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Introduction

Boundary driven mechanical systems are paradigmatic in nonequilibrium statistical mechanics. Existence and uniqueness of nonequilibrium steady states have been extensively studied for a variety of such systems: harmonic [START_REF] Lebowitz | Stationary non-equilibrium states of infinite harmonic systems[END_REF] and anharmonic [BK] crystals, 1-dimensional chains of anharmonic oscillators [START_REF] Eckmann | Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures[END_REF][START_REF] Eckmann | Entropy production in nonlinear, thermally driven Hamiltonian systems[END_REF][START_REF] Eckmann | Non-equilibrium statistical mechanics of strongly anharmonic chains of oscillators[END_REF][START_REF] Eckmann | Spectral properties of hypoelliptic operators[END_REF][START_REF] Rey-Bellet | Asymptotic behavior of thermal nonequilibrium steady states for a driven chain of anharmonic oscillators[END_REF][START_REF] Carmona | Existence and uniqueness of an invariant measure for a chain of oscillators in contact with two heat baths[END_REF][START_REF] Bodineau | Large deviations of lattice Hamiltonian dynamics coupled to stochastic thermostats[END_REF], rotors [START_REF] Cuneo | Non-equilibrium steady state and subgeometric ergodicity for a chain of three coupled rotors[END_REF][START_REF] Cuneo | Non-equilibrium steady states for chains of four rotors[END_REF] and other Hamiltonian systems [START_REF] Eckmann | Nonequilibrium energy profiles for a class of 1-D models[END_REF][START_REF] Lin | Nonequilibrium steady states for certain Hamiltonian models[END_REF][START_REF] Li | Nonequilibrium steady states for a class of particle systems[END_REF][START_REF] Collet | A model of heat conduction[END_REF]. More general Hamiltonian networks have been considered in [START_REF] Eckmann | Strange heat flux in (an)harmonic networks[END_REF][START_REF] Maes | Heat conduction networks[END_REF][START_REF] Cuneo | Controlling general polynomial networks[END_REF]. In this paper, we shall study stochastically driven networks of harmonic oscillators which are the simplest models in the last category. The questions of existence and uniqueness of the steady state is well understood in such systems. Estimates of the rate of relaxation to the steady state are also available [START_REF] Rey-Bellet | Exponential convergence to non-equilibrium stationary states in classical statistical mechanics[END_REF][START_REF] Arnold | Sharp entropy decay for hypocoercive and non-symmetric Fokker-Planck equations with linear drift[END_REF]. The focus of this work is on the concept of entropy production and its fluctuations, although our approach can be extended to cover the fluctuations of energy/entropy fluxes between individual heat reservoirs and the network. The universal fluctuation relations satisfied by the entropy production rate (or phase-space contraction rate) in transient [ECM, ES] and stationary [START_REF] Gallavotti | Dynamical ensembles in nonequilibrium statistical mechanics[END_REF][START_REF] Gallavotti | Dynamical ensembles in stationary states[END_REF] processes have been one of the central issues in the recent developments of nonequilibrium statistical mechanics. Various approaches to these relations have been proposed in the literature and we refer the reader to [START_REF] Rondoni | Fluctuations in non-equlibrium statistical mechanics: models, mathematical theory, physical mechanisms[END_REF][START_REF] Seifert | Stochastic thermodynamics, fluctuation theorems and molecular machines[END_REF][START_REF] Lebowitz | A Gallavotti-Cohen-type symmetry in the large deviation functional for stochastic dynamics[END_REF][START_REF] Maes | The fluctuation theorem as a Gibbs property[END_REF][START_REF] Chetrite | Fluctuation relations in simple examples of non-equilibrium steady states[END_REF][START_REF] Chetrite | Fluctuation relations for diffusion processes[END_REF][START_REF] Jakšić | Entropic fluctuations in statistical mechanics I. Classical dynamical systems[END_REF]JOPP] for reviews and detailed discussions. The interested reader should also consult [START_REF] Rey-Bellet | Fluctuations of the entropy production in anharmonic chains[END_REF], where fluctuation relations are derived for boundary driven anharmonic chains, and [JPS] for a discussion of these topics in the framework of Gaussian dynamical systems. For theoretical and experimental works dealing specifically with mechanically driven harmonic systems we refer the reader to [JGC, JGDPC, KSD].

In this paper we follow the scheme advocated in [JPR, JOPP] and fully elaborated in [JNPPS]. The details are as follows.

Consider a probability space (Ω, P, P) equipped with a measurable involution Θ : Ω → Ω. Suppose that the measures P and P = P • Θ are equivalent. We define the canonical entropic functional of the quadruple (Ω, P, P, Θ) by is strictly negative (it vanishes iff P = P) shows that the law P favors positive values of S. To obtain a more quantitative statement of this fact, it is useful to consider Rényi's relative α-entropy

Ent α (P| P) = log Ω e αS(ω) P(dω).

Note that Ent 0 (P| P) = Ent 1 (P| P) = 0, and since the function R α → Ent α (P| P) is convex by Hölder's inequality, one has Ent α (P| P) ≤ 0 for α ∈ [0, 1]. It is straightforward to check that Ent α (P| P) is a real-analytic function of α on some open interval containing ]0, 1[ and infinite on the (possibly empty) complement of its closure. In particular, it is strictly convex on its analyticity interval.

From the definition of P and Relation (1.2) we deduce Ent α (P| P) = log Ω e αS•Θ(ω) P(dω) = log Ω e -αS(ω) P(dω) = log Ω e -αS(ω) dP d P (ω) P(dω),

(1.3) and the definition of S yields log Ω e -αS(ω) dP d P (ω) P(dω) = log Ω e (1-α)S(ω) P(dω) = Ent 1-α (P| P).

It follows that Rényi's entropy satisfies the symmetry relation

Ent 1-α (P| P) = Ent α (P| P), (1.4) which, in applications to dynamical systems, will turn into the so-called Gallavotti-Cohen symmetry.

The second equality in Eq. (1.3) allows us to express Rényi's entropy in terms of the law P as Ent α (P| P) = e(α) = log R e -αs P (ds).

Note that, up to the sign of α, e(α) is the the cumulant generating function of the random variable S.

Denoting by P the law of -S under P, the symmetry (1.4) leads to In all known applications of the above scheme to nonequilibrium statistical mechanics, the space (Ω, P, P) describes the space-time statistics of the physical system under consideration over some finite time interval [0, t] (in the following, we shall denote by a superscript or a subscript the dependence of various objects on the length t of the considered time interval). The involution Θ t is related to time-reversal and the canonical entropic functional S t to entropy production or phase space contraction. The fluctuation relation (1.5) as a fingerprint of time-reversal symmetry breaking and the strict inequality in (1.8) is a signature of nonequilibrium.

The practical implementation of our scheme to nonequilibrium statistical mechanics requires 4 distinct steps which will structure our treatment of thermally driven harmonic networks. In order to clearly formulate the purpose of each of these steps, we illustrate the procedure at hand on a very simple model of electrical RC-circuit described in Figure 1. We shall not provide detailed proofs of our claims in this example since they all reduce to elementary calculations. We refer the reader to [ZCC] for a detailed physical analysis and to [GC] for experimental verification of the fluctuation relations for this system.

Step 1: Construction of the canonical entropic functional

The internal energy of the circuit of Figure 1 is stored in the electric field within the capacitor and is given by

E = z 2 2C , (1.9)
where z denotes the charge on the plate of the capacitor and C is the capacitance. The equation of motion for z is żt = I -

z t RC + V t R ,
where I is the constant current fed into the circuit and V t the electromotive force (emf) generated by the Johnson-Nyquist thermal noise within the resistor R. Integrating the equation of motion gives z t = e -t/RC z 0 + (1e -t/RC )RCI + 1 R t 0 e -(t-s)/RC V s ds.

(1.10)
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Figure 1: A parallel RC circuit is fed with a constant current I. The resistor R is in contact with a heat bath at temperature T . The Johnson-Nyquist thermal noise in this resistor generates a fluctuating electromotive force V which contributes to the potential difference U = RI R + V driving the capacitor C.

To simplify our discussion (and to avoid stochastic integrals and the technicalities related to timereversal), we shall assume that V t has the form

V t R = ∞ k=1 ξ k δ(t -kτ ),
where τ τ 0 = RC and ξ k denotes a sequence of i.i.d. centered Gaussian random variables with variance σ 2 . Sampling the charge at times nτ + 0 yields a sequence z 0 , z 1 , z 2 , . . . satisfying the recursion relation

z k+1 = ηz k + (1 -η)z + ξ k+1 ,
where z = Iτ 0 and η = e -τ /τ 0 . According to (1.10), the charge between two successive kicks is given by z kτ +s = e -s/τ 0 z k + (1e -s/τ 0 )z, s ∈]0, τ [.

(1.11)

Assuming z 0 to be independent of {ξ k }, the sequence z 0 , z 1 , z 2 . . . is a Markov chain with transition kernel p(z |z) = 1 √ 2πσ 2 e -(z -ηz-(1-η)z) 2 /2σ 2 .

(1.12)

One easily checks that the unique invariant measure for this chain has the pdf

p st (z) = 1 2πσ 2 /(1 -η 2 ) e -(z-z) 2 (1-η 2 )/2σ 2 .
(1.13)

In the case I = 0 (no external forcing), according to the zero th law of thermodynamics, the system should relax to its thermal equilibrium at the temperature T of the heat bath. Thus, in this case the invariant measure should be the equilibrium Gibbs state of the circuit at temperature T which, by (1.9), has the pdf

p eq (z) = 1 √ 2πk B T C e -z 2 /2k B T C ,
k B denoting Boltzmann's constant. This requirement fixes the value of variance of ξ k 's and

σ 2 = k B T C(1 -η 2 ).
One can show (see Section 8 in [Bi]) that, in the limit τ → 0, the covariance of the fluctuating emf V t converges to

V s V t = 2k B T Rδ(s -t),
in accordance with the Johnson-Nyquist formula ( [Ny], see also [START_REF] Van Kampen | Stochastic Processes in Physics and Chemistry[END_REF]Section IX.2]). For I = 0, Eq. (1.13) describes a nonequilibrium steady state (NESS) of the system. In the following, we shall consider the stationary Markov chain started with the invariant measure and denote by • st the corresponding expectation.

The pdf of a finite segment Z n = (z 0 , . . . , z n ) ∈ R n+1 of the stationary process is given by

p n (Z n ) = p(z n |z n-1 ) • • • p(z 1 |z 0 )p st (z 0 ), (1.14)
which is the Gaussian measure on R n+1 with mean and covariance

z k st = z, z k z j st -z k st z j st = k B T Ce -|k-j|τ /τ 0 .
We chose the involution Θ : R n+1 → R n+1 to be the composition of charge conjugation z → -z with time-reversal of the Markov chain, Θ : (z 0 , . . . , z n ) → (-z n , . . . , -z 0 ).

The time-reversed process is the Markov chain which assigns the weight (1.14) to the reversed segment Θ(Z n ). Thus, the transition kernel p(z |z) and invariant measure pst (z) of the time-reversed process must satisfy

p(-z 0 | -z 1 ) • • • p(-z n-1 | -z n )p st (-z n ) = p(z n |z n-1 ) • • • p(z 1 |z 0 )p st (z 0 ) (1.15)
for all n ≥ 1 and Z n ∈ R n+1 . For n = 1, this equation becomes p(-z 0 |z 1 )p st (z 1 ) = p(z 1 |z 0 )p st (z 0 ).

(1.16)

Integrating both sides over z 1 gives pst (-z 0 ) = p st (z 0 ), from which we further deduce p(-z 0 |z 1 ) = p(z 1 |z 0 ) p st (z 0 ) p st (z 1 ) .

One then easily checks that (1.15) is indeed satisfied for all n ≥ 1. Note that in the case I = 0 one has p(-z |z) = p(z |z), p st (z) = p st (-z),

and it follows that p(z |z) = p(z |z), Eq. (1.16) turning into the detailed balance condition. In this case, the time-reversed process coincides with the direct one: in thermal equilibrium, the time-reversal symmetry holds. However, in the nonequilibrium case I = 0, time-reversal invariance is broken and pst (z) = p st (z).

We are now ready to describe the canonical entropic functional. Applying our general scheme to the marginal P nτ of the finite segment Z n (which has the pdf p n ), we can write (1.1) as

S nτ = log dP nτ d P nτ (Z n ) = log p n (Z n ) p n (Θ(Z n )) = log p(z n |z n-1 ) • • • p(z 1 |z 0 )p st (z 0 ) p(-z 0 | -z 1 ) • • • p(-z n-1 | -z n )p st (-z n ) = n-1 k=0 log p(z k+1 |z k ) p(-z k | -z k+1 )
+ log p st (z 0 ) p st (-z n ) .

Eqs. (1.12) and (1.13) yield

log p(z |z) p(-z| -z ) = - 1 k B T C z 2 2 - z 2 2 - 1 -η 1 + η (z + z )z , log p st (z 0 ) p st (-z n ) = 1 k B T C z 2 n 2 - z 2 0 2 + (z 0 + z n )z ,
from which we deduce

S nτ = 1 k B T 1 -η 1 + η n-1 k=0 z k + z n + ηz 0 1 + η 2z C .
Step 2: Deriving a large deviation principle

From a more mathematical point of view, as stressed by [START_REF] Gallavotti | Dynamical ensembles in stationary states[END_REF], the interesting question is whether the entropic functional S t satisfies a large deviation principle in the limit t → ∞. More precisely, is it possible to control the large fluctuations of S t by a rate function R s → I(s) such that as suggested by the theory of large deviations? To illustrate these points, we return to our simple example.

P 1 t S t ∈ S ≈
For this very particular system, the fluctuation relation (1.5) essentially fixes the law of the random variable S nτ . Indeed, since S nτ is Gaussian under the law of the stationary process (as a linear combination of Gaussian random variables ξ k ), its pdf P nτ is completely determined by the mean s n and variance σ 2 n of S nτ . A simple calculation based on (1.5) shows that σ 2 n = 2s n , whence it follows that P nτ (s) = 1 √

4πs n e -(s-sn) 2 /4s 2 n , (1.18) where we set

s n = S nτ st = 1 k B T 1 -η 1 + η n + 1 2z 2 C .
We conclude that e nτ (α) = Ent α (P nτ | P nτ ) = log e -αs P nτ (s)ds = -α(1α)s n , (1.19)

and hence

e(α) = lim n→∞ 1 nτ e nτ (α) = -α(1 -α)s, s = 1 k B T 1 -η 1 + η 2z 2 Cτ .
A direct calculation using (1.18) implies that, for any open set S ⊂ R, P nτ S nτ nτ ∈ S ≈ e -nτ inf s∈S I(s) as n → ∞,

where the rate function

I(s) = sup α (αs -e(-α)) = (s -s) 2 4s
satisfies the fluctuation relation (1.17). The large-time symmetry function for S nτ is s(s) = I(-s) -I(s) = s.

Step 3: Relating the canonical entropic functional to a relevant dynamical or thermodynamical quantity

Denoting by U t = z t /C the voltage and using (1.10), the work performed on the system by the external current I in the period ]kτ, (k + 1)τ [ is equal to

δW k = τ 0 U t Idt = τ 0 z t C Idt = (1 -η) zz k C -(1 -τ /τ 0 -η) z 2 C .
Thus, we can rewrite

S nτ nτ = 1 k B T 2 1 + η (w n -w) + 2 1 -η 1 + η τ 0 τ w + 1 n 2z Cτ z n + ηz 0 1 + η ,
where

w n = W nτ nτ , W nτ = n-1 k=0 δW k , w = w n st = z 2 Cτ 0 = RI 2 .
W nτ is the work performed by the external current during the period [0, nτ ]. Accordingly, w n is the average injected power and w is its expected stationary value. It follows from the first law of thermodynamics that the heat dissipated by the resistor R in the thermostat during the interval [0, nτ + 0[ is given by

Q nτ = - z 2 n 2C - z 2 0 2C + W nτ ,
and so we may also write

S nτ nτ = 1 k B T 2 1 + η (q n -q) + 2 1 -η 1 + η τ 0 τ q + 1 n 2z Cτ z n + ηz 0 1 + η + z 2 n -z 2 0 Cτ (1 + η) ,
where

q n = Q nτ nτ , q = q n st = w,
denote the average dissipated power and its expected stationary value.

Thus, up to a multiplicative and additive constant and a "small" (i.e., formally O(n -1 )) correction, S nτ /nτ is the time averaged power injected in the system by the external forcing and the time averaged power dissipated into the heat reservoir during the time period [0, nτ + 0[.

Step 4: Deriving a large deviation principle for physically relevant quantities

The problem encountered here stems from the fact that the relation between S t and a physically relevant quantity (denoted by S t ) typically involves some "boundary terms", which depend on the state of the system at the initial time 0 and final time t. In cases where these boundary terms are uniformly bounded as t → ∞, one finds that S t satisfies the same large deviation principle as S t . This is what happens, for example, in strongly chaotic dynamical systems over a compact phase space (e.g., under the Gallavotti-Cohen chaotic hypothesis); we refer the reader to [START_REF] Jakšić | Entropic fluctuations in statistical mechanics I. Classical dynamical systems[END_REF]Section 10] for a discussion of this case. However, unbounded boundary terms can compete with the tails of the law of S t , which may lead to complications, as our example shows.

Given the Gaussian nature of w n , it is an easy exercise to show that the entropic functional directly related to work and defined by

S nτ w nτ = S nτ nτ - 1 n 1 k B T 2z Cτ z n + ηz 0 1 + η = 1 k B T 2 1 + η (w n -w) + 2 1 -η 1 + η τ 0 τ w ,
has a cumulant generating function which satisfies

lim n→∞ 1 nτ log e -αS nτ w st = e(α),
for all α ∈ R. It follows that S nτ w satisfies the very same large deviation estimates as S nτ . However, note that unlike function (1.19), the finite-time cumulant generating function log e -αS nτ w st does not satisfy the Gallavotti-Cohen symmetry (1.6). Only in the large time limit do we recover this symmetry. A simple change of variable allows us to write down the cumulant generating function of the work W nτ ,

e work (α) = lim n→∞ 1 nτ log e -αW nτ /k B T st = -α 1 -α 1 -η 2 2τ /τ 0 w k B T .
We conclude that the work W nτ satisfies the large deviations estimate

P nτ 1 nτ W nτ k B T ∈ W ≈ e -nτ inf w∈W I work (w)
for all open sets W ⊂ R with the rate function

I work (w) = 1 4 w - w k B T 2 k B T w 2τ /τ 0 1 -η 2 .
The symmetry function for work is thus

s work (w) = I work (-w) -I work (w) = 2τ /τ 0 1 -η 2 w.
Note that, as the kick period τ approaches zero, we recover the universal fluctuation relation (1.17), i.e., s work (w) = w.

Consider now the entropic functional

S nτ h nτ = S nτ nτ - 1 n 1 k B T 2z Cτ z n + ηz 0 1 + η + z 2 n -z 2 0 Cτ (1 + η) (1.20) = 1 k B T 2 1 + η (q n -q) + 2 1 -η 1 + η τ 0 τ q ,
related to the dissipated heat. The explicit evaluation of a Gaussian integral shows that its cumulant generating function is given by

1 nτ log e -αS nτ h st =      e(α) - 1 2nτ log 1 - α 2 α 2 n + a n α + b n α 2 n -α 2 α 3 if |α| < α n ; +∞ otherwise;
where a n and b n are bounded (in fact converging) sequences and

α n = 1 2 1 + η (1 -η 2n ) 1 2
.

The divergence of the cumulant generating function for |α| ≥ α n is of course due to the competition between the tail of the Gaussian law p n and the quadratic terms in S nτ h . Note that the sequence α n is monotone decreasing to its limit

α c = 1 + η 2 ,
and it follows that

lim n→∞ 1 nτ log e -αS nτ h st = e(α) if |α| < α c ; +∞ if |α| > α c .
The unboundedness of the boundary terms involving z 2 0 and z 2 n in (1.20) leads to a breakdown of the Gallavotti-Cohen symmetry for |α -1 2 | > |α c -1 2 |. More dramatically, the limiting cumulant generating function is not steep, i.e., its derivative fails to diverge as α approaches ±α c . Under such circumstances, the derivation of a global large deviation principle for nonlinear dynamical systems is a difficult problem which remains largely open and deserves further investigations. For linear systems, however, as shown in [JPS], it is sometimes possible to exploit the Gaussian nature of the process to achieve this goal. Indeed, following the strategy developped in Section 3.4, one can show that S nτ h satisfies a large deviation principle with rate function

I h (s) = sup |α|<αc (αs -e(-α)) =      I(s -) + (s -s -)I (s -) for s < s -; I(s)
for s ∈ [s -, s + ];

I(s + ) + (s -s + )I (s + ) for s > s + ;
where

s -= -e (α c ) = -ηs, s + = -e (-α c ) = (2 + η)s.
Performing a simple change of variable, we conclude that the cumulant generating function of the heat

Q nτ satisfies e heat (α) = lim n→∞ 1 nτ log e -αQ nτ /k B T st = e work (α) for |α| < 1; +∞ for |α| > 1. heat work -3 -1 1 3 -2 -1 1 2 -3 -1 1 3 -2 -1 1 2 Figure 2:
The symmetry functions (i.e., twice the odd part of the rate function) of work and heat for the circuit of Figure 1 in the limit τ → 0 (the unit on the abscissa is RI 2 /k B T ).

The corresponding large deviations estimate reads

P nτ 1 nτ Q nτ k B T ∈ Q ≈ e -nτ inf q∈Q I heat (q)
for all open sets Q ⊂ R with the rate function

I heat (q) = sup |α|<1 (αq -e heat (-α)) = I h 2 1 + η q + 2 1 -τ /τ 0 -η 1 + η τ 0 τ q k B T ,
which satisfies what is called in the physics literature an extended fluctuation relation [START_REF] Farago | Injected power fluctuations in Langevin equation[END_REF][START_REF] Farago | Power fluctuations in stochastic models of dissipative systems[END_REF][START_REF] Cohen | Extension of the fluctuation theorem[END_REF][START_REF] Cohen | Extended heat-fluctuation theorems for a system with deterministic and stochastic forces[END_REF][START_REF] Visco | Work fluctuations for a Brownian particle between two thermostats[END_REF][START_REF] Harris | Breakdown of Gallavotti-Cohen symmetry for stochastic dynamics[END_REF][START_REF] Harris | Fluctuation theorems for stochastic dynamics[END_REF][START_REF] Harris | On the range of validity of the fluctuation theorem for stochastic Markovian dynamics[END_REF][START_REF] Nickelsen | Asymptotics of work distributions: the pre-exponential factor[END_REF] with the symmetry function

s heat (q) = I heat (-q) -I heat (q) =                  2q q + + q - q + -q - for 0 ≤ q ≤ -q -; - q 2 -2qq + + q 2 - q + -q - for -q -< q ≤ q + ; q + + q - for q > q + ;
where

q -= - RI 2 k B T 1 -η 2 τ /τ 0 -1 , q + = RI 2 k B T 1 -η 2 τ /τ 0 + 1 .
Thus, the linear behavior persists for small fluctuations |q| ≤ |q -|, but saturates to the constant values ∓(q + + q -) for |q| > q + , the crossover between these two regimes being described by a parabolic interpolation. Note also that, as the kick period τ approaches zero, q ∓ → (1 ∓ 2)q/k B T . In this limit the symmetry function s heat (q) agrees with the conclusions of [ZCC] (see Figure 2). 2

As this example shows, the main problem in understanding the mathematical status and physical implications of fluctuation relations in oscillator networks and other boundary driven Hamiltonian systems stems from the lack of compactness of phase space and its consequence: the unboundedness of the observable describing the energy transfers between the system and the reservoirs (i.e., the last term in the right-hand side of Eq. (1.20)). We will show that one can achieve complete control of these boundary terms by an appropriate change of drift (a Girsanov transformation) in the Langevin equation describing the dynamics of harmonic networks. This change is parametrized by the maximal solution of a one-parameter family of algebraic Riccati equation naturally associated to deformations of the Markov semigroup of the system. For a network of N oscillators, our approach reduces the calculation of the limiting cumulant generating function of the canonical functional S t and its perturbations by quadratic boundary terms to the determination of some spectral data of the 4N × 4N Hamiltonian matrix of the above-mentioned Riccati equations. Combining this asymptotic information with Gaussian estimates of the finite time cumulant generating functions, we are able to derive a global large deviation principle for arbitrary quadratic boundary perturbations of S t . We stress that our scheme is completely constructive and well suited to numerical calculations.

The remaining parts of this paper are organized as follows. In Section 2 we introduce a general class of harmonic networks and the stochastic processes describing their nonequilibrium dynamics. Section 3 contains our main results. There, we consider more general framework and study the large time asymptotics of the entropic functional S t canonically associated to stochastic differential equations with linear drift satisfying some structural constraints (fluctuation-dissipation relations). We prove a global large deviation principle for this functional and show, in particular, that it satisfies the Gallavotti-Cohen fluctuation theorem. We then consider perturbations of S t by quadratic boundary terms and show that they also satisfy a global large deviation principle. This applies, in particular, to the heat released by the system in the reservoirs. We turn back to harmonic networks in Section 4 where we apply our results to specific examples. Finally, Section 5 collects the proofs of our results.

The model

We consider a collection of one-dimensional harmonic oscillators indexed by a finite set I. The configuration space R I is endowed with its Euclidean structure and the phase space Ξ = R I ⊕ R I is equipped with its canonical symplectic 2-form dp ∧ dq. The Hamiltonian is given by

Ξ (p, q) → h(p, q) = 1 2 |p| 2 + 1 2 |ωq| 2 , (2.1)
where | • | is the Euclidean norm and ω : R I → R I is a non-singular linear map. Time-reversal of the Hamiltonian flow of h is implemented by the anti-symplectic involution of Ξ given by θ : (p, q) → (-p, q).

(2.2)

We consider the stochastic perturbation of the Hamiltonian flow of h obtained by coupling a nonempty subset of the oscillators, indexed by ∂I ⊂ I, to Langevin heat reservoirs. The reservoir coupled to the i th oscillator is characterized by two parameters: its temperature ϑ i > 0 and its relaxation rate γ i > 0. We encode these parameters in two linear maps: a bijection ϑ : R ∂I → R ∂I and an injection ι :

R ∂I → R I = R ∂I ⊕ R I\∂I defined by ϑ : (u i ) i∈∂I → (ϑ i u i ) i∈∂I , ι : (u i ) i∈∂I → ( 2γ i u i ) i∈∂I ⊕ 0.
The external force acting on the i th oscillator has the usual Langevin form

f i (p, q) = (2γ i ϑ i ) 1 2 ẇi -γ i p i , (2.3)
where the ẇi are independent white noises.

In mathematically more precise terms, we shall deal with the dynamics described by the following system of stochastic differential equations

dq(t) = p(t)dt, dp(t) = -1 2 ιι * p(t) + ω * ωq(t) dt + ιϑ 1 2 dw(t), (2.4) 
where * denotes conjugation w.r.t. the Euclidean inner products and w is a standard R ∂I -valued Wiener process over the canonical probability space (W, W, W). We denote by {W t } t≥0 the associated natural filtration.

To the Hamiltonian (2.1) we associate the graph G = (I, E) with vertex set I and edges

E = {{i, j} ⊂ I | (ω * ω) ij = 0}.
To avoid trivialities, we shall always assume that G is connected.

As explained in the introduction, we shall construct the canonical entropic functional of the process (p(t), q(t)) and relate it to the heat released by the network into the thermal reservoir. We end this section with a calculation of the latter quantity.

Applying Itô's formula to the Hamiltonian h we obtain the expression

dh(p(t), q(t)) = i∈∂I γ i ϑ i -p i (t) 2 dt + (2γ i ϑ i ) 1 2 p i (t)dw i (t)
which describes the change in energy of the system. The i th term on the right-hand side of this identity is the work performed on the network by the i th Langevin force (2.3). Since these Langevin forces describe the action of heat reservoirs, we shall identify

δQ i (t) = γ i ϑ i -p i (t) 2 dt + (2γ i ϑ i ) 1 2 p i (t)dw i (t) (2.5)
with the heat injected in the network by the i th reservoir. A direct application of the fundamental thermodynamic relation between heat and entropy leads to consider dS i (t) = -ϑ -1 i δQ i (t) as the entropy dissipated into the i th reservoir. Accordingly, the total entropy dissipated in the reservoirs during the time interval [0, t] is given by the functional

S t = - i∈∂I t 0 δQ i (s) ϑ i = i∈∂I t 0 -(2γ i ϑ -1 i ) 1 2 p i (s)dw i (s) -γ i (1 -ϑ -1 i p i (s) 2 )ds . (2.6)
For a lack of better name, we shall call the physical quantity described by this functional the thermodynamic entropy (TDE), in order to distinguish it from various information theoretic entropies that will be introduced latter.

Abstract setup and main results

It turns out that a large part of the analysis of the process (2.4) and its entropic functionals is independent of the details of the model and relies only on its few structural properties. In this section we recast the harmonic networks in a more abstract framework, retaining only the structural properties of the original system which are necessary for our analysis.

Notations and conventions. Let E and F be real or complex Hilbert spaces. L(E, F ) denotes the set of (continuous) linear operators A :

E → F and L(E) = L(E, E). For A ∈ L(E, F ), A * ∈ L(F, E)
denotes the adjoint of A, A its operator norm, Ran A ⊂ F its range and Ker A ⊂ E its kernel.

We denote the spectrum of A ∈ L(E) by sp(A). A is non-negative (resp. positive), written A ≥ 0

(resp. A > 0), if it is self-adjoint and sp(A) ∈ [0, ∞[ (resp. sp(A) ⊂]0, ∞[). We write A ≥ B whenever A -B ∈ L(E) is non-negative.
The relation ≥ defines a partial order on L(E). The controllable subspace of a pair

(A, Q) ∈ L(E) × L(F, E) is the smallest A-invariant subspace of E containing Ran Q. We denote it by C(A, Q). If C(A, Q) = E, then (A, Q) is said to be controllable.
We denote by C ∓ the open left/right half-plane. A ∈ L(E) is said to be stable/anti-stable whenever sp(A) ⊂ C ∓ .

We start by rewriting the equation of motion (2.4) in a more compact form. Setting

x = p ωq , A = -1 2 ιι * -ω * ω 0 , Q = ι 0 ϑ 1 2 , (3.1) 
Eq. (2.4) takes the form dx(t) = Ax(t)dt + Qdw(t), (3.2) and functional (2.6) becomes

S t = - t 0 ϑ -1 Q * x(s) • dw(s) + 1 2 t 0 |ϑ -1 Q * x(s)| 2 ds -1 2 t tr(Qϑ -1 Q * ). (3.3)
Note that the vector field Ax splits into a conservative (Hamiltonian) part Ωx and a dissipative part -Γx defined by

Ω = 1 2 (A -A * ) = 0 -ω * ω 0 , (3.4) Γ = -1 2 (A + A * ) = 1 2 Qϑ -1 Q * . (3.5)
These operators satisfy the relations

Ω * = θΩθ = -Ω, Γ * = θΓθ = Γ. (3.6)
The solution of the Cauchy problem associated to (3.2) with initial condition x(0) = x 0 can be written explicitly as

x(t) = e tA x 0 + t 0 e (t-s)A Qdw(s). (3.7)
This relation defines a family of Ξ-valued Markov processes indexed by the initial condition x 0 ∈ Ξ. This family is completely characterized by the data

(A, Q, ϑ, θ) ∈ L(Ξ) × L(∂ Ξ, Ξ) × L(∂ Ξ) × L(Ξ), (3.8) 
where Ξ and ∂ Ξ are finite-dimensional Euclidean vector spaces and (A, Q, ϑ, θ) is subject to the following structural constraints:

Ker (A -A * ) ∩ Ker Q * = {0}, A + A * = -Qϑ -1 Q * , ϑ > 0, Q * Q > 0, θ = θ * = θ -1 , θQ = ±Q, θAθ = A * , [ϑ, Q * Q] = 0.
(3.9)

In the remaining parts of Section 3, we shall consider the family of processes (3.7), which are strong solutions of SDE (3.2), associated with the data (3.8) satisfying (3.9).

Remark 3.1 The concrete models of the previous section fit into the abstract setup defined by (3.2), (3.8), and (3.9) with Ker (A -A * ) = {0} and θQ = -Q. We have weakened the first condition and included the case θQ = +Q in (3.9) in order to encompass the quasi-Markovian models introduced in [START_REF] Eckmann | Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures[END_REF][START_REF] Eckmann | Entropy production in nonlinear, thermally driven Hamiltonian systems[END_REF]. There, the Langevin reservoirs are not directly coupled to the network, but to additional degrees of freedom described by dynamical variables r ∈ R J , where J is a finite set. The augmented phase space of the network is Ξ = R J ⊕ R I ⊕ R I , and ∂ Ξ = R J . The equations of motion take the form (3.2) with

x =   r p ωq   , A =   -1 2 ιι * -Λ * 0 Λ 0 -ω * 0 ω 0   , Q =   ι 0 0   ϑ 1 2 ,
where ι : R J → R J is bijective and Λ : R J → R I injective. The time reversal map in this case is given by

θ =   I 0 0 0 -I 0 0 0 I   .
Writing the system internal energy as H(x) = 1 2 |p| 2 + 1 2 |ωq| 2 + 1 2 |r| 2 , the calculation of the previous section yields the following formula for the total entropy dissipated into the reservoirs

S t + 1 2 |ϑ -1 2 r(t)| 2 -1 2 |ϑ -1 2 r(0)| 2 , (3.10)
where S t is given by (3.3).

Let P(Ξ) be the set of Borel probability measures on Ξ and denote by P t (x, • ) ∈ P(Ξ) the transition kernel of the process (3.7). For bounded or non-negative measurable functions f on Ξ and ν ∈ P(Ξ) we write

ν(f ) = f (x)ν(dx), f t = P t f = P t ( • , dy)f (y), ν t = νP t = ν(dy)P t (y, • ), so that ν(f t ) = ν t (f ). A measure ν is invariant if ν t = ν for all t ≥ 0.
We denote the actions of time-reversal by

f = Θf = f • θ, ν = νΘ = ν • θ, so that ν( f ) = ν(f ). A measure ν is time-reversal invariant if ν = ν.
The generator L of the Markov semigroup P t acts on smooth functions as (3.11) where B = QQ * .

L = 1 2 ∇ • B∇ + Ax • ∇,
(3.12)

We further denote by P x 0 the induced probability measure on the path space C(R + , Ξ) and by E x 0 the associated expectation. Considering x 0 as a random variable, independent of the driving Wiener process w and distributed according to ν ∈ P(Ξ), we denote by P ν and E ν the induced path space measure and expectation. In the language of statistical mechanics, functions f on Ξ are the observables of the system, ν is its initial state, and the flow t → ν t describes its time evolution. Invariant measures thus correspond to steady states of the system.

The following result is well known (see Chapter 6 in the book [DPZ] and the papers [EZ, MNV]). For the reader convenience, we provide a sketch of its proof in Section 5.1.

Theorem 3.2 (1) Under the above hypotheses, the operator

M := ∞ 0
e sA Be sA * ds is well defined and non-negative, and its restriction to Ran M satisfies the inequality

ϑ min = min sp(ϑ) ≤ M Ran M ≤ max sp(ϑ) = ϑ max . (3.13)
Moreover, the centred Gaussian measure µ with covariance M is invariant for the Markov processes associated with (3.2).

(2) The invariant measure µ is unique iff the pair (A, Q) is controllable. In this case, the mixing property holds in the sense that, for any f ∈ L 1 (Ξ, dµ), we have

lim t→+∞ P t f = µ(f ),
where the convergence holds in L 1 (Ξ, dµ) and uniformly on compact subsets of Ξ.

(3) Let x(t) be defined by relation (3.7), in which the initial condition x 0 is independent of w and is distributed as µ. Then x(t) is a centred stationary Gaussian process. Moreover, its covariance operator defined by the relation (η 1 , K(t, s)η 2 ) = E µ (x(t), η 1 )(x(s), η 2 ) has the form K(t, s) = e (t-s) + A M e (t-s) -A * .

(3.14)

Remark 3.3 In the harmonic network setting, if ϑ = ϑ 0 I for some ϑ 0 ∈]0, ∞[ (i.e., the reservoirs are in a joint thermal equilibrium at temperature ϑ 0 ), then it follows from (3.13) that M = ϑ, which means that µ is the Gibbs state at temperature ϑ 0 induced by the Hamiltonian h.

In the sequel, we shall assume without further notice that process (3.7) has a unique invariant measure µ, i.e., that the following hypothesis holds:

Assumption (C) The pair (A, Q) is controllable.
Remark 3.4 To make contact with [MNV], note that in terms of Stratonovich integral the TDE functional (3.3) is given by

S t = - t 0 ϑ -1 Q * x(s) • dw(s) + 1 2 t 0 |ϑ -1 Q * x(s)| 2 ds.
This identity is a standard result of stochastic calculus (see, e.g., Section II.7 in [Pr]) and is used as a definition of the entropy current in [MNV].

Entropies and entropy production

In this section we introduce information theoretic quantities which play an important role in our approach to fluctuation relations. We briefly discuss their basic properties and in particular their relations with the TDE S t .

Let ν 1 and ν 2 be two probability measures on the same measurable space. If ν 1 is absolutely continuous w.r.t. ν 2 , the relative entropy of the pair (ν 1 , ν 2 ) is defined by

Ent(ν 1 |ν 2 ) = -log dν 1 dν 2 dν 1 .
We recall that Ent(ν

1 |ν 2 ) ∈ [-∞, 0], with Ent(ν 1 |ν 2 ) = 0 iff ν 1 = ν 2 (see, e.
g., [OP]).

Suppose that ν 1 and ν 2 are mutually absolutely continuous. For α ∈ R, the Rényi [Re] relative α-entropy of the pair

(ν 1 , ν 2 ) is Ent α (ν 1 |ν 2 ) = log dν 1 dν 2 α dν 2 . The function R α → Ent α (ν 1 |ν 2 ) ∈] -∞, ∞] is convex. It is non-positive on [0, 1], vanishes for α ∈ {0, 1}
, and is non-negative on R\]0, 1[. It is real analytic on ]0, 1[ and vanishes identically on this interval iff ν 1 = ν 2 . Finally,

Ent 1-α (ν 1 |ν 2 ) = Ent α (ν 2 |ν 1 ) (3.15)
for all α ∈ R.

Let ν ∈ P(Ξ) be such that ν(|x| 2 ) < ∞ (recall that in our abstract framework the Hamiltonian is h(x) =1 2 |x| 2 ). The Gibbs-Shannon entropy of ν t = νP t is defined by

S GS (ν t ) = -log dν t dx ν t (dx).
(3.16)

The Gibbs-Shannon entropy is finite for all t > 0 (see Lemma 5.4 (1) below) and is a measure of the internal entropy of the system at time t.

To formulate our next result (see Section 5.2 for its proof) we define P + (Ξ) = ν ∈ P(Ξ) e 1 2 m|x-a| 2 ν(dx) < ∞ for some m > 0 and a ∈ Ξ .

Note that any Gaussian measure on Ξ belongs to P + (Ξ).

Proposition 3.5 Let a non-negative operator β ∈ L(Ξ) be such that

1 βQ = Qϑ -1 , θβθ = β. (3.17) Define the quadratic form σ β (x) = 1 2 x • Σ β x, Σ β = [Ω, β], (3.18)
and a reference measure µ β on Ξ by

dµ β dx (x) = e -1 2 |β 1 2 x| 2 . (3.19)
Then the following assertions hold.

(1) µ β Θ = µ β and Θσ β = -σ β .

(2) Let L β denote the formal adjoint of the Markov generator (3.11) w.r.t. the inner product of the Hilbert space L 2 (Ξ, µ β ). Then ΘL β Θ = L + σ β .

(3.20)

(3) The TDE (3.3) can be written as

S t = - t 0 σ β (x(s))ds + log dµ β dx (x(t)) -log dµ β dx (x(0)).
(3.21)

(4) Suppose that Assumption (C) holds. Then for any ν ∈ P + (Ξ) the de Bruijn relation

d dt Ent(ν t |µ) = 1 2 ν t (|Q * ∇ log dν t dµ | 2 ) (3.22)
holds for t large enough. In particular, Ent(ν t |µ) is non-decreasing for large t.

(5) Under the same assumptions

d dt S GS (ν t ) + E ν [S t ] = 1 2 ν t (|Q * ∇ log dν t dµ β | 2 ) (3.23)
holds for t large enough.

Remark 3.6 Part (2) states that our system satisfies a generalized detailed balance condition as defined in [START_REF] Eckmann | Entropy production in nonlinear, thermally driven Hamiltonian systems[END_REF] (see also [BL]).

Let us comment on the physical interpretation of Part (3) in the harmonic network setting. Let I = ∪ k∈K I k be a partition of the network and denote by π k the orthogonal projection on R I with range R I k . Defining

h k (p, q) = 1 2 |π k p| 2 + 1 2 |ωπ k q| 2 , v k,l (q) = 1 2 q • (π k ω * ωπ l + π l ω * ωπ k )q,
for k, l ∈ K, we decompose the network into |K| clusters R k with internal energy h k , interacting through the potentials v k,l . Denote by

hk (p, q) = h k (p, q) + 1 2 l =k v k,l (q)
the total energy stored in R k . Assume that all the reservoirs attached to R k , if any, are at the same temperature, i.e., i

∈ I k ∩ ∂I ⇒ ϑι * π k = ϑ i ι * π k , (3.24)
and for k ∈ K let β k ≥ 0 be such that β k = ϑ -1 i whenever i ∈ I k ∩ ∂I (see Figure 3). Defining the non-negative operator β by

1 2 x • βx = k∈K β k hk (p, q), (3.25)
we observe that (3.17) holds as a consequence of (3.24) and the time-reversal invariance of hk . The corresponding reference measure µ β is, up to irrelevant normalization, a local Gibbs measure where each cluster R k is in equilibrium at the inverse temperatures β k .

Itô's formula yields the local energy balance relation (3.26) where δQ i (t) is given by (2.5). The last term on the right-hand side of this identity is the total heat injected into subsystem R k by the reservoirs attached to it. Thus, we can identify

d hk (x(t)) = -1 4 p(t) • (π k ω * ω -ω * ωπ k )q(t)dt + i∈I k ∩∂I δQ i (t),
j k (t) = l =k j k→l (t), j k→l (t) = 1 4 p(t) • (π k ω * ωπ l -π l ω * ωπ k )q(t),
with the total flux of energy flowing out of R k into its environment which is composed of the other subsystems R l =k . Multiplying Eq. (3.26) with β k , summing over k, integrating over [0, t] and comparing the result with (2.6) we obtain

S t = - k∈K β k t 0 j k (t)dt + log dµ β dx (x(t)) -log dµ β dx (x(0)).
Comparison with (3.21) yields

σ β (x(t)) = k∈K β k j k (t) = 1 2 k =l (β k -β l )j k→l (t),
which, according to the heat-entropy relation, is the total inter-cluster entropy flux. Two different ways of partitioning the system and assigning reference local temperatures to each subsystems leads to total entropy dissipation which only differs by a boundary term

σ β (x(t)) -σ β (x(t)) = k∈K β k j k (t) - k∈K β k j k (t) = d dt log dµ β dµ β (x(t)),
provided the local inverse temperatures β k , β k are consistent with the temperatures of the reservoirs.

Eq. (3.23) can be read as an entropy balance equation. Its left-hand side is the sum of the rate of increase of the internal Gibbs-Shannon entropy of the system and of the TDE flux leaving the system. Thus, the quantity on the right-hand side of Eq. (3.23) can be interpreted as the total entropy production rate of the process. Using Eqs. (3.16) and (3.21), we can rewrite Eq. (3.23) as

d dt E ν [Ep(ν, t)] = ν t (-σ β ) + d dt Ent(ν t |µ β ) = 1 2 ν t (|Q * ∇ log dν t dµ β | 2 ), (3.27)
where the entropy production functional Ep is defined by

Ep(ν, t) = - t 0 σ β (x(s))ds -log dν t dµ β (x(t)) + log dν dµ β (x(0)) = S t -log dν t dx (x(t)) + log dν dx (x(0)).
(3.28)

In the physics literature, the quantity

ς stoch (t) = -log dν t dx (x(t)), ϑ 1 ϑ 3 ϑ 2 ϑ 4 ϑ 6 ϑ 5 R 1 , β 1 R 4 , β 4 R 5 , β 5 R 2 , β 2 R 3 , β 3
Figure 3: A partition of the network. Black disks represents heat reservoirs. In this situation one has,

β -1 1 = ϑ 1 = ϑ 3 , β -1 2 = ϑ 4 = ϑ 5 = ϑ 6 , β -1 4 = ϑ 2 . β 3 ≥ 0 and β 5 ≥ 0 arbitrary.
is sometimes called stochastic entropy (see, e.g., [START_REF] Seifert | Stochastic thermodynamics, fluctuation theorems and molecular machines[END_REF]Section 2.4]). In the case ν = µ, i.e., for the stationary process, stochastic entropy does not contribute to the expectation of Ep(µ, t), and Eq. (3.28) yields

1 t E µ [Ep(µ, t)] = 1 t E µ [S t ] = -µ(σ β ), (3.29) 
so that (3.27) reduces to

-µ(σ β ) = 1 2 µ(|Q * ∇ log dµ dµ β | 2 ), (3.30)
where the right-hand side is the steady state entropy production rate. In the following, we set ep = -µ(σ β ).

(3.31) By (3.29) this quantity is independent of the choice of β ∈ L(Ξ) satisfying Conditions (3.17). The relation (3.30) shows that ep ≥ 0. Computing the Gaussian integral on the right-hand side of (3.30) yields

ep = 1 2 tr(ϑ -1 (M Q -Qϑ) * M -1 (M Q -Qϑ)ϑ -1 ) = 1 2 M -1 2 (M Q -Qϑ)ϑ -1 2 2 2 , (3.32)
where • 2 denotes the Hilbert-Schmidt norm. Thus, ep > 0 iff M Q -Qϑ = 0. By Remark 3.3, the latter condition implies in particular that the eigenvalues of ϑ (i.e., the temperatures ϑ i ) are not all equal. Part (2) of the next proposition provides a converse. For the proof see Section 5.3.

Proposition 3.7 (1) ep = 0 ⇔ M Q = Qϑ ⇔ [Ω, M ] = 0 ⇔ µΘ = µ.
In particular, the steady state entropy production rate vanishes iff the steady state µ is timereversal invariant and invariant under the (Hamiltonian) flow e tΩ .

(2) Let ϑ 1 , ϑ 2 be two distinct eigenvalues of ϑ and denote by π 1 , π 2 the corresponding spectral projections

. If C(Ω, Qπ 1 ) ∩ C(Ω, Qπ 2 ) = {0}, then ep > 0.
Remark 3.8 The time-reversal invariance µΘ = µ of the steady state is equivalent to θM θ = M . For Markovian harmonic networks, the latter condition is easily seen to imply µ(p i q j ) = 0, (i, j ∈ I),

i.e., the statistical independence of simultaneous positions and momenta. In the quasi-Markovian case, θM θ = M implies

µ(p i q j ) = µ(p i r k ) = µ(q j r k ) = 0, (i, j ∈ I, k ∈ J ).

Path space time-reversal

Given τ > 0, the space-time statistics of the process (3.7) in the finite period [0, τ ] is described by (X τ , X τ , P τ ν ), where P τ ν is the measure induced by the initial law ν ∈ P(Ξ) on the path-space X τ = C([0, τ ], Ξ) equipped with its Borel σ-algebra X τ . Path space time-reversal is given by the involution

Θ τ : x = {x(t)} t∈[0,τ ] → x = {θx(τ -t)} t∈[0,τ ] of X τ .
The time reversed path space measure P τ ν is defined by

P τ ν = P τ ν • Θ τ . Since E τ ν [f (x(0))] = E τ ν [f (θx(τ ))] = νP τ Θ(f ), (3.33) 
P τ ν describes the statistics of the time reversed process x started with the law νP τ Θ. It is therefore natural to compare it with P τ νP τ Θ . The following result (proved in Section 5.4) provides a connection between the functional Ep( • , τ ) and time-reversal of the path space measure.

Set P 1 loc (Ξ) = ζ ∈ P(Ξ) dζ dx + ∇ dζ dx ∈ L 2 loc (Ξ, dx) .
Proposition 3.9 For any τ > 0 and any ν ∈ P 1 loc (Ξ), P τ ν is absolutely continuous w.r.t. P τ νP τ Θ and

log d P τ ν dP τ νP τ Θ = Ep(ν, τ ) • Θ τ = -S τ -log dν τ dx (θx(0)) + log dν dx (θx(τ )). (3.34)
Remark 3.10 The above result is a mathematical formulation of [START_REF] Maes | Heat conduction networks[END_REF]Section 3.1] in the framework of harmonic networks. Rewriting (3.34) as

log dP τ ν dP τ νP τ Θ • Θ τ = Ep(ν, τ ) = S τ + log dν dx (x(0)) -log dν τ dx (x(τ )),
we obtain Eq. (3.12) of [MNV]. Proposition 3.9 is a consequence of Girsanov formula, the generalized detailed balance condition (3.20), and the fact that the time-reversed process x is again a diffusion. Apart from the last fact, which was proven in [PH], the main technical difficulty in its proof is to check the martingale property of the exponential of the right-hand side of (3.34).

Remark 3.11 It is an immediate consequence of Eq. (5.13) below that νP τ ∈ P 1 loc (Ξ) for any ν ∈ P(Ξ) and τ > 0.

Equipped with Eq. (3.34) it is easy to transpose the relative entropies formulas of the previous section to path space measures. As a first application, let us compute the relative entropy of P τ ηΘ w.r.t. P τ ν :

Ent( P τ ν |P τ ηΘ ) = E τ ν -log d P τ ν dP τ ηΘ = E τ ν -log d P τ ν dP τ νP τ Θ + log dP τ ηΘ dP τ νP τ Θ = E τ ν -Ep(ν, τ ) • Θ τ + log dη dν τ (θx(0)) = -E τ ν [Ep(ν, τ )] + Ent(ν τ |η). If ν ∈ P + (Ξ) then (3.27) yields -Ent( P τ ν |P τ νP τ Θ ) = E τ ν [Ep(ν, τ )] = 1 2 τ 0 ν t (|Q * ∇ log dν t dµ β | 2 )dt,
which, according to the previous section, is the entropy produced by the process during the period

[0, τ ]. Setting ν = µ, we obtain -Ent( P τ µ |P τ µΘ ) = ep(µ)τ.
Together with Proposition 3.7 (1), this relation proves Theorem 3.12 The following statements are equivalent:

(1) P τ µ • Θ τ = P τ µ for all τ > 0, i.e., the stationary process (3.7) is reversible.

(2) P τ µ • Θ τ = P τ µ for some τ > 0.

(3) ep = 0.

The canonical entropic functional

We are now in position to deal with the first step in our scheme: the construction of the canonical entropic functional S τ associated to (X τ , X τ , P τ µ , Θ τ ). By Proposition 3.9, Rényi's relative α-entropy per unit time of the pair (P τ µ , P τ µ ),

Ent α (P τ µ | P τ µ ) = log E µ e -αS τ ,
is the cumulant generating function of

S τ = log dP τ µ d P τ µ = S τ -log dµ dx (θx(τ )) + log dµ dx (x(0)). (3.35)
In the following, we shall set

e τ (α) = 1 τ log E µ e -αS τ , (3.36)
which, by construction, satisfies the Gallavotti-Cohen symmetry e τ (1α) = e τ (α).

Before formulating our main result on the large time asymptotics of e τ (α), we need several technical facts which will be proved in Section 5.5.

Theorem 3.13 Suppose that Assumption (C) holds.

(1) For β ∈ L(Ξ) satisfying Conditions (3.17), the map

R ω → E(ω) = Q * (A * -iω) -1 Σ β (A + iω) -1 Q (3.37)
takes values in the self-adjoint operators on the complexification of ∂Ξ. As such, it is continuous and independent of the choice of β.

(2) Set

ε -= min ω∈R min sp(E(ω)), ε + = max ω∈R max sp(E(ω)), κ c = 1 ε + - 1 2 .
The following alternative holds: either

κ c = ∞ in which case E(ω) = 0 for all ω ∈ R, or 1 2 < κ c < ∞, ε -< 0, 0 < ε + < 1, and 
1 ε - + 1 ε + = 1.
( (5) For α ∈ R define

) Set I c =] 1 2 -κ c , 1 2 + κ c [ = ] 1 ε -, 1 ε + [. The function e(α) = - ∞ -∞ log det (I -αE(ω)) dω 4π (3.38) is analytic on the cut plane C c = (C \ R) ∪ I c . It is convex 3 
K α = -A α QQ * C α A * α , (3.41) 
where

A α = (1 -α)A -αA * , C α = α(1 -α)Qϑ -2 Q * . (3.42)
For all ω ∈ R and α ∈ R one has

det(K α -iω) = | det(A + iω)| 2 det(I -αE(ω)). Moreover, for α ∈ I c , e(α) = 1 4 tr(Qϑ -1 Q * ) -1 4 λ∈sp(Kα) |Re λ| m λ , (3.43)
where m λ denotes the algebraic multiplicity of λ ∈ sp(K α ).

Remark 3.14 We shall prove, in Proposition 5.5 ( 11), that

κ c ≥ κ 0 = 1 2 ϑ max + ϑ min ϑ max -ϑ min . (3.44)
This lower bound is sharp, i.e., there are networks for which equality holds (see Theorem 4.2 (3)).

Remark 3.15 It follows from (3.44) that κ c = ∞ for harmonic networks at equilibrium, i.e., whenever ϑ min = ϑ max = ϑ 0 > 0. Up to the controllability assumption of Proposition 3.7 (2), these are the only examples with κ c = ∞ (see also Remark 5.6 and Section 4).

Remark 3.16 Remark 2 after Theorem 2.1 in [JPS] applies to Part (4) of Theorem 3.13.

In the sequel it will be convenient to consider the following natural extension of the function e(α).

Definition 3.17 The function

R α → e(α) ∈] -∞, +∞] is given by (3.38) for α ∈ I c and e(α) = +∞ for α ∈ R \ I c .
This definition makes R α → e(α) an essentially smooth closed proper convex function (see [Ro]).

The main result of this section relates the spectrum of the matrix K α , through the function e(α), to the large time asymptotics of the Rényi entropy (3.36) and the cumulant generating function of the canonical entropic functional S t .

Proposition 3.18 Under Assumption (C) and with Definition 3.17 one has

lim τ →∞ e τ (α) = e(α), (3.45)
for all α ∈ R.

A closer look at the proof of Proposition 3.18 in Section 5.7 gives more. For any x ∈ Ξ and α

∈ I c lim τ →∞ E x e -αS τ -τ e(α) = f α (x) = c α e -1 2 x•Tαx ,
see [START_REF] Meyn | Markov Chains and Stochastic Stability[END_REF]Section 20.1.5] and references therein. The functions

α → c α ∈ [0, ∞[ and α → T α ∈ L(Ξ)
are real analytic on I c , continuous on I c , c α > 0 for α ∈ I c , and T α > M -1 for α ∈ I c . Moreover, the convergence also holds in L 1 (Ξ, dµ) and is exponentially fast for α ∈ I c . For α ∈ I c and as τ → ∞, one has

e τ (α) = e(α) + 1 τ g τ (α) = e(α) + 1 τ log µ(f α ) + O(e -(α)τ ) ,
where (α) > 0 for α ∈ I c . However, c α vanishes on ∂I c and hence the "prefactor" g τ (α) diverges as α → ∂I c . Nevertheless, (3.45) holds because

-∞ = lim τ →∞ lim α→∂Ic 1 τ g τ (α) = lim α→∂Ic lim τ →∞ 1 τ g τ (α) = 0.
Like in our introductory example, the occurrence of singularities in the "prefactor" g τ (α) is related to the tail of the law of S t . This phenomenon was observed by Cohen and van Zon in their study of the fluctuations of the work done on a dragged Brownian particle and its heat dissipation [START_REF] Cohen | Extension of the fluctuation theorem[END_REF] (see also [START_REF] Cohen | Extended heat-fluctuation theorems for a system with deterministic and stochastic forces[END_REF][START_REF] Visco | Work fluctuations for a Brownian particle between two thermostats[END_REF] for more detailed analysis). In their model, which is closely related to ours, the cumulant generating function of the dissipated heat e τ (α) diverges for α 2 ≥ (1e -2τ ) -1 and hence

lim τ →∞ e τ (α) = +∞ for |α| > 1.
This leads to a breakdown of the Gallavotti-Cohen symmetry and to an extended fluctuation relation. We will come back to this point in the next section and see that this is a general feature of the TDE functional S t (see Eq. (3.64) below). Proposition 3.18 and Theorem 3.13 (3) show that the canonical entropic functional S t does not suffer from this defect: its limiting cumulant generating function e(α) satisfies Gallavotti-Cohen symmetry for all α ∈ R.

Large deviations of the canonical entropic functional

We now turn to Step 2 of our scheme. We recall some fundamental results on the large deviations of a family (ξ t ) t≥0 of real-valued random variables (the Gärtner-Ellis theorem, see, e.g., [START_REF] Hollander | Large Deviations. Fields Institute Monographs[END_REF]Theorem V.6]). We shall focus on the situations relevant for our discussion of entropic fluctuations. We refer the reader to [dH, DZ] for more general exposition.

By Hölder's inequality, the cumulant generating function

R α → Λ t (α) = 1 t log E[e αξt ] ∈] -∞, ∞],
is convex and vanishes at α = 0. It is finite on some (possibly empty) open interval and takes the value +∞ on the (possibly empty) interior of its complement.

Remark 3.19

The above definition follows the convention used in the mathematical literature on large deviations. Note, however, that in the previous section we have adopted the convention of the physics literature on entropic fluctuations where the cumulant generating function of an entropic functional ξ t is defined by α → t -1 log E[e -αξt ]. This clash of conventions is the origin of various minus signs occurring in Theorems 3.20 and 3.28 below.

The function

R α → Λ(α) = lim sup t→∞ Λ t (α) = lim t→∞ sup s≥t Λ s (α) ∈ [-∞, ∞]
is convex and vanishes at α = 0. Let D be the interior of its effective domain {α ∈ R | Λ(α) < ∞}, and assume that 0 ∈ D. Then D is a non-empty open interval, Λ(α) > -∞ for all α ∈ R, and the function D α → Λ(α) is convex and continuous. The Legendre transform

Λ * (x) = sup α∈R (αx -Λ(α)) = sup α∈D (αx -Λ(α))
is convex and lower semicontinuous, as supremum of a family of affine functions. Moreover, Λ(0) = 0 implies that Λ * is non-negative. The large deviation upper bound lim sup

t→∞ 1 t log P 1 t ξ t ∈ C ≤ -inf x∈C Λ * (x) (3.46)
holds for all closed sets C ⊂ R.

Assume, in addition, that on some finite open interval 0

∈ D 0 =]α -, α + [⊂ D the function D 0 α → Λ(α)
is real analytic and not linear. Then Λ is strictly convex and its derivative Λ is strictly increasing on D 0 . We denote by x ∓ the (possibly infinite) right/left limits of Λ (α)

at α = α ∓ . By convexity, Λ(α) ≥ Λ(α 0 ) + (α -α 0 )Λ (α 0 ) (3.47)
for any α 0 ∈ D 0 and α ∈ R, and

Λ(α ± ) ≥ Λ ± = lim D 0 α→α ± Λ(α).
Since Λ * is non-negative, it follows that Λ * (Λ (0)) = 0. One easily shows that (3.47) also implies

Λ * (x) = sup α∈D 0 (αx -Λ(α)) for x ∈ E =]x -, x + [. If the limit lim t→∞ Λ t (α)
exists for all α ∈ D 0 , then it coincides with Λ(α), and the large deviation lower bound

lim inf t→∞ 1 t log P 1 t ξ t ∈ O ≥ -inf x∈O∩E Λ * (x) (3.48)
holds for all open sets O ⊂ R. Note that in cases where x -= -∞ and

x + = +∞ one has E = R and convexity implies Λ(α) = +∞ for α ∈ R \ [α -, α + ].
We shall say that the family (ξ t 

Intermezzo: A naive approach to the cumulant generating function of S t

Before dealing with perturbations of the functional S t , we briefly digress from the main course of our scheme in order to better motivate what will follow. We shall try to compute the cumulant generating function of the TDE functional S t by a simple Perron-Frobenius type argument.

By Itô calculus, for any f ∈ C 2 (Ξ) one has

d(e -αS t f (x(t))) = e -αS t (L α f )(x(t))dt + Q * (∇f )(x(t)) + αϑ -1 Q * x(t)f (x(t)) • dw(t) ,
where

L α = 1 2 ∇ • B∇ + 2A α x • ∇ -x • C α x + αtr(Qϑ -1 Q * )
is the deformation of the Fokker-Planck operator (3.11), and A α , B, C α are given by (3.12), (3.42). Note that the structural relations (3.9) imply

ΘL α Θ = L * 1-α , (3.51)
where L * α denotes the formal adjoint of L α . Assuming L α to have a non-vanishing spectral gap, a naïve application of Girsanov formula leads to

E µ e -αS t = µ(e tLα 1) = e tλα µ(Ψ α ) Ψ 1-α (x)dx + o(1) , (t → ∞). (3.52)
where Ψ α is the properly normalized eigenfunction of L α to its dominant eigenvalue λ α . It follows that lim

t→∞ 1 t log E µ e -αS t = λ α ,
the Gallavotti-Cohen symmetry λ 1-α = λ α being a direct consequence of (3.51).

Given the form of L α , the Gaussian Ansatz

Ψ α (x) = e -1 2 x•Xαx is mandatory. Insertion into the eigenvalue equation L α Ψ α = λ α Ψ α leads to the following equation for the real symmetric matrix X α , X α BX α -X α A α -A * α X α -C α = 0, (3.53) 
while the dominant eigenvalue is given by

λ α = 1 2 αtr(Qϑ -1 Q * ) -tr(BX α ) . (3.54)
There are two difficulties with this naïve argument. The first one is that it is far from obvious that Girsanov theorem applies here. The second one is again related to the "prefactor" problem. In fact we shall see that Eq. (3.53) does not have positive definite solutions for α ≤ 0, making the right-hand side of (3.52) infinite for α ≥ 1. Nevertheless, the above calculation reveals Eq. (3.53) and (3.54) which will play a central role in what follows.

More entropic functionals

In this section we deal with step 3 of our scheme. The main result, Proposition 3.22 below, concerns the large time behavior of cumulant generating functions of the kind

R α → g t (α) = 1 t log E ν e -α[S t +Φ(x(t))-Ψ(x(0))] ,
where Φ and Ψ are quadratic forms on the phase space Ξ,

Φ(x) = 1 2 x • F x, Ψ(x) = 1 2 x • Gx, (3.55)
and the initial measure ν ∈ P(Ξ) is Gaussian. We then apply this result to some entropic functionals of physical interest:

(1) The steady state TDE (recall Eq. (3.35)),

S t = S t + log dµ dx (θx(t)) -log dµ dx (x(0)), (3.56) with ν = µ.
(2) The steady state TDE for quasi-Markovian networks (3.10) which we can rewrite as

S t qM = S t + 1 2 |ϑ -1/2 π Q x(t)| 2 -1 2 |ϑ -1/2 π Q x(0)| 2 , (3.57)
where π Q denotes the orthogonal projection to Ran Q = ∂Ξ, with ν = µ.

(3) Transient TDEs, i.e., the functionals S t and S t qM , but in the transient process started with a Dirac measure ν = δ x 0 .

(4) The steady state entropy production functional

Ep(µ, t) = S t + log dµΘ dµ (x(t))
with ν = µ.

(5) The canonical entropic functional for the transient process, started with the non-degenerate Gaussian measure ν ∈ P(Ξ),

S t ν = log dP t ν d P t ν = log dP t µ d P t µ + log dP t ν dP t µ -log d P t ν d P t µ = S t -log dν dµ (θx(t)) + log dν dµ (x(0)).
To formulate our general result, we need some facts about the matrix equation (3.53).

Define a map R α :

L(Ξ) → L(Ξ) by R α (X) = XBX -XA α -A * α X -C α , (3.58)
where A α , B and C α are defined by (3.12) and (3.42). The equation R α (X) = 0 is an algebraic Riccati equation for the unknown self-adjoint X ∈ L(Ξ). We refer the reader to the monographs [LR, AFIJ] for an in depth discussion of such equations.

A solution X of the Riccati equation is called minimal (maximal) if it is such that X ≤ X (X ≥ X ) for any other solution X of the equation. We shall investigate the Riccati equation in Section 5.6. At this point we just mention that, under Assumption (C), it has a unique maximal solution X α for any α ∈ I c , with the special values

X 0 = 0, X 1 = θM -1 θ. (3.59)
Proposition 3.22 Suppose that Assumption (C) is satisfied and let ν be the Gaussian measure on Ξ with mean a and covariance N ≥ 0. Denote by P ν the orthogonal projection on Ran N and by N the inverse of the restriction of N to its range. Let F, G ∈ L(Ξ) be self-adjoint and define Φ, Ψ by (3.55).

(1) For t > 0 the function

R α → g t (α) = 1 t log E ν [e -α(S t +Φ(x(t))-Ψ(x(0))) ]
is convex. It is finite and real analytic on some open interval I t =]α -(t), α + (t)[ 0 and infinite on its complement. Moreover, the following alternatives hold:

• Either α -(t) = -∞ or lim α↓α -(t) g t (α) = -∞. • Either α + (t) = +∞ or lim α↑α + (t) g t (α) = +∞.
(2) Set

I + = {α ∈ I c | θX 1-α θ + α(X 1 + F ) > 0}, I -= {α ∈ I c | N + P ν (X α -α(G + θX 1 θ))| Ran N > 0},
with the proviso that

I -= I c whenever N = 0. Then I ∞ = I -∩ I + is a (relatively) open subinterval of I c containing 0. (3) If X 1 + F > 0 and either N = 0 or N + P ν (X 1 -θX 1 θ -G)| Ran N > 0, then [0, 1] ⊂ I ∞ . (4) For α ∈ I ∞ one has lim t→∞ g t (α) = e(α). (3.60) (5) Set α -= inf I ∞ < 0 and α + = sup I ∞ > 0. Then, lim t→∞ α ± (t) = α ± , (3.61) 
and for any

α ∈ R \ [α -, α + ], lim t→∞ g t (α) = +∞. (3.62)
Remark 3.23 The existence and value of the limit (3.60) for α ∈ ∂I ∞ is a delicate problem whose resolution requires additional information on the two subspaces

Ker (θX 1-α θ + α(X 1 + F )), Ker ( N + P ν (X α -α(G + θX 1 θ))| Ran N )
at the points α ∈ ∂I ∞ . Since, as we shall see in the next section, this question is irrelevant for the large deviations properties of the functional S t + Φ(x(t)) -Ψ(x(0)), we shall not discuss it further.

Remark 3.24 We shall see in Section 5.6 that the maximal solution X α of the Riccati equation is linked to the function e(α) through the identity e(α) = λ α , where λ α is given by Eq. (3.54). Thus, the large time behavior of the function α → g t (α) is completely characterized by the maximal solution X α through this formula and the two numbers α ± . Riccati equations play an important role in various areas of engineering mathematics, e.g., control and filtering theory. For these reasons, very efficient algorithms are available to numerically compute their maximal/minimal solutions. Hence, our approach is well designed for numerical investigation of concrete models.

Steady state dissipated TDE According to Eq. (3.56) and (3.59), the case of TDE dissipation in the stationary process corresponds to the choice

N = θX 1 θ, F = -X 1 , G = -θX 1 θ,
and it follows directly from Proposition 5.5 ( 2) and (4) below that

I + = {α ∈ I c | X 1-α > 0} = [ 1 2 -κ c , 1[. Setting α -= inf{α ∈ I c | X α + θX 1 θ > 0}, we have either α -∈] 1 2 -κ c , 0[ and I ∞ =]α -, 1[, or α -= 1 2 -κ c and I ∞ = [α -, 1[. Suppose that 1 2 -κ c ≤ -1 and let α ∈ [ 1 2 -κ c , -1].
From Proposition 5.5 (10) we deduce that

X α ≤ αX 1 . Since X 1 = θM -1 θ > 0, it follows that X α + θX 1 θ ≤ αX 1 + θX 1 θ = α(X 1 -θX 1 θ) + (1 + α)θX 1 θ ≤ α(θM -1 θ -M -1 ). (3.63)
Observe that the right-hand side of this inequality is odd under conjugation by θ. Moreover, Proposition 3.7 (1) implies that it vanishes iff ep = 0. It follows that sp(X α + θX 1 θ)∩] -∞, 0] = ∅. Thus, we can conclude that one always has α + = 1 and α -≥ -1, with strict inequality whenever ep > 0.

By Proposition 3.22, e TDE,st (α) = lim t→∞ 1 t log E µ [e -αS t ] = e(α) for α ∈]α -, 1[ +∞ for α ∈ [α -, 1]. (3.64)
An explicit evaluation of the resulting Gaussian integral further shows that e TDE,st (1) = lim

t→∞ 1 t log E µ [e -S t ] = 1 2 tr(Qϑ -1 Q * ) > 0.
The Gallavotti-Cohen symmetry is broken in the sense that it fails outside the interval ]0, 1[, in particular e TDE,st (0) = e(0) = 0 < e TDE,st (1). Note also that lim inf Remark 3.26 According to Eq. (3.57), for quasi-Markovian networks the steady-state TDE dissipation corresponds to

N = θX 1 θ, F = -X 1 + π Q ϑ -1 π Q , G = θ(-X 1 + π Q ϑ -1 π Q )θ. Since θπ Q = ±π Q = π Q θ, one has [0, 1[⊂ I + = {α ∈ I c | X 1-α + απ Q ϑ -1 π Q > 0} ⊂ [ 1 2 -κ c , 1[, provided ∂Ξ = Ξ. The inequality (3.63) yields (I -π Q )(X α + θX 1 θ -απ Q ϑ -1 π Q )(I -π Q ) ≤ α(I -π Q )(θM -1 θ -M -1 )(I -π Q ), for 1 2 -κ c ≤ α ≤ -1.
From the Lyapunov equation (5.4) one easily deduces that

(I -π Q )(θM -1 θ -M -1 )(I -π Q ) = 0
iff θM θ = M so that the above argument still applies and (3.64) holds with S t replaced by S t qM and α -≥ -1 with strict inequality whenever ep > 0.

Transient dissipated TDE Consider now the functional S t for the process started with the Dirac measure ν = δ x 0 for some x 0 ∈ Ξ. This corresponds to

N = 0, F = -X 1 , G = -θX 1 θ,
and in this case

I + = [ 1 2 -κ c , 1[, I -= I c ,
and hence

I ∞ = [ 1 2 -κ c , 1[. Proposition 3.22 yields a cumulant generating function e TDE,tr (α) = lim t→∞ 1 t log E x 0 [e -αS t ] = e(α) for α ∈] 1 2 -κ c , 1[ +∞ for α ∈ [ 1 2 -κ c , 1],
(3.65) which does not depend on the initial condition x 0 .

Remark 3.27 For quasi-Markovian networks it may happen that

I ∞ =]α -, 1[ with α -> 1 2 -κ c .
For later reference, let us consider the case2 κ c = κ 0 (recall Remark 3.14). We deduce from Proposition 5.5 ( 12) that

X 1-α + απ Q ϑ -1 π Q ≥ 1 -α ϑ max (I -π Q ) + ∆ ϑ min ϑ max (α -1 2 + κ 0 )π Q > 0, for α ∈ [ 1 2 -κ 0 , 0]. Thus, in this case we have I ∞ = [ 1 2 -κ c , 1[ as in the Markovian case.
Steady state entropy production rate Motivated by [MNV], where the functional Ep(µ, t) plays a central role, we shall also investigate the large time asymptotics of its cumulant generating function

e ep,t (α) = 1 t log E µ e -αEp(µ,t) ,
in the stationary process. We observe that this function coincides with a Rényi relative entropy, namely e ep,t (α) = Ent α ( P t µΘ |P t µ ), so that the symmetry (3.15) yields µΘ,t) .

e ep,t (1 -α) = Ent α (P t µ | P t µΘ ) = Ent α ( P t µ |P t µΘ ) = 1 t log E µΘ e -αEp(
The large time behavior of e ep,t (α) follows from Proposition 3.22 with the choice

N = θX 1 θ, F = θX 1 θ -X 1 , G = 0.
Thus,

I + = {α ∈ I c | X 1-α + αX 1 > 0}, I -= {α ∈ I c | X α + (1 -α)θX 1 θ > 0},
and since we can write

X α + (1 -α)θX 1 θ = θ(Y 1-α + W 1-α )θ with Y 1-α = X 1-α + θX α θ and W 1-α = (1 -α)X 1 -X 1-α
, it follows from Proposition 5.5 (10) that

I ∞ = {α ∈ I c | X 1-α + αX 1 > 0}.
In particular the limit e ep (α) = lim t→∞ e ep,t (α),

coincides with e(α) for all α ∈ R iff the following condition holds:

Condition (R) X 1-α + αX 1 > 0 for all α ∈ I c .
This condition involves maximal solutions of two algebraic Riccati equations. Except in some special cases (see Proposition 5.5 ( 12)), its validity is not ensured by general principles (the known comparison theorems for Riccati equations do not apply) and we shall leave it as an open question. We will come back to it in Section 4 in context of concrete examples.

Transient canonical entropic functional Assuming for simplicity that the covariance N of the initial condition ν ∈ P(Ξ) is positive definite, Proposition 3.22 applies to the cumulant generating function of S t ν with

N = N -1 , F = θGθ = θN -1 θ -X 1 .
It follows that

I ∞ = {α ∈ I c | X α + (1 -α)N -1 > 0 and X 1-α + αN -1 > 0}, so that α -= 1 -α + = 1 2 -κ ν for some κ ν > 1 2 and e ν (α) = lim t→∞ 1 t E ν e -αS t ν = e(α) for |α -1 2 | < κ ν ; +∞ for |α -1 2 | > κ ν .
Note that by the construction of S t ν the Gallavotti-Cohen symmetry holds for all times. One has κ ν = κ c and hence e ν (α) = e(α) for all α ∈ R, provided

(κ c -1 2 )X -1 1 2 +κc < N < -(κ c + 1 2 )X -1 1 2 -κc .

Extended fluctuation relations

We finally deal with the 4 th and last step of our scheme: we derive an LDP for the the entropic functionals considered in the previous section and illustrate its use in obtaining extended fluctuation relations for various physical quantities of interest. We start with a complement to the discussion of Section 3.4.

In most cases relevant to entropic functionals of harmonic networks, the generating function Λ is real analytic and strictly convex on a finite interval

D 0 =]α -, α + [, is infinite on R \ [α -, α + ],
and the interval E =]x -, x + [ is finite. In such cases Λ ± are both finite and (3.47) implies that the Legendre transform of Λ is given by

Λ * (x) = sup α∈R (αx -Λ(α)) =          xα --Λ - for x ≤ x -; x (x) -Λ( (x)) for x ∈]x -, x + [; xα + -Λ + for x ≥ x + ;
where : E → D 0 is the reciprocal function to Λ . Thus, Λ * is real analytic on E, affine on R \ E and C 1 on R. The Gärtner-Ellis theorem only provides a local LDP on E for which the affine branches of Λ * are irrelevant. However, exploiting the Gaussian nature of the underlying measure P, it is sometimes possible to extend this local LDP to a global one, with the rate function Λ * . Inspired by the earlier work of Bryc and Dembo [BD], we have recently obtained such an extension for entropic functionals of a large class of Gaussian dynamical systems [JPS]. The next result is an adaptation of the arguments in [BD, JPS] and applies to the functional

ξ t = S t + Φ(x(t)) -Ψ(x(0)),
under the law P ν , with the hypothesis and notations of Proposition 3.22. We set (recall (3.40))

η -= -∞ if α + = 1 2 + κ c ; -e (α + ) if α + < 1 2 + κ c ; η + = +∞ if α -= 1 2 -κ c ; -e (α -) if α -> 1 2 -κ c .
Theorem 3.28 (1) If Assumption (C) holds then, under the law P ν , the family (ξ t ) t≥0 satisfies a global LDP with the rate function

J(s) =      I(η -) -(s -η -)α + = -sα + -e(α + ) for s ≤ η -; I(s) for s ∈]η -, η + [; I(η + ) -(s -η + )α -= -sα --e(α -) for s ≥ η + ;
(3.66)

where I(s) is given by (3.49). In particular, if ep > 0, then it follows from the strict convexity of

I(s) that J(-s) -J(s) < I(-s) -I(s) = s, for s > max(-η -, η + ).
(2) Under the same assumptions, the family (ξ t ) t≥0 satisfies the Central Limit Theorem: For any Borel set E ⊂ R,

lim t→∞ P ν ξ t -E ν [ξ t ] √ ta ∈ E = n 1 (E),
where a = e (0) and n 1 denotes the centered Gaussian measure on R with variance 1.

If I ∞ = I c , then we are in the same situation as in Section 3.4 and ξ t has the same large fluctuations as the canonical entropic functional S t . In particular it also satisfies the Gallavotti-Cohen fluctuation theorem. However, in the more likely event that I ∞ is strictly smaller than I c , then (see Figure 5) the function g(α) = lim sup t→∞ g t (α) only coincides with e(α) on ]α -, α + [ and the rate function J(s) differs from I(s) outside the closure of the interval ]η -, η + [. Unless α -= 1α + (in which case η -= -η + and J(-s) -J(s) = s for all s ∈ R) the Gallavoti-Cohen symmetry is broken and the universal fluctuation relation (3.50) fails. The symmetry function s(s) = J(-s) -J(s) then satisfies an "extended fluctuation relation".

Combining Theorem 3.28 with the results of Section 3.6 we obtain global LDPs for steady state and transient dissipated TDE. Let us discuss their features in more detail.

Steady state dissipated TDE Assuming ep > 0, we have -1 < α TDE,st-< 0 and α TDE,st+ = 1, hence η TDE,st-= -e (1) = -ep and η TDE,st+ = -e (α TDE,st-) > ep. In this case, the symmetry function is which coincides with the steady state heat dissipation for 0 ≤ s ≤ η TDE,st+ . However, the strict concavity of the function s -I(s) implies

s TDE,st (s) =      s for 0 ≤ s ≤ ep; s -I(s) for ep ≤ s ≤ η TDE,st+ ; e(α TDE,st-) + (1 + α TDE,st-)s for s ≥ η TDE,st+ ; g(α) +∞ α α - α + 1 J(s) -e ′ (0) s η + η - ×ÐÓÔ -α + ×ÐÓÔ -α - ×ÐÓÔ -η - ×ÐÓÔ -η +
s TDE,tr (s) < s TDE,st (s) 
for all s > η TDE,st+ . By Remark 3.21,

d ds (s -I(s)) = 1 -(s) = 0 iff s = -e (-1) > -e (0) = ep. Thus, whenever 1 2 -κ c < -1 3 the function [0, ∞[ s → s TDE,tr ( 
s) has a unique maximum at s = -e (-1), and the concavity of s -I(s) implies that s TDE,tr becomes negative for large enough s. In the opposite case where 1 2κ c > -1 the symmetry function s TDE,tr is strictly monotone increasing (see Figure 7 in Section 4.1 for an explicit example of this somewhat surprising fact.) 

Examples

In this section we turn back to harmonic networks in the setup of Section 2. We denote by {δ i } i∈I the canonical basis of the configuration space R I .

We start with two general facts which reduce the phase space controllability condition (C) and the non-vanishing of ep to configuration space controllability (see Section 5.10 for a proof).

Lemma 4.1 (1) If Ker ω = {0}, then (A, Q) is controllable iff (ω * ω, ι) is controllable.
(2) Denote by π i , i ∈ ∂I, the orthogonal projection on Ker (ϑϑ i ). Let C i = C(ω * ω, ιπ i ). If there exist i, j ∈ ∂ I such that ϑ i = ϑ j and C i ∩ C j = {0}, then ep(µ) > 0.

A triangular network

Consider the triangular network of Figure 6 where I = Z 6 and ∂I = Z 6 \ 2Z 6 (the indices arithmetic is modulo 6). The potential

1 2 q • ω 2 q = 1 2 i∈I q 2 i + a i∈I q i q i+1 + b i∈∂I q i q i+2 , is positive definite provided |a| < 1 2 and 2a 2 -1 2 < b < 1 -4a 2 .
One easily checks that a = 0 implies Ran ι ∨ Ran ω 2 ι = R I . Thus Assumption (C) is verified under these conditions. Noting that

δ 2 ∈ C 1 ∩ C 3 , we conclude that ep > 0 if ϑ 1 = ϑ 3 . By symmetry, ep > 0 iff ∆ = ϑ max -ϑ min > 0.
We shall fix the parameters of the model to the following values the "relative temperatures" being parametrized by

a = 1 2 √ 2 , b = 1 4 , γ 1 = γ 3 = γ 5 = 1, ϑ = 1 |∂I| i∈∂I ϑ i , κ c < 3 2 κ c = 3 2 κ c > 3 2 -2 -1 0 
ϑ 1 = ϑ(1 -u), ϑ 3 = ϑ(1 + 1 2 (u + 3v)), ϑ 5 = ϑ(1 + 1 2 (u -3v)).
Under these constraints, the simplex {(u, v) | 0 ≤ u ≤ 1, 0 ≤ v ≤ u} is a fundamental domain for the action of the symmetry group S 3 of the network which corresponds to ϑ min = ϑ 1 , ϑ max = ϑ 3 . Factoring ϑ = ϑ θ, one easily deduces from (3.37) that the matrix E(ω) and hence the cumulant generating function e(α) do not depend on ϑ. We have performed our numerical calculations with ϑ = 1. The thermodynamic drive of the system is the ratio 6 shows the reciprocal of κ c as a function of (u, v). It was obtained by numerical calculation of the eigenvalues of the Hamiltonian matrix K α . The lower-left and upper-right corners of the plot correspond to = 0 and = 3 respectively. Its right edge is the singular limit ϑ min = 0. Our results are compatible with the two limiting behaviors

= ∆/ϑ = 3 2 (u + v) ∈ [0, 3]. Figure
lim ↓0 κ c = ∞, lim ϑ min ↓0 κ c = 1 2 .
The first limit, which corresponds to thermal equilibrium ϑ min = ϑ max = ϑ, follows from the lower bound (3.44). Computing the generating function e(α) from Eq. (3.43), and its Legendre transform, we have obtained the symmetry function s TDE,tr (s) for transient TDE dissipation at three points on the line v = 0.3(1u) where κ c = 1.4, 1.5 and 1.6 respectively. The result, displayed in Figure 7 confirm our discussion in Section 3.7. 

Jacobi chains

In our framework, a chain of L oscillators with nearest neighbour interactions coupled to heat baths at its two ends (see Figure 9) is described by I = {1, . . . , L}, ∂I = {1, L}, and the potential energy

1 2 |ωq| 2 = 1 2 L i=1 b i q 2 i + L-1 i=1 a i q i q i+1 , (4.1)
where, without loss of generality, we may assume ω to be self-adjoint. We parametrize the temperature and relaxation rates of the baths by

ϑ = 1 2 (ϑ 1 + ϑ L ), ∆ = |ϑ L -ϑ 1 |, γ = √ γ 1 γ L , δ = log γ 1 γ L , κ 0 = ϑ ∆ ,
and introduce the parity operator

S : R I → R I (q i ) i∈I → (q L+1-i ) i∈I .
To formulate our main result (see Section 5.11 for its proof) we state

Assumption (J) ω > 0 and â = a 1 a 2 • • • a L-1 = 0.
Assumption (S) The chain is symmetric, i.e., [S, ω 2 ] = 0 and δ = 0. Theorem 4.2 Under Assumption (J), the following hold for the harmonic chain with potential (4.1): (1) Assumption (C) is satisfied.

(2) If ∆ = 0, then the covariance of the steady state µ satisfies

ϑ min < M < ϑ max ,
and ep > 0.

(3) If Assumption (S) also holds, then κ c = κ 0 and Condition (R) is satisfied.

Remark 4.3 For a class of symmetric quasi-Markovian anharmonic chains, Rey-Bellet and Thomas have obtained in [START_REF] Rey-Bellet | Fluctuations of the entropy production in anharmonic chains[END_REF] a local LDP for various entropic functionals of the form S t +Ψ(x(t))-Ψ(x(0)) under the law P x 0 , x 0 ∈ Ξ. In view of their Hypothesis (H1) (more precisely, the condition

k 2 ≥ k 1 ≥ 2)
, their results should apply in particular to harmonic chains satisfying Assumptions (J) and (S). They proved that the cumulant generating function of these functionals are finite and satisfy the Gallavotti-Cohen symmetry on the interval ] 1 2κ 0 , 1 2 + κ 0 [. The lower bound of this interval is consistent with Part (4) of Theorem 4.2 and Remark 3.27, whereas the upper bound is different from our conclusions in Section 3.7 on the transient TDE. There, we found that the cumulant generating function diverges for α > 1. In view of this, it appears that the analysis of [START_REF] Rey-Bellet | Fluctuations of the entropy production in anharmonic chains[END_REF] does not apply to the harmonic case.

Remark 4.4 We believe that Condition (S) is essential for Part (4) since the proof indicates that for non-symmetric chains κ c > κ 0 is generic. Figure 10 shows a plot of κ c vs δ for a homogeneous chain with L = 4, b i = 1, a i = 1 2 , γ = 2, ϑ = 4 and ∆ = 2.

Proofs

Even though the processes induced by Eq. (3.2) take values in a real vector space, it will be sometimes more convenient to work with complex vector spaces. With this in mind, we start with some general remarks and notational conventions concerning complexifications.

Let E be a real Hilbert space with inner product • , • . We denote by CE = {x + iy | x, y ∈ E} the complexification of E. This complex vector space inherits a natural Hilbertian structure with inner product

(x + iy, u + iv) = x, u + y, v + i x, v -i y, u .
We 

| A = A} of real elements of L(CF, CE). A subspace V ⊂ CE is real if it is invariant under C E . V is real iff there exists a subspace V 0 ⊂ E such that V = CV 0 . If A ∈ L(CF, CE)
is real, then Ran A and Ker A are real subspaces of CE and CF . Finally, we note that if

(A, Q) ∈ L(E) × L(F, E), then the controllability subspace of the corresponding pair in L(CE) × L(CF, CE) is the real subspace CC(A, Q) ⊂ CE.
In particular (A, Q) is controllable as a pair of R-linear maps iff it is controllable as a pair of C-linear maps.

Note that

ξ(t) = t 0 e (t-s)A Qdw(s) (5.1)
is a centered Gaussian random variable with covariance

M t = t 0
e sA QQ * e sA * ds.

(5.2)

The next lemma concerns some elementary properties of this operator.

Lemma 5.1 Assume that (A, Q, ϑ, θ) ∈ L(Ξ) × L(∂Ξ, Ξ) × L(∂Ξ) × L(Ξ) satisfies the structural relations (3.9) and let M t be given by Eq. (5.2).

(1) Ran M t = C(A, Q) for all t > 0.

(2) The subspace C(A, Q) is invariant for both A and A * , and sp(A|

C(A,Q) ), sp(A * | C(A,Q) ) ⊂ C -.
In particular, there exist constants C ≥ 1 and δ ≥ δ > 0 such that

C -1 e -δ t |x| ≤ |e tA x| ≤ Ce -δt |x| for x ∈ C(A, Q),
and the function t → M t converges to a limit M as t → +∞.

(

) Ran M = C(A, Q) = C(A * , Q). (4) A| C(A,Q) ⊥ = -A * | C(A,Q) ⊥ and e tA | C(A,Q) ⊥ is unitary. 3 
(5) The following inequality holds for all t ≥ 0 :

ϑ min (Ie tA e tA * ) ≤ M t ≤ ϑ max (Ie tA e tA * ) ≤ ϑ max .

(5.3)

In particular,

ϑ min ≤ M | Ran M ≤ ϑ max ,
and if all the reservoirs are at the same temperature ϑ 0 , then M | Ran M = ϑ 0 .

(6) M -M t = e tA M e tA * ≥ 0 and (M -M t )| Ran M > 0.

(7) M satisfies the Lyapunov equation

AM + M A * + QQ * = 0. (5.4) (8) If (A, Q) is controllable, then Ran M = Ξ
and M is the only solution of (5.4). Moreover, for any τ > 0 there exists a constant C τ such that Ran A n Q.

0 < M -1 t -M -1 ≤ C τ e -
(5.6)

The right-hand side of the last relation is included in any A-invariant subspace containing Ran Q, and therefore coincides with the controllability subspace C(A, Q).

(2) The invariance of the subspace C(A, Q) under A follows from the definition. To prove its invariance under A * , it suffices to recall the relation

A + A * = -Qϑ -1 Q * .
(5.7)

We now prove that the spectra of the restrictions of A and A * to C(A, Q) are subsets of C -. It suffices to consider the case of A.

Pick α ∈ sp(A) and let z ∈ CΞ \ {0} be a corresponding eigenvector. It follows from (5.7) that

2Re α|z| 2 = (z, (A + A * )z) = -|ϑ -1/2 Q * z| 2 ,
which implies Re α ≤ 0. If Re α = 0, then Q * z = 0 and (5.7) yields A * z = -αz which further implies Q * A * n z = (-α) n Q * z = 0 for all n ≥ 0. Eq. (5.5) then gives z ∈ Ker M t and so sp(A| Ran Mt ) ⊂ C -. The remaining statements are elementary consequences of this fact and the observation that M t vanishes on C(A, Q) ⊥ .

(3) The proof of the relation Ran M = C(A, Q) is exactly the same as that of (1). The relation

C(A, Q) = C(A * , Q
) is a simple consequence of (5.7).

(4) Combining (5.5) with (5.7), we deduce

Ker (A + A * ) = Ker Q * ⊃ C(A, Q) ⊥ . Thus A and -A * coincide on C(A, Q) ⊥ .
(5) From Eq. (5.7) we deduce from which we infer ϑ -1 max M t ≤ Ie tA e tA * ≤ ϑ -1 min M t . This is equivalent to (5.3). Restricting these inequalities to C(A, Q) and taking the limit t → ∞ yields the desired result.

(6) The first assertion follows directly from the definition of M and the group property of e tA . The second assertion is a consequence of Parts (3) and ( 5) which imply

(M -M t )| Ran M = e tA M e tA * | Ran M ≥ ϑ min e tA e tA * | Ran M > 0.
(7) Follows from Part (6) and Eq. (5.2) by differentiation.

(8) Any solution N of (5.4) is easily seen to satisfy N -M t = e tA N e tA * for all t ≥ 0.

Letting t → +∞ and using the exponential decay of e tA and e tA * (see (2) in the case C(A, Q) = Ξ), we see that N = M . The second assertion follows from the identity

M -1 t -M -1 = M - t (M -M t )M -1
and the inequalities M t ≥ c τ > 0 for t ≥ τ and M t -M ≤ Ce -2δt for t ≥ 0.

5.1 Sketch of the proof of Theorem 3.2

(1) The fact that M is well defined and satisfies (3.13) was established in Lemma 5.1. Let us prove the invariance of µ.

We fix a random variable x 0 that is independent of w and is distributed by the law µ. We wish to show that the law of the process x(t) = e tA x 0 + ξ(t), (5.8)

where ξ is given by (5.1), coincides with µ for all t ≥ 0. To this end, we note that both terms in (5.8) are centred Gaussian random variables with covariances e tA M e tA * and M t , respectively. Since they are independent, x(t) is also a centred Gaussian random variable with covariance e tA M e tA * + M t . This operator coincides with M in view of Lemma 5.1 (6). Hence, the law of x(t) coincides with µ.

(2) If the pair (A, Q) is controllable, then for any initial condition x 0 independent of w the corresponding solution (5.8) converges in law to µ. It follows that µ is the only invariant measure. On the other hand, if the pair (A, Q) is not controllable, then, by Lemma 5.1, the subspace Ker M = C(A, Q) ⊥ = {0} is invariant for the group {e tA }, whose restriction to it is a unitary. The latter has infinitely many invariant measures (e.g., the normalized Lebesgue measure on any sphere

{x ∈ C(A, Q) ⊥ | |x| = R} is invariant).
To prove the mixing property, we write

P t f (x) = Ef e tA x + ξ(t) = Ξ f (y)n t (x, y) dy,
where n t (x, y) denotes the density of the Gaussian measure with mean value e tA x and covariance M t :

n t (x, y) = det(2πM t ) -1/2 exp - 1 2 y -e tA x, M -1 t (y -e tA x .
The required convergence follows now from assertions ( 6) and ( 8) of Lemma 5.1 and the Lebesgue theorem on dominated convergence.

(3) The fact that process (3.7) is centred and Gaussian follows from linearity of the equation. Let us calculate its covariance operator K(t, s). It is a straightforward to check that a stationary solution of (3.2) defined on the whole real line can be written as

ξ(t) = t -∞ e (t-r)A Qdw(r),
where w(t) stands for a two-sided R ∂I -valued Brownian motion. Assuming without loss of generality that t > s, for any η 1 , η 2 ∈ Ξ we write

(η 1 , K(t, s)η 2 ) = E ( ξ(t), η 1 ξ(s), η 2 = E t -∞ e (t-r)A Qdw(r), η 1 s -∞ e (s-r)A Qdw(r), η 2 = s -∞ Q * e (t-r)A * η 1 , Q * e (s-r)A * η 2 dr = +∞ 0 η 1 , e (t-s+u)A QQ * e uA * η 2 du = (η 1 , e tA M η 2 ).
This implies the required relation (3.14) and completes the proof of Theorem 3.2. 2

For later use, we now formulate and prove two other auxiliary results. We start with a few technical facts. Consider the scale of spaces

H + ⊂ H ⊂ H -,
where H = L 2 (R) ⊗ CΞ, H + is the Sobolev space H 1 (R) ⊗ CΞ, and H -= H -1 (R) ⊗ CΞ is its dual w.r.t. the duality induced by the inner product of H. To simplify notations, we shall also use the symbols H, H ± to denote the corresponding real Hilbert spaces (the meaning should remain clear from the context). For x ∈ H, we denote by

x(ω) = x(s)e -iωs ds its Fourier transform. Since, under Assumption (C), A is stable, we can use

x ± = |(A -iω) ±1 x(ω)| 2 dω 2π 1 2
as norms on H ± . For τ > 0, we denote by Π τ the operator of multiplication with the characteristic function of the interval [0, τ ]. Thus, Π τ is an orthogonal projection in H whose range H τ will be identified with the Hilbert space L 2 ([0, τ ]) ⊗ CΞ.

Lemma 5.2 Under Assumption (C) the following hold.

(1) The Volterra integral operator

(Rx)(s) = s -∞
e (s-s )A x(s )ds maps isometrically H -onto H and H onto H + . By duality, its adjoint

(R * x)(s) = ∞ s e (s -s)A * x(s )ds ,
has the same properties.

(2) Π τ R is Hilbert-Schmidt, with norm

Π τ R 2 = τ ∞ 0
tr(e tA * e tA )dt 1 2

.

(3) For t 0 ∈ [0, τ ], the Hilbert-Schmidt norm of the map R t 0 : H → Ξ defined by R t 0 x = (Rx)(t 0 ) is given by

R t 0 2 = t 0 0
tr(e tA * e tA )dt 1 2

.

Proof.

(1) Follows from our choice of the norms on H ± and the fact that (Rx) (ω) = (iω -A) -1 x(ω).

(2) Π τ R is an integral operator with kernel 1 [0,τ ] (s)θ(ss )e (s-s )A , where 1 [0,τ ] denotes the characteristic function of the interval [0, τ ] and θ the Heaviside step function. Its Hilbert-Schmidt norm is given by

Π τ R 2 2 = τ 0 ds s -∞
ds tr(e (s-s )A * e (s-s )A ) = τ ∞ 0 dt tr(e tA * e tA ).

(3) Follows from a simple calculation. 2

Given τ > 0, consider the process {x(t)} t∈[0,τ ] started with a Gaussian measure ν ∈ P(Ξ). Let a ∈ Ξ be the mean of ν and 0 ≤ N ∈ L(Ξ) its covariance. Denote by ( • | • ) the inner product of H τ .

Lemma 5.3 Let T τ : Ξ v → e sA v ∈ H τ and define

D τ = T τ N 1 2 Π τ RQ : Ξ ⊕ ∂H → H τ ,
where ∂H = L 2 (R) ⊗ ∂Ξ, and the operator Q acts on ∂H by the relation (Qy)(t) = Qy(t) for t ∈ R.

Then, under Assumption (C), the following properties hold for any τ > 0:

(1) D τ is Hilbert-Schmidt and has a unique continuous extension to Ξ ⊕ H -.

(2) K τ = D τ D * τ is a non-negative trace class operator on H τ with integral kernel K τ (s, s ) = e (s-s ) + A (e (s∧s )A N e (s∧s )A * + M s∧s )e (s-s ) -A * , (5.9)

and there exists a constant C ν , depending on A, B and N but not on τ , and such that

K τ ≤ C ν , K τ 1 ≤ C ν τ,
where • 1 denotes the trace norm.

(3) The process {x(t)} t∈[0,τ ] is Gaussian with mean T τ a and covariance K τ , i.e., x|u) ] = e i(Tτ a|u)-1 2 (u|Kτ u)

E ν [e i(
(5.10) for all u ∈ H τ .

Proof.

(1) T τ is clearly finite rank and it follows from Lemma 5.2 (2) that the operator D τ is Hilbert-Schmidt. Lemma 5.2 (1) further implies that it extends by continuity to Ξ ⊕ H -.

(2) It follows immediately that

K τ = D τ D * τ = T τ N T * τ + Π τ RQQ * R * Π τ | Hτ (5.11)
is non-negative and trace class. Formula (5.9) can be checked by an explicit calculation.

Defining the function u ∈ H τ to be zero outside [0, τ ], we can invoke Plancherel's theorem to translate (5.11) into

(u|K τ u) = ∞ -∞ N 1 2 (A * + iω) -1 û(ω) dω 2π 2 + ∞ -∞ |Q * (A * + iω) -1 û(ω)| 2 dω 2π .
By Lemma 5.1, Assumption (C) implies sp(A) ∩ iR = ∅ and we conclude that

K τ ≤ ∞ -∞ N 1 2 (A * + iω) -1 2 dω 2π + sup ω∈R Q * (A * + iω) -1 2 < ∞.
Finally, it is well known [Si1, Theorem 3.9] that the trace norm of a non-negative trace class integral operator with continuous kernel K τ (s, s ) is given by

K τ 1 = tr(K 1 ) = τ 0 tr(K τ (s, s))ds = τ 0 tr(e sA N e sA * + M s )ds ≤ τ (C tr(N ) + tr(M )) ,
where C depends only on A.

(3) By Eq. (3.7) we have, for u ∈ H τ ,

(x|u) = (T τ x(0)|u) + τ 0 t 0 e (t-s)A Q dw(s) • u(t)dt = x(0) • T * τ u + τ 0 Q * (R * u)(s) • dw(s) so that E ν [e i(x|u) ] = W[e i τ 0 Q * (R * u)(s)•dw(s) ] e ix•T * τ u ν(dx).
Evaluating Gaussian integrals we get

e ix•T * τ u ν(dx) = e ia•T * τ u-1 2 T * τ u•N T * τ u = e i(Tτ a|u)-1 2 (u|Tτ N T * τ u) ,
and

W[e i τ 0 Q * (R * u)(s)•dw(s) ] = e -1 2 (u|RQQ * R * u) ,
which provide the desired identity. 2

Proof of Proposition 3.5

We start with some results on the Markov semigroup

(P t f )(x) = f (e tA x + M 1 2
t y)n(dy).

(5.12)

For a multi-index α = (α 1 , α 2 , . . .) ∈ N dim Ξ and p ∈ [1, ∞] set |α| = i α i , ∂ α = i ∂ α i x i ,
and define

A p = ψ ∈ C ∞ (Ξ) |∂ α ψ| ∈ L p (Ξ, dµ) for all α ∈ N dim Ξ .
Lemma 5.4 Suppose that Assumption (C) holds.

(1) For any ν ∈ P(Ξ) and t > 0, ν t is absolutely continuous w.r.t. Lebesgue measure. Its Radon-Nikodym derivative

dν t dx (x) = det(2πM t ) -1 2 e -1 2 |M -1 2 t (x-e tA y)| 2 ν(dy) (5.13) is strictly positive and S GS (ν t ) > -∞. Moreover, if ν(|x| 2 ) < ∞, then S GS (ν t ) < ∞.
(2) For any ν ∈ P(Ξ), any t > 0, and any multi-index α,

∂ α dν t dx ∈ L 1 (Ξ, dx) ∩ L ∞ (Ξ, dx).
(3) For t > 0, M t = Me t A M e t A * > 0, and

M -1 t = M -1 + e tA * M -1 t e tA .
(5.14) (4) P t is a contraction semigroup on L p (Ξ, dµ) for any p ∈ [1, ∞]. Its adjoint w.r.t. the duality f |g µ = µ(f g) is given by

(P t * ψ)(x) = ψ(e t A x + M 1 2
t y)n(dy).

(5.15)

In particular, P t * is positivity improving.

(5) For all t > 0, P t * L ∞ (Ξ, dµ) ⊂ A ∞ .

(6) For p ∈ [1, ∞[, A p is a core of the generator of P t * on L p (Ξ, dµ) and this generator acts on ψ ∈ A p as

L * ψ = 1 2 ∇ • B∇ψ + Ax • ∇ψ.
(5.16) (7) For ν ∈ P + (Ξ) and p ∈ [1, ∞[ there exists t ν,p > 0 such that dνt dµ ∈ A p for all t > t ν,p . (8) For ν ∈ P + (Ξ) there exist t ν,∞ > 0, C ν and δ ν > 0 such that

log dν t dµ (x) ≤ C ν e -δν t (1 + |x| 2 ) for t ≥ t ν,∞ .
Proof.

(1) We deduce from Eq. (5.12) that for any bounded measurable function f on Ξ one has

ν t (f ) = ν(P t f ) = f (e tA x + M 1 2 t y)ν(dx)n(dy) = det(2πM t ) -1 2 f (y)e -1 2 |M -1 2 t (y-e tA x)| 2 ν(dx)dy,
from which we conclude that ν t is absolutely continuous w.r.t. Lebesgue measure with Radon-Nikodym derivative given by Eq. (5.13). It follows immediately that

dν t dx (x) ≤ det(2πM t ) -1 2 ,
which implies the lower bound

S GS (ν t ) ≥ 1 2 log det(2πM t ) > -∞.
To derive an upper bound, let r be such that B r = {x ∈ Ξ | |x| < r} satisfies ν(B r ) > 1 2 . Then one has

dν t dx (x) ≥ 1 2 det(2πM t ) -1 2 inf z∈Br e -1 2 |M -1 2 t (x-e tA z)| 2 ≥ 1 2 det(2πM t ) -1 2 e -1 2 M -1 t sup z∈Br |(x-e tA z)| 2 ≥ 1 2 det(2πM t ) -1 2 e -1 2 M -1 t (|x|+R e tA ) 2 , from which we conclude that log dν t dx (x) ≥ -C t (1 + |x| 2 )
for some constant C t > 0, and hence

S GS (ν t ) ≤ C t (1 + ν(|x| 2 )).
(2) From Eq. (5.13) we deduce that

∂ α dν t dx (x) = p α,t (x -e tA y)e -1 2 |M -1 2 t (x-e tA y)| 2 ν(dy),
where p α,t denotes a polynomial whose coefficients are continuous functions of

t ∈]0, ∞[. It follows that sup x∈Ξ ∂ α dν t dx (x) ≤ sup z∈Ξ |p α,t (z)|e -1 2 |M -1 2 t z| 2 < ∞, and 
∂ α dν t dx (x) dx ≤ |p α,t (z)|e -1 2 |M -1 2 t z| 2 dz < ∞.
(3) From Lemma 5.1 (5) we get

e tA * M -1 e tA = (M + e -tA M t e -tA * ) -1 < M -1 .
The strict positivity of M t follows from

M t = M -M (e tA * M -1 e tA )M > M -M M -1 M = 0.
Using again Lemma 5.1 (5), it is straightforward to check the last statement of Part (3).

(4) For f ∈ L 1 (Ξ, dµ) we have

P t f L 1 (Ξ,dµ) = µ(|P t f |) ≤ µ(P t |f |) = µ(|f |) = f L 1 (Ξ,dµ) .
The representation (5.12) shows that P t is a contraction on L ∞ (Ξ, dµ). The Riesz-Thorin interpolation theorem yields that P t is a contraction on L p (Ξ, dµ) for all p ∈ [1, ∞]. To get a representation of the adjoint semigroup P t * , we start again with Eq. (5.12),

ψ|P t f µ = ψ(y)f (e tA y + M 1 2 t x)n(dx)µ(dy) = ψ(y)f (e tA y + x) e -1 2 |M -1 2 t x| 2 det(2πM t ) 1 2 e -1 2 |M -1 2 y| 2 det(2πM ) 1 2 dxdy = ψ(y)f (x) e -1 2 |M -1 2 t (x-e tA y)| 2 det(2πM t ) 1 2 e -1 2 |M -1 2 y| 2 det(2πM ) 1 2 dxdy = ψ(y)f (x) e -1 2 |M -1 2 t (x-e tA y)| 2 det(2πM t ) 1 2 e 1 2 (|M -1 2 x| 2 -|M -1 2 y| 2 ) µ(dx)dy,
to conclude that

(P t * ψ)(x) = det(2πM t ) -1 2 e -φt(x,y) ψ(y)dy,
where, taking (5.14) into account,

φ t (x, y) = 1 2 x • (M -1 t -M -1 )x + 1 2 y • M -1 t y -e tA * M -1 t x • y.
Using Lemma 5.1 (5) and (5.14) one shows that (5.17) which leads to

φ t (x, e t A x + z) = 1 2 z • M -1 t z,
(P t * ψ)(x) = det(2πM t ) -1 2 e -1 2 | M -1 2 t z| 2 ψ(e t A x + z)dz.
Noticing that M t = (Ie tA e t A )M and M t = (Ie t A e tA )M we conclude that det(M t ) = det( M t ) and Eq. (5.15) follows.

(5) Rewriting Eq. (5.15) as (5.18) we derive that for any multi-index α,

(P t * ψ)(x) = det(2πM t ) -1 2 e -1 2 | M -1 2 t (z-e t A x)| 2 ψ(z)dz,
(∂ α P t * ψ)(x) = p α,t (z -e t A x)e -1 2 | M -1 2 t (z-e t A x)| 2 ψ(z)dz,
where p α,t is a polynomial whose coefficients are continuous functions of t ∈]0, ∞[. For ψ ∈ L ∞ (Ξ, dµ) this yields

∂ α P t * ψ L ∞ (Ξ,dµ) ≤ ψ L ∞ (Ξ,dµ) |p α,t (z)|e -1 2 | M -1 2 t z| 2 dz,
where the integral on the right-hand side is finite for all t > 0.

(6) A p is dense in L p (Ξ, dµ) for p ∈ [1, ∞[. For ψ ∈ A p , Eq. (5.15) yields (∂ α P t * ψ)(x) = |α |=|α| C α,α (t) (∂ α ψ)(e t A x + M 1 2 t y)n(dy) = |α |=|α| C α,α (t)(P t * ∂ α ψ)(x),
where the C α,α are continuous functions of t. As a consequence of Part (4), A p invariant under the semigroup P t * and Part (6) follows from the core theorem (Theorem X.49 in [START_REF] Reed | Methods of Modern Mathematical Physics II. Fourier Analysis, Self-Adjointness[END_REF]) and a simple calculation.

(7) Assuming ν(e m|x-a| 2 /2 ) < ∞, we deduce from Eq. (5.13) that for any m < m

dν t dµ (x) = det(M -1 M t ) -1 2 e -φt(x,y) ν (dy), where φ t (x, y) = 1 2 (|M -1 2 t (x -e tA y)| 2 + m |y -a| 2 -|M -1 2 x| 2 ),
and ν is such that ν (e |x-a| 2 ) < ∞ for > 0 small enough. It follows that

∂ α dν t dµ (x) = p α,t (x, y)e -φt(x,y) ν (dy),
where p α,t is a polynomial of degree |α| whose coefficients are continuous functions of t ∈]0, ∞[. An elementary calculation shows that

φ t (x) = inf y∈Ξ φ t (x, y) = |M -1 2 t x| 2 -|M -1 2 x| 2 +m |a| 2 -|(m +e tA * M -1 t e tA ) -1 2 (m a+e tA * M -1 t x)| 2 ,
and since |p α,t (x, y)|ν (dy) ≤ C α,t (1 + |x| 2|α| ) for some constant C α,t we have φt(x) .

∂ α dν t dµ (x) ≤ C α,t (1 + |x| 2|α| )e -
This gives the estimate

∂ α dν t dµ p L p (Ξ,dµ) ≤ C p α,t (1 + |x| 2|α| ) p e -p(φt(x)+ 1 2p |M -1 2 x| 2 ) dx,
where the last integral is finite provided the quadratic form

|M -1 2 t x| 2 -(1 -p -1 )|M -1 2 x| 2 -|(m + e tA * M -1 t e tA ) -1 2 e tA * M -1 t x| 2 is positive definite. Since M -1 t -M -1 > 0, this holds if M -1 t e tA (m + e tA * M -1 t e tA ) -1 e tA * M -1 t ≤ 1 p M -1 .
Finally, the last inequality holds for large t since the left-hand side is exponentially small as t → ∞.

(8) By Lemma 5.1 ( 1), e tA = O(e -δt ) as t → ∞. Repeating the previous analysis with m = e -δt we get, for large enough t > 0,

log dν t dµ (x) ≤ 1 2 tr(log M -log M t ) + log e 1 2 m |x-a| 2 ν(dx) -φ t (x).
One easily shows that tr(log

M -log M t ) = O(e -2δt ) and |φ t (x)| = O(e -δt )(1 + |x| 2 ). Finally, since e 1 2 m |x-a| 2 ν(dx) = 1 + O(m )
as m → 0, we derive the upper bound

log dν t dµ (x) ≤ O(e -δt )(1 + |x| 2 ).
To get a lower bound we set m = 0 and note that the ball

B t = {x ∈ Ξ | m|x -a| 2 ≤ δt} satisfies 1 -ν(B t ) = Ξ\Bt ν(dx) ≤
Ξ\Bt e -m|x-a| 2 e m|x-a| 2 ν(dx) ≤ e -δt e m|x-a| 2 ν(dx) = O(e -δt ).

Since log M > log M t we get

log dν t dµ (x) ≥ -sup y∈Bt φ t (x, y) + log(ν(B t )).
It is straightforward to check that

sup y∈Bt φ t (x, y) = O(e -δt )(1 + O(t 1 2 ))(1 + |x| 2 ),
and therefore

-log dν t dµ (x) ≤ O(e -t )(1 + |x| 2 )
for any < δ.

We are now ready to prove Proposition 3.5. Writing the polar decomposition

Q = V (Q * Q) 1 2
, the existence of β ∈ L(Ξ) satisfying (3.17) easily follows from the structural relations [ϑ, Q * Q] = 0 and θQ = ±Q.

(1) Follows from Condition (3.17) and Eq. (3.6).

(2) From Eq. (3.11) we deduce that the formal adjoint of L w.r.t. the inner product of L 2 (Ξ, dx) is

L T = 1 2 ∇ • B∇ -∇ • Ax.
It follows from the structural relations (3.9) and Condition (3.17) that

L β = e 1 2 |β 1 2 x| 2 L T e -1 2 |β 1 2 x| 2 = 1 2 (∇ -βx) • B(∇ -βx) -(∇ -βx) • Ax = 1 2 ∇ • B∇ -(A + Qϑ -1 Q * )x • ∇ - 1 2 tr(Qϑ -1 Q * + A + A * ) + 1 2 x • (Qϑ -2 Q * + βA + A * β)x = 1 2 ∇ • B∇ + A * x • ∇ -σ β (x).
The desired identity thus follows from (3.9) and Part ( 1).

(3) The Itô formula gives

d 1 2 x(t) • Cx(t) = x(t) • Cdx(t) + 1 2 tr(CB)dt = 1 2 x(t) • (CA + A * C)x(t)dt + 1 2 tr(CB)dt + x(t) • CQdw(t).
Therefore, since log

dµ β dx (x) = -1 2 x • βx, we have d log dµ β dx (x t ) = -1 2 x(t) • (βA + A * β)x(t)dt -1 2 tr(βQQ * )dt -x(t) • βQdw(t).
Using (3.17) and the decomposition

A = Ω -1 2 Q * ϑ -1 Q, we deduce d log dµ β dx (x t ) = 1 2 x(t) • (Ωβ -βΩ)x(t)dt + 1 2 |Q * βx(t)| 2 dt -1 2 tr(Qϑ -1 Q * )dt -Q * βx(t) • dw(t),
and, observing that ∇ log dµ β dx (x) = -βx, the result follows from Eq. (3.3) and Condition (3.17).

(4) Let ν ∈ P + (Ξ) and denote by ψ t the density of ν t w.r.t. µ. By Lemma 5.4, ψ t is a strictly positive element of A 2 for large enough t. For > 0 we have log ≤ log(ψ t + ) ≤ ψ t + -1, and hence log(ψ t + ) ∈ L 2 (Ξ, dµ). Thus, s (ψ t ) = -ψ t log(ψ t + ) ∈ L 1 (Ξ, dµ), and the monotone convergence theorem yields

Ent(ν t |µ) = lim ↓0 µ(s (ψ t )).
From

s (ψ t (x)) -s (ψ s (x)) = t s s (ψ u (x))(L * ψ u )(x)du we infer µ(s (ψ t )) -µ(s (ψ s )) = t s s (ψ u )|L * ψ u µ du.
Since ψ u and s (ψ u ) = -1log(ψ u + ) + (ψ u + ) -1 are elements of A 2 we can integrate by parts, using Eq. (5.16), to get

s (ψ u )|L * ψ u µ = f (ψ u )||Q * ∇ψ u | 2 µ + g (ψ u )|( A -A)x • ∇ψ u µ ,
where

f (ψ) = 1 2 ψ + 2 (ψ + ) 2 , g (ψ) = 1 2 2 (ψ + ) 2 .
Since f ≥ 0 and decreases as a function of , the monotone convergence theorem yields

lim ↓0 t s f (ψ u )||Q * ∇ψ u | 2 µ du = 1 2 t s ψ -1 u ||Q * ∇ψ u | 2 µ du = 1 2 t s ν u (|Q * ∇ log ψ u | 2 )du.
Since 0 < g ≤ 1 2 , the dominated convergence theorem gives

lim ↓0 t s g (ψ u )|( A -A)x • ∇ψ u µ du = 0.
We conclude that for s sufficiently large and t > s

Ent(ν t |µ) -Ent(ν s |µ) = lim ↓0 (µ(s (ψ t )) -µ(s (ψ s ))) = 1 2 t s ν u (|Q * ∇ log ψ u | 2 )du,
and Eq. (3.22) follows.

(5) Eq. ( 3.3) gives

E ν [S t ] = 1 2 t 0 ν s Q * ∇ log dµ β dx 2 ds -1 2 t tr(Qϑ -1 Q * ).
Since S GS (ν t ) = Ent(ν t |µ) + ν t (ϕ), where

ϕ(x) = -log dµ dx (x) = 1 2 |M -1 2 x| 2 + 1 2 log det(2πM ), Eq. (3.22) implies d dt (S GS (ν t ) + E ν [S t ]) = ν t 1 2 Q * ∇ log dν t dµ 2 + Lϕ + 1 2 Q * ∇ log dµ β dx 2 -1 2 tr(Qϑ -1 Q * ) . A simple calculation yields Lϕ = -1 2 |Q * ∇ log dµ dx | 2 + 1 2 tr(Qϑ -1 Q * ) and hence d dt (S GS (ν t ) + E ν [S t ]) = 1 2 ν t Q * ∇ log dν t dµ 2 + Q * ∇ log dµ β dx 2 -Q * ∇ log dµ dx 2 = 1 2 ν t Q * ∇ log dν t dµ β 2 + ν t ∇ log dν t dx • B∇ log dµ dµ β .
An integration by parts shows that

ν t ∇ log dν t dx • B∇ log dµ dµ β = -ν t ∇ • B∇ log dµ dµ β = tr B(M -1 -β) ,
and, since BM -1 -Bβ = -A -M AM -1 + A + A * , we have tr(B(M -1β)) = 0. The result follows.

with initial law νP τ , drift b(x, t) = -Ax + B∇ log ψ t (x), and a standard ∂ Ξ-valued Wiener process w(t). Since θQ = ∓Q, the time-reversed process

x = Θ τ (x) = {θx(t)} t∈[0,τ ] satisfies d x(t) = b( x(t), t)dt + Qd w(t)
with initial law νP τ Θ, drift b(x, t) = θb(θx, t), and standard Wiener process w(t) = ∓w(t). Using the structural relations (3.9) and

A + A * = -QQ * β we derive b(x, t) = Ax + QQ * ∇ log φ t (x), φ t = Θ dµ β dx -1 ψ t ,
and conclude that we can rewrite the original SDE (3.2) as

dx(t) = b(x(t), t)dt + Q(dw(t) -Q * ∇ log φ t (x(t))dt). (5.21) Set η(t) = t 0 Q * ∇ log φ s (x(s)) • dw(s),
and let Z(t) = E(η)(t) denote its stochastic exponential. We claim that

E τ νP τ Θ [Z(t)] = 1 (5.22) for all t ∈ [0, τ ].
Delaying the proof of this claim and applying Girsanov theorem we conclude that

w(t) - t 0 Q * ∇ log φ s (x(s))ds
is a standard Wiener process under the law E τ νP τ Θ [Z(τ ) • ], so that Eq. (5.21) implies

d P τ ν dP τ νP τ Θ = Z(τ ).
(5.23)

Using Itô calculus, one derives from Eq. (3.2) that

Q * ∇ log φ t (x(t)) • dw(t) = d log φ t (x(t)) -((∂ t + L) log φ t )(x(t))dt = d log φ t (x(t)) - (∂ t + L)φ t φ t (x(t)) -1 2 |Q * ∇ log φ t (x(t))| 2 dt,
from which we obtain

η(t) -1 2 [η](t) = log φ t (x(t)) -log φ 0 (x(0)) - t 0 (∂ s + L)φ s φ s (x(s))ds.
The generalized detailed balance condition (3.20) further yields

(∂ s + L)φ s = -σ β φ s , so that η(t) -1 2 [η](t) = log dν τ -t dµ β (θx(t)) -log dν τ dµ β (θx(0)) + t 0 σ β (x(s))ds,
from which we conclude that (5.24) and in particular that Z(τ ) = exp(Ep(ν, τ )) • Θ τ . From (5.23) we finally get

Z(t) = exp η(t) -1 2 [η](t) = dν τ dµ β (θx(0)) -1 dν τ -t dµ β (θx(t)) exp t 0 σ β (x(s))ds ,
d P τ ν dP τ νP τ Θ = exp[Ep(ν, τ )] • Θ τ .
It remains to prove the claim (5.22). Set ζ = νP τ Θ and observe that it suffices to show that

E ζ [Z(t)] ≥ 1 for t ∈ [0, τ ] since E ζ [Z(t)]
≤ 1 is a well known property of the stochastic exponential. The proof of this fact relies on a sequence of approximations.

The inequality E ζ [Z(t)] ≤ 1 gives that for s, s , t ∈ [0, τ ] and bounded measurable f, g one has

|E ζ [Z(t)f (x(s))g(x(s ))]| ≤ f ∞ g ∞ .
(5.25)

Here and in the following we denote by • p the norm of L p (Ξ, dx). The duality between L p (Ξ, dx) and L q (Ξ, dx) will be written • | • . Next, we note that Eq. ( 5.24) implies

E ζ [Z(t)g(x(0))f (x(t))] = E ζ dν τ dµ β (θx(0)) -1 g(x(0)) dν τ -t dµ β (θx(t))f (x(t)) exp t 0 σ β (x(s))ds = g(x)χ(x)E x χ(x(t)) -1 ψ t (θx(t))f (x(t))e V (t) dx = g|χP t σ χ -1 ψ t f ,
where we have set

V (t) = t 0 σ β (x(s))ds, χ = dµ β dx , ψ t = Θψ t , and 
(P t σ f )(x) = E x [e V (t) f (x(t))]. It follows from the estimate (5.25) that χP t σ χ -1 ψ t f 1 ≤ f ∞ . For n, m > 0 we define σ n,m (x) =      -n if σ β (x) ≤ -n; σ β (x) if -n ≤ σ β (x) ≤ m; m if σ β (x) ≥ m; σ m (x) = σ β (x) if σ β (x) ≤ m; m if σ β (x) ≥ m;
and set

V n,m (t) = t 0 σ n,m (x(s))ds, V m (t) = t 0 σ m (x(s))ds.
Since

lim n→∞ σ n,m (x) = σ m (x), σ n,m (x) ≤ m lim m→∞ σ m (x) = σ β (x), σ m (x) ≤ σ β (x),
for all x ∈ Ξ, we have lim n→∞ e Vn,m(t) = e Vm(t) , e Vn,m(t) ≤ e mt , lim m→∞ e Vm(t) = e V (t) , e Vm(t) ≤ e V (t) , P ζ -almost surely. Hence, the dominated convergence theorem yields

g|χP t σ χ -1 ψ t f = E ζ χ(x(0)) ψ 0 (x(0)) -1 g(x(0))χ(x(t)) -1 ψ t (x(t))f (x(t))e V (t) = lim m→∞ lim n→∞ E ν τ -t χ(x(0)) ψ 0 (x(0)) -1 g(x(0))χ(x(t)) -1 ψ t (x(t))f (x(t))e Vn,m(t) = lim m→∞ lim n→∞ g|χP t σn,m χ -1 ψ t f ,
where, by the Feynman-Kac formula,

(P t σn,m f )(x) = E x [e Vn,m(t) f (x(t))] = (e t(L+σn,m) f )(x)
defines a quasi-bounded semigroup on L 2 (Ξ, dx). In the following, we assume that f ∈ C ∞ 0 (Ξ) is non-negative. It follows from Eq. ( 5.13

) that χ -1 ψ t f ∈ C ∞ 0 (Ξ) ⊂ Dom (L) = Dom (L + σ n,m
) and we can write

g|χP t σn,m χ -1 ψ t f = g| ψ t f + t 0 g|χ(L + σ n,m )P s σn,m χ -1 ψ t f ds.
Denote by L T the adjoint of L on L 2 (Ξ, dx) which acts on C ∞ 0 (Ξ) as

L T = 1 2 ∇ • B∇ -∇ • Ax. Assuming g ∈ C ∞ 0 , we get g|χP t σn,m χ -1 ψ t f = ν τ -t Θ(gf ) + t 0 χ -1 (L T + σ n,m )χg|χP s σn,m χ -1 ψ t f ds.
The generalized detailed balance condition (3.20) yields

χ -1 L T χg = Θ(L + σ β )Θg = (ΘLΘ -σ β )g,
and it follows that

χ -1 (L T + σ n,m )χg|χP s σn,m χ -1 ψ t f = (ΘLΘ + σ n,m -σ β )g|χP s σn,m χ -1 ψ t f .
Since g is compactly supported, if n and m are sufficiently large we have (σ n,mσ β )g = 0 and so

g|χP t σn,m χ -1 ψ t f = ν τ -t Θ(gf ) + t 0 ΘLΘg|χP s σn,m χ -1 ψ t f ds.
Taking the limits n → ∞ and m → ∞ we get that

g|χP t σ χ -1 ψ t f = ν τ -t Θ(f g) + t 0 ΘLΘg|χP s σ χ -1 ψ t f ds holds for all f, g ∈ C ∞ 0 (Ξ). For k > 0 set g k (x) = (1 + e |x| 2 /2k ) -1 , and let ρ ∈ C ∞ 0 (R) be such that 0 ≤ ρ ≤ 1, ρ ≤ 0, ρ(x) = 1 for x ≤ 0 and ρ(x) = 0 for x ≥ 1. Define g k,r ∈ C ∞ 0 (Ξ) by g k,r (x) = g k (x)ρ( x -r). One easily checks that lim r→∞ g k,r -g k ∞ + L(g k,r -g k ) ∞ = 0,
and noticing that g k and g k,r are Θ-invariant, it follows that

g k |χP t σ χ -1 ψ t f = ν τ -t Θ(g k f ) + t 0 ΘLg k |χP s σ χ -1 ψ t f ds.
Using the fact that

(Lg k )(x) ≥ - 1 8k tr(B),
and the monotone convergence theorem we conclude that

1|χP t σ χ -1 ψ t f = lim k→∞ g k |χP t σ χ -1 ψ t f ≥ lim k→∞ ν τ -t Θ(g k f ) - 1 8k tr(B) t 0 1|χP s σ χ -1 ψ t f ds = ν τ -t (f ).
Finally, letting f converge to 1 monotonically, we deduce

E ζ [Z(t)] = lim f 1 E ζ [Z(t)f (x(t))] = lim f 1 1|χP t σ χ -1 ψ t f ≥ lim f 1 ν τ -t (f ) = ν τ -t (1) = 1.
This completes the proof of the claim (5.22).

Proof of Theorem 3.13

(1) We start with some algebraic preliminaries. For ω ∈ R, set

R(ω) = ϑ -1 Q * (A + iω) -1 Q, U (ω) = I + R(ω),
and note that since the matrices A, Q and ϑ are real one has

CR(ω)C = R(-ω), CU (ω)C = U (-ω), (5.26) 
where C denotes complex conjugation on C∂Ξ. Further note that

det(U (ω)) = det(I + (A + iω) -1 Qϑ -1 Q * ) = det(A * -iω) det(A + iω) , from which we deduce that | det(U (ω))| = 1.
(5.27)

From the relations

I + ϑ -1 Q * (A -iω) -1 Q -1 = I -I + ϑ -1 Q * (A -iω) -1 Q -1 ϑ -1 Q * (A -iω) -1 Q = I -ϑ -1 Q * I + (A -iω) -1 Qϑ -1 Q * -1 (A -iω) -1 Q = I -ϑ -1 Q * A -iω + Qϑ -1 Q * -1 Q = I + ϑ -1 Q * (A * + iω) -1 Q = I + ϑ -1 Q * θ(A * + iω) -1 θQ = I + ϑ -1 Q * (A + iω) -1 Q = I + R(ω)
we also get U (-ω) -1 = U (ω).

(5.28)

Writing

E(ω) = Q * (A * -iω) -1 (-A * - 1 2 Qϑ -1 Q * + iω)β + β(-A - 1 2 Qϑ -1 Q * -iω) (A + iω) -1 Q = Q * -(A * -iω) -1 β -β(A + iω) -1 -(A * -iω) -1 Qϑ -2 Q * (A + iω) -1 Q = -R(ω) -R(ω) * -R(ω) * R(ω) = I -(I + R(ω)) * (I + R(ω)) = I -U (ω) * U (ω),
shows that E(ω) is indeed independent of the choice of β. The continuity of ω → E(ω) follows from Assumption (C) and Lemma 5.1 (1) which ensures that iR ∩ sp(A) = ∅.

(2) Invoking Relation (5.28) we infer

E(ω) = I -U (ω) * U (ω) = U (ω) * (U (-ω) * U (-ω) -I)U (ω) = -U (ω) * E(-ω)U (ω), and 
I -αE(ω) = U (ω) * (U (-ω) * U (-ω) + αE(-ω)) U (ω) = U (ω) * (I -(1 -α)E(-ω))U (ω).
Combining the last identity with Eq. (5.26) and (5.27) yields

det(I -αE(ω)) = det(I -(1 -α)E(ω)).
(5.29)

The simple estimate

(A + iω) -1 2 ≤ c(1 + ω 2 ) -1 2 implies E(ω) 1 ∈ L 1 (R, dω), lim ω→±∞ E(ω) = 0.
(5.30)

Thus, the eigenvalues of E(ω), which are continuous functions of ω, tend to zero as ω → ±∞. Since (5.29) implies that I -E(ω) is unimodular, 1 ∈ sp(E(ω)) for any ω ∈ R and we conclude that E(ω) < 1 for all ω ∈ R. From (5.29) we further deduce that the elements of sp(E(ω)) \ {0} can be paired as

(ε, ε ) with 0 < ε < 1 and ε = -ε/(1 -ε) < 0. Moreover, since the function ]0, 1[ ε → -ε/(1 -ε) is monotone decreasing, one has ε -(ω) = min sp(E(ω)) = - ε + (ω) 1 -ε + (ω) , ε + (ω) = max sp(E(ω)).
Thus, the following alternative holds: either

ε -= min ω∈R ε -(ω) = 0 = max ω∈R ε + (ω) = ε + ,
and hence E(ω) = 0 for all ω ∈ R, or

ε + ∈]0, 1[, ε -= - ε + 1 -ε + ∈]0, -∞[,
and hence

1 ε - + 1 ε + = 1.
This proves Part (2).

(3) By Part (2), det(I -αE(ω)) = 0 for α ∈ C c and hence the function

C c α → log det(I -αE(ω))
is analytic. Moreover, an elementary analysis shows that for any compact subset K ⊂ C c there is a constant C K such that

sup α∈K E(ω)(I -αE(ω)) -1 1 ≤ C K E(ω) 1 .
For any α ∈ C c one has

log det(I -αE(ω)) = - α 0 tr(E(ω)(I -γE(ω)) -1 )dγ,
and since the integration path from 0 to α lies in

C c there is a constant C α < ∞ such that | log det(I -αE(ω))| ≤ C α E(ω) 1 .
By (5.30) and Fubini's theorem

e(α) = - ∞ -∞ log det(I -αE(ω)) dω 4π = α 0 ∞ -∞ tr(E(ω)(I -γE(ω)) -1 ) dω 4π dγ.
It follows that C c α → e(α) is analytic and that

e (α) = ∞ -∞ tr(E(ω)(I -αE(ω)) -1 ) dω 4π , e (α) = ∞ -∞ tr(E(ω)(I -αE(ω)) -1 E(ω)(I -αE(ω)) -1 ) dω 4π .
Since I -αE(ω) > 0 for α ∈ I c , the last formula shows in particular that e (α) ≥ 0 for α ∈ I c , and so the function I c α → e(α) is convex. Going back to the alternative of Part (2), we conclude that either e(α) vanishes identically, or is strictly convex on I c . The symmetry e(1α) = e(α) follows from Eq. (5.29) and, since e(0) = e(1) = 0, convexity implies that e(α) ≤ 0 for α ∈ [0, 1] and e(α)

≥ 0 for α ∈ I c \ [0, 1]. By Plancherel's theorem ∞ -∞ (A + iω) -1 QQ * (A * -iω) -1 dω 2π = ∞ 0 e tA QQ * e tA * dt = M,
and so

e (0) = -e (1) = ∞ -∞ tr(Σ β (A + iω) -1 QQ * (A * -iω) -1 ) dω 4π = 1 2 tr(Σ β M ) = µ(σ β ) = -ep.
Assume that ε + > 0. By Lemma 5.1 (1), A is stable and hence E(ω) is an analytic function of ω in a strip |Im ω| < δ. By (5.30) there is a compact subset K of this strip such that ε + (ω) < ε + for all ω ∈ R \ K. By regular perturbation theory the eigenvalues of E(ω) are analytic in K, except for possibly finitely many exceptional points where some of these eigenvalues cross. Thus, there is a strip S = {ω | |Im (ω)| < δ } such that all exceptional points of E(ω) in S ∩ K are real. Since E(ω) is self-adjoint for ω ∈ R, its eigenvalues are analytic at these exceptional points (see, e.g., [START_REF] Kato | Pertubation Theory for Linear Operators[END_REF]Theorem 1.10]). We conclude that the eigenvalues of E(ω) are analytic in S ∩ K. It follows that the function R ω → ε + (ω) reaches its maximum ε + on a finite subset M ⊂ K ∩ R. To each m ∈ M let us associate δ m > 0, to be chosen later, in such a way that the intervals

O m =]m -δ m , m + δ m [ are pairwise disjoint. Setting e m (α) = - Om log det(I -αE(ω)) dω 4π = - j Om log(1 -αε j (ω)) dω 4π , (5.31) 
where the sum runs over all repeated eigenvalues of E(ω), we can decompose

e(α) = m∈M e m (α) + e reg (α),
where the function α → e reg (α) is analytic at α = 1 2 + κ c . Since I c α → e(α) is convex, to prove that it has a continuous extension to α = 1 2 + κ c and that its derivative diverges to +∞ as α ↑ 1 2 + κ c , it suffices to show that for all m ∈ M the function e m (α) remains bounded and its derivative diverges to +∞ in this limit. The same argument links the behavior of e(α) and e (α) as α ↓ 1 2κ c to the minima of ε -(ω), and we shall only consider the case α ↑ 1 2 + κ c . Let m ∈ M and consider an eigenvalue ε(ω) of E(ω) which takes the maximal value ε + at ω = m. There is an integer n ≥ 1 and a function f , analytic at m, such that f (m) > 0 and

ε(ω) = ε + -(ω -m) 2n f (ω). Moreover, we can chose δ m > 0 such that f is analytic in O m and inf ω∈Om f (ω) > 0, sup ω∈Om f (ω) < ∞, inf ω∈Om ε(ω) > 0. Setting η = 1 α -ε + 1 2n = 1 2 + κ c -α ( 1 2 + κ c )α 1 2n , so that η ↓ 0 ⇔ α ↑ 1 2 + κ c , we can write 1 -αε(ω) = αη 2n 1 + ω -m η 2n f (ω) = α(ω -m) 2n η ω -m 2n + f (ω) and since |ω-m|≤η log αη 2n 1 + ω -m η 2n f (ω) dω = O(η log η), η≤|ω-m|≤δm log α(ω -m) 2n η ω -m 2n + f (ω) dω = O(1), as η ↓ 0, it follows that Om log(1 -αε(ω))dω = O(1)
as α ↑ 1 2 + κ c . Since the contributions to the sum on the right-hand side of Eq. (5.31) arising from eigenvalues of E(ω) that do not reach the maximal value ε + at m are analytic at α = 1 2 +κ c , it follows that e m (α) remains bounded as α ↑ 1 2 + κ c . Let us now consider the derivative e m (α).

Setting η = 1 2 + κ c -α, we can write Om ε(ω) 1 -αε(ω) dω = Om η + f (ω) ε(ω)ε + (ω -m) 2n -1 dω. Since D = sup ω∈Om f (ω) ε(ω)ε + > 0, we get Om ε(ω) 1 -αε(ω) dω ≥ 2 δm 0 dω η + ω 2n D ≥ Cη -1+ 1 2n → ∞,
as η ↓ 0. Since again the contributions of the eigenvalues of E(ω) which do not reach the maximal value ε + at m are analytic at α = 1 2 + κ c , it follows that e m (α) → ∞ as α ↑ 1 2 + κ c .

(4) For any bounded continuous function f

: [ε -, ε + ] → C one has ∞ -∞ tr(E(ω)f (E(ω))) dω 4π ≤ f ∞ ∞ -∞ E(ω) 1 dω 4π .
Hence, by the Riesz-Markov representation theorem there is a regular signed Borel measure on

[ε -, ε + ] such that ∞ -∞ tr(E(ω)f (E(ω))) dω 4π = f (ε) (dε), and | |(dε) ≤ ∞ -∞ E(ω) 1 dω 4π < ∞.
For α ∈ C c the function

f α : [ε -, ε + ] ε → - 1 ε log(1 -αε)
is continuous and we can write

e(α) = - ∞ -∞ tr(E(ω)f α (E(ω))) dω 4π = f α (ε)d (ε).
(5.32)

We can now proceeds as the proof of Theorem 2.4 (2) in [JPS].

(5) We start with some simple consequences of Assumption (C). The reader is referred to Section 4 of [LR] for a short introduction to the necessary background material. Since

A α = A + αQϑ -1 Q * , the pair (A α , Q) is controllable for all α. The relation A * α = -A 1-α
shows that the same is true for the pair (A * α , Q). Thus, one has

n≥0 Ker (Q * A n α ) = n≥0 Ker (Q * A * n α ) = {0} (5.33)
for all α. This implies that if Q * u = 0 and (A αz)u = 0 or (A * αz)u = 0, then u = 0, i.e., no eigenvector of A α or A * α is contained in Ker Q * . Assume that z ∈ sp(A α ) and let u = 0 be a corresponding eigenvector. Since

A α + A * α = 2(α -1 2 )Qϑ -1 Q * ,
taking the real part of (u, (A αz)u) = 0 yields

(α -1 2 )|ϑ -1 2 Q * u| 2 = Re z|u| 2 .
Thus, controllability of

(A α , Q) implies sp(A α ) ⊂ C ± for ±(α -1 2 ) > 0. For α ∈ R \ { 1 2 } and ω ∈ R, Schur's complement formula yields det(K α -iω) = det I + α(1 -α)Q * (A * α -iω) -1 Qϑ -2 Q * (A α + iω) -1 Q det ((A α + iω) -1 ) det ((A * α -iω) -1 )
, and using the relations

(A α + iω) -1 = (A + iω) -1 (I + αQϑ -1 Q * (A + iω) -1 ) -1 , (A * α -iω) -1 = (I + α(A * -iω) -1 Qϑ -1 Q * ) -1 (A * -iω) -1 , one easily derives det(K α -iω) = | det(A + iω)| 2 det(I -αE(ω)).
(5.34) Writing Eq. (3.41) as

K α = -A QQ * 0 A * + -αQϑ -1 Q * 0 α(1 -α)Qϑ -2 Q * αQϑ -1 Q * ,
one derives that the identity (5.34), as the equality between two polynomials, extends to all α ∈ C.

By Part (2), we conclude that sp(K α ) ∩ iR = ∅ for α ∈ C c . It follows from the regular perturbation theory that the spectral projection P α of K α for the part of its spectrum in the open right half-plane is an analytic function of α in the cut plane C c (see, e.g., [START_REF] Kato | Pertubation Theory for Linear Operators[END_REF]Section II.1]). For α ∈ R, K α is R-linear on the real vector space Ξ ⊕ Ξ. Thus, its spectrum is symmetric w.r.t. the real axis. Observing that JK α + K * α J = 0, where J is the unitary operator

J = 0 I -I 0 ,
we conclude that the spectrum of K α is also symmetric w.r.t. the imaginary axis. It follows that for

α ∈ I c 1 2 λ∈sp(Kα)
|Re λ| m λ = tr(P α K α ).

(5.35)

Denoting the resolvent of K α by T α (z) = (z -K α ) -1 , we have

P α = Γ + T α (z) dz 2πi ,
where Γ + ⊂ C + is a Jordan contour enclosing sp(K α ) ∩ C + which can be chosen so that it also encloses sp(-A) = sp(K 0 ) ∩ C + . Thus, we can rewrite (5.35) as

1 2 λ∈sp(Kα) |Re λ| m λ = Γ + zτ α (z) dz 2πi , with τ α (z) = tr(T α (z)).
An elementary calculation yields the following resolvent formula

T α (z) = T 0 (z) + -αr(z)QD(z)(I + R (z))ϑ -1 Q * r(z) r(z)Q(I -D(z))Q * r (z) -λr (z)Qϑ -1 (I + R(z))D(z)ϑ -1 Q * r (z) αr (z)Qϑ -1 (I + R(z))D(z)Q * r (z) , where r(z) = (A + z) -1 , r (z) = (A * -z) -1 , R(z) = ϑ -1 Q * r(z)Q, R (z) = Q * r (z)Qϑ -1 , and 
D(z) = I + α(R(z) + R (z) + R (z)R(z)) -1 . It follows that τ α (z) = τ 0 (z) + tr D(z)α∂ z ((I + R (z))(I + R(z)) .
Thus, for small enough α ∈ C and z ∈ Γ + we have

τ α (z) = τ 0 (z) + ∂ z log det I + α(R(z) + R (z) + R (z)R(z)) . Since T 0 (z) = r(z) -r(z)QQ * r (z) 0 -r (z) , the fact that Γ + encloses sp(-A) ⊂ C + but no point of sp(A * ) ⊂ C -implies Γ + z τ 0 (z) dz 2πi = Γ + z tr (z + A) -1 + (z -A * ) -1 dz 2πi = -tr(A) = 1 2 tr(Qϑ -1 Q * ),
and hence

Γ + zτ α (z) dz 2πi = 1 2 tr(Qϑ -1 Q * ) - Γ + log det(I + α(R(z) + R (z) + R (z)R(z))) dz 2πi . Noting that R(z) + R (z) + R (z)R(z) = -Q * (A * -z) -1 Σ β (A + z) -1 Q,
and deforming the contour Γ + to the imaginary axis (which is allowed due to the decay of the above expression as |z| → ∞) yields

tr(K α P α ) = 1 2 tr(Qϑ -1 Q * ) + ∞ -∞ log det(I -αE(ω)) dω 2π .
Since both sides of the last identity are analytic functions of α, this identity extends to all α ∈ C c and the proof of Theorem 3.13 is complete.

(8) Set ∆ α,t = M -1 α,t -Y α . For all α ∈ I c , one has e tD * α M -1 α,t e tDα = θ∆ 1-α,t θ, (5.38) 
and lim

t→∞ 1 t log det(∆ α,t ) = 4e(α) -tr(Qϑ -1 Q * ).
In particular, for α ∈ I c , ∆ α,t → 0 exponentially fast as t → ∞.

(

) Let D α = θD 1-α θ. Then Y α e t Dα = e tD * α Y α 9 
for all α ∈ I c and t ∈ R.

(

) Let W α = αX 1 -X α . Then W α ≤ 0 for |α -1 2 | ≤ 1 2 ; W α ≥ 0 for 1 2 ≤ |α -1 2 | ≤ κ c ; and Y α + W α > 0 for all α ∈ I c . 10 
(11) Set ϑ = 1 2 (ϑ max + ϑ min ) and ∆ = ϑ maxϑ min . Then the following lower bound holds

κ c ≥ κ 0 = ϑ ∆ > 1 2 .
Moreover, the maximal solution satisfies

X α ≥ αϑ -1 min for α ∈ [ 1 2 -κ 0 , 0]; αϑ -1 max for α ∈ [0, 1 2 + κ 0 ].
(5.39) (12) Assume that κ c = κ 0 and that the steady state covariance satisfies the strict inequalities (recall (3.13)) ϑ min < M < ϑ max .

Then Condition (R) is satisfied.

Remark 5.6 In the equilibrium case ϑ min = ϑ max = ϑ 0 it follows from Part (11) that κ c = ∞. One easily checks that in this case

X α = αϑ -1 0 I, θX 1-α θ = (1 -α)ϑ -1 0 I, Y α = ϑ -1 0 I, W α = 0, D α = A.
Proof. For the reader convenience, we have collected the well known results on algebraic Riccati equations needed for the proof in the Appendix.

We denote by H the complex Hilbert space CΞ ⊕ CΞ on which the Hamiltonian matrix K α acts and introduce the unitary operators

Θ = 0 θ θ 0 ,
acting on the same Hilbert space. We have already observed in the proof of Theorem 3.13 that for α ∈ R the spectrum of K α is symmetric w.r.t. the real axis and the imaginary axis. The time-reversal covariance relations

θA α θ = A * α = -A 1-α , θBθ = B * = B, θC α θ = C * α = C α = C 1-α , (5.40) 
which follow easily from the definitions of the operators A α , B, C α (recall Eq. (3.1), (3.12) and (3.42)), further yield ΘK α -K * 1-α Θ = 0 which implies sp(K α ) = sp(K 1-α ).

(5.41)

(1) By Theorem 3.13 (5), sp(K α ) ∩ iR = ∅ for α ∈ I c and the existence and uniqueness of the minimal/maximal solution of R α (X) = 0 follows from Corollary A.3. The relation between minimal and maximal solutions follows from the identity

R α (θXθ) = θR 1-α (-X)θ,
which is a direct consequence of Eq. (5.40). The maximal solution X α is related to the spectral subspace H -(K α ) of K α for the part of its spectrum in the open left half-plane C -by (2) One deduces from Eq. (5.42) that the spectral projection of K α for the part of its spectrum in C + is given by

H -(K α ) = Ran I X α , ( 5 
P α = I X α Y -1 α θX 1-α θ I = I -Y -1 α X α Y -1 α X α (I -Y -1 α X α ) X α Y -1 α .
As already noticed in the proof of Theorem 3.13, P α is an analytic function of α in the cut plane

C c ⊃ I c . It follows that Y -1 α and X α Y -1
α are real analytic on I c . The same holds for Y α and

X α = X α Y -1 α Y α .
To prove concavity we shall invoke the implicit function theorem to compute the first and second derivatives X α and X α of the maximal solution. To this end, we must show that the derivative DR α of the map X → R α (X) at X = X α is injective. A simple calculation shows that (see, e.g., Section 5.3 in [LR]). This ensures the applicability of the implicit function theorem and a straightforward calculation yields the following expressions valid for all α ∈ I c : (5.43)

DR α : Z → -ZD α -D * α Z.
X α = ∞ 0 e tD * α (X α Bβ + βBX α + (1 -2α)βBβ) e tDα dt,
X α = -2 ∞ 0 e tD * α (X α -β)B(X α -β)e tDα dt.
(5.44)

From (5.44) we deduce X α ≤ 0 which yields concavity.

We shall now prove the inequalites (5.36), using again the Lyapunov equation. Indeed, one can rewrite the Riccati equation R α (X α ) = 0 in the following two distinct forms:

X α A α + A * α X α = X α BX α -C α ,
(5.45)

X α D α + D * α X α = -X α BX α -C α .
(5.46)

Recall that Condition (C) implies sp(A α ) ⊂ C -for α < 0 (as established at the beginning of the proof of Theorem 3.13 ( 5)). It follows from Eq. (5.45) that

X α = - ∞ 0 e tA * α (X α BX α -C α )e tAα dt ≤ α(1 -α) ∞ 0 e tA * α Qϑ -2 Q * e tAα dt.
(5.47)

Since (A * α , Q) is controllable, we can conclude that X α < 0 for α ∈] 1 2 -κ c , 0[. Similarly, for α > 1, sp(A α ) ⊂ C + and Eq. (5.45) leads to X α = ∞ 0 e -tA * α (X α BX α -C α )e -tAα dt ≥ α(α -1) ∞ 0 e -tA * α Qϑ -2 Q * e -tAα dt.
(5.48)

Controllability again yields X α > 0 for α ∈]1, 1 2 + κ c [. Finally, for α ∈]0, 1[ we use Eq. (5.46) and the fact that D α is stable (established in Part (1)) to obtain

X α = ∞ 0 e tD * α (X α BX α + C α )e tDα dt ≥ α(1 -α) ∞ 0 e tD * α Qϑ -2 Q * e tDα dt.
It follows that X α ≥ 0 for α ∈]0, 1[. To show that X α > 0, let u ∈ Ker X α . From (5.45) we infer (u, C α u) = 0 and hence u ∈ Ker C α = Ker Q * . Using (5.45) again, we deduce A α u ∈ Ker X α . Thus, we conclude that u ∈ Ker Q * A n α for all n ≥ 0 and (5.33) yields that u = 0. From X 0 = lim α↑0 X α ≤ 0 and X 0 = lim α↓0 X α ≥ 0, we deduce X 0 = 0.

To prove the last assertion, we deduce from (5.45) and identities

A 1 = -A * = -θAθ, C 1 = 0, that M = θX -1 1 θ satisfies the Lyapunov equation A M + M A * + B = 0.
Since A is stable, this equation has a unique solution and Lemma 5.1 (5) yields M = M .

(3) is a well known property of the Riccati equation (Theorem A.6 (3)).

(4) Since X α is concave and vanishes at α = 0, the function α → X α -αX 0 is monotone decreasing/increasing for α negative/positive. Thus, to prove the existence of the limits X 1 2 ±κc it suffices to show that the set {X α | α ∈ I c } is bounded in L(Ξ). For positive α, this follows directly from Part (2) which implies 0 ≤ X α ≤ αX 0 . For negative α, taking the trace on both sides of the first equality in Eq. (5.47) and using the fact that C α ≤ 0, we obtain

tr(X α ) = - ∞ 0 tr((X α BX α -C α )e tA * α e tAα )dt ≥ -tr(X α BX α -C α )
∞ 0 e tAα 2 dt.

Thus, an upper bound on tr(X α BX α -C α ) will conclude the proof. Taking the trace of Riccati's equation yields

tr(X α BX α -C α ) = tr(X α (A α + A * α )) = (2α -1)tr(X α Qϑ -1 Q * ) ≤ 2α -1 ϑ min tr( X α ),
where X α = Q * X α Q. Combining the last inequality with the estimate

tr( X α ) 2 ≤ |∂I|tr( X 2 α ) = |∂I|tr(Q * X α QQ * X α Q) ≤ |∂I| Q 2 tr(X α BX α )
yields a quadratic inequality for tr( X α ) which gives

tr( X α ) ≥ -(1 -2α)|∂I| Q 2 ϑ -1 min .
Summing up, we have obtained the required lower bound

tr(X α ) ≥ -(1 -2α) 2 |∂I| Q 2 ϑ -2 min ∞ 0 e tAα 2 dt.
By continuity, we clearly have R 1 2 ±κc (X 1 2 ±κc ) = 0. Continuity also implies that sp(D 1 2 ±κc ) ⊂ C - and the maximality of X 1 2 ±κc follows from Part (3). Since C 1 2 ±κc ≤ 0, the fact that X 1 2 ±κc is regular follows from the same argument we have used to prove the regularity of X α for α ∈]0, 1[.

(5) is another well known property of the Riccati equation (Theorem A.7 (3)).

(6) Since D α = A+Q(αϑ -1 Q * -Q * X α ), the controllability of (D α , Q) follows from that of (A, Q). The relation between sp(K α ) and sp(D α ) is a direct consequence of the relation

-K α I X α = I X α D α ,
which follows from Eq. (5.42). Formula (5.37) is obtained by combining this information with Eq. (3.43). The last assertion is deduced from controllability of (D α , Q) in the same way as in the proof of Lemma 5.1 (1).

(7) To prove the existence of the limit, we note that (6) implies that for any α ∈ I c and t 0 > 0 the function [t 0 , ∞[ t → M -1 α,t takes strictly positive values and is bounded and decreasing. Thus, we have

Z α = lim t→∞ M -1 α,t = inf t>0 M -1 α,t ≥ 0.
Since M -1 α,t is easily seen to satisfy the differential Riccati equation (5.49) it follows that for any t > 0 and τ ≥ 0

d dt M -1 α,t = -M -1 α,t BM -1 α,t + M -1 α,t D α + D * α M -1 α,t ,
M -1 α,t -M -1 α,t+τ = τ 0 M -1 α,t+s BM -1 α,t+s + M -1 α,t+s D α + D * α M -1 α,t+s ds.
Letting t → ∞, we conclude that Z α satisfies

Z α BZ α + Z α D α + D * α Z α = 0.
(5.50)

Expressing the last equation in terms of V α = θ(Z α -X α )θ and using (5.40), we derive R 1-α (V α ) = 0. By a well known property of Lyapunov equation (see, e.g., Theorem 4.4.2 in [LR]), one has sp(D α + BM -1 α,t ) ⊂ C + for all t > 0, which implies sp(D α + BZ α ) ⊂ C + . Since D α + BZ α = -θ(A 1-α -BV α )θ, we have sp(A 1-α -BV α ) ⊂ C -. From Part (3) we conclude that V α is the maximal solution to the Riccati equation R 1-α (X) = 0, i.e., that V α = X 1-α . Thus,

Z α = X α + θX 1-α θ = Y α ,
is the gap of the Riccati equation. It is a well known property of this gap that Ker (Y α ) is the spectral subspace of D α associated to its imaginary eigenvalues (Theorem A.7 (1)). ( 8) Combining (5.49) and (5.50), one shows that

∆ α,t = M -1 α,t -Y α satisfies the differential Riccati equation d dt ∆ α,t = -∆ α,t B∆ α,t + ∆ α,t D α + D * α ∆ α,t , (5.51) 
where

D α = -(A α + BθX 1-α θ) = θD 1-α θ. Since ∆ -1 α,t = (I -M α,t Y α ) -1 M α,t ,
we further have lim t→0 ∆ -1 α,t = 0. We deduce that S α,t = ∆ -1 α,t satisfies the linear Cauchy problem

d dt S α,t = B -D α S α,t -S α,t D * α , S α,0 = 0,
whose solution is easily seen to be given by S α,t = t 0 e -s Dα Be -s D * α ds = θ t 0 e -sD 1-α Be -sD * 1-α ds θ = θe -tD 1-α t 0 e sD 1-α Be sD * 1-α ds e -tD * 1-α θ = θe -tD 1-α M 1-α,t e -tD * 1-α θ.

We thus conclude that ∆ α,t = θe tD * 1-α M -1 1-α,t e tD 1-α θ, which immediately yields (5.38).

Since ∆ α,t is strictly positive for t > 0, we infer from Eq. (5.51) that

d dt log det(∆ α,t ) = tr( ∆α,t ∆ -1 α,t ) = -tr(∆ α,t B -Dα -D * α ) = -tr(Q * ∆ α,t Q) + 2tr(D 1-α ).
By Part (3) and Theorem 3.13 (5), we have

tr(D 1-α ) = - 1 2 λ∈sp(K 1-α ) |Re λ|m λ = 2e(1 -α) - 1 2 tr(Qϑ -1 Q * ) = 2e(α) - 1 2 tr(Qϑ -1 Q * ).
Since ∆ α,t → 0 for t → ∞, given > 0 there exists t 0 > 0 such that

4e(α) -tr(Qϑ -1 Q * ) -≤ d dt log det(∆ α,t ) ≤ 4e(α) -tr(Qϑ -1 Q * )
for all t > t 0 . It is straightforward to derive from these estimates that lim t→∞ 1 t log det(∆ α,t ) = 4e(α)tr(Qϑ -1 Q * ).

(9) Using (5.40), one rewrites the Riccati equation (5.50) as

D * α Y α = -Y α (D α + BY α ) = -Y α (A α + B(Y α -X α )) = -Y α (A α + BθX 1-α θ) = -Y α θ(-A 1-α + BX 1-α )θ = Y α θD 1-α θ = Y α D α .
Thus, the result immediately follows from the fact that

d dt e tD * α Y α e -t Dα = e tD * α (D * α Y α -Y α D α )e -t Dα = 0.
(10) For any u ∈ Ξ we infer from Parts ( 2) and ( 4) that the function α → (u, W α u) is convex, real analytic on the interval I c , and continuous on its closure. Since it vanishes for |α -

1 2 | = 1 2 one has either (u, W α u) = 0 for all α ∈ I c or (u, W α u) < 0 for |α -1 2 | < 1 2 and (u, W α u) > 0 for 1 2 < |α -1 2 | ≤ κ c . This proves the first assertion. Since Y α +W α = αX 1 +θX 1-α θ, we deduce from Part (2) that Y α +W α > 0 for |α-1 2 | ≤ 1 2 . Consider now 1 2 < |α -1 2 | ≤ κ c . If u ∈ Ξ is such that (u, W α u) > 0, then Part (7) yields (u, (Y α + W α )u) > 0.
Thus, it remains to consider the case of u ∈ Ξ such that (u, W α u) = 0 for all α ∈ I c . Using (5.44) we get that (11) For λ ∈ R, one has

(u, W α u) = -(u, X α u) = 2
R α (λI) = Qϑ -1 (λϑ -(α -1)) (λϑ -α) ϑ -1 Q * , so that R α (λI) ≤ 0 iff α -1 ≤ λϑ ≤ α. It follows that P = {(α, λ) ∈ R 2 | R α (λI) ≤ 0}
is the closed parallelogram limited by the 4 lines (see Figure 11)

λ = α ϑ max , λ = α ϑ min , λ = α -1 ϑ max , λ = α -1 ϑ min .
The projection of P on the α-axis is the closed interval [ 1 2κ 0 , 1 2 + κ 0 ]. Thus, Theorem A.5 implies that the Riccati equation has a self-adjoint solution for all α ∈ [ 1 2κ 0 , 1 2 + κ 0 ]. By Theorem A.6 (2) it also has a maximal solution X α which, by Theorem A.7 (3), satisfies the lower bound (5.39). From this lower bound we further deduce that for α ∈ [0, 1 2 + κ 0 [, the gap satisfies

α λ 1 1 2 -κ 0 1 2 + κ 0
Y α = X α + θX 1-α θ ≥ α ϑ max + 1 -α ϑ min = ∆ ϑ max ϑ min 1 2 + κ 0 -α > 0.
Since Ker Y 1 2 +κc = {0} by Parts ( 6) and ( 7), we conclude that κ c ≥ κ 0 . (12) The concavity of R α = X α + (1α)X 1 and the fact that

R 0 = R 1 = X 1 > 0 imply that for |α -1 2 | ≤ 1 2 one has R α ≥ X 1 > 0. For 1 2 < α -1 2 ≤ κ 0 , Part (11) gives X α ≥ αϑ -1 max . Since M > ϑ min , Part (2) yields X 1 = θM -1 θ < ϑ -1
min and hence

R α > α ϑ max + 1 -α ϑ min = κ 0 -(α -1 2 ) ∆(κ 2 0 -1 4 ) ≥ 0.
The case -κ 0 ≤ α -1 2 < -1 2 is similar. where

w α (t) = w(t) - t 0 Q * (αβ -X α )x(s)ds.
Let Z α (t) be the stochastic exponential of the local martingale

η α (t) = t 0 Q * (αβ -X α )x(s) • dw(s). 1 2 |Q * (αβ -X α )x| 2 = -ασ β (x) -(αβ -X α )x • Ax,
and we can write the quadratic variation of η α as

1 2 [η α ](t) = -α t 0 σ β (x(s))ds - t 0 (αβ -X α )x(s) • Ax(s)ds.
Hence

η α (t) - 1 2 [η α ](t) = t 0 (αβ -X α )x(s) • dx(s) + α t 0 σ β (x(s))ds.
The Itô calculus and Proposition 3.5 (3) give

η α (t) - 1 2 [η α ](t) = -λ α t + αS t + χ α (x(t)) -χ α (x(0)) ,
with λ α = 1 2 tr(QQ * (αβ -X α )) and

χ α (x) = 1 2 x • X α x.
Finally, we note that Proposition 5.5 (6) yields

λ α = - 1 2 tr(Q * (X α -αβ)Q) = e(α).
Lemma 5.7 The process Z α (t) = E(η α )(t) = e -[e(α)t+αS t +χα(x(t))-χα(x(0))] (5.53) is a P x -martingale for all x ∈ Ξ.

Proof. We wish to apply the Girsanov theorem; see Section 3.5 in [KS]. However, it is not clear that the Novikov condition is satisfied on a given finite interval. To overcome this difficulty, we follow the argument used in the proof of Corollary 5.14 in [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF]Chapter 3].

Fix τ > 0. By Lemma 5.3, {x(t)e tA x} t∈[0,τ ] is a centered Gaussian process under the law P x . Since

s s |Q * (αβ -X α )x(t)| 2 dt ≤ C|s -s | |x| 2 + sup t∈[0,τ ] |x(t) -e tA x| 2
for some constant C, Fernique's theorem implies that there exists δ > 0 such that

E x exp 1 2 s s |Q * (αβ -X α )x(t)| 2 dt < ∞,
provided 0 ≤ s ≤ s ≤ τ and ss < δ. Novikov criterion implies that under the same conditions,

E x E(η α )(s ) E(η α )(s) W s = E x exp s s Q * (αβ -X α )x(t) • dw(t) - 1 2 s s |Q * (αβ -X α )x(t)| 2 dt W s = 1. For 0 ≤ s ≤ s ≤ s ≤ τ , s -s < δ and s -s < δ we deduce E x E(η α )(s ) E(η α )(s) W s = E x E(η α )(s ) E(η α )(s ) E(η α )(s ) E(η α )(s) W s = E x E x E(η α )(s ) E(η α )(s ) W s E(η α )(s ) E(η α )(s) W s = E x E(η α )(s ) E(η α )(s) W s = 1,
and an induction argument gives

E x [E(η α )(τ )] = E x E(η α )(τ ) E(η α )(0) W 0 = 1.
Since τ > 0 is arbitrary, the proof is complete. 2

The previous lemma allows us to apply Girsanov theorem and to conclude that {w α (t)} t∈[0,τ ] is a standard Wiener process under the law

Q τ α,ν [ • ] = E ν [Z α (τ ) • ].
This change of measure will be our main tool in the next section.

Completion of the proof

From Eq. (3.35) and the results of the previous section we deduce that for α ∈ I c ,

e t (α) = 1 t log E µ dµ dx (θx(t)) α dµ dx (x(0)) -α e -αS t = 1 t log E µ Z α (t) dµ dx (θx(t)) α dµ dx (x(0)) -α e -χα(x(0))+χα(x(t))+e(α)t = e(α) + 1 t log Q t α,µ dµ dx (θx(t)) α dµ dx (x(0)) -α e -χα(x(0))+χα(x(t)) ,
where χ α (x) = 1 2 x • X α x. Denoting by Q t α the Markov semigroup associated with Eq. (5.52), we can write e t (α) = e(α) x) .

+ 1 t log η α |Q t α ξ α , where η α (x) = dµ dx (x) 1-α e -χα(x) , ξ α (x) = dµ dx (θx) α e χα(
(5.54) Thus, to prove Eq. (3.45) we must show that the "prefactor" η α |Q t α ξ α satisfies

lim t→∞ 1 t log η α |Q t α ξ α = 0.
To this end, let us note that the Markov semigroup for (3.7) can be written as 5.55) where n denotes the centered Gaussian measure on X with covariance I. For α ∈ I c , this yields the representation

(P t f )(x) = X f (e tA x + M 1 2 t y)n(dy), ( 
(Q t α f )(x) = det(2πM α,t ) -1 2 e -1 2 |M -1 2 α,t (y-e tDα x)| 2
f (y)dy.

(5.56) Using Eq. (5.54), a simple calculation leads to

η α |Q t α ξ α = det(2πM α,t ) -1 2 det(2πM ) -1 2 e -1 2 z•Nα,tz dz = det(M -1 α,t ) 1 2 det(M -1 ) 1 2 det(N α,t ) -1 2 , provided N α,t = θ(Y 1-α + W 1-α + ∆ 1-α,t )θ -e tD * α M -1 α,t -M -1 α,t e tDα Y α + W α + ∆ α,t
is positive definite. By Schur's complement formula, we have

det(N α,t ) = det(Y α + W α + ∆ α,t ) det(Y 1-α + W 1-α + ∆ 1-α,t -T α,t ), where T α,t = θ(e tD * α M -1 2 α,t )M -1 2 α,t (Y α + W α + ∆ α,t ) -1 M -1 2 α,t (M -1 2 α,t e tDα )θ. It follows that η α |Q t α ξ α = (det(M ) det(M α,t ) det(Y α + W α + ∆ α,t ) det(Y 1-α + W 1-α + ∆ 1-α,t -T α,t )) -1 2 .
For any α ∈ I c , Proposition 5.5 implies that

Y α + W α > 0 while, as t → ∞, M -1 2 α,t Y 1 2 α , ∆ α,t 0 
and M -1 2 α,t e tDα 0 monotonically (and exponentially fast for α ∈ I c ). It follows that

f (α) = lim t→∞ η α |Q t α ξ α = det(Y α ) det(M ) det(Y α + W α ) det(Y 1-α + W 1-α ) 1 2
.

(5.57)

For α ∈ I c , Y α > 0, and we conclude that

lim t→∞ 1 t log η α |Q t α ξ α = 0.
(5.58)

Consider now the limiting cases α = 1 2 ± κ c . We shall denote by C and r generic positive constants which may vary from one expression to the other. Since Y α is singular, one has log det(M -1 α,t ) → -∞. However, the obvious estimate e

tDα ≤ C(1 + t) r implies M α,t ≤ C(1 + t) r and hence M -1 α,t ≥ C(1 + t) -r from which we conclude that lim t→∞ 1 t log det(M -1 α,t ) = 0.
(5.59) It follows that (5.58) also holds in the limiting cases α = 1 2 ± κ c . By Hölder's inequality R α → e t (α) is a convex function. The above analysis shows that it is a proper convex function differentiable on I c for any t > 0, and such that lim t→∞ e t (α) = e(α) for α ∈ I c . Since lim α↑ 1 2 +κc e (α) = +∞ by Theorem 3.13 (3), the fact that lim t→∞ e t (α) = +∞ for α ∈ R \ I c is a consequence of the following lemma and the symmetry (3.39).

Lemma 5.8 Let (f t ) t>0 be a family of proper convex functions f t : R →] -∞, ∞] with the following properties:

(1) For each t > 0, f t is differentiable on ]a, b[.

(2) The limit f (α) = lim t→∞ f t (α) exists for α ∈]a, b[ and is differentiable on ]a, b[.

(3) lim α↑b f (α) = +∞.

Then, for all α > b, one has lim t→∞ f t (α) = +∞.

Proof. By convexity, for any γ ∈]a, b[ and any α ∈ R one has

f t (α) ≥ f t (γ) + (α -γ)f t (γ),
and Properties (1) and ( 2) further imply

lim t→∞ f t (γ) = f (γ). It follows that lim inf t→∞ f t (α) ≥ f (γ) + (α -γ)f (γ).
(5.60)

As a limit of a family of convex functions,

f is convex on ]a, b[ and, hence, inf γ∈]a,b[ f (γ) > -∞.
Thus, Property (3) and Inequality (5.60) yield

lim inf t→∞ f t (α) ≥ lim inf γ↑b f (γ) + (α -γ)f (γ) = +∞ for all α > b. 2 
5.8 Proof of Proposition 3.22

(1) The required properties of the function g t (α) are consequences of more general results concerning integrals of exponentials of quadratic forms with respect to a Gaussian measure on an infinitedimensional space. However, we shall derive here more detailed information about g t (α) which will be used later (see the proof of Theorem 3.28).

We shall invoke Lemmata 5.2 and 5.3, and use the notations introduced in their proofs. By Proposition 3.5, we can write

g t (α) = 1 t log e -α 2 (x|Ltx) γ t (dx),
where γ t is the Gaussian measure on H t with mean T t a and covariance K t = D t D * t . The convexity of g t is a consequence of Hölder's inequality. The operator L t , given by 

(L t x)(s) = -Σ β x(s) + δ(s -t)(F + X 1 -β)x(t) -δ(s)(G + θX 1 θ -β)x(0), ( 5 
-(t) = -s + (t) -1 if s + (t) > 0; -∞ if s + (t) = 0; α + (t) = -s -(t) -1 if s -(t) < 0; +∞ if s -(t) = 0; so that I + αS t > 0 iff α ∈ I t =]α -(t), α + (t)[
. Analyticity of g t on I t follows from the Fredholm theory (e.g., see [START_REF] Simon | Trace Ideals and their Applications[END_REF]), and a simple calculation yields

g t (α) = - 1 2t tr((I + αS t ) -1 S t ) - 1 2t (T t a|L t T t a) + α 2t (D * t L t T t a| (I + αS t ) -1 + (I + αS t ) -2 D * t L t T t a).
(5.63) Suppose α + (t) < ∞ and denote by P -the spectral projection of S t associated to its minimal eigenvalue s -(t) < 0. By the previous formula, for any α ∈ [0, α + (t)[ one has

g t (α) ≥ 1 2t tr(P -) α + (t) -α - 1 2t tr((I + αS t ) -1 S t (I -P -)) - 1 2t (T t a|L t T t a),
which implies that g t (α) → +∞ as α → α + (t). The analysis of the lower bound α -(t) is similar.

(2) Is a simple consequence of the continuity and concavity of the maps

I c α → F α = θX 1-α θ + α(X 1 + F ), I c α → G α = N + P ν (X α -α(G + θX 1 θ))| Ran (N ) ,
and the fact that F 0 = θX 1 θ > 0 and G 0 = N + P ν X 1 | Ran N > 0.

(3) If X 1 + F > 0 and N + P ν (X 1 -G -θX 1 θ)| Ran N > 0, then we also have F 1 > 0 and G 1 > 0 and the result is again a consequence of the concavity of F α and G α .

(4) Proceeding as in the proof of Proposition 3.18, we start from the expression

g t (α) = e(α) + 1 t log η α |Q t α ξ α , where η α (dx) = e -1 2 x•(Xα-α(G+θX 1 θ))x ν(dx), ξ α (x) = e -1 2 x•(-Xα+α(F +X 1 ))x . Setting C α,t = G α + P ν θ∆ 1-α,t θ| Ran N -P ν e tD * α M -1 α,t -M -1 α,t e tDα | Ran N F α + ∆ α,t , c α,t = 1 2 a•(X α -α(G+θX 1 θ)+θ∆ 1-α,t θ)a, b α,t = P ν (X α -α(G + θX 1 θ) + θ∆ 1-α,t θ)a -M -1 α,t e tDα a
, evaluation of a Gaussian integral leads to

η α |Q t α ξ α = det(2π N -1 ) -1 2 det(2πM α,t ) -1 2 Ran (N )⊕Ξ e -1 2 z•Cα,tz-z•bα,t-cα,t dz (5.64) = det( N 1 2 ) det(M α,t ) -1 2 det(C α,t ) -1 2 e 1 2 bα,t•C -1 α,t bα,t-cα,t ,
provided C α,t > 0. By Schur's complement formula, the last condition is equivalent to

F α + ∆ α,t > 0, G α + P ν θ∆ 1-α,t θ| Ran N -T α,t > 0, where T α,t = P ν (e tD * α M -1 2 α,t )M -1 2 α,t (F α + ∆ α,t ) -1 M -1 2 α,t (M -1 2 α,t e tDα )| Ran N . Moreover, one has det(C α,t ) = det(F α + ∆ α,t ) det(G α + P ν θ∆ 1-α,t θ| Ran N -T α,t ).
For α ∈ I ∞ , it follows from Proposition 5.5 that lim t→∞ T α,t = 0, and F α + ∆ α,t and G α + P ν θ∆ 1-α,t θ| Ran N -T α,t are both positive definite for large t. As in the proof of Proposition 3.18 we can conclude that

lim t→∞ 1 t log η α |Q t α ξ α = 0. (5) Suppose that α + < 1 2 + κ c . If α ∈]α + , 1 2 + κ c ],
then the matrix C α,t acquires a negative eigenvalue as t increases. Consequently, the integral in (5.64) diverges and g t (α) = +∞ for large t, proving (3.62). The case α

-> 1 2 -κ c and α ∈ [ 1 2 -κ c , α -[ is similar. Suppose now that α + = 1 2 +κ c . Since e (α) → ∞ as α ↑ 1
2 + κ c by Theorem 3.13 (3), Lemma 5.8 applies to g t and yields (3.62) again. The same argument works in the case α -= 1 2κ c . Combined with Parts (1) and (4), the above analysis shows that for any α < α + one has α + (t) ≥ α for large enough t while for any α > α + , α + (t) ≤ α for large enough t. We deduce

α + ≤ lim inf t→∞ α + (t) ≤ lim sup t→∞ α + (t) ≤ α + ,
and (3.61) follows. 2

5.9 Proof of Theorem 3.28

We use the notation of Proposition 3.22 and its proof. We start with a few technical facts that will be used in the proof.

Lemma 5.9 Assume that Condition (C) holds and that ep > 0. Then, for some constants c > 0 and T > 0, the following hold true.

(1) S t ≤ c and S t 1 ≤ ct for t ≥ T .

(2) The function g t (α) has an analytic continuation from I t to the cut plane C

\ (] -∞, α -(t)] ∪ [α + (t), ∞]). Moreover, for any compact subset K ⊂ C \ (] -∞, α -] ∪ [α + , ∞]) there is T K > 0 such that sup α∈K t≥T K |g t (α)| < ∞.
and the analyticity of g t on this set follows directly from Eq. (5.63). Let K

⊂ C \ (] -∞, α -] ∪ [α + , ∞]) be compact. By Proposition 3.22 (5) (6) there exists T K ≥ T such that dist(K, ] -∞, α -(t)] ∪ [α + (t), ∞]) ≥ δ > 0 (5.67)
for all t ≥ T K . By Part (1), αS t ≤ 1 2 so that (I + αS t ) -1 ≤ 2 for all t ≥ T and all α ∈ C satisfying |α| ≤ (2c) -1 . By the spectral theorem, it follows from (5.66) and(5.67) that

(I + αS t ) -1 ≤ 2c δ
for all t ≥ T K and all α ∈ K such that |α| ≥ (2c) -1 . Hence (I + αS t ) -1 is bounded on K uniformly in t ≥ T K . The boundedness of g t now easily follows from Eq. (5.63) and Part (1).

(3) By Part (5) of Proposition 3.22, if T > 0 is large enough then the interval I t is finite for all t ≥ T . By Part (1) of the same Proposition, the function g t is strictly increasing on I t and maps this interval onto R.

( Taking γ → α + gives the desired inequality.

(5) We consider s ≥ s + , the case s ≤ s -is again similar. By Part (3), if T > 0 is large enough then α s,t ∈]0, α + (t)[⊂ I t for all t ≥ T . Since I + αS t > 0 for α ∈ I t , Part (1) allows us to conclude

M + s,t 1 = 1 t tr(S + t (I + α s,t S + t ) -1 ) ≤ 1 t S + t 1 ≤ 1 t S t 1 ≤ c.
By Eq. (5.63) and the definition of α s,t we have

s = - 1 2 tr(M s,t ) - 1 2t a • T * t L t T t a + tα s,t 2 (b s,t |((I + α s,t S t ) 1 2 + (I + α s,t S t ) -1 2 )b s,t ),
from which we deduce where ηt = ηt ts. The latter holds for any s ∈]η -, η + [ by the Gärtner-Ellis theorem. Next, we observe that whenever α ± = 1 2 ± κ c , then by Proposition 3.22 (4) we have η ± = ±∞. Thus, it suffices to consider the cases where α -> 1 2κ c or/and α + < 1 2 + κ c . We shall only discuss the second case, the analysis of the first one is similar.

M - s,t 1 = s + M + s,t 1 + 1 t a • T * t L t T t a -tα s,t (b s,t |((I + α s,t S t ) 1 2 + (I + α s,t S t ) -1 2 )b s,t
Fix s ≤ η -and set α t = -α -s,t so that g t (-α t ) = -s and, by Lemma 5.9 (3), which, in view of (3.66), is the desired relation.

lim t→∞ α t = -α + ,
Thus, it remains to prove our claim (5.71). To this end, note that for λ ∈ R, E t ν e -iληt = E t ν e (αt-iλ/t)ηt-tgt(-αt)-iλg t (-αt) = e t(gt(-αt+iλ/t)-gt(-αt)-ig t (-αt)λ/t) , and a simple calculation using Eq. (5.62), (5.63) yields E t ν e -iληt = det(I + iλM -s,t ) -1 e iλtr(M -s,t )-λ 2 (b -s,t |(I+iλM -s,t ) -1 b -s,t ) 1 2 .

(5.72)

Let S(R, Ξ) be the Schwartz space of rapidly decaying Ξ-valued smooth functions on R and S (R, Ξ) its dual w.r.t. the inner product of H. Denote by γ the centered Gaussian measure on K -= Ξ ⊕ S (R, Ξ) with covariance I and let η t (k) = -1 2 (k|M -s,t k -2b -s,t ).

By Lemma 5.9 (5), |η t (k)| < ∞ for γ-a.e. k ∈ K -and η t = η t (k)γ(dk) = -1 2 tr(M -s,t ).

It follows that for λ ∈ R, e -iλ(ηt(k)-η t ) γ(dk) = det(I + iλM -s,t ) -1 e iλtr(M -s,t )-λ 2 (b -s,t |(I+iλM -s,t ) -1 b -s,t )

1 2 , and comparison with (5.72) allows us to conclude that the law of ηt under P t ν coincides with the one of η tη t under γ, so that p = lim inf For m > 0 let P m denote the spectral projection of M s,t for the interval [-m, m] and define To deal with the second factor on the right-hand side of (5.73) we first note that (I -P m )|M s,t | ≥ m(I -P m ), so that, using again Lemma 5.9 (5), where the µ j denote the repeated eigenvalues of (I -P m )M s,t we have j j ≤ and hence, passing to an orthonormal basis of eigenvectors of (I -P m )M s,t , we obtain (2) According to Bryc's lemma (see [Br] or [JOPP, Section 4.8.4]) the Central Limit Theorem for the family (η t ) t>0 holds, provided that the generating function g t has an analytic continuation to the disc D = {α ∈ C | |α| < } for some > 0 and satisfies the estimate

ζ < t (k) = - 1 
sup α∈D t>t 0 |g t (α)| < ∞,
for some t 0 > 0. These properties clearly follow from Lemma 5.9 (2). Hence the pair (ω 2 , ι) is controllable.

(2) The argument in the proof of Part (1) yields C 1 = C L = R I and the first statement follows directly from Proposition 3.7 (2). To prove the second one, we may assume that ϑ min = ϑ 1 and ϑ max = ϑ L . From Theorem 3.2 (3) we already know that ϑ 1 ≤ M ≤ ϑ L and that

M -ϑ 1 = ϑ 1 ∞ 0 e tA Q(ϑ -1 1 -ϑ -1 )Q * e tA * dt.
Since ϑ -1 1ϑ -1 ≥ 0 it follows that

Ker (M -ϑ 1 ) ⊂ n≥0 Ker (ϑ -1 1 -ϑ -1 )Q * A * n =   n≥0 A n Qδ 1   ⊥ = C ⊥ 1 = {0},
which implies Mϑ 1 > 0. A similar argument shows that ϑ 2 -M > 0.

(3) Set κ = α -1 2 and κ 0 = ϑ ∆ > 1 2 . Writing

iν-K α = Ω + iν 0 0 Ω + iν + Qϑ -1 2 0 0 Qϑ -1 2 κ -ϑ (κ 2 -1 4 )ϑ -1 -κ ϑ -1 2 Q * 0 0 ϑ -1 2 Q * ,
one derives det(iν -K α ) = det(Ω + iν) 2 det(I + Σ(iν)), where

Σ(z) = κR(z) -R(z)ϑ (κ 2 -1 4 )R(z)ϑ -1 -κR(z) , R(z) = ϑ -1 2 Q * (Ω + z) -1 Qϑ -1 2 .
(5.74)

A simple calculation further gives det(Ω + iν) = det(ω 2ν 2 ), R(iν) = iνι * (ω 2ν 2 ) -1 ι.

Denote by D(ν 2 ) the adjugate of ω 2ν 2 . Expressing (ω 2ν 2 ) -1 with Cramer's formula and observing that D 1L (ν 2 ) = D L1 (ν 2 ) = â, we get Since κ 0 > 1 2 , we conclude that κ c ≥ κ 0 , with equality iff g 0 = 0. Under Assumption (S) the polynomials b and c coincide and δ = 0. Thus, g 0 = 0 iff the polynomial

f (x) = d(x) + γ 2 x d(x)
(5.77) has a positive zero. If L is odd, then this property follows immediately from the fact that

f (0) = det(ω 2 ) > 0, f (x) = (-x) L + O(x L-1 ) < 0 (x → ∞).
A more elaborate argument is needed in the case of even L. We shall invoke the deep connection between spectral analysis of Jacobi matrices and orthogonal polynomials. We refer the reader to [START_REF] Simon | Szegö's Theorem and its Descendants[END_REF] for a detailed introduction to this vast subject.

Let ρ be the spectral measure of ω 2 for the vector δ 1 . The argument in the proof of Part (1) shows that δ 1 is cyclic for ω 2 . Thus, ω 2 is unitarily equivalent to multiplication by x on L 2 (R, ρ(dx)) and in this Hilbert space δ 1 is represented by the constant polynomial p 0 = 1. Starting with δ 2 = a -1 1 (ω 2 -b 1 )δ 1 = p 1 (ω 2 )δ 1 , a simple induction shows that there are real polynomials {p k } k∈{0,...,L-1} satisfying the recursion a k p k-1 (x) + (b k+1x)p k (x) + a k+1 p k+1 (x) = 0, (k ∈ {0, . . . , L -2}, p -1 = 0, p 0 = 1), (5.78) and such that δ k = p k-1 (ω 2 )δ 1 . Thus, these polynomials form an orthonormal basis of L 2 (R, ρ(dx)) such that δ k |(ω 2x) -1 δ j = p k-1 (λ)p j-1 (λ) λx ρ(dλ).

(5.79) (5.81)

For 1 ≤ j ≤ k ≤ L, define d [j,k] (x) = det(x -J [j,k] ), J [j,k] =             b j a j 0 0 • • • 0 0 a j b j+1
Note in particular that q 0 (x) = 0 and q 1 (x) = a -1 1 . Applying the recursion relation (5.78) to both sides of this definition, we obtain a k q k-1 (x) + (b k+1x)q k (x) + a k+1 q k+1 (x) = p k (λ)ρ(dλ) = 0, (k ∈ {1, . . . , L -2}).

Set qk (x) = a 1 q k+1 (x) and observe that these polynomials satisfy the recursion a k+1 qk-1 (x) + (b k+2x)q k (x) + a k+2 qk+1 (x) = 0, (k ∈ {0, . . . , L -3}, q-1 = 0, q0 = 1).

Comparing this Cauchy problem with (5.78) and repeating the argument leading to (5.80) we deduce that a 2 • • • a k+1 qk (x) = d [2,k+1] (x), so that a 1 • • • a k q k (x) = d [2,k] (x), (k ∈ {2, . . . , L -1}).

In particular, we can rewrite Definition (5.77) as f (x) = P L (x) + γ 2 xq L-1 (x).

(5.82)

Taking now Assumption (S) into account we derive from (5.79) that for any z ∈ C \ sp(ω 2 ),

|p L-1 (λ)| 2 λ -z ρ(dλ) = δ L |(ω 2 -z) -1 δ L = Sδ 1 |(ω 2 -z) -1 Sδ 1 = δ 1 |(ω 2 -z) -1 δ 1 = ρ(dλ) λ -z ,
from which we conclude that |p L-1 (λ)| = 1 for all λ ∈ sp(ω 2 ). Denote by

λ L ≥ λ L-1 ≥ • • • ≥ λ 1 the eigenvalues of ω 2 = J [1,L] and by µ L-1 ≥ µ L-2 ≥ • • • ≥ µ 1 that of J [1,L-1]
. It is a well known property of Jacobi matrices (or equivalently of orthogonal polynomials) that

λ L < µ L-1 < λ L-1 < • • • < µ 1 < λ 1
(see Figure 12). These interlacing inequalities and the previously established property allow us to conclude that p L-1 (λ j ) = (-1) j , p L-1 (λ 1 ) < 0. Appendix: Basic theory of the algebraic Riccati equation

In this appendix, for the reader convenience we briefly expose the basic results on algebraic Riccati equation used in this work. We refer the reader to [LR, AFIJ, Sc] for detailed expositions and proofs.

Let h be a d-dimensional complex Hilbert space. We denote by ( • , • ) the inner product of h. We equip the vector space H = h ⊕ h with the Hilbertian structure induced by h and the symplectic form ω(x ⊕ y, x ⊕ y ) = (x ⊕ y, J(x ⊕ y )) = (x, y ) -(y, x ).

The symplectic complement of V ⊂ H is the subspace 

V ω = {v | ω(u, v) = 0 for all u ∈ V}. A subspace V ⊂ H is isotropic if V ⊂ V ω and Lagrangian if V = V ω . V

  P is symmetric w.r.t. the origin. It reduces to {0} whenever P = P. In the opposite case the symmetry Θ is broken and the well known fact that the relative entropy of P w.r.t. P, given by Ent(P| P) = -Ω S(ω)P(dω) = -R sP (ds)

Re

  αs P (ds) = R e -αs P (ds) = R e -(1-α)s P (ds) = R e αs e -s P (ds), support of P and P . Thus, negative values of S are exponentially suppressed by the universal weight e -s . In the physics literature such an identity is called a fluctuation relation or a fluctuation theorem for the quantity described by S. Most often S is a measure of the power injected in a system or of the rate at which it dissipates heat in some thermostat. The equivalent symmetry of the cumulant generating function e(α) of S which follows from the symmetry (1.4) of Rényi's entropy e(1α) = e(α) (1.6) is referred to as the Gallavotti-Cohen symmetry. The name symmetry function is sometimes given to s(s) = log dP d P (s).In terms of this function, the fluctuation relation is expressed ass(s) = s.The above-mentioned fact that 0 = Ent 1 (P| P) = log R e -s P (ds), Jarzynski identity and the strict negativity of relative entropy 0 < -Ent(P| P) = sP (ds), (1.8) becomes Jarzynski's inequality.

  e -t inf s∈S I(s) , as t → ∞ for any open set S ⊂ R ? Moreover, does this rate function satisfy the relation I(-s) = I(s) + s, (1.17) which is the limiting form of (1.5), for all s ∈ R ? Finally, can one relate this rate function to the large-time asymptotics of Rényi's entropy via a Legendre transformation I(s) = sup α∈R (αse(-α)) , e(α) = lim sup t→∞ 1 t Ent α (P t | P t ),

  on the open interval I c and extends to a continuous function on the closed interval I c . It further satisfies e(1α) = e(α) (3.39) for all α ∈ C c ,    e(α) ≤ 0 for α ∈ [0, 1]; e(α) ≥ 0 for α ∈ I c \]0, 1[; and in particular e(0) = e(1) = 0. Moreover ep = -e (0) = e (1), and either ep = 0, κ c = ∞, and e(α) vanishes identically, or ep > 0, κ c < ∞, e(α) is strictly convex on I c , and lim If ep > 0, then there exists a unique signed Borel measure ς on R, supported on R \ I c , such that |ς|(dr) |r| < ∞, and e(α) =log 1 -α r ς(dr).

Figure 4 :

 4 Figure 4: The cumulant generating function e(α) and the rate function I(s) for the canonical entropic functional of a harmonic network satisfying Assumption (C) and ep > 0. Notice the bias due to the symmetry I(-s) = I(s) + s.

α→1e

  TDE,st (α) = e(1) = 0 < e TDE,st (1) < lim sup α→1 e TDE,st (α) = +∞, i.e., the limiting cumulant generating function for TDE dissipation rate in the stationary process is neither lower semicontinuous nor upper semicontinuous.Remark 3.25 We shall see in Section 5.6 (see Remark 5.6) that in the case of thermal equilibrium, i.e., ϑ = ϑ 0 I for some ϑ 0 ∈]0, ∞[, one has X α = αϑ 0 I and hence X -1 + θX 1 θ = 0. Thus, in this case, α -= -1 and since e(α) vanishes identically by Proposition 3.13 (3), e TDE,st (α) = 0 for |α| < 1 +∞ for |α| > 1.
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 5 Figure5: The cumulant generating function g(α) = lim sup t→∞ g t (α) and the rate function J(s) for the functionals (ξ t ) t≥0 of Theorem 3.28.

  Figure 6: A triangular network and a contour plot of 1/κ c as function of the parameters (u, v). See the text for details.

Figure 7 :

 7 Figure 7: The numerically computed rate function J TDE,tr (s) and the corresponding symmetry function s TDE,tr (s) for the transient TDE dissipation of the triangular network (both the argument s and the value of these functions are in the units of the corresponding steady state entropy production rate ep).
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 8 Figure 8: Contour plot of min sp(X 1-α + αX 1 ) as function of (u, v) and some sections along the lines v = 1 + m(u -1) for the triangular network.
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 9 Figure 9: A linear chain coupled to two heat baths.

Figure 10 :

 10 Figure 10: The critical value κ c /κ 0 as a function of δ for an homogeneous chain.

  denote by | • | the induced norm. Any A ∈ L(E, F ) extends to an element of L(CE, CF ) which we denote by the same symbol: A(x + iy) = Ax + iAy. If A is a self-adjoint/non-negative/positive element of L(E), then this extension is a self-adjoint/non-negative/positive element of L(CE). The conjugation C E : x + iy → xiy is a norm-preserving involution of CE. For z ∈ CE and A ∈ L(CF, CE) we set z = C E z and A = C E AC F . We identify E with the set {z ∈ CE | z = z} of real elements of CE. Likewise, L(F, E) is identified with the set {A ∈ L(CF, CE)

t 0 e

 0 sA Qϑ -1 Q * e sA * ds =e sA * ds = Ie tA e tA * ,

  .42) see Section A.3. In particular sp(D α ) = sp(K) ∩ C -.The matrix Y α = X α -θX 1-α θ is called the gap of the equation R α (X) = 0. It is obviously nonnegative. It has the remarkable property that for any solution X, Ker (Y α ) is the spectral subspace of A α -BX for the part of its spectrum in iR (Theorem A.7 (1)). Since sp(D α ) ⊂ C -, we must have Y α > 0.

By ( 1

 1 ) one has sp(D α ) ⊂ C -for α ∈ I c . It follows that for any L ∈ L(Ξ) the Lyapunov equation DR α Z = L has the unique solution Z = ∞ 0 e tD * α L e tDα dt

∞ 0 |Q

 0 * (X αβ)e tDα u| 2 dt = 0 for α ∈ I c . Since QQ * (X αβ) = -D α , this further implies D α e tDα u = 0 for all (α, t) ∈ I c × R. Duhamel's formula d dα e tDα u = t 0 e (t-s)Dα D α e sDα u ds = 0 allows us to conclude that e tDα u = e tD 0 u = e tA u, a relation which extends by continuity to all (α, t) ∈ I c × R. Thus, lim t→∞ e tDα u = lim t→∞ e tA u = 0, which, using (7) again, further implies that u ∈ Ker (Y α ) and hence (u, (Y α +W α )u) = (u, Y α u) > 0.

Figure 11 :

 11 Figure 11: The parallelogram P.

  for α ∈ I c we have A = D α + QQ * (X ααβ), and we can rewrite the equation of motion (3.2) as dx(t) = D α x(t)dt + Qdw α (t), (5.52)

  t→∞ γ [| η tη t | < ] .

N

  m = tr(I -P m ) ≤ 1 m tr((I -P m )|M s,t |) ≤ M s

  where n N denotes the centered Gaussian measure of unit covariance on R N and the b j ∈ R are such that |b j | ≤ b s,t . An elementary analysis shows that if |b| ≤ 1 and 0 < δ ≤ 1, thenn 1 |k 2 -2bk -1| < δ ≥ δ e √ 6π .Thus, provided < c + |s|, we can conclude that p > 0 and concludes the proof of Part (2).

  * ω) j ι be the controllable subspace of (ω * ω, ι). From (3.1) and (3.4) we deriveΩ 2j Q = (-1) j (ω * ω) 2j Q) = C ⊕ {0}.The last relation andΩ(C ⊕ {0}) = {0} ⊕ ω * C yield that the controllable subspace of (Ω, Q) is C ⊕ ω * C. Since A = Ω -1 2 Qϑ -1 Q * , (A, Q) has the same controllable subspace. Finally, since Ker ω = {0}, we conclude that C ⊕ ω * C = Ξ iff C = R I . (2) The same argument yields C(Ω, Qπ i ) = C i ⊕ ω * C i . Thus if 0 = u ∈ C i ∩ C j , we have 0 = u ⊕ 0 ∈ C(Ω, Qπ i ) ∩ C(Ω, Qπ j )and the result follows from Proposition 3.7 (2).

  a i = 0 for all i ∈ I. Denote by {δ i } i∈I the canonical basis of R I . Starting with the obvious fact that Ran (ι) = span({δ i | i ∈ ∂I}), a simple induction yields 0≤j≤k Ran (ω 2j ι) = span({δ i | dist(i, ∂I) ≤ k}).

  2 ) = D 11 (ν 2 ), c(ν 2 ) = D LL (ν 2 ), d(ν 2 ) = det(ω 2ν 2 ),are polynomials in ν 2 with real coefficients. Inserting (5.75) into (5.74), an explicit calculation of det(I + Σ(iν)) yieldsdet(iν-K α ) = d(ν 2 ) + (γν) 2 b(ν 2 )c(ν 2 ) -â2 d(ν 2 ) 2 +(γν) 2 e δ/2 b(ν 2 )e -δ/2 c(ν 2 ) 2 )c(ν 2 ) -â2 d(ν 2 ) = det( ω 2ν 2 ) = d(ν 2 ),where ω 2 is the matrix obtained from ω 2 by deleting its first and last rows and columns. Thus, we finally obtaindet(iν -K α ) = d(ν 2 ) + (γν) 2 d(ν 2 ) 2 + (γν) 2 e δ/2 b(ν 2 )e -δ/2 c(ν 2 ) 2 -4â 2 κ 2 -2 ,where b, c, d and d are polynomials with real coefficients. Since d(0) = det(ω 2 ) > 0, K α is regular for all α ∈ R and we can rewrite the eigenvalue equation as x) + γ 2 x d(x)) 2 γ 2 x + e δ/2 b(x)e -δ/2 c(x) 2 has real coefficients, a simple pole at 0, a pole of order 2L at infinity and is non-negative on ]0, ∞[.

.

  Laplace expansion of the determinant P k+1 (x) = d [1,k+1] (x) on its last row yields the recursionP k+1 (x) = (xb k+1 )P k (x)a 2 k P k-1 (x).Comparing this relation with (5.78) one easily deducesa 1 • • • a k p k (x) = P k (x), (k ∈ {1, . . . , L -1}), d(x) = P L (x).(5.80)Polynomials of the second kind {q k } k∈{0,...L-1} associated to the measure ρ are defined byq k (x) = p k (λ)p k (x) λx ρ(dx).

Figure 12 :

 12 Figure 12: The zeros of the polynomials P L and p L-1 interlace.

  .61) maps H + to H -in such a way that (x|L t y) = (L t x|y) for all x, y ∈ Ran D t . It follows that the operator S t = D * t L t D t acting in the space Ξ ⊕ ∂H is self-adjoint, and a simple calculation shows that S t -D * t [β, Ω]D t is finite rank, so that S t is trace class. Using explicit formulas for Gaussian measures, we derive + αS t > 0, and g t (α) = +∞ otherwise. Set s -(t) = min sp(S t ) ≤ 0, s + (t) = max sp(S t ) ≥ 0, and α

	g t (α) = -	1 2t	log det(I + αS t ) -	α 2t	(T t a|L t T t a) +	α 2 2t	(D *

t L t T t a|(I + αS t ) -1 D * t L t T t a) (5.62) if I

  ) We consider s ≥ s + , the case s ≤ s -is similar. Since α s,t ∈ I t , Part (5) of Proposition 3.22 gives

	α = lim inf

t→∞ α s,t ≤ lim sup t→∞ α s,t ≤ lim t→∞ α + (t) = α + .

Suppose that α < α + . Invoking convexity, we deduce from the definition of α s,t and Part (4) of Proposition 3.22

s = lim inf t→∞ g t (α s,t ) ≤ lim inf t→∞ g t (α) = e (α).

The strict convexity of e(α) leads to s ≤ e (α) < s + which contradicts our hypothesis and yields the first relation in (5.65).

To prove the second one, notice that for any γ ∈ [0, α + [ one has γ < α s,t ≤ α + (t) provided t is large enough. By convexity g t (α s,t ) ≥ g t (γ) + (α s,tγ)g t (γ) ≥ g t (γ) + (α s,tγ)g t (0), and letting t → ∞ yields lim inf t→∞ g t (α s,t ) ≥ e(γ) + (α +γ)e (0).

  [|η t | < ] ≥ e -t(sαt+ |αt|-gt(-αt)) P t ν [|η t | < ] , [|η t | < ] ≥ e(α + ) + sα + -|α + |, provided > 0 is small enough. Letting ↓ 0, we finally get [|η t | < ] ≥ e(α + ) + sα + ,

	We claim that for any sufficiently small > 0,
	p = lim inf t→∞	P t ν [|η t | < ] > 0.	(5.71)
	Using (5.69) we derive from (5.70) that		
	lim inf t→∞ ν lim 1 t log P t ↓0 lim inf t→∞ 1 t	log P t ν
				(5.69)
	Defining the tilted probability P t ν on C([0, t], Ξ) by
	d P t ν ν dP t	= e αtηt-tgt(-αt) ,
	we immediately get the estimate		
	P t ν and hence, 1 t log P t			(5.70)

lim inf t→∞ g t (-α t ) ≥ e(α + ). ν [|η t | < ] ≥ g t (-α t )sα t -|α t | + 1 t log P t ν [|η t | < ] .

  so that η tη t = ζ < t + ζ > t and γ[ζ < t ] = γ[ζ > t ] = 0.Since ζ < t and ζ > t are independent under γ, we have p ≥ lim inf

	2 1 2 The Chebyshev inequality gives (P m k|M -s,t k -2b -s,t ) + ζ > t (k) = -γ |ζ < t | < /2 γ |ζ > 1 2 tr(P m M -s,t ), t | < /2 . γ |ζ < t | < /2 = 1 -γ |ζ < t | ≥ /2 ≥ 1 -4 2 γ |ζ < t | 2 . Choosing m = 1 3 (c + |s|) 2 , the estimate γ |ζ < t | 2 = 1 2 tr(P m M 2 s,t ) + P m b s,t 2 ≤ 1 2 P m M s,t M s,t 1 + b s,t 2 ≤ m 2 together with Lemma 5.9 (5) shows that ((I -P t→∞ lim inf t→∞ γ |ζ < t | < /2 ≥ 1 -2m (c + |s|) 2 = 1 3 .	(5.73) (c + |s|) + b s,t 2 ,

m )k|M -s,t k -2b -s,t ) + 1 2 tr((I -P m )M -s,t ),

  is Lagrangian iff it is isotropic and d-dimensional. For Y, Z ∈ L(h), we denote by Y ⊕ Z the element of L(h, H) defined by (Y ⊕ Z)x = Y x ⊕ Zx. In the block-matrix notation,

	Y ⊕ Z = Gallavotti-Cohen symmetry, 4 A, 15 B, 17 E(ω), 24 F, G, 29 Q, 15 S τ , 23 S t ν , 30 S GS , 18 Ent, 3, 18 Ent α , 4, 18 Ep(ν, t), 20 Γ, 15 Ω, 15 P τ ν , 22 Φ, Ψ, 29 Π τ , 45 Θ, 16 α + , α -, 31 β, 18 A p , 47 D τ , 45 K τ , 46 R α , 30 ep, 21 H, H + , H -, 44 I + , I -, 31 I ∞ , 31 I c , 24 S t , 14, 30 S t qM , 30 ι, 14 κ c , 24 µ β , 18 ω, 13 ∂H, 45 σ β , 18 θ, 13 ε + , ε -, 24 ϑ, 14 P τ ν , 22 de Bruijn relation, 19 (Y ⊕ Z) Index Y Z , generalized detailed balance, 19 Jarzynski identity, 5 Jarzynski's inequality, 5 Rényi entropy, 4 stochastic entropy, 21 structural constraints, 16 symmetry function, 4 Ep(µ, t), 30 thermodynamic entropy, 14

* = Y * Z * .

An operator β satisfying (3.17) always exists. For instance, one can define β by the relations βx = Qϑ -1 y if x = Qy for some y ∈ ∂Ξ and βx = x if x⊥Ran Q.

We shall see in Section 4.2 that this is the case for a large class of linear chains.

This corresponds to the near equilibrium regime.
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Proof of Proposition 3.7

(1) Since the first equivalence is provided by (3.32), it suffices to show the sequence of implications

(5.19)

Writing Ω = A + 1 2 Qϑ -1 Q * and invoking Lemma 5.1 (6) (the covariance of the steady state satisfies the Lyapunov equation B + AM + M A * = 0) one easily derives

, which proves the first implication in (5.19). The last identity, rewritten as [A -A * , M ] = 0, further implies that

from which we deduce that θM θ is also solution of the Lyapunov equation. Lemma 5.1 (7) allows us to conclude that θM θ = M which is clearly equivalent to µΘ = µ and proves the second implication in (5.19). Finally, from (3.29) we deduce that if µΘ = µ, then

The first equality in the above formula yields

Similarly, the second one yields M u = ϑ 2 u. Since u = 0, this contradicts the assumption ϑ 1 = ϑ 2 .

5.4 Proof of Proposition 3.9

and note that since

for all f ∈ C ∞ 0 (Ξ). We consider the process x = {x(t)} t∈[0,τ ] which is the solution of the SDE (3.2) with initial law ν. By Theorem 2.1 in [PH], the estimate (5.20) implies that the process x = {x t } t∈[0,τ ] with x t = x τ -t is a diffusion satisfying the SDE dx(t) = b(x(t), t)dt + Qdw(t)

The algebraic Riccati equation

This section is devoted to the study the algebraic Riccati equation

which plays a central role in the proof of Proposition 3.18. We summarize our results in the following proposition.

Proposition 5.5 Under Assumption (C) the following hold:

(1) For α ∈ I c the Riccati equation R α (X) = 0 has a unique maximal solution which we denote by X α . It also has a unique minimal solution, which is given by -θX 1-α θ. Moreover,

(2) The function I c α → X α ∈ L(Ξ) is real analytic, concave, and satisfies

(5.36)

M oreover, X 0 = 0 and X 1 = θM -1 θ.

(3) If, for some α ∈ I c , X ∈ L(Ξ) is a self-adjoint solution of R α (X) = 0 and sp(A α -BX) ⊂ C -, then X is the unique maximal solution of R α (X) = 0.

(4) If κ c < ∞, then the limits

exist and are non-singular. They are the maximal solutions of the corresponding limiting Riccati equations R

(5.37)

Then for all α ∈ I c lim t→∞

and Ker (Y α ) is the spectral subspace of D α corresponding to its imaginary eigenvalues.

(3) For t ≥ T the interval I t is finite and is mapped bijectively to R by the function g t . In the following, we set α s,t = (g t ) -1 (s)

for t ≥ T and s ∈ R.

(4) Let s ± = lim

,

Then we have

(5.65)

(5

The operator M s,t is trace class on Ξ ⊕ ∂H, with trace norm

Proof.

(1) Writing (5.61) as

t . Lemma 5.3 (4) yields

where

and S

(3) t

≤ S

(3) t

(2) Since g t (0) = 0 for all t > 0, it suffices to show that the function g t has the claimed properties. By definition,

(5.66)

The graph of X ∈ L(h) is the d-dimensional subspace of H defined by

The algebraic Riccati equation associated to the triple (A, B, C) of elements of L(h) is the following quadratic equation for the unknown self-adjoint X ∈ L(h):

In the following, we shall assume that C is self-adjoint, that B ≥ 0 and that the pair (A, B) is controllable. We denote by R(A, B, C) the set of self-adjoint elements of L(h) satisfying Eq. (A.1), which we can also write as

A.1 Existence of self-adjoint solutions

The Hamiltonian associated to the Riccati equation (A.1) is the unique element of L(H) such that (u, Lv) = ω(u, Kv) for all u, v ∈ H. One easily checks that

Note that since L = L * , K is ω-skew adjoint:

2)

The first result we recall is a characterization of the set R(A, B, C).

Theorem A.1 (Theorem 7.2.4 in [LR]) The map X → G(X) is a bijection from R(A, B, C) onto the set of K-invariant Lagrangian subspaces of H.

The following are elementary symplectic geometric properties of projections:

The range of a projection P ∈ L(H) is isotropic iff P * JP = 0 and Lagrangian iff I -P = J * P * J.

(2) Denote by P κ the spectral projection of K for κ ∈ sp(K). Then JP κ J * = P * -κ and in particular Ran P κ is isotropic iff κ ∈ iR.

(3) Let Σ ⊂ sp(K) be such that Σ ∩ (-Σ) = ∅. Then the spectral subspace of K for Σ is isotropic.

Note that JK+K * J = 0, which implies that the spectrum of K, including multiplicities, is symmetric w.r.t. the imaginary axis. If sp(K) ∩ iR = ∅, then the spectral subspace of K for Σ = sp(K) ∩ C + is d-dimensional and hence, by Lemma A.2 (3), Lagrangian. Thus, Theorem A.1 yields (see Theorems 7.2.4 and 7.5.1 in [LR])

Remark A.4 In cases where sp(K) ∩ iR = ∅, and under our controllability assumption, a necessary and sufficient condition for the existence of self-adjoint solution is that all Jordan blocks of K corresponding to eigenvalues in iR are even-dimensional. For the Riccati equations arising in our analysis of harmonic networks, the singular case sp(K α ) ∩ iR = ∅ only occurs at the boundary points α = 1 2 ± κ c . There, the existence of solutions follows by continuity (Part (4) of Theorem 5.5).

Another powerful criterion for the existence of self-adjoint solutions is the following Theorem A.5 (Theorem 9.1.1 in [LR]) If there exists a self-adjoint

A.2 Extremal solutions

The set R(A, B, C) inherits the partial order of L(h). A minimal/maximal solution of (A.1) is a minimal/maximal element of R(A, B, C). Clearly, a minimal/maximal solution, if it exists, is unique.

(1) R(A, B, C) is compact.

(2) R(A, B, C) contains a minimal element X -and a maximal element X + . In the following, we set

Parts (2) and (3) are stated as Theorems 7.5.1 in [LR]. Part (4) follows from simple algebra. Since X → R(X) is continuous, R(A, B, C) is closed. Its boundedness follows from from Part (4) and the fact that

for all X ∈ R(A, B, C). The Heine-Borel theorem thus yields Part (1).

A.3 The gap

In this section, we assume that R(A, B, C) = ∅ and use the notations introduced in Theorem A.6.

The gap of the Riccati equation (A.1) is the non-negative element of L(h) defined by Y = X + -X -.

We set K = Ker Y , so that K ⊥ = Ran Y . For X ∈ L(h), we define

Theorem A.7 (1) For any X ∈ R(A, B, C), K is the spectral subspace of D X for sp(D X ) ∩ iR and K ⊥ is the spectral subspace of

(2) The map X → Ker X is a bijection from R(D -, B, 0) onto the set of all D --invariant subspaces containing the spectral subspace of D -to the part of its spectrum in iR. Moreover, X ≤ X iff Ker X ⊂ Ker X.

(3) If R(X) ≤ 0 for some self-adjoint X ∈ L(h), then X -≤ X ≤ X + .

(4) If R(X) < 0 for some self-adjoint X ∈ L(h), then sp(K) ∩ iR = ∅.

The first and last Assertions of Part ( 1) is Theorem 7.5.3 in [LR]. The second Assertion is dual to the first one. Part ( 2) is a special case of Theorem 1 and Part (3) is Theorem 14(b) in [Sc]. Part (4) is the first assertion of Theorem 9.1.3 in [LR].

Note that Theorem A.1 implies that for X ∈ R(A, B, C) one has

). Whenever sp(K) ∩ iR = ∅, it follows that sp(D X ) ∩ iR = ∅ and hence K = {0} and Y > 0. By Part (3) of Theorem A.6, we further have sp(D + ) ⊂ C -so that G X + is the spectral subspace of K to the part of its spectrum in C -.

A.4 Real Riccati equations and real solutions

In this section, we assume that E is a d-dimensional real Hilbert space and Clearly, R R (A, B, C) is the set of real self-adjoint solutions of (A.1) viewed as a Riccati equation on L(E).

Theorem A.8 (1) If R(A, B, C) = ∅, then its minimal/maximal element is real and hence coincides with the minimal/maximal element of R R (A, B, C).

(2) Under the same assumption, the gap Y = X + -X -is real and so is K = Ker Y .

(3) For any X ∈ R R (A, B, C), K is the spectral subspace of D X for sp(D X ) ∩ iR and K ⊥ is the spectral subspace of D * X for sp(D * X ) \ iR. Moreover, D X | K is independent of X ∈ R(A, B, C).

To prove Part (1), note that X ∈ R(A, B, C) whenever X ∈ R(A, B, C). In particular, one has X + ∈ R(A, B, C) and hence X + -X + ≥ 0. It follows that X + -X + 1 = tr(X + -X + ) = tr(X + -X * + ) = 0.

The remaining statements are simple consequences of the reality of X ± .