (2) = tr(Tu(2)).

An elementary calculation yields the following resolvent formula

_ —or(z)QD()(I + R*(2)071Q"r(2) r(2)QU — D(2))Qr%(2)
TQ(Z) B TO(z) * -1 -1 & —1 e )
_)\7‘@(2)@79 (I+R(Z))D(z)19 Q*T‘®(Z) QT@(Z)Qﬂ (I+R(Z))D(Z)Q*T@(z)
@) = A+ ) = (A -2

R(z) = 07'Q(2)Q, R%(2) = Q7r(2)QV",

and
D(2) = (I +a(R(2) + R*(2) + R*(2)R(2))) .

It follows that
Ta(z) = 10(2) + tr (D(z)a@z((f + R®(z))([ + R(z))) )

Thus, for small enough o € C and z € I', we have
Ta(2) = 70(2) + 0;logdet (I + a(R(z) + R®(z) + R¥(2)R(2))) .

Since

r(z) —r(2)QQr*(2)
To(Z) = s
0 —r®(2)
the fact that 'y encloses sp(—A) C C. but no point of sp(A*) C C_ implies
1
?{ zm(z)d—z_ = 7{ ztr ((z + A)_1 +(z— A*)_l) E = —tr(4) = ftr(Qf}_lQ*),
ry 27 Iy 27 2
and hence
dz 1 1 % ® ® dz
2T (2)=— = =tr(Q¥~ Q") — logdet(I + a(R(z) + R¥(2) + R¥(2)R(2))) —.
ry 27 2 ry 27

Noting that
R(z) + R%(2) + R®(2)R(2) = —Q*(A* — 2)7'Z5(A + 2)'Q,

and deforming the contour I'; to the imaginary axis (which is allowed due to the decay of the above
expression as |z| — oo) yields

tr(KaPa) = 1r(QU1Q") + / " Jogdet(I — aB(w)

—oo o2

Since both sides of the last identity are analytic functions of «, this identity extends to all o« € €. and
the proof of Theorem 3.13 is complete.
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5.6 The algebraic Riccati equation

This section is devoted to the study the algebraic Riccati equation
Ra(X)=XBX - XA, - A X—-C,=0

which plays a central role in the proof of Proposition 3.18. We summarize our results in the following
proposition.

Proposition 5.5 Under Assumption (C) the following hold:

(1) For o € T3, the Riccati equation R, (X ) = 0 has a unique maximal solution which we denote by
Xq. It also has a unique minimal solution, which is given by —0X1_,0. Moreover,

D, =A,—BX,

is stable and
Y, =X,+60X1_,0>0.

(2) The function 3. > a — X, € L(E) is real analytic, concave, and satisfies

{ Xo<0 for « E]% — Ke, 0[; (5.36)

Xo >0 for a€]0,i+ k.
Moreover, Xg = 0 and X; = M ~146.

(3) If, for some a € 3., X € L(Z) is a self-adjoint solution of Ro(X) = 0 and sp(A,—BX) C C_,
then X is the unique maximal solution of Ro(X) = 0.

@) If ke < 00, then the limits

X, = lim X, X

1_ke
ai%_"ﬁc

= lim X,,

1
5+ke 1
2 O‘TE +Hc

2

exist and are non-singular. They are the maximal solutions of the corresponding limiting Riccati
equations R%inc (X%:tnc) =0.

(5) If X € L(Z) is self-adjoint and satisfies Ro(X) < 0 for some o € T, then X < X,.

(6) Forall o € 3. the pair (Dq, Q) is controllable and sp(D,,) = sp(K,) N C_. Moreover, for any
B € L(E) satisfying Conditions (3.17) one has

e(@) = $tr(Dy + 3QV7'Q%) = —3tr(Q*(Xa — aB)Q). (5.37)

(7) Fort > 0 set
t
Moy = / e*Pe BesPads > 0.
0

Then for all o € 3,
. -1 _; -1 _ >
A Moy = fnf Moy =Ya 20,

and Ker (Yy,) is the spectral subspace of D,, corresponding to its imaginary eigenvalues.
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(8) Set Ayt = MOZ% —Y,. Forall « € 3., one has

ePa M te!Pr = 9A1_o 40, (5.38)

and )
lim — logdet(Aqy) = 4e(a) — tr(QY1Q).
t—oco t ’

In particular, for o € I, Ao — 0 exponentially fast as t — oo.

(9) Let Dy = 0D _ 0. Then
YaetDa — etD;Ya
forall oo € J.andt € R.
(10) Let W, = aX1 — Xq. Then

Wo <0 for |o—3|<3;
Wa >0 for §<l|o—3|<he

and Yy, + Wy, > 0 forall o € J...

(11) SetV = %(ﬁmax + Omin) and A = O pax — Omin- Then the following lower bound holds

Moreover, the maximal solution satisfies

adt fora e[l — ko, 0]
X >{ min J [z = #0,0] (5.39)

gl fora €10,3 + ko).

(12) Assume that k. = kg and that the steady state covariance satisfies the strict inequalities (re-

call (3.13))
ﬂmin <M< ﬁmax-

Then Condition (R) is satisfied.

Remark 5.6 In the equilibrium case ¥ynin = Ymax = VYo it follows from Part (11) that k. = co. One
easily checks that in this case

X, = avy'l, 0X1_a0 = (1 — )0, 'I, Y, =951, W, =0, D, = A.

Proof. For the reader convenience, we have collected the well known results on algebraic Riccati
equations needed for the proof in the Appendix.

We denote by H the complex Hilbert space C= & C= on which the Hamiltonian matrix K, acts and
introduce the unitary operators
0 0
o5 0]
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acting on the same Hilbert space. We have already observed in the proof of Theorem 3.13 that for
a € R the spectrum of K, is symmetric w.r.t. the real axis and the imaginary axis. The time-reversal
covariance relations

0A0 = A% = —Ai_a, OBO=B"=DB, 0C.0=C"=Cy=Ca, (5.40)

which follow easily from the definitions of the operators A,,, B, C,, (recall Eq. (3.1), (3.12) and (3.42)),
further yield © K, — K]__,© = 0 which implies

Sp(Ka) = Sp(Klfa)- (5.41)

(1) By Theorem 3.13 (5), sp(K,) NiR = () for & € J. and the existence and uniqueness of the
minimal/maximal solution of R, (X)) = 0 follows from Corollary A.3. The relation between minimal
and maximal solutions follows from the identity

Ra(0X0) = 0R1_o(—X)0,

which is a direct consequence of Eq. (5.40). The maximal solution X, is related to the spectral
subspace H_(K,) of K, for the part of its spectrum in the open left half-plane C_ by

H_(K,) = Ran [ (5.42)

v )

see Section A.3. In particular sp(D,,) = sp(K) N C_.

The matrix Y, = X, — 60X1_4,0 is called the gap of the equation R, (X) = 0. It is obviously non-
negative. It has the remarkable property that for any solution X, Ker (Y,,) is the spectral subspace of
A, — BX for the part of its spectrum in iR (Theorem A.7 (1)). Since sp(D,) C C_, we must have
Y, > 0.

(2) One deduces from Eq. (5.42) that the spectral projection of K, for the part of its spectrum in C
is given by

1

_ 1Y X, v
P“:[XQ}Y“WXIW I']=

Xo(I-Y1X,) X Y, !

As already noticed in the proof of Theorem 3.13, P, is an analytic function of « in the cut plane
¢. DO J.. It follows that Y(;1 and X&Yoj1 are real analytic on J.. The same holds for Y, and
Xo = XYY,

To prove concavity we shall invoke the implicit function theorem to compute the first and second
derivatives X/, and X/ of the maximal solution. To this end, we must show that the derivative DR,
of the map X — R,(X) at X = X,, is injective. A simple calculation shows that

DR, :Zw —ZD, — D}Z.

By (1) one has sp(D,,) C C_ for a € J,. It follows that for any L. € L(Z) the Lyapunov equation
DRyZ = L has the unique solution

o0 *
Z = / cParetPedt
0
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(see, e.g., Section 5.3 in [LLR]). This ensures the applicability of the implicit function theorem and a
straightforward calculation yields the following expressions valid for all o € J.:

X! — / P (XoBB + BBXa + (1 — 20)8BS) etPedt, (5.43)
0
X! = -2 / etPa (X! — B)B(X!, — B)e'P=dt. (5.44)
0

From (5.44) we deduce X!/ < 0 which yields concavity.
We shall now prove the inequalites (5.36), using again the Lyapunov equation. Indeed, one can rewrite
the Riccati equation R, (X, ) = 0 in the following two distinct forms:
XoAo + AL Xy = XoBX, — Ca, (5.45)
XoDo + D} Xy = —XoBX, — C,. (5.46)

Recall that Condition (C) implies sp(Ay) C C_ for a < 0 (as established at the beginning of the
proof of Theorem 3.13 (5)). It follows from Eq. (5.45) that

o0 oo
X, = — / e (XyBXy — Cp)etedt < a1 — a) / etaQu2Q* et dt. (5.47)
0 0

Since (A}, Q) is controllable, we can conclude that X, < 0 for o €]3 — £, 0[.

Similarly, for & > 1, sp(A4,) C C4 and Eq. (5.45) leads to

X, = / e s (X,BX, — Cyple Medt > a(a — 1) / e MaQuTQ e Madt.  (5.48)
0 0

Controllability again yields X, > 0 for a €]1, 2 + k][.
Finally, for a €]0, 1] we use Eq. (5.46) and the fact that D, is stable (established in Part (1)) to obtain
o0 * o0 *
X, = / etPa (XaBXo + Ca)etD“dt > a(l - a)/ ePau2Q*e!Pads.
0 0

It follows that X, > 0 for a €]0,1[. To show that X, > 0, let u € Ker X,,. From (5.45) we infer
(u, Cou) = 0 and hence u € Ker C,, = Ker Q*. Using (5.45) again, we deduce A u € Ker X,,.
Thus, we conclude that u € Ker Q* A7 for all n > 0 and (5.33) yields that u = 0.

From Xy = lim19 Xo < 0 and Xg = lim, o Xo > 0, we deduce Xy = 0.

To prove the last assertion, we deduce from (5.45) and identities Ay = —A* = —0A0, C; = 0, that
M=0X, 19 satisfies the Lyapunov equation AM + M A* 4+ B = 0. Since A is stable, this equation
has a unique solution and Lemma 5.1 (5) yields M = M.

(3) is a well known property of the Riccati equation (Theorem A.6 (3)).

(4) Since X,, is concave and vanishes at & = 0, the function o — X, — aX{, is monotone decreas-
ing/increasing for o negative/positive. Thus, to prove the existence of the limits X, , . it suffices to
2 C

show that the set { X, |« € J.} is bounded in L(Z). For positive «, this follows directly from Part (2)
which implies 0 < X, < aX|). For negative «, taking the trace on both sides of the first equality in
Eq. (5.47) and using the fact that C,, < 0, we obtain

tr(X,) = — / tr((XaBXq — Cy)etdaetde)dt > —tr(X,BX, — Cy) / |4 ||2dt.
0 0
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Thus, an upper bound on tr(X,BX, — C,) will conclude the proof. Taking the trace of Riccati’s
equation yields

a—1

min

fr(XaBXe — C) = t1(Xa (A + A%)) = (20 — Dir(XaQ01Q") < 22— Li(Ro),

where X o = Q" X, Q. Combining the last inequality with the estimate
tr(Xo)? < [0Z]tr(X2) = [0Z]t:(Q* XaQQ* X Q) < [0Z] | Q|*tr(X0 BX.,)
yields a quadratic inequality for tr()?a) which gives
tr(Xa) > —(1 = 20)[0Z] | QI[*V 1,

Summing up, we have obtained the required lower bound

min

tr(Xa) > —(1 - 20)210Z] | Q|29;2 /0 et 2dz.

By continuity, we clearly have R lin, (X 1 +..) = 0. Continuity also implies that sp(D 1 +r,) C C_
and the maximality of X 1, follows from Part (3).

Since C i, < 0, the fact that X L, is regular follows from the same argument we have used to
prove the regularity of X, for o €]0, 1[.

(5) is another well known property of the Riccati equation (Theorem A.7 (3)).

(6) Since D, = A+Q(ad~1Q* — Q*X,,), the controllability of (D, Q) follows from that of (A, Q).
The relation between sp(K,, ) and sp(D,,) is a direct consequence of the relation

w4 ]-[L]

which follows from Eq. (5.42). Formula (5.37) is obtained by combining this information with
Eq. (3.43). The last assertion is deduced from controllability of (D,, @) in the same way as in the
proof of Lemma 5.1 (1).

(7) To prove the existence of the limit, we note that (6) implies that for any o € J.and ty > 0 the
function [tg, c0[> t +— M, 1 ! takes strictly positive values and is bounded and decreasing. Thus, we
have
. 1 . —~1
For = fg Mot = jaf Mt 20

Since M, t is easily seen to satisfy the differential Riccati equation

d B .
&Mat — (MQ}BM + M tlDa+DaMa;), (5.49)

it follows that for any ¢ > O and 7 > 0

«

-
1 - — *
Ma Ma t+r — /0 (Ma t+sBM ,t+s + M, t+sDC¥ +D Ma t+s) ds.

Letting t — 0o, we conclude that Z,, satisfies

ZoBZo + ZoDy + DEZs = 0. (5.50)
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Expressing the last equation in terms of V,, = 0(Z, — X )0 and using (5.40), we derive R1_ (Vo) =
0. By a well known property of Lyapunov equation (see, e.g., Theorem 4.4.2 in [LLR]), one has
sp(Dq + BM(;%) C C, for all t > 0, which implies sp(D,, + BZ,) C C,. Since D, + BZ, =
—0(A1_o — BV,)0, we have sp(A;_, — BV,) C C_. From Part (3) we conclude that V, is the
maximal solution to the Riccati equation R1_,(X) = 0, i.e., that V,, = X;_,. Thus,

Zo =Xo+ HXl—ae = Yay

is the gap of the Riccati equation. It is a well known property of this gap that Ker (Y,,) is the spectral
subspace of D, associated to its imaginary eigenvalues (Theorem A.7 (1)).

(8) Combining (5.49) and (5.50), one shows that A, ; = M, a, % — Y, satisfies the differential Riccati

equation
d

dt
where D, = —(Aq + BOX,_,0) = 0D1_,0. Since

Aa,t = _Aa,tBAa,t + Aa,tﬁa + ﬁzAa,tv (551)

Agt = (I = MagYa)™ May,
we further have lim;_,q A;}t = 0. We deduce that S, ; = A;i satisfies the linear Cauchy problem

d ~ ~
&Soc,t =B — DaSa,t - Soc,tD;” Sa 0= 07

whose solution is easily seen to be given by

t _ t
Sat = / e *PaBe™*Pads = ¢ </ eSDlaBeSDf—ads> 0
0 0

t
= Pe P10 </ eSDlaBeSDf—ads> e tPi-ap
0

_ _ *
= Qe tPr-a )y, et Pi-ag.

We thus conclude that
tD* -1 _tDi_q
Apt = Oe 1*&M1_a7te =g

which immediately yields (5.38).
Since A, ; is strictly positive for ¢ > 0, we infer from Eq. (5.51) that

%log det(Aqy) = tr(AavtA;}f) = —tr(Aq+B — D, — D;)
= —tr(Q"AntQ) + 2tr(Di—q).
By Part (3) and Theorem 3.13 (5), we have
1 1 1 1 —1 %
tr(Dy-a) = =3 > ReAmy=2e(1-a)- 5 (@Y 1Q*) = 2e(a) — 5 r(QY 1Q").

Aesp(Ki1—a)

Since A, ¢ — 0 for ¢ — oo, given € > 0 there exists £y > 0 such that

de(a) —tr(QU1Q*) —e < %log det(Ant) < de(a) —tr(QI1Q%)
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for all ¢t > #¢. It is straightforward to derive from these estimates that

lim % log det(Aq ) = de(a) — tr(QI1Q¥).

t—o00
(9) Using (5.40), one rewrites the Riccati equation (5.50) as

D:Yy = —Yo(Da + BY,) = —Yo(Aa + B(Ya — Xa))
= —Ya(Aa + BHleae) = —Yoﬂ(—Al,a + Blea)e
=Y,0D1_o0 = Y, D,.

Thus, the result immediately follows from the fact that
d x 5 " ~ 5
— ePay,emPe = e Pa (DY, — YaDg)e P = 0.

(10) For any v € = we infer from Parts (2) and (4) that the function o — (u, Wyu) is convex, real
analytic on the interval J., and continuous on its closure. Since it vanishes for |o — %| = % one
has either (u, Wou) = 0 for all @ € J. or (u, Wou) < 0 for |ov — %| < % and (u, Wau) > 0 for

3 < |a — 1| < k. This proves the first assertion.
Since Y,+W, = aX+60X:_,0, we deduce from Part (2) that Y, +W,, > 0 for \a—%| < % Consider
now 3 < |a— 3| < k.. If u € Zis such that (u, Wau) > 0, then Part (7) yields (u, (Yo +Wa)u) > 0.
Thus, it remains to consider the case of v € = such that (u, Wyu) = 0 for all & € J.. Using (5.44)
we get that
o0
(w0 Wetn) =~ Xew) =2 [ 1@ (Xe = B)ePoufPdt =0
0
for a € J... Since QQ*(X/, — 3) = — D!, this further implies D/, e*P2u = 0 for all (o, t) € J. x R.
Duhamel’s formula

t
iewau = / e(t_S)D‘*D;eSD“uds =0
dOé 0

allows us to conclude that etPay = tPoy = 4

(a,t) € 3. x R. Thus,

u, a relation which extends by continuity to all

lim etPey = lim ety = 0,
t—00 t—o00
which, using (7) again, further implies that u ¢ Ker (Y,,) and hence (u, (Yo, +Wy)u) = (u, You) > 0.

(11) For A € R, one has
Ra(A) = QU™ (M) — (= 1)) (M — a) 971 Q,

so that Ro(AI) < 0iff « — 1 < M) < a. It follows that P = {(a, \) € R? | Ro(A]) < 0} is the
closed parallelogram limited by the 4 lines (see Figure 11)
o A= Oz7 )\:a—l’ )\:a—l

ﬂmin ﬂmax

A\ =

ﬁmax ﬁmin

The projection of P on the a-axis is the closed interval [% — Ko, % + Ko]. Thus, Theorem A.5 implies
that the Riccati equation has a self-adjoint solution for all o € [% — Ko, % + Kol. By Theorem A.6 (2)
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Figure 11: The parallelogram P.

it also has a maximal solution X, which, by Theorem A.7 (3), satisfies the lower bound (5.39). From
this lower bound we further deduce that for « € [0, % + ko[, the gap satisfies
1-— A
Yo = X0+ 0X1_ o0 > —2— + e (2 + Ko — ) > 0.

ﬁmax ﬁmin ﬁmaxﬁmin
Since Ker Y% +r, 7 {0} by Parts (6) and (7), we conclude that . > k.
(12) The concavity of R, = X, + (1 — o) X; and the fact that Ry = R; = X; > 0 imply that for

la — 3| < Jonehas R, > X1 > 0. For 3 < o — & < ko, Part (11) gives Xo > adl,. Since
M > Oin, Part (2) yields X1 = M 16 < 19;1iln and hence

1
o 11—« Ko — (@ — 5
R, > = (2 12) > 0.
Vmax Umin A(/‘GO - Z)
The case —kg < a — % < —% is similar. O

5.7 Proof of Proposition 3.18
5.7.1 A Girsanov transformation

By Proposition 5.5, for o € J.wehave A = D, + QQ* (X, — af), and we can rewrite the equation
of motion (3.2) as
dz(t) = Dax(t)dt + Qdw,(t), (5.52)

where

walt) = w(t) - /0 Q*(af — Xa)a(s)ds.

Let Z,(t) be the stochastic exponential of the local martingale

Na(t) = /0 Q*(af — Xa)x(s) - dw(s).
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Combining the Riccati equation with the relations 3QQ* = QQ*8 = QVY~'Q and SQQ*S =
QU2Q*, we derive

51Q7(aB — Xo)ol? = —aos(x) — (af — Xa)a - Az,

and we can write the quadratic variation of 7, as

1 t t
311l = o [ oata)as — [ (@8~ Xa)a(s) - Aa(s)ds.

Hence . : .
mo(t) = 311016 = [ (08 = X)a(s)- o) + o [ sfa(s))ds.
The It6 calculus and Proposition 3.5 (3) give
Halt) — 2 1al(8) = — (Aot + ' + xa(a()) ~ Xa(£(0)))

with Ay, = 3tr(QQ* (a8 — X,)) and

1
Xa(z) = 3% X,z.

Finally, we note that Proposition 5.5 (6) yields
Ao = —51(Q" (Xa — 08)Q) = (o).
Lemma 5.7 The process
Zo(t) = E(a)(t) = o~ le(@)t+a6 +xa (x(t))—xa (2(0))] (5.53)
is a P,-martingale for all x € =.

Proof. We wish to apply the Girsanov theorem; see Section 3.5 in [KS]. However, it is not clear that
the Novikov condition is satisfied on a given finite interval. To overcome this difficulty, we follow the
argument used in the proof of Corollary 5.14 in [KS, Chapter 3].

Fix 7 > 0. By Lemma 5.3, {z(t) — etAx}tE[O,T} is a centered Gaussian process under the law P,.
Since

/S |Q* (B — Xo)x(t)|?dt < C|s — §/| <|(1;2 + sup |z(t) — etAa:P)

te[0,7]

for some constant C, Fernique’s theorem implies that there exists § > 0 such that

exp (; /:/ Q" (afp — Xa)m(t)|2dt)] < 00,

provided 0 < s < s’ < 7 and s’ — s < 4. Novikov criterion implies that under the same conditions,

Eq

= Sy
_E, |exp (/ Q" (0B — Xo)a(t) - dw(t) — % / 0" (af — Xa)a;(t)det) 'w] _1
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For0<s<s <s" <7, —s<dand s" —

]
- Ez
=E,

and an induction argument gives

By [E(na)(T)] =

Since 7 > 0 is arbitrary, the proof is complete.

s’ < § we deduce

E () (") £ () ]
W

| E(10)(5) E(na)(s)

£ | Em)(s)
B [8%)( D W/] E(na)(5) WS]
eS|,
E)() } b

E(ma)(r)], ]
B [sma)(m W“] =1

|

The previous lemma allows us to apply Girsanov theorem and to conclude that {wq (t)}iepo,7] is @

standard Wiener process under the law Q7 ,

main tool in the next section.

5.7.2 Completion of the proof

[-] = E,[Z4(7) -]. This change of measure will be our

From Eq. (3.35) and the results of the previous section we deduce that for o € J,.,

(o) = L logE, [(3’;(995(15))) (

Zo(t) <3/;(093(t))> (j;‘( (0))> e—Xa(w(O))+Xa(z(t))+e(a)t]

— (o) + % log @, , [(j’;(em))) i <;15(:E(0))> e

%x - X,x. Denoting by QY the Markov semigroup associated with Eq. (5.52), we can

1
= Z IOgEN

where xo(z) =
write

er(a) = e(a)

i) = (e >)Me><a<x>, (o) = (j‘;wm))aexm

where

dx

du @ —aGt
o) e 6]

Xa(w(O))JrXa(fv(t))] ,

1
+ Z 10g<na|Qta€a>v

(5.54)

Thus, to prove Eq. (3.45) we must show that the “prefactor” (1, |Q% &, ) satisfies

lim
t—o00

1
; 10g<na|Qg§a> =0.

To this end, let us note that the Markov semigroup for (3.7) can be written as

(P'f)
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where n denotes the centered Gaussian measure on X’ with covariance I. For o € J,, this yields the
representation

(QLS)(x) = det(2mMa,) 2 / o~ 2IMaf (=D p (g, (5.56)

Using Eq. (5.54), a simple calculation leads to

NI

(Nal@'€0) = det(2m M) "2 det(20M) ™2 / e~ 27 Nat?dz = det(M})? det(M )7 det(No )7,
provided

O(Yi—a+Wica+A1an)f  —ePad]

aietPe Yo + Wa + Ay

is positive definite. By Schur’s complement formula, we have

a,t =

det(Na,t) = det(Ya + W, + Aa,t) det(Yi_a +Wi_a+ A1—oz,t - Ta,t)a

where
. _

_1 1 1 1
TOht = g(etDaMa,f)Ma,f (Ya + Wa + Aaﬂg)_lMaf (M 2etDa)0'

ot

It follows that

N

(Na| Q%) = (det(M) det (M) det(Yo + Wa + Aqy) det(Yiq + Wi—g + A1_as — Tai))”

_ 1 1
For any a € T, Proposition 5.5 implies that Y, + Wy, > 0 while, as ¢ — oo, M, # \ Ya’, Agt 0

1
and || M, } etPa ||\, 0 monotonically (and exponentially fast for o € J. ). It follows that

1
. det(Ya) 2
=1 o|QLEL) = = ) 5.57
f(e) = Jim (na|Qata) (det(M) det(Ya + Wa) det(Yi_q +W1_a)> (5-37)
For o € J., Y, > 0, and we conclude that
1 ,
Jim —log(a|Qaa) = 0. (5.58)

Consider now the limiting cases a = % + k.. We shall denote by C' and r generic positive constants

which may vary from one expression to the other. Since Y, is singular, one has log det (M, a, %) —

—o0o. However, the obvious estimate [|e!P| < C(1 + ¢)" implies M, < C(1 + t)" and hence
M, 1> C(1 4 t)~" from which we conclude that

.1 ~1
tlgloao n logdet(M, ;) = 0. (5.59)

It follows that (5.58) also holds in the limiting cases o = % + Ke.

By Holder’s inequality R > a +— e¢(«) is a convex function. The above analysis shows that it is a
proper convex function differentiable on J. for any ¢ > 0, and such that lim;_, e;(c) = e(«) for
« € J.. Since limaTl_H{ €¢/(a)) = 400 by Theorem 3.13 (3), the fact that

2 C

lim e;(a) = +00

t—o00

for o € R\ J, is a consequence of the following lemma and the symmetry (3.39).
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Lemma 5.8 Let (f;)i~0 be a family of proper convex functions f; : R —| — 0o, 00| with the following
properties:

(1) Foreacht >0, f; is differentiable on ]a, b|.

(2) The limit f(«o) = limy_soo fi(v) exists for o €|a, b] and is differentiable on |a, b|.
(3) limar f/(0) = +oo.

Then, for all a« > b, one has limy_, » fi(a) = +o0.

Proof. By convexity, for any v €]a, b[ and any « € R one has

fe(@) = fe(v) + (@ = 1) fi(7),
and Properties (1) and (2) further imply

lim f{(y) = f'(v).

t—o00

It follows that
liminf fi(a) > £(7) + (@ — )£ (7). (5.60)

t—o0

As a limit of a family of convex functions, f is convex on ]a, b and, hence, inf. ¢}, 5 f(7) > —oo.
Thus, Property (3) and Inequality (5.60) yield
liminf f;(a) > limTibnff(’y) + (=) f'(7) = +oo foralla > b.
v

t—o00

5.8 Proof of Proposition 3.22

(1) The required properties of the function g;(«) are consequences of more general results concern-
ing integrals of exponentials of quadratic forms with respect to a Gaussian measure on an infinite-
dimensional space. However, we shall derive here more detailed information about g;(«) which will
be used later (see the proof of Theorem 3.28).

We shall invoke Lemmata 5.2 and 5.3, and use the notations introduced in their proofs. By Proposi-
tion 3.5, we can write

1 o
gt(a) = Z log/e_z(ﬂﬁtﬂi)zyt(dx)’

where ~; is the Gaussian measure on §); with mean 7;a and covariance Xy = D;Df. The convexity of
gt is a consequence of Holder’s inequality. The operator £;, given by

(Lzx)(s) = =Xgx(s) + (s —t)(F + X1 — B)x(t) — d(s)(G + X160 — 5)z(0), (5.61)

maps $ to $H_ in such a way that (z|Liy) = (Lzly) for all z,y € RanD,. It follows that the
operator S; = D} L, D; acting in the space = & 09) is self-adjoint, and a simple calculation shows that
S:—D; (8, Q| D, is finite rank, so that S; is trace class. Using explicit formulas for Gaussian measures,
we derive

o 2
2

1 Q .
gi(a) = 5 log det(I + aS;) 5 (Tia|LiTia) + g(DfﬁtTta\(I +aS8;) ' D LiTa)  (5.62)
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if I +aS; > 0, and g¢(a) = +00 otherwise. Set s_(t) = minsp(S;) < 0, sy (t) = maxsp(S;) > 0,
and

o () :{ —s ()71 ifsy(t) >0; { —s_(t)7' ifs_(t) <0;

oy (t) =
oo ifsy(t) = 0; +(0) oo ifs_(t) =0;

sothat I + aS; > 0iff o € J; =]a_(t), a4 (t)[. Analyticity of g; on J; follows from the Fredholm
theory (e.g., see [Sil]), and a simple calculation yields

1 1
gi(a) = — %tr((f +a8)71S;) — %(TtalﬁtTta)
21 (5.63)
+ o (D LiThal ((I+aS)™ ! + (I +aS8)7?) D;LiT1a).

Suppose a4 (t) < oo and denote by P-_ the spectral projection of S, associated to its minimal eigen-
value s_(t) < 0. By the previous formula, for any « € [0, a4 (¢)[ one has
1 tr(Po) 1

tar(t) —a ﬂtr((f +a8)IS(I - P.)) —

1

2 (Tta’ﬁtTta),

which implies that g;(«) — 400 as & — a4 (t). The analysis of the lower bound «_(t) is similar.

(2) Is asimple consequence of the continuity and concavity of the maps
Jedam Fo=0Xi_o0+a(X1+F), Jc3am Ga=N+P,(Xa—a(G+0X10))|gan (v

and the fact that Fy = X160 > 0 and Go = N + P, X1|gan v > 0.

3) IfX;+F >0and N+ P,(X1—G—0X10)|Ran N > 0, then we also have F}; > 0 and G; > 0
and the result is again a consequence of the concavity of F, and G.

(4) Proceeding as in the proof of Proposition 3.18, we start from the expression

) = () + 7 log{al Qhéa).

where
na(dgp) — e_%i'(Xa—a(G—&-@Xl@))Il/(d‘,E)7 §a($) _ e—%m(—Xa—f—a(F—l-Xl))x‘

Setting

Cat:

)

Ga + Py9A17a7t9|RanN _PvetD;‘Mc;,%
MLt | Fot Doy |

o

Cait = %w(Xa—a(G+9X19)+9A1_a7t9)a, ba,t =

P (Xo — (G +0X10) + 0A1_o40)a ]

—1,tD
—M, ;e a

evaluation of a Gaussian integral leads to

N

(Nal Q€)= det(2nN 1) "2 det(2r Ma )~ / e 27 Canzmsbar—Catdy  (5.64)
Ran (N)®E

1

= det(N2) det(Mg ;)2 det(Cl )2 e2bet Casibai—car,
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provided C, ¢ > 0. By Schur’s complement formula, the last condition is equivalent to
Fa + Aoz,t > O, Goc + PI/QAl—Oé,t9|RaHN - Ta,t > 07

where )

L1 1 I St
Ta,t = Pl/(etDO‘]w’oc,t2 )‘7\4041?2 (Fa + Aa,t) 1Ma,t2 (M fetDa)’RaﬂN'

«,

Moreover, one has
det(Cq ) = det(Fo + Aqt) det(Go + PoOA1_ o 10|Ran N — Tt )-
For a0 € J, it follows from Proposition 5.5 that
tll)rgo Tar =0,

and F, + Ay and Gy + P,OA1_ 0|Ran N — Ti,¢ are both positive definite for large ¢. As in the
proof of Proposition 3.18 we can conclude that

.1
tliglo 7 10g(10|Q4&a) = 0.

(5) Suppose that ay < % + Ke. If E}O&+,% + K|, then the matrix C, ¢ acquires a negative
eigenvalue as ¢ increases. Consequently, the integral in (5.64) diverges and g:(«) = +oo for large ¢,
proving (3.62). The case av— > %—/@c and o € [% — Ke, —[ is similar. Suppose now that v = %—}—/—@c.
Since €/(a) — oo as a 1 % + k¢ by Theorem 3.13 (3), Lemma 5.8 applies to g; and yields (3.62)
again. The same argument works in the case a_ = % — Ke.

Combined with Parts (1) and (4), the above analysis shows that for any o« < c4 one has a4 (t) > «
for large enough ¢ while for any o > a4, a4 (t) < « for large enough ¢. We deduce

atr <liminfay (t) <limsupai(t) < ag,
t—00 t—o0

and (3.61) follows. O

5.9 Proof of Theorem 3.28

We use the notation of Proposition 3.22 and its proof. We start with a few technical facts that will be
used in the proof.

Lemma 5.9 Assume that Condition (C) holds and that ep > 0. Then, for some constants ¢ > 0 and
T > 0, the following hold true.

(D) ||Se]| < cand ||Se||1 < et fort > T.

(2) The function g¢(cv) has an analytic continuation from J; to the cut plane C \ (] — oo, a—(t)] U
[t (t), 00]). Moreover, for any compact subset K C C\ (] — 0o, a_] U [ay, o0]) there is T > 0
such that

sup |gi(a)| < oo.

acK
t>Tpe
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(3) For t > T the interval 3, is finite and is mapped bijectively to R by the function g,. In the
following, we set

ase = (g1)7'(s)
fort >T ands € R.

(4) Let

sS4 = lim € (a
* Cfocala—mi ( )7

and suppose that s €] — 00, s_] (resp. s € [s4,+00]). Then we have

tl_i>m Qst = a_ (resp. ay), lign inf gi(ast) > e(a-) (resp. e(ay)). (5.65)
oo — 00

(5) Fort >T and s €] — 00, s_] U [s4, +00], let
Mt = zSt(I + Ols,tSt) ) bst = ;(I + as,tSt) 1D LiTha.

The operator M ; is trace class on = @ 05), with trace norm

[Mstll1 < e+ |s],
and bsy € =@ 09 is such that
lim [|bs ]| = 0.
t—o00

Proof. (1) Writing (5.61) as
(Lyz)(s) = LV x(s) + 6(s — ) L@z (t) + 6(s) LB z(0)
with LU) € L(Z), we decompose S; = D; L, D; = St(l) + St(2) + St(B). Lemma 5.3 (4) yields
1SN < ILOIIDe)? = LV K < e,
ISV |l = tr(DF[LD|Dy) < | LO[tx(DiDf) = LD Kelly < ent,
fort > 0. A simple calculation further gives St(z) = D; LD, St(g) = 5SL(3)250, where
D,=| N} RQ |.
It follows from Lemma 5.2 (3) that
ISP < 18P 1 = tr(DFILP|Dy) < | LP|ex(DiD) = [ LP [[tr (e Ne' " + RiQQ™R}) < ca,

and
1S < 188 11 = tx(DFILD) Do) < [ LD||tr(DoD) = L [tx(N) < s,
for t > 0. We conclude that ||S;|| < ¢1 + 2 + ¢3 and ||Sel|1 < (¢1 + c2 + ¢3)t fort > 1.

(2) Since g+(0) = 0 for all ¢ > 0, it suffices to show that the function g, has the claimed properties.
By definition,

C\ (] = o0, a- ()] Ula(t),oq]) € {a € C| —a™ ¢sp(Sh)}, (5.66)
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and the analyticity of g; on this set follows directly from Eq. (5.63). Let K C C\ (] — c0,a_] U
[, 00]) be compact. By Proposition 3.22 (5) (6) there exists Tk > T such that

dist(K,] — oo, a_(t)] U [ar(t),o]) > 6 >0 (5.67)

for all t > Tk. By Part (1), [aS|| < & so that ||(I + aS;) 7| < 2forallt > T andall a« € C
satisfying |a| < (2¢)~!. By the spectral theorem, it follows from (5.66) and(5.67) that

2c

J

for all t > Tk and all @ € K such that || > (2¢)~!. Hence ||(I + aS;)~!|| is bounded on K
uniformly in ¢ > T. The boundedness of g; now easily follows from Eq. (5.63) and Part (1).

I(Z +aS) 7| <

(3) By Part (5) of Proposition 3.22, if 7' > 0 is large enough then the interval J; is finite for all ¢ > T
By Part (1) of the same Proposition, the function g, is strictly increasing on J; and maps this interval
onto R.

(4) We consider s > s, the case s < s_ is similar. Since o, ; € Jy, Part (5) of Proposition 3.22 gives

a = liminf as; <limsupagy < lim a4 (t) = ag.
t—o0 ’ t—00 ’ t—o0

Suppose that o < 4. Invoking convexity, we deduce from the definition of o ; and Part (4) of
Proposition 3.22
_ T . / < . . / — / )
s = lim inf gy(avsr) < liminf gy(a) = ¢'(a)

The strict convexity of e(«) leads to s < €’(a) < s; which contradicts our hypothesis and yields the
first relation in (5.65).

To prove the second one, notice that for any y € [0, oy [ one has v < as ¢ < a4 (t) provided ¢ is large
enough. By convexity

ge(ast) > ge(7) + (ase —7)g:(7) = 9:(7) + (st — 7)g:(0),
and letting ¢ — oo yields
lim inf gy (aise) > e(7y) + (ay —7)e'(0).
t—o0

Taking v — a4 gives the desired inequality.

(5) We consider s > s, the case s < s_ is again similar. By Part (3), if 7' > 0 is large enough then
ast €]0, a4 (t)[C Ty forall t > T. Since I + aS; > 0 for o € Jy, Part (1) allows us to conclude

1 _ 1 1
905l = S0e(ST (T + a7 < SIS < SISl < e

By Eq. (5.63) and the definition of s ; we have

1 1 tog 1 1
s=—=tr(Ms) — —a- Ty LiTia + Dot (bst| (I + as,tst); + (L + as4Sr) ;)bs,t)a

2 2t 2
from which we deduce

_ 1 " 1 _1
‘|ms7tH1 =S+ Hm:tHl + ;a . Tt ﬁtﬂa — ta&t(b&t\(([ + as7t8t)2 + (I + Oés,tSt) 2 )b57t>. (568)
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One easily checks that
A S .
Jim EHTt LT =0,

so that [|90T_,[[1 < s + 2c and hence || ¢([1 = [|90T |
Finally, from (5.68) we derive

1+ 1950l < |s| 4 3¢ for ¢ large enough.

(bt | (T+ 05 480) % + (I s s Si) "% )bsy) <

bst||? <
[bs,6]]" < = 2tag,

1 1
<s + §tr(9ﬁs7t) + 2—ta T [,tTta> ,

| =

from which we conclude that ||b, ;|| — 0 as ¢ — oo. O

(1) By Proposition 3.22 (4) one has

1
lim n log E, [e?"] = e(—a),

t—00

for —a € Ju. By the Girtner-Ellis theorem, the local LDP holds on the interval |n_, 7, [ with the
rate function

I(s) = 2161%(045 —e(—a)).

Note that I(s) = sup,ey__ (s — e(—a)) for s €]n_,ny[. To prove that the global LDP holds we
must show that for all open sets O C R

o] UG :
— 2 > .
htm inf ” log P, { " € O} Slgf J(s)

By a simple and well known argument (see, e.g., [dH, Section V.2]), it suffices to show that for any
seR

1
NS | ) -
lign lim inf > log P, (17| <] = =J(s),

where 7; = % — s. The latter holds for any s €]n_,n,[ by the Girtner-Ellis theorem. Next, we
observe that whenever o = % + K¢, then by Proposition 3.22 (4) we have nir = *oo. Thus, it
suffices to consider the cases where ov_ > % — Ke orfand oy < % + k.. We shall only discuss the
second case, the analysis of the first one is similar.

Fix s <7_ and set a; = —a_g so that g;(—ay) = —s and, by Lemma 5.9 (3),

. _ o o>
tlgglo ay g, htrg(l)gf gi(—ay) > e(ay). (5.69)

Defining the tilted probability P, on C([0, ], Z) by

dP!,

— eamt—tgt(—at)
t M
Pt

we immediately get the estimate
P, (|| < ¢] > e~tCavteldd=al=ed) [17,] < o],

and hence,

1 . 1o s
Elog}P’,tj (7] < €] > ge(—on) — sap — €|lay| + : log PL [|7:] < €] . (5.70)
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We claim that for any sufficiently small € > 0,
pe = liminf P! [|#] < ¢] > 0. (5.71)
t—o0

Using (5.69) we derive from (5.70) that

o] P

liminf = log P}, [|7] < €] > e(ay) + say — €|ay],

t—oo T
provided € > 0 is small enough. Letting € | 0, we finally get

T | tra
— >
161&1 hg(l)glf ; log Py, [|7:] < €] > e(at) + say,

which, in view of (3.66), is the desired relation.

Thus, it remains to prove our claim (5.71). To this end, note that for A € R,

EZ |:efi)\f]ti| — Ef/ |:e(azfi)\/t)71tftgt(fat)fi)\gé(fat)} _ et(gt(*aﬁ*i)\/t)*gt(*at)*igé(fat))\/t)7

and a simple calculation using Eq. (5.62), (5.63) yields

=

Et |:e_i>\ﬁti| - (det([_|_i)\m_s?t)_161/\tr(m75,t)_)‘2(b75,t|([+i)\9ﬁ75,t)71bfs,t)) ‘ (5.72)

Let S(R, Z) be the Schwartz space of rapidly decaying =-valued smooth functions on R and &’
its dual w.r.t. the inner product of §. Denote by 4 the centered Gaussian measure on X_ = = @
S'(R, E) with covariance I and let

»
n

~ 1
nt(k) = _§(k|m—s,tk — Qb_s’t).

By Lemma 5.9 (5), |7}:(k)| < oo for 4-a.e. k € K_ and

M= [ W) =~ )

It follows that for A € R,

1
/ e W)= 4(dk) = <det(I FIADL ) T ) Nl (4T 0-00)) 2

and comparison with (5.72) allows us to conclude that the law of 7); under @f, coincides with the one
of 1 — M, under 4, so that

pe = liminf 4 [, —m,[ < ¢].
For m > 0 let P, denote the spectral projection of 91, ; for the interval [—m, m] and define

1 1
G (k) = =5 (Puk|D stk — 2b_5) + S tr(Prs),

& (k) = —%((1 PRIk — 2bs) + %tr((] Py,
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so that ; — 7, = ¢ + ¢ and 4[¢~] = [¢;] = 0. Since ¢~ and ¢ are independent under 4, we
have
pe > liminf 4 [|(7] < €/2] 7 [I¢7] < €/2]. (5.73)

The Chebyshev inequality gives

|

Al <e/2] =1=4[I1¢51 2 €/2] 21— 54 1657 -

N

€

Choosing m = 1(c + |s|)€?, the estimate

||Pm9ﬁ8,t

Ry

N 1 m
FIGP] = St(Pa2,) + | Prabs? < L sl < et Jsl) + sl

DN =

together with Lemma 5.9 (5) shows that

2m 1
. . N < > __em
liminf [|IG5] < /2] 21— o = 5
To deal with the second factor on the right-hand side of (5.73) we first note that (I — Py, )|, >
m(I — P,,), so that, using again Lemma 5.9 (5),

[ Mol _ c+ls| 3
m

1
Nop = (I = Pn) < tr((1 = B [ 1]) < = m &

Setting

|14 :
P = =1,...,N,
6] C—F’S‘e’ (j ’ ’ m)a

where the 1¢; denote the repeated eigenvalues of (I — P,,)0t, ; we have ) ; €5 < € and hence, passing
to an orthonormal basis of eigenvectors of (I — P,;,)Mt; ;, we obtain

N, N
m m b .
’7[|Ct>|<6/2]:HNm Zwk‘?—%jk‘j—uj <€ ZHD1|:]{72—2J]{7—1’<6]:|,
st ey 145 |45

where npy denotes the centered Gaussian measure of unit covariance on RY and the b; € R are such
that |b;| < [|bs||. An elementary analysis shows that if [b| < 1and 0 < § < 1, then

1)
eV or '

n [|k* — 20k — 1] < 6] >

Thus, provided € < ¢ + |s|, we can conclude that

32
liminf 4 [|(7] < €/2] > <€> > 0,
o0 7“@ ’ / ] - e(c+|s|)\/67

which shows that p. > 0 and concludes the proof of Part (2).

(2) According to Bryc’s lemma (see [Br] or [ , Section 4.8.4]) the Central Limit Theorem for
the family (7;);~0 holds, provided that the generating function g; has an analytic continuation to the
disc D, = {a € C||a| < €} for some € > 0 and satisfies the estimate

sup |gi(a)] < o0,
a€De
>t

for some ty > 0. These properties clearly follow from Lemma 5.9 (2).
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5.10 Proof of Lemma 4.1

(1) Let '
C= \/ Ran (w*w)’e
320

be the controllable subspace of (w*w, ¢). From (3.1) and (3.4) we derive

0%Q = (-1 [ (e } 3

and hence

\/ Ran (2¥Q) = C @ {0}.

Jj=0

The last relation and Q(C @ {0}) = {0} @ w*C yield that the controllable subspace of (2, Q) is
C @ w*C. Since A = Q — %Ql?‘lQ*, (A, Q) has the same controllable subspace. Finally, since
Kerw = {0}, we conclude that C ® w*C = Ziff C = RZ.

(2) The same argument yields C(£2, Qm;) = C; ® w*C;. Thusif 0 # u € C; N C;, we have 0 #
u® 0 e C(2,Qm) NC(Q, Q;) and the result follows from Proposition 3.7 (2).

5.11 Proof of Theorem 4.2

(1) By assumption (J), the Jacobi matrix

by a4 0 O --- 0 0
ap by az O 0 0
0 a9 b3 as 0 0
L2 ) . ) |
0 0 0 " . aps 0
0 0 0 0 . br1 ar
0 0 0 0 - ap. b

is positive and a; # 0 for all i € Z. Denote by {6; };c7 the canonical basis of RZ. Starting with the
obvious fact that Ran (:) = span({d; | ¢ € 0Z}), a simple induction yields

\/ Ran (w?1) = span({J; | dist(i, 0T) < k}).
0<j<k

Hence the pair (w?, 1) is controllable.

(2) The argument in the proof of Part (1) yields C; = C;, = R and the first statement follows
directly from Proposition 3.7 (2). To prove the second one, we may assume that J,;, = ¥; and
Umax = Ur. From Theorem 3.2 (3) we already know that ¢ < M < ¢, and that

M -9, =t / QT — 9 hHQ e dt.
0
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Since ?9{1 — 971 > 0 it follows that

Ker (M — ) C [|Ker (97" =97 1)@Q*A™ = | \/ 4"Qd, | =ci = {0},

n>0 n>0
which implies M — ¥}; > 0. A similar argument shows that ¥/ — M > 0.
3 Setk=a-— % and kg = % > % Writing

QI~: 0 [ K —19} 973Q" 0
0 Quz |l -9t s 0 0EQr |

one derives det(iv — K,) = det(Q + iv)% det(I + X(iv)), where

iv—K, = { Gt 0 ]+

0 Q+iv

)Y

KkR(z) —R(z
—kR(z

26 = | (o Ty | mea=ii@@eert e

A simple calculation further gives

det(Q + iv) = det(w? — 1?), R(iv) = iv* (w? — v*) 7L
Denote by D(v?) the adjugate of w? — 2. Expressing (w? — v?)~! with Cramer’s formula and
observing that D17, (v?) = Dr1(v?) = a, we get

25iv b(v2)e%5 a
d(v?) a c(u2)e_%5 ’

R(iv) = (5.75)

where
b(v?) = D11 (v?), c(v*) = D (v?), d(v?) = det(w? — 1),

are polynomials in 2 with real coefficients. Inserting (5.75) into (5.74), an explicit calculation of
det(I + X(iv)) yields

2)e(v?) — a2\ K2 — K
det(iV—Ka) _ (d(u2) + CYV)Zb()dE;ﬁ%) +(7V)2 (65/2b(1/2) o 676/20(1/2))2_4&2 ,{% — l0
4

By the Desnanot-Jacobi identity,

b(v?)c(v?) — a?

= det(;5 — Y =d(?),

where w? is the matrix obtained from w? by deleting its first and last rows and columns. Thus, we
finally obtain

det(iv — Ka) = (d(ﬂ) + (@)251‘@2))2 + ()2 (e5/2b(u2) - eré/?c(ﬂ))2 42 ’:”;__“13 ()2,
0 4

85




Jaksié, Pillet, Shirikyan

where b, ¢, d and d are polynomials with real coefficients. Since d(0) = det(w?) > 0, K, is regular
for all @« € R and we can rewrite the eigenvalue equation as

HZ — /‘&2
9(*) = 55—, (5.76)
ko~ 1

where the rational function

o) = - [(d(z) +7ad@)? (e/2a) - ewc@)?]

Y

has real coefficients, a simple pole at 0, a pole of order 2L at infinity and is non-negative on |0, co[. It
follows that

1
Re = \/ff% + 90(’%(2) - 1)7
where

go = min g(x).
2€]0,00]
Since kg > %, we conclude that k. > kg, with equality iff go = 0.

Under Assumption (S) the polynomials b and ¢ coincide and § = 0. Thus, gop = 0 iff the polynomial
f(z) = d(x) +7*xd(z) (5.77)
has a positive zero. If L is odd, then this property follows immediately from the fact that
f(0) =det(w?) >0, flx)=(-2)F+0@Et"1) <0 (z— ).

A more elaborate argument is needed in the case of even L. We shall invoke the deep connection
between spectral analysis of Jacobi matrices and orthogonal polynomials. We refer the reader to [Si2]
for a detailed introduction to this vast subject.

Let p be the spectral measure of w? for the vector 6;. The argument in the proof of Part (1) shows
that & is cyclic for w?. Thus, w? is unitarily equivalent to multiplication by = on L?(R, p(dz))
and in this Hilbert space ¢; is represented by the constant polynomial pg = 1. Starting with Jo =
al_l (w?—b1)61 = p1(w?)é1, a simple induction shows that there are real polynomials {Prreqo,... -1}
satisfying the recursion

akpk—l(x) + (bk‘-i-l - x)pk(x) + ak:-}—lpk‘-l—l(l‘) — Oa (k € {Oa o aL - 2}ap71 — Ovpo — 1))
(5.78)
and such that §; = pj_1(w?)d1. Thus, these polynomials form an orthonormal basis of L%(R, p(dz))

such that \ \
(e — ) lay) = [ PR gy, (5.79)

For1 < j <k < L, define

i bj aj 0 0 e 0 0 i
aj bj+1 (lj+1 0 0 0
0 aji1 bjt2 ajyo 0 0
dij () = det(x = Jpp)s  Jyw = |
0 0 0 . . aps O
0 0 0 0 bk,1 Qp—1
0 0 0 0 - apy by |

86



Entropic fluctuations in thermally driven harmonic networks

Laplace expansion of the determinant Py 1(z) = d[y y41)(2) on its last row yields the recursion
Pry1(z) = (2 = bey1) Pr(x) — ai Pr1 ().
Comparing this relation with (5.78) one easily deduces
aj---appp(zr) = Py(x), (ke{l,...,L—1}), d(x) = Pr(z). (5.80)

Polynomials of the second kind {qx } ke{o,...L—1) associated to the measure p are defined by

qr(z) = / Wﬂ(dx)- (5.81)

Note in particular that go(x) = 0 and ¢;(x) = a;'. Applying the recursion relation (5.78) to both
sides of this definition, we obtain

akqe-1() + (bky1 — )G () + ap1qria(z) = /pk()\)P(dA) =0, (kefl,....,L—2}).

Set G () = a1qx+1(x) and observe that these polynomials satisfy the recursion

ag1Gr—1(x) + (brg2 — T)qr(2) + arg2Grg1(z) = 0, (ke{0,...,L—3},G-1=0,40 = 1).

Comparing this Cauchy problem with (5.78) and repeating the argument leading to (5.80) we deduce
that ag - - - agy1 G (7) = djg j41) (), so that

ar---ap qe(x) =dp(x),  (Fe{2,...,L—-1}).

In particular, we can rewrite Definition (5.77) as

f(x) = Pr(z) + Ywqr-1(z). (5.82)
Taking now Assumption (S) into account we derive from (5.79) that for any z € C \ sp(wz),

Wp(d» = (0r|(w® — 2)"oL)

—1 . 1o [ pdN)
(SO |(w? = 2)71S8y) = (0r|(w? — 2) 51>_/H,

from which we conclude that |pr,_1(A\)| = 1 for all A\ € sp(w?). Denote by A\, > A1 > -+ > )\
the eigenvalues of w? = Jpppand by prp—1 > pp—o > -+ > py that of Jyy 1 _qj. It is a well known
property of Jacobi matrices (or equivalently of orthogonal polynomials) that

AL <pp—1 <Ap—1 < <pp <A

(see Figure 12). These interlacing inequalities and the previously established property allow us to
conclude that

pr—1()j) = (=1)7, pr_1(\) <0.
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Figure 12: The zeros of the polynomials Py, and py,_; interlace.

From Eq. (5.82) and Definition (5.81), we deduce

FO0) =70 | ps o) Zp“ 2l gy
]
o)
=7\ | P (Ap(n)) Z N | <O

=1

which, together with f(0) > 0, shows that f has a positive root.
By Proposition 5.5 (12), the validity of Condition (R) follows from Part (2) and the fact that k. = xg.

Appendix: Basic theory of the algebraic Riccati equation

In this appendix, for the reader convenience we briefly expose the basic results on algebraic Riccati
equation used in this work. We refer the reader to [LLR, , Sc] for detailed expositions and proofs.

Let b be a d-dimensional complex Hilbert space. We denote by ( -, -) the inner product of . We
equip the vector space H = b @ bh with the Hilbertian structure induced by h and the symplectic form

wxoy,z ey)=(@ay J@' oy)) = (z,v) - (y,2).

The symplectic complement of V C H is the subspace V¥ = {v|w(u,v) = Oforallu € V}. A
subspace V C H is isotropic if ¥V C V¥ and Lagrangian if V = V¥. V is Lagrangian iff it is
isotropic and d-dimensional. For Y, Z € L(h), we denote by Y @ Z the element of L(h, H) defined
by (Y @ Z)x = Yz @ Zz. In the block-matrix notation,

Y

Y@Z:[Z

}, Yeozyr=[v z*].
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The graph of X € L(b) is the d-dimensional subspace of H defined by
Q(X):RanGX, Gx=1¢X.

A subspace V C H is a graph iff V N ({0} & h) = {0 & 0}.

The algebraic Riccati equation associated to the triple (A, B, C') of elements of L(h) is the following
quadratic equation for the unknown self-adjoint X € L(b):

R(X)=XBX - XA—A*X —C=0. (A.1)

In the following, we shall assume that C' is self-adjoint, that B > 0 and that the pair (A, B) is
controllable. We denote by R(A, B, C) the set of self-adjoint elements of L(h) satisfying Eq. (A.1),
which we can also write as

\ C A
R(X) = G5 LGx =0, L:[A _B*}

A.1 Existence of self-adjoint solutions

The Hamiltonian associated to the Riccati equation (A.1) is the unique element of L(#H) such that
(u, Lv) = w(u, Kv) for all u,v € H. One easily checks that

~A B
K_[ C A*]'

Note that since L = L*, K is w-skew adjoint:

w(u, Kv) + w(Ku,v) = w(u, Kv) —w(v, Ku) = (u, Lv) — (v, Lu) = 0. (A2)
The first result we recall is a characterization of the set R(A, B, C).

Theorem A.1 (Theorem 7.2.4 in [LLR]) The map X — G(X) is a bijection from R(A, B, C') onto
the set of K-invariant Lagrangian subspaces of H.

The following are elementary symplectic geometric properties of projections:

Lemma A.2 (1) The range of a projection P € L(H) is isotropic iff P*JP = 0 and Lagrangian iff
I —P=JP*J.

(2) Denote by P the spectral projection of K for k € sp(K). Then JP,J* = P*_ and in particular
Ran P, is isotropic iff k & iR.

(3) Let X C sp(K) be such that ¥ N (—X) = (). Then the spectral subspace of K for X is isotropic.

Note that J K+ K*J = 0, which implies that the spectrum of K, including multiplicities, is symmetric
w.r.t. the imaginary axis. If sp(K) N iR = (), then the spectral subspace of K for ¥ = sp(K) N
C, is d-dimensional and hence, by Lemma A.2 (3), Lagrangian. Thus, Theorem A.1 yields (see
Theorems 7.2.4 and 7.5.1 in [LR])

Corollary A.3 Ifsp(K) NiR = (), then R(A, B,C) # 0.
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Remark A.4 In cases where sp(K) NiR # (), and under our controllability assumption, a neces-
sary and sufficient condition for the existence of self-adjoint solution is that all Jordan blocks of K
corresponding to eigenvalues in iR are even-dimensional. For the Riccati equations arising in our
analysis of harmonic networks, the singular case sp(K,) NiR # @ only occurs at the boundary points
o= % =+ k.. There, the existence of solutions follows by continuity (Part (4) of Theorem 5.5).

Another powerful criterion for the existence of self-adjoint solutions is the following

Theorem A.5 (Theorem 9.1.1 in [LLR]) If there exists a self-adjoint X € L(h) such that R(X) <0,
then R(A, B,C) # (.

A.2 Extremal solutions

The set R(A, B, C) inherits the partial order of L(h). A minimal/maximal solution of (A.1) is a
minimal/maximal element of R(A, B, C). Clearly, a minimal/maximal solution, if it exists, is unique.

Theorem A.6 Assume that R(A, B,C) # .

(1) R(A, B, C) is compact.

(2) R(A, B, C) contains a minimal element X _ and a maximal element X ;. In the following, we set
Dy =A—-BX+.

(3) X € R(4A, B, O) is minimal/maximal iff sp(A — BX) C Cx.

4) R(A,B,C)=X_+R(D_,B,0) =X, —R(—D4, B,0).

Parts (2) and (3) are stated as Theorems 7.5.1 in [LR]. Part (4) follows from simple algebra. Since
X — R(X) is continuous, R(A, B, C) is closed. Its boundedness follows from from Part (4) and the
fact that

| X — X_|1 =tr(X — X_) <tr(X4 — X),

for all X € R(A, B, C). The Heine-Borel theorem thus yields Part (1).

A.3 The gap

In this section, we assume that R(A, B, C') # () and use the notations introduced in Theorem A.6.

The gap of the Riccati equation (A.1) is the non-negative element of L(f) defined by
Y=X, -X_.

We set K = Ker Y, so that X+ = Ran Y. For X € L(h), we define
Dx =A— BX.

Theorem A.7 (1) For any X € R(A, B,C), K is the spectral subspace of Dx for sp(Dx) N iR
and K is the spectral subspace of D% for sp(D%) \ iR. Moreover, Dx|x is independent of
X € R(A, B, C).
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(2) The map X — Ker X is a bijection from R(D_, B, 0) onto the set of all D_-invariant subspaces
containing the spectral subspace of D_ to the part of its spectrum in iR. Moreover, X < X' iff
Ker X' C Ker X.

(3) If R(X) < 0 for some self-adjoint X € L(h), then X_ < X < X .
4) If R(X) < 0 for some self-adjoint X € L(h), then sp(K) NiR = ().

The first and last Assertions of Part (1) is Theorem 7.5.3 in [[LLR]. The second Assertion is dual to the
first one. Part (2) is a special case of Theorem 1 and Part (3) is Theorem 14(b) in [Sc]. Part (4) is the
first assertion of Theorem 9.1.3 in [LLR].

Note that Theorem A.1 implies that for X € R(A, B, C) one has
-KGx = GxDx,

so that sp(Dx) = sp(—K|g(x)). Whenever sp(K) NiR = {), it follows that sp(Dx) NiR = () and
hence I = {0} and Y > 0. By Part (3) of Theorem A.6, we further have sp(Dy) C C_ so that Gx,
is the spectral subspace of K to the part of its spectrum in C_.

A.4 Real Riccati equations and real solutions

In this section, we assume that £ is a d-dimensional real Hilbert space and (A, B,C) a triple of
elements of L(E) such that (A, B) is controllable, B > 0, and C' self-adjoint.

Denote by h = C& the complexification of £ equipped with its natural Hilbertian structure and con-
jugation C. The C-linear extensions of A, B and C to h (which we denote by the same symbols) are
such that (A, B) is controllable, B > 0, and C is self-adjoint on . Let R(A, B, C') be the set of
self-adjoint solutions of (A.1), interpreted as a Riccati equation in L(h), and define

Re(A, B,C) = {X € R(A,B,0)| X = X}

Clearly, Rr (A, B, C) is the set of real self-adjoint solutions of (A.1) viewed as a Riccati equation on
L(¢&).

Theorem A.8 (1) IfR(A, B,C) # 0, then its minimal/maximal element is real and hence coincides
with the minimal/maximal element of R (A, B, C).

(2) Under the same assumption, the gap Y = X — X_ is real and so is K = Ker Y.

(3) For any X € Mg(A, B,C), K is the spectral subspace of Dx for sp(Dx) N iR and K is the
spectral subspace of D for sp(D% ) \ iR. Moreover, Dx|x is independent of X € R(A, B, C).

To prove Part (1), note that X € R(A, B,C) whenever X € R(A, B,C). In particular, one has
X, € R(A4,B,C) and hence X, — X > 0. It follows that

X4 = Xl = tr(Xy — X3) = tr(Xy — X7) =0.

The remaining statements are simple consequences of the reality of X.
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