
HAL Id: hal-01326738
https://hal.science/hal-01326738

Preprint submitted on 5 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An introduction to Differential Linear Logic: proof-nets,
models and antiderivatives

Thomas Ehrhard

To cite this version:
Thomas Ehrhard. An introduction to Differential Linear Logic: proof-nets, models and antiderivatives.
2016. �hal-01326738�

https://hal.science/hal-01326738
https://hal.archives-ouvertes.fr

An introduction to Differential Linear Logic:

proof-nets, models and antiderivatives

Thomas Ehrhard
CNRS, IRIF, UMR 8243

Univ Paris Diderot, Sorbonne Paris Cité F-75205 Paris, France

February 2016

Abstract

Differential Linear Logic enriches Linear Logic with additional logical
rules for the exponential connectives, dual to the usual rules of derelic-
tion, weakening and contraction. We present a proof-net syntax for Dif-
ferential Linear Logic and a categorical axiomatization of its denotational
models. We also introduce a simple categorical condition on these models
under which a general antiderivative operation becomes available. Last
we briefly describe the model of sets and relations and give a more de-
tailed account of the model of finiteness spaces and linear and continuous
functions.

Introduction

Extending Linear Logic (LL) with differential constructs has been considered by
Girard at a very early stage of the design of this system. This option appears
at various places in the conclusion of [Gir86], entitled Two years of linear logic:
selection from the garbage collector. In Section V.2 The quantitative attempt of
that conclusion, the idea of a syntactic Taylor expansion is explicitly mentioned
as a syntactic counterpart of the quantitative semantics of the λ-calculus [Gir88].
However it is contemplated there as a reduction process rather than as a trans-
formation on terms. In Section V.5 The exponentials, the idea of reducing
λ-calculus substitution to a more elementary linear operation explicitly viewed
as differentiation is presented as one of the basic intuitions behind the exponen-
tial of LL. The connection of this idea with Krivine’s Machine [Kri85, Kri07]
and its linear head reduction mechanism [DR99] is explicitly mentioned. In this
mechanism, first considered by De Bruijn and called mini-reduction in [DB87],
it is only the head occurrence of a variable which is substituted during reduc-
tion. This restriction is very meaningful in LL: the head occurrence is the only
occurrence of a variable in a term which is linear.

1

LL is based on the distinction of particular proofs among all proofs, that
are linear wrt. their hypotheses. The word linear has here two deeply related
meanings.

• An algebraic meaning: a linear morphism is a function which preserves
sums, linear combinations, joins, unions (depending on the context). In
most denotational models of LL, linear proofs are interpreted as functions
which are linear in that sense.

• An operational meaning: a proof is linear wrt. an hypothesis if the cor-
responding argument is used exactly once (neither erased nor duplicated)
during cut-elimination.

LL has an essential operation, called dereliction, which allows one to turn a
linear proof into a non linear one, or, more precisely, to forget the linearity of a
proof. Differentiation, which in some sense is the converse of dereliction, since
it turns a non linear morphism (proof) into a linear one, has not been included
in LL at an early stage of its development.

We think that there are two deep reasons for that omission.

• First, differentiation seems fundamentally incompatible with totality, a
denotational analogue of normalization usually considered as an essential
feature of any reasonable logical system. Indeed, turning a non-linear
proof into a linear one necessarily leads to a loss of information and to the
production of partial linear proofs. This is typically what happens when
one takes the derivative of a constant proof, which must produce a zero
proof.

• Second, they seem incompatible with determinism because, when one lin-
earizes a proof obtained by contracting two linear inputs of a proof, one
has to choose between these two inputs, and there is no canonical way of
doing so: we take the non-deterministic superposition of the two possi-
bilities. Syntactically, this means that one must accept the possibility of
adding proofs of the same formula, which is standard in mathematics, but
hard to accept as a primitive logical operation on proofs (although it is
present, in a tamed version, in the additive rules of LL).

The lack of totality is compatible with most mathematical interpretations of
proofs and with most denotational models of LL: Scott domains (or more pre-
cisely, prime algebraic complete lattices, see [Hut93, Win04, Ehr12]), dI-domains,
concrete data structures, coherence spaces, games, hypercoherence spaces etc.
Moreover, computer scientists are acquainted with the use of syntactic partial
objects (fix-point operators in programming languages, Böhm trees of the λ-
calculus etc.) and various modern proof formalisms, such as Girard’s Ludics,
also incorporate partiality for enlarging the world of “proof-objects” so as to
allow the simultaneous existence of “proofs” and “counter-proofs” in order to
obtain a rich duality theory on top of which a notion of totality discriminating
genuine proofs from partial proof-objects can be developed.

2

It is only when we observed that the differential extension of LL is the mirror
image of the structural (and dereliction) rules of LL that we considered this ex-
tension as logically meaningful and worth being studied more deeply. The price
to pay was the necessity of accepting an intrinsic non determinism and partial-
ity in logic (these two extensions being related: failure is the neutral element
of non-determinism), but the gain was a new viewpoint on the exponentials,
related to the Taylor Formula of calculus.

In LL, the exponential is usually thought of as the modality of duplicable
information. Linear functions are not allowed to copy their arguments and are
therefore very limited in terms of computational expressive power, the expo-
nential allows one to define non linear functions which can duplicate and erase
their arguments and are therefore much more powerful. This duplication and
erasure capability seems to be due to the presence of the rules of contraction
and weakening in LL, but this is not quite true: the genuinely infinite rule of LL
is promotion which makes a proof duplicable an arbitrary number of times, and
erasable. This fact could not be observed in LL because promotion is the only
rule of LL which allows one to introduce the “!” modality: without promotion,
it is impossible to build a proof object that can be cut on a contraction or a
weakening rule.

In Differential LL (DiLL), there are two new rules to introduce the “!” modal-
ity: coweakening and codereliction. The first of these rules allows one to intro-
duce an empty proof of type !A and the second one allows one to turn a proof
of type A into a proof of type !A, without making it duplicable in sharp contrast
with the promotion rule. The last new rule, called cocontraction, allows one to
merge two proofs of type !A for creating a new proof of type !A. This latter
rule is similar to the tensor rule of ordinary LL with the difference that the two
proofs glued together by a cocontraction must have the same type and cannot
be distinguished anymore deterministically, whereas the two proofs glued by a
tensor can be separated again by cutting the resulting proof against a par rule.
These new rules are called costructural rules to stress the symmetry with the
usual structural rules of LL.

DiLL has therefore a finite fragment which contains the standard “?” rules
(weakening, contraction and dereliction) as well as the new “!” ones (coweaken-
ing, cocontraction and codereliction), but not the promotion rule. Cut elimina-
tion in this system generates sums of proofs, and therefore it is natural to endow
proofs with a vector space (or module) structure over a field (or more generally
over a semi-ring1). This fragment has the following pleasant properties:

• It enjoys strong normalization, even in the untyped case, as long as one
considers only proof-nets which satisfy a correctness criterion similar to
the standard Danos-Regnier criterion for multiplicative LL (MLL).

• In this fragment, all proofs are linear combinations of “simple proofs”
which do not contain linear combinations: this is possible because all the

1This general setting allows us to cover also “qualitative” situations where sums of proofs
are lubs in a poset.

3

syntactic constructions of this fragment are multilinear. So proofs are
similar to polynomials or power series, simple proofs playing the role of
monomials in this algebraic analogy which is strongly suggested by the
denotational models of DiLL.

Moreover, it is possible to transform any instance of the promotion rule (which is
applied to a sub-proof π) into an infinite linear combination of proofs containing
copies of π: this is the Taylor expansion of promotion. This operation can be
applied hereditarily to all instances of the promotion rule in a proof, giving
rise to an infinite linear combinations of promotion-free DiLL simple proofs with
positive rational coefficients.

Outline.

We start with a syntactic presentation of DiLL, in a proof-net formalism which
uses terms instead of graphs (in the spirit of Abramsky’s linear chemical abstract
machine [Abr93] or of the formalisms studied by Fernandez and Mackie, see for
instance [FM99, MS08]) and we present a categorical formalism which allows
us to describe denotational models of DiLL. We define the interpretation of
proof-nets in such categories.

Then we shortly describe a differential λ-calculus formalism and we summa-
rize some results, giving bibliographical references.

The end of the paper is devoted to concrete models of DiLL. We briefly review
the relational model, which is based on the ∗-autonomous category of sets and
relations (with the usual cartesian product of sets as tensor product) because
it underlies most denotational models of (differential) LL. Then we describe the
finiteness space model which was one of our main motivations for introducing
DiLL. We provide a thorough description of this model, insisting on various
aspects which were not covered by our initial presentation in [Ehr05] such as
linear boundedness (whose relevance in this semantical setting has been pointed
out by Tasson in [Tas09b, Tas09a]), or the fact that function spaces in the Kleisli
category admit an intrinsic description.

One important step in our presentation of the categorical setting for in-
terpreting differential LL is the notion of an exponential structure. It is the
categorical counterpart of the finitary fragment of DiLL, that is, the fragment
DiLL0 where the promotion rule is not required to hold.

An exponential structure consists of a preadditive2 ∗-autonomous category
L together with an operation which maps any object X of L to an object
!X of L equipped with a structure of ⊗-bialgebra (representing the structural
and costructural rules) as well as a “dereliction” morphism in L(!X,X) and
a “codereliction” morphism L(X, !X). The important point here is that the
operation X 7→ !X is not assumed to be functorial (it has nevertheless to be a

2This means that the monoidal category is enriched over commutative monoids. Actually,
we assume more generally that it is enriched over the category of k-modules, where k is a
given semi-ring.

4

functor on isomorphisms). Using this simple structure, we define in particular
morphisms ∂X ∈ L(!X ⊗X, !X) and ∂X ∈ L(!X, !X ⊗X).

An element of L(!X,Y) can be considered as a non-linear morphism from X
to Y (some kind of generalized polynomial, or analytical function), but these
morphisms cannot be composed. It is nevertheless possible to define a notion of
polynomial such morphism, and these polynomial morphisms can be composed,
giving rise to a category which is cartesian if L is cartesian.

By composition with ∂X ∈ L(!X⊗X, !X), any element f of L(!X,Y) can be
differentiated, giving rise to an element f ′ of L(!X⊗X,Y) that we consider as its
derivative3. This operation can be performed again, giving rise to f ′′ ∈ L(!X ⊗
X ⊗X,Y) and, assuming that cocontraction is commutative, this morphism is
symmetric in its two last linear parameters (a property usually known as Shwarz
Lemma).

In this general context, a very natural question arises. Given a morphism
g ∈ L(!X ⊗ X,Y) whose derivative g′ ∈ L(!X ⊗ X ⊗X,Y) is symmetric, can
one always find a morphism f ∈ L(!X,Y) such that g = f ′? Inspired by the
usual proof of Poincaré’s Lemma, we show that such an antiderivative is always
available as soon as the natural morphism Id!X +(∂X ∂X) ∈ L(!X, !X) is an
isomorphism for each object X. We explain how this property is related to
a particular case of integration by parts. We also describe briefly a syntactic
version of antiderivatives in a promotion-free differential λ-calculus.

To interpret the whole of DiLL, including the promotion rule, one has to
assume that ! is an endofunctor on L and that this functor is endowed with a
structure of comonad and a monoidal structure; all these data have to satisfy
some coherence conditions wrt. the exponential structure. These conditions
are essential to prove that the interpretation of proof-nets is invariant under
the various reduction rules, among which the most complicated one is an LL
version of the usual chain rule of calculus. Our main references here are the
work of Bierman [Bie95], Melliès [Mel09] and, for the commutations involving
costructural logical rules, our concrete models [Ehr05, Ehr02], the categorical
setting developed by Blute, Cockett and Seely [BCS06] and, very importantly,
the work of Fiore [Fio07].

One major a priori methodological principle applied in this paper is to stick
to Classical Linear Logic, meaning in particular that the categorical models we
consider are ∗-autonomous categories. This is justified by the fact that most
of the concrete models we have considered so far satisfy this hypothesis (with
the noticeable exception of [BET12]) and it is only in this setting that the new
symmetries introduced by the differential and costructural rules appear clearly.
A lot of material presented in this paper could probably be carried to a more
general intuitionistic Linear Logic setting.

Some aspects of DiLL are only alluded to in this presentation, the most

3Or differential, or Jacobian: by monoidal closedness, f ′ can be seen as an element of
L(!X,X (Y) where X (Y is the object of morphisms from X to Y in L, that is, of linear
morphisms from X to Y , and the operation f 7→ f ′ satisfies all the ordinary properties of
differentiation.

5

significant one being certainly the Taylor expansion formula and its connection
with linear head reduction. On this topic, we refer to [ER08, ER06, Ehr10].

Note on this version.

A final version of this paper will appear in Mathematical Structures in Computer
Science. The first version of this survey (already containing the material on
antiderivatives) has been written in 2011 and has been improved and enriched
since that time.

Notations

In this paper, a set of coefficients is needed, which has to be a commutative
semi-ring. This set will be denoted as k. In Section 4.3, k will be assumed to
be a field but this assumption is not needed before that section.

1 Syntax for DiLL proof-structures

We adopt a presentation of proof-structures and proof-nets which is based on
terms and not on graphs. We believe that this presentation is more suitable
to formalizable mathematical developments, although it sometimes gives rise
to heavy notations, especially when one has to deal with the promotion rule
(Section 1.5). We try to provide graphical intuitions on proof-structures by
means of figures.

1.1 General constructions

1.1.1 Simple proof-structures.

Let V be an infinite countable set of variables. This set is equipped with an
involution x 7→ x such that x 6= x for each x ∈ V.

Let u ⊆ V. An element x of u is bound in u if x ∈ u. One says that u is
closed if all the elements of u are bound in u. If x is not bound in u, one says
that x is free in u.

Let Σ be a set of tree constructors, given together with an arity map ar :
Σ→ N.

Proof trees are defined as follows, together with their associated set of vari-
ables:

• if x ∈ V then x is a tree and V(x) = {x};

• if ϕ ∈ Σn (that is ϕ ∈ Σ and ar(ϕ) = n) and if t1, . . . , tn are trees
with V(ti) ∩ V(tj) = ∅ for i 6= j, then t = ϕ(t1, . . . , tn) is a tree with
V(t) = V(ti) ∪ · · · ∪ V(tn). As usual, when ϕ is binary, we often use the
infix notation t1 ϕ t2 rather than ϕ(t1, t2).

6

A cut is an expression 〈t | t′〉 where t and t′ are trees such that V(t)∩V(t′) = ∅.
We set V(c) = V(t) ∪ V(t′).

A simple proof-structure is a pair p = (−→c ;
−→
t) where

−→
t is a list of proof

trees and −→c is a list of cuts, whose sets of variables are pairwise disjoint.

Remark : The order of the elements of −→c does not matter; we could have used
multisets instead of sequences. In the sequel, we consider these sequences of
cuts up to permutation.

Bound variables of V(p) can be renamed in the obvious way in p (rename
simultaneously x and x avoiding clashes with other variables which occur in
p) and simple proof-structures are considered up to such renamings: this is α-
conversion. Let FV(p) be the set of free variables of p. We say p is closed if
FV(p) = ∅.

The simplest simple proof-structure is of course (;). A less trivial closed
simple proof-structure is (〈x |x〉 ;) which is a loop.

1.1.2 LL types.

LetA be a set of type atoms ranged over by α, β, . . . , together with an involution
α 7→ α such that α 6= α. Types are defined as follows.

• if α ∈ A then α is a type;

• if A and B are types then A⊗B and A`B are types;

• if A is a type then !A and ?A are types.

The linear negation A⊥ of a type A is given by the following inductive definition:
α⊥ = α, (A ⊗ B)⊥ = A⊥`B⊥; (A`B)⊥ = A⊥ ⊗ B⊥; (!A)⊥ = ?A⊥ and
(?A)⊥ = !A⊥.

An MLL type is a type built using only the ⊗ and ` constructions4.

1.2 Proof-structures for MLL

Assume that Σ2 = {⊗,`} and that ar(⊗) = ar(`) = 2.
A typing context is a finite partial function Φ (of domain D(Φ)) from V to

formulas such that Φ(x) = (Φ(x))⊥ whenever x, x ∈ D(Φ).

1.2.1 Typing rules.

We first explain how to type MLL proof trees. The corresponding typing judg-
ments of the form Φ `0 t : A where Φ is a typing context, t is a proof tree and
A is a formula.

The rules are

Φ, x : A `0 x : A
4We do not consider the multiplicative constants 1 and ⊥ because they are not essential

for our purpose.

7

Φ `0 s : A Φ `0 t : B

Φ `0 s⊗ t : A⊗B
Φ `0 s : A Φ `0 t : B

Φ `0 s`t : A`B
Given a cut c = 〈s | s′〉 and a typing context Φ, one writes Φ `0 c if there is

a type A such that Φ `0 s : A and Φ `0 s
′ : A⊥.

Last, given a simple proof-structure p = (~c ; ~s) with ~s = (s1, . . . , sn) and
~c = (c1, . . . , ck), a sequence Γ = (A1, . . . , Al) of formulas and a typing context
Φ, one writes Φ `0 p : Γ if l = n and Φ `0 si : Ai for 1 ≤ i ≤ n and Φ `0 ci for
1 ≤ i ≤ k.

1.2.2 Logical judgments.

A logical judgment is an expression Φ ` p : Γ where Φ is a typing context, p is
a simple proof-structure and Γ is a list of formulas.

If one can infer that Φ ` p : Γ, this means that the proof-structure p repre-
sents a proof of Γ. Observe that the inference rules coincide with the rules of
the MLL sequent calculus.

We give now these logical rules.

axiom
Φ, x : A, x : A⊥ ` (; x, x) : A,A⊥

Φ ` (~c ; t1, . . . , tn) : A1, . . . , An
permutation rule, σ ∈ Sn

Φ ` (~c ; tσ(1), . . . , tσ(n)) : Aσ(1), . . . , Aσ(n)

Φ ` (−→c ; −→s , s) : Γ, A Φ ` (
−→
d ;
−→
t , t) : ∆, A⊥

cut rule
Φ ` (−→c ,

−→
d , 〈s | t〉 ; −→s ,−→t) : Γ,∆

Φ ` (−→c ;
−→
t , s, t) : Γ, A,B `-rule

Φ ` (−→c ;
−→
t , s`t) : Γ, A`B

Φ ` (−→c ; −→s , s) : Γ, A Φ ` (
−→
d ;
−→
t , t) : ∆, B

⊗-rule
Φ ` (−→c ,

−→
d ; −→s ,−→t , s⊗ t) : Γ,∆, A⊗B

We add the mix rule for completeness because it is quite natural denotationally.
Notice however that it is not necessary. In particular, mix-free proof-nets are
closed under cut elimination.

Φ ` (~c ; ~s) : Γ Φ ` (~d ; ~t) : ∆
mix rule

Φ ` (~c, ~d ; ~s,~t) : Γ,∆

Lemma 1 If Φ ` p : Γ then Φ `0 p : Γ and V(p) is closed.

Proof.

Straightforward induction on derivations. 2

8

1.3 Reducing proof-structures

The basic reductions concern cuts, and are of the form

c;cut (
−→
d ;
−→
t)

where c is a cut,
−→
d = (d1, . . . , dn) is a sequence of cuts and

−→
t = (t1, . . . , tk) is

a sequence fo trees.
With similar notational conventions, here are the deduction rules for the

reduction of MLL proof-structures.

c;cut (
−→
d ;
−→
t)

context
(c,
−→
b ; −→s) ;cut (

−→
d ,
−→
b ; −→s ,−→t)

x /∈ V(s)
ax-cut

(〈x | s〉,−→c ;
−→
t) ;cut (−→c ;

−→
t) [s/x]

For applying the latter rule (see Figure 3), we assume that x /∈ V(s). Without
this restriction, we would reduce the cyclic proof-structure (〈x |x〉 ;) to (;) and
erase the cycle which is certainly not acceptable from a semantic viewpoint. For
instance, in a model of proof-structures based on finite dimension vector spaces,
the semantics of (〈x |x〉 ;) would be the dimension of the space interpreting the
type of x (trace of the identity).

Remark : We provide some pictures to help understand the reduction rules
on proof structures. In these pictures, logical proof-net constructors (such as
tensor, par etc.) are represented as white triangles labeled by the corresponding
symbol – they correspond to the cells of interaction nets or to the links of proof-
nets – and subtrees are represented as gray triangles.

Wires represent the edges of a proof tree. We also represent axioms and
cuts as wires: an axiom looks like and a cut looks like . In Figure 3, we
indicate the variables associated with the axiom, but in the next pictures, this
information will be kept implicit.

Figure 1 represents the simple proof-structure

p = (〈s1 | s′1〉, . . . , 〈sn | s′n〉 ; t1, . . . , tk) .

with free variables x1, . . . , xl. The box named axiom links contains axioms con-
necting variables occurring in the trees s1, . . . , sn, s

′
1, . . . , s

′
n, t1, . . . , tk. When

we do not want to be specific about its content, we represent such a simple
proof-structure as in Figure 2 by a gray box with indices 1, . . . , k on its border
for locating the roots of the trees of p. The same kind of notation will be used
also for proof-structures which are not necessarily simple, see the beginning of
Paragraph 1.4.3 for this notion.

In MLL, we have only one basic reduction (see Figure 4):

〈s1`s2 | t1 ⊗ t2〉;cut (〈s1 | t1〉, 〈s2 | t2〉 ;)

9

axiom links

p =
s1

. . .

s′1

. . .

sn

. . .

s′n

. . .

. . .
t1 tk

.

. . .

x1 xl
. . .

Figure 1: A simple proof-structure

p
1 k

. . .

x1 xl
. . .

Figure 2: A synthetic representation of the proof-structure of Figure 1

1.4 DiLL0

This is the promotion-free fragment of differential LL. In DiLL0, one extends the
signature of MLL with new constructors:

• Σ0 = {w,w}, called respectively weakening and coweakening.

• Σ1 = {d, d}, called respectively dereliction and codereliction.

• Σ2 = {`,⊗, c, c}, the two new constructors being called respectively con-
traction and cocontraction.

• Σn = ∅ for n > 2.

1.4.1 Typing rules.

The typing rules for the four first constructors are similar to those of MLL.

Φ `0 w : ?A Φ `0 w : !A

Φ `0 t : A

Φ `0 d(t) : ?A

Φ `0 t : A

Φ `0 d(t) : !A

The two last rules require the subtrees to have the same type.

Φ `0 s1 : ?A Φ `0 s2 : ?A

Φ `0 c(s1, s2) : ?A

Φ `0 s1 : !A Φ `0 s2 : !A

Φ `0 c(s1, s2) : !A

10

(−→c ;
−→
t)

x x

s ;cut (−→c ;
−→
t)

s

Figure 3: The axiom/cut reduction

` ⊗

s1 s2 t1 t2

;cut

s1 s2 t1 t2

Figure 4: The tensor/par reduction

1.4.2 Logical rules.

The additional logical rules are as follows.

Φ ` (−→c ; −→s) : Γ
weakening

Φ ` (−→c ; −→s ,w) : Γ, ?A

co-weakening
Φ ` (; w) : !A

Φ ` (−→c ; −→s , s) : Γ, A
dereliction

Φ ` (−→c ; −→s , d(s)) : Γ, ?A

Φ ` (−→c ; −→s , s) : Γ, A
co-dereliction

Φ ` (−→c ; −→s , d(s)) : Γ, !A

Φ ` (−→c ; −→s , s1, s2) : Γ, ?A, ?A
contraction

Φ ` (−→c ; −→s , c(s1, s2)) : Γ, ?A

Φ ` (−→c ; −→s , s) : Γ, !A Φ ` (
−→
d ;
−→
t , t) : ∆, !A

co-contraction
Φ ` (−→c ,

−→
d ; −→s ,−→t , c(s, t)) : Γ,∆, !A

1.4.3 Reduction rules.

To describe the reduction rules associated with these new constructions, we need
to introduce formal sums (or more generally k-linear combinations) of simple
proof-structures called proof-structures in the sequel, and denoted with capital
letters P,Q, . . . Such an extension by linearity of the syntax was already present
in [ER03].

The empty linear combination 0 is a particular proof-structure which plays
an important role. As linear combinations, proof-structures can be linearly
combined.

The typing rule for linear combinations is

11

? ! ;cut

Figure 5: Weakening/coweakening reduction

?

s

! ;cut 0 ? !

t

;cut 0

Figure 6: Dereliction/coweakening and weakening/codereliction reductions

∀i ∈ {1, . . . , n} Φ ` pi : Γ and µi ∈ k
sum

Φ `
∑n
i=1 µi pi : Γ

The new basic reduction rules are:

〈w |w〉;cut (;) see Figure 5.

〈d(s) |w〉;cut 0

〈w | d(t)〉;cut 0 see Figure 6.

〈c(s1, s2) |w〉;cut (〈s1 |w〉, 〈s2 |w〉 ;)

〈w | c(t1, t2)〉;cut (〈w | t1〉, 〈w | t2〉 ;) see Figure 7.

〈d(s) | d(t)〉;cut (〈s | t〉 ;) see Figure 8.

〈c(s1, s2) | d(t)〉;cut (〈s1 | d(t)〉, 〈s2 |w〉 ;) + (〈s1 |w〉, 〈s2 | d(t)〉 ;)

〈d(s) | c(t1, t2)〉;cut (〈d(s) | t1〉, 〈w | t2〉 ;) + (〈w | t1〉, 〈d(s) | t2〉 ;)

see Figure 9.

〈c(s1, s2) | c(t1, t2)〉
;cut (〈s1 | c(x11, x12)〉, 〈s2 | c(x21, x22)〉, 〈c(x11, x21) | t1〉, 〈c(x12, x22) | t2〉 ;)

see Figure 10.

In the last reduction rule, the four variables that we introduce are pairwise
distinct and fresh. Up to α-conversion, the choice of these variables is not
relevant.

The contextual rule must be extended, in order to take sums into account.

c;cut P
context

(c,
−→
b ; −→s) ;cut

∑
p=(−→c ;

−→
t)
Pp · (−→c ,

−→
b ; −→s ,−→t)

Remark : In the premise of this rule, P is a linear combination of proof-
structures, so that for a given proof-structure p = (−→c ;

−→
t), Pp ∈ k is the

coefficient of the proof-structure p in this linear combination P . The sum which
appears in the conclusion ranges over all possible proof-structures p, but there
are only finitely many p’s such that Pp 6= 0 so that this sum is actually finite.

A particular case of this rule is c;cut 0 ⇒ (c,
−→
b ; −→s) ;cut 0.

12

?

s1 s2

! ;cut
s1 ! s2 !

? !

t1 t2

;cut
t1? t2?

Figure 7: Contraction/coweakening and weakening/cocontraction reductions

? !

s t

;cut

s t

Figure 8: Dereliction/codereliction reduction

1.5 Promotion

Let p = (−→c ; −→s) be a simple proof-structure. The width of p is the number of
elements of the sequence −→s .

By definition, a proof-structure of width n is a finite linear combination of
simple proof-structures of width n.

Observe that 0 is a proof-structure of width n for all n.
Let P be a proof-structure5 of width n+1. We introduce a new constructor6

called promotion box, of arity n:

P !(n) ∈ Σn .

The presence of n in the notation is useful only in the case where P = 0 so it
can most often be omitted. The use of a non necessarily simple proof structure
P in this construction is crucial: promotion is not a linear construction and is
actually the only non linear construction of (differential) LL.

So if t1, . . . , tn are trees, P !(n)(t1, . . . , tn) is a tree. Pictorially, this tree will
typically be represented as in Figure 11. A simple net p appearing in P is
typically of the form (−→c ; −→s) and its width is n+ 1, so that −→s = (s1, . . . , sn, s).
The indices 1, . . . , n and • which appear on the gray rectangle representing P
stand for the roots of these trees s1, . . . , sn and s.

5To be completely precise, we should also provide a typing environment for the free variables
of P ; this can be implemented by equipping each variable with a type.

6The definitions of the syntax of proof trees and of the signature Σ are mutually recursive
when promotion is taken into account.

13

? !

s1 s2 t

;cut +

s1 t

!

s2

!

s1

!

s2 t

!

? !

t1 t2s

;cut +

s t1

?
?

t2 t1

?

s t2

?

Figure 9: Contraction/codereliction and dereliction/cocontraction reductions

? !

s1 s2 t1 t2

;cut

s1 s2 t1 t2!! ? ?

Figure 10: Contraction/cocontraction reduction

1.5.1 Typing rule.

The typing rule for this construction is

Φ `0 P : ?A⊥1 , . . . , ?A
⊥
n , B Φ `0 ti : !Ai (i = 1, . . . , n)

Φ `0 P
!(n)(t1, . . . , tn) : !B

1.5.2 Logical rule.

The logical rule associated with this construction is the following.

Φ ` P : ?A⊥1 , . . . , ?A
⊥
n , B Φ ` (−→ci ;

−→
ti , ti) : Γi, !Ai (i = 1, . . . , n)

Φ ` (−→c1 , . . . ,−→cn ;
−→
t1 , . . . ,

−→
tn , P

!(n)(t1, . . . , tn)) : Γ1, . . . ,Γn, !B

Remark : This promotion rule is of course highly debatable. We choose this
presentation because it is compatible with our tree-based presentation of proof-
structures.

14

!

P
1 n

•

t1 tn

· · ·

Figure 11: Graphical representation of a tree whose outermost constructor is a
promotion box

!

P•

· · ·

t1 tn

1 n

?

;cut · · ·t1 ? tn ?

Figure 12: Promotion/weakening reduction

1.5.3 Cut elimination rules.

The basic reductions associated with promotion are as follows.

〈P !(n)(t1, . . . , tn) |w〉;cut (〈t1 |w〉, . . . , 〈tn |w〉 ;) see Figure 12.

〈P !(n)(t1, . . . , tn) | d(s)〉;cut∑
p=(−→c ;−→s ,s′)

Pp · (−→c , 〈s1 | t1〉, . . . , 〈sn | tn〉, 〈s′ | s〉 ;)

see Figure 13.

〈P !(n)(t1, . . . , tn) | c(s1, s2)〉;cut (〈P !(n)(x1, . . . , xn) | s1〉, 〈P !(n)(y1, . . . , yn) | s2〉,
〈t1 | c(x1, y1)〉, . . . , 〈tn | c(xn, yn)〉 ;)

see Figure 14.

In the second reduction rule, one has to avoid clashes of variables.
In the last reduction rules, the variables x1, . . . , xn and y1, . . . , yn that we

introduce together with their covariables are assumed to be pairwise distinct
and fresh. Up to α-conversion, the choice of these variables is not relevant.

1.5.4 Commutative reductions.

There are also auxiliary reduction rules sometimes called commutative reduc-
tions which do not deal with cuts — at least in the formalization of nets we
present here.

15

!

P•

· · ·

t1 tn

1 n

?

s
P· · ·;cut

t1 tn s
1 •n

· · ·

Figure 13: Promotion/dereliction reduction

!

P•

· · ·

t1 tn

1 n

?

s1 s2

· · ·t1 ? tn ?

!

P•

· · ·
1 n

s1

!

P•

· · ·
1 n

s2

;cut

Figure 14: Promotion/contraction reduction

The format of these reductions is

t;com P

where t is a simple tree and P is a (not necessarily simple) proof-structure whose
width is exactly 1.

The first of these reductions is illustrated in Figure 15 and deals with the
interaction between two promotions.

P !(n+1)(t1, . . . , ti−1, Q
!(k)(ti, . . . , tk+i−1), tk+i, . . . , tk+n)

;com (; R!(k+n)(t1, . . . , tk+n)) (1)

where

R =
∑

p=(−→c ; s1,...,sn+1,s)

Pp · (−→c , 〈si |Q!(k)(x1, . . . , xk)〉 ;

s1, . . . , si−1, x1, . . . , xk, si+1, . . . , sn+1, s) .

16

Remark : In Figure 15 and 17, for graphical reasons, we don’t follow exactly the
notations used in the text. For instance in Figure 15, the correspondence with
the notations of (1) is given by v1 = t1,. . . ,vi−1 = ti−1, u1 = ti,. . . , uk = tk+i−1,
vi = tk+i,. . . ,vn = tk+n.

Remark : Figure 15 is actually slightly incorrect as the connections between the
“auxiliary ports” of the cocontraction rule within the promotion box of the right
hand proof-structure and the main ports of the trees u1, . . . , uk are represented
as vertical lines whereas they involve axioms (corresponding to the pairs (xi, xi)
for i = 1, . . . , k in the formula above). The same kind of slight incorrectness
occurs in figure 17.

The three last commutative reductions deal with the interaction between a
promotion and the costructural rules.

Interaction between a promotion and a coweakening, see Figure 16:

P !(n+1)(t1, . . . , ti−1,w, ti, . . . , tn) ;com (; R!(n)(t1, . . . , tn))

where

R =
∑

p=(−→c ;−→s ,s)

Pp · (−→c , 〈si |w〉 ; s1, . . . , si−1, si+1, . . . , sn+1, s) .

Interaction between a promotion and a cocontraction, see Figure 17:

P !(n+1)(t1, . . . , ti−1, c(ti, ti+1), ti+2, . . . , tn+2) ;com (; R!(n+2)(t1, . . . , tn+2))
(2)

where

R =
∑

p=(−→c ;−→s ,s)

Pp(
−→c , 〈si | c(x, y)〉 ; s1, . . . , si−1, x, y, si, . . . , sn, s) .

The interaction between a promotion and a codereliction is a syntactic ver-
sion of the chain rule of calculus, see Figure 18.

P !(n+1)(t1, . . . , ti−1, d(u), ti+1, . . . , tn+1)

;com

∑
p=(−→c ; s1,...,sn+1,s)

Pp · (〈si | d(u)〉,

〈c(x1, s1) | t1〉, . . . , ̂〈c(xi, si) | ti〉, . . . , 〈c(xn+1, sn+1) | tn+1〉 ;
c(P !(n+1)(x1, . . . , xi−1,w, xi+1, . . . , xn+1), d(s)))

where we use the standard notation a1, . . . , âi, . . . , an for the sequence

a1, . . . , ai−1, ai+1, . . . , an .

We also have to explain how these commutative reductions can be used in
arbitrary contexts. We deal first with the case where such a reduction occurs
under a constructor symbol ϕ ∈ Σn+1.

17

!

P

!

Qv1 vn

· · · · · ·
1 ni

•

1 k

•

u1 uk

· · ·

;com

!

P

· · ·
1 n

i•

!

Q
1 k

•

u1 uk

· · ·

v1 vn

Figure 15: Promotion/promotion commutative reduction

!

P

t1 tn

· · · · · ·

!

1 ni

•

;com

!

P

t1 tn

· · ·

!

1 n

i•

Figure 16: Promotion/coweakening commutative reduction

t;com P

ϕ(−→u , t,−→v) ;com

∑
p=(−→c ;w) Pp · (

−→c ; ϕ(−→u ,w,−→v))

Next we deal with the case where t occurs in outermost position in a proof-
structure. There are actually two possibilities.

t;com P

(−→c ; −→u , t,−→v) ;com

∑
p=(
−→
d ;w)

Pp · (−→c ,
−→
d ; −→u ,w,−→v)

t;com P

(〈t | t′〉,−→c ;
−→
t) ;com

∑
p=(
−→
d ;w)

Pp · (−→c ,
−→
d , 〈w | t′〉 ; −→t)

We use ; for the union of the reduction relations ;cut and ;com.
This formalization of nets enjoys a subject reduction property.

Theorem 2 If Φ ` p : Γ and p; P then Φ′ ` P : Γ for some Φ′ which extends
Φ.

18

!

P

v1 vn

· · · · · ·

!

u1 u2

1 ni

•

;com

!

P

v1 vn

· · ·

!

u1 u2

1 n

i•

Figure 17: Promotion/cocontraction commutative reduction rules

!

P

t1 tn

· · · · · ·

!

u

1 ni

•

;com

!

P

· · · · · ·
1 ni

•

!

· · ·t1 ? tn ?

P

· · · · · ·
1 ni •!

u

!

!

Figure 18: Promotion/codereliction commutative reduction (Chain Rule)

The proof is a rather long case analysis. We need to consider possible extensions
of Φ because of the fresh variables which are introduced by several reduction
rules.

1.6 Correctness criterion and properties of the reduction

Let P be proof-structure, Φ be a closed typing context and Γ be a sequence of
formulas such that Φ `0 P : Γ. One says that P is a proof-net if it satisfies
Φ ` P : Γ. A correctness criterion is a criterion on P which guarantees that P
is a proof-net; of course, saying that Φ ` P : Γ is a correctness criterion, but
is not a satisfactory one because it is not easy to prove that it is preserved by
reduction.

Various such criteria can be found in the literature, but most of them apply
to proof-structures considered as graphical objects and are not very suitable
to our term-based approach. We rediscovered recently a correctness criterion
initially due to Rétoré [Ret03] which seems more convenient for the kind of

19

presentation of proof-structures that we use here, see [Ehr14]. This criterion,
which is presented for MLL, can easily be extended to the whole of DiLL.

So far, the reduction relation ; is defined as a relation between simple
proof-structures and proof-structures. It must be extended to a relation between
arbitrary proof-structures. This is done by means of the following rules

p; P

p+Q; P +Q

p; P µ ∈ k \ {0}
µ · p; µ · P

As it is defined, our reduction relation does not allow us to perform the reduction
within boxes. To this end, one should add the following rule.

P ; Q

P !(n)(t1, . . . , tn) ; Q!(n)(t1, . . . , tn)

It is then possible to prove basic properties such as confluence and normal-
ization7. For these topics, we refer mainly to the work of Pagani [Pag09], Tran-
quilli [PT09, Tra09, PT11], Gimenez [Gim11]. We also refer to Vaux [Vau09]
for the link between the algebraic properties of k and the properties of ;, in a
simpler λ-calculus setting.

Of course these proofs should be adapted to our presentation of proof struc-
tures. This has not been done yet but we are confident that it should not lead
to difficulties.

2 Categorical denotational semantics

We describe now the denotational semantics of DiLL in a general categorical
setting. This will give us an opportunity to provide more intuitions about
the rules of this system. More intuition about the meaning of the differential
constructs of DiLL is given in Section 3.

2.1 Notations and conventions

Let C be a category. Given objects X and Y of C, we use C(X,Y) for the set
of morphisms from X to Y . Given f ∈ C(X,Y) and g ∈ C(Y,Z), we use g f for
the composition of f and g, which belongs to C(X,Z). In specific situations, we
use also the notation g ◦ f . When there are no ambiguities, we use X instead
of IdX to denote the identity from X to X.

Given n ∈ N and a functor F : C → D, we use the same notation F
for the functor Cn → Dn defined in the obvious manner: F (X1, . . . , Xn) =
(F (X1), . . . , F (Xn)) and similarly for morphisms. If F,G : C → D are functors
and if T is a natural transformation, we use again the same notation T for the
corresponding natural transformation between the functors F,G : Cn → Dn, so
that TX1,...,Xn = (TX1

, . . . , TXn).

7For confluence, one needs to introduce an equivalence relation on proof-structures which
expresses typically that contraction is associative, see [Tra09]. For normalization, some con-
ditions have to be satisfied by k; typically, it holds if one assumes that k = N but difficulties
arise if k has additive inverses.

20

2.2 Monoidal structure

A symmetric monoidal category is a structure (L, I,�, λ, ρ, α, σ) where L is a
category, I is an object of L, � : L2 → L is a functor and λX ∈ L(I � X,X),
ρX ∈ L(X � I,X), αX,Y,Z ∈ L((X � Y) � Z,X � (Y � Z)) and σX,Y ∈
L(X � Y, Y � X) are natural isomorphisms satisfying coherence conditions
which can be expressed as commutative diagrams, and that we do not recall
here. Following McLane [Mac71], we present these coherence conditions using
a notion of monoidal trees (called binary words in [Mac71]).

Monoidal trees (or simply trees when there are no ambiguities) are defined
by the following syntax.

• 〈〉 is the empty tree

• ∗ is the tree consisting of just one leaf

• and, given trees τ1 and τ2, 〈τ1, τ2〉 is a tree.

Let L(τ) be the number of leaves of τ , defined by

L(〈〉) = 0

L(∗) = 1

L(〈τ1, τ2〉) = L(τ1) + L(τ2) .

Let Tn be the set of trees τ such that L(τ) = n. This set is infinite for all n.
Let τ ∈ Tn. Then we define in an obvious way a functor �τ : Ln → L. On

object, it is defined as follows:

�〈〉 = I

�∗X = X

�〈τ1,τ2〉(X1, . . . , XL(τ1), Y1, . . . , YL(τ2)) = (�τ1(
−→
X)) � (�τ2(

−→
Y)) .

The definition on morphisms is similar.

2.2.1 Generalized associativity.

Given τ1, τ2 ∈ Tn, the isomorphisms λ, ρ and α of the monoidal structure of L
allow us to build an unique natural isomorphism �τ1τ2 from �τ1 to �τ2 . We have
in particular

λX = �〈〈〉,∗〉∗ X

ρX = �〈∗,〈〉〉∗ X

αX,Y,Z = �〈〈∗,∗〉,∗〉〈∗,〈∗,∗〉〉X,Y,Z

The coherence commutation diagrams (which include the McLane Pentagon)
allow one indeed to prove that all the possible definitions of an isomorphism

21

�τ1(
−→
X) → �τ2(

−→
X) using these basic ingredients give rise to the same result.

This is McLane coherence Theorem for monoidal categories. In particular the
following properties will be quite useful:

�ττ−→X = Id
�τ (
−→
X)

and �τ2τ3−→X �
τ1
τ2
−→
X

= �τ1τ3−→X . (3)

We shall often omit the indexing sequence
−→
X when using these natural isomor-

phisms, writing �στ instead of �στ−→X .

2.2.2 Generalized symmetry.

Let n ∈ N. Let ϕ ∈ Sn, we define a functor ϕ̂ : Ln → Ln by ϕ̂(X1, . . . , Xn) =
(Xϕ(1), . . . , Xϕ(n))

Assume that the monoidal category L is also symmetric. The corresponding
additional structure allows one to define a natural isomorphism �̂ϕ,τ from the
functor �τ to the functor �τ ◦ ϕ̂. The correspondence ϕ 7→ �̂ϕ,τ is of course
functorial. Moreover, given σ, τ ∈ Tn and ϕ ∈ Sn, the following diagram is
commutative

�σ
−→
X �σϕ̂(

−→
X)

�τ
−→
X �τ ϕ̂(

−→
X)

�̂ϕ,σ

�στ �στ

�̂ϕ,τ

(4)

This is a consequence of McLane coherence Theorem for symmetric monoidal
categories.

2.3 *-autonomous categories

A *-autonomous category is a symmetric monoidal category (L,⊗, λ, ρ, α, σ)
equipped with the following structure:

• an endomap on the objects of L that we denote as X 7→ X⊥;

• for each object X, an evaluation morphism ev⊥ ∈ L(X⊥ ⊗X,⊥), where
⊥ = 1⊥;

• a curryfication function cur⊥ : L(U ⊗X,⊥)→ L(U,X⊥)

subject to the following equations (with f ∈ L(U ⊗X,⊥) and g ∈ L(V,U), so
that g ⊗X ∈ L(V ⊗X,U ⊗X)):

ev⊥ (cur⊥(f)⊗X) = f

cur⊥(f) g = cur⊥(f (g ⊗X))

cur⊥(ev⊥) = Id .

Then cur⊥ is a bijection. Indeed, let g ∈ L(U,X⊥). Then g ⊗ X ∈ L(U ⊗
X,X⊥⊗X) and hence ev⊥ (g⊗X) ∈ L(U ⊗X,⊥). The equations allow one to
prove that the function g 7→ ev⊥ (g ⊗X) is the inverse of the function cur⊥.

22

For any object X of L, let ηX = cur⊥(ev⊥ σX,X⊥) ∈ L(X,X⊥⊥).
The operation X 7→ X⊥ can be extended into a functor Lop → L as follows.

Let f ∈ L(X,Y), then ηY f ∈ L(X,Y ⊥⊥), so ev⊥ ((ηY f)⊗Y ⊥) ∈ L(X⊗Y ⊥,⊥)
and we set f⊥ = cur⊥(ev⊥ ((ηY f) ⊗ Y ⊥)σY ⊥,X) ∈ L(Y ⊥, X⊥). It can be
checked that this operation is functorial.

We assume last that ηX is an iso for each object X.
One sets X (Y = (X ⊗ Y ⊥)⊥ and one defines an evaluation morphism

ev ∈ L((X (Y)⊗X,Y) as follows. We have

ev⊥ ∈ L((X ⊗ Y ⊥)⊥ ⊗ (X ⊗ Y ⊥),⊥)

hence
ev⊥ ⊗〈〈∗,∗〉,∗〉〈∗,〈∗,∗〉〉 ∈ L(((X ⊗ Y ⊥)⊥ ⊗X)⊗ Y ⊥,⊥) ,

therefore
cur⊥(ev⊥ ⊗〈〈∗,∗〉,∗〉〈∗,〈∗,∗〉〉) ∈ L((X ⊗ Y ⊥)⊥ ⊗X,Y ⊥⊥)

and we set

ev = η−1 cur⊥(ev⊥ ⊗〈〈∗,∗〉,∗〉〈∗,〈∗,∗〉〉) ∈ L((X ⊗ Y ⊥)⊥ ⊗X,Y).

Let f ∈ L(U ⊗X,Y). We have η f ∈ L(U ⊗X,Y ⊥⊥), hence cur⊥
−1(η f) ∈

L((U ⊗X) ⊗ Y ⊥,⊥), so cur⊥
−1(η f)⊗〈∗,〈∗,∗〉〉〈〈∗,∗〉,∗〉 ∈ L(U ⊗ (X ⊗ Y ⊥),⊥) and we

can define a linear curryfication of f as

cur(f) = cur⊥(cur⊥
−1(η f)⊗〈∗,〈∗,∗〉〉〈〈∗,∗〉,∗〉) ∈ L(U,X (Y) .

One can prove then that the following equations hold, showing that the
symmetric monoidal category L is closed.

ev (cur(f)⊗X) = f

cur(f) g = cur(f (g ⊗X))

cur(ev) = Id

where g ∈ L(V,U).
It follows as usual that cur is a bijection from L(U ⊗X,Y) to L(U,X (Y).
We set X`Y = (X⊥ ⊗ Y ⊥)⊥ = X⊥ (Y ; this operation is the coten-

sor product, also called par in linear logic. Using the above properties one
shows that this operation is a functor L2 → L which defines another symmet-
ric monoidal structure on L. The operation X 7→ X⊥ is an equivalence of
symmetric monoidal categories from (Lop,⊗) to (L,`).

2.3.1 MIX.

A mix *-autonomous category is a *-autonomous category L where ⊥ is endowed
with a structure of commutative ⊗-monoid8. So we have two morphisms ξ0 ∈

8If we see ⊥ as the object of scalars, which is compatible with the intuition that X (⊥
is the dual of X, that is, the “space of linear forms on X”, then this monoid structure is an
internal multiplication law on scalars.

23

L(1,⊥) and ξ2 ∈ L(⊥ ⊗ ⊥,⊥) and some standard diagrams must commute,
which express that ξ0 is left and right neutral for the binary operation ξ2,
and that this binary operation is associative and commutative. Observe that
(ξ2)⊥ ∈ L(⊥⊥, (⊥⊗⊥)⊥) so that

ξ′2 = (ξ2)⊥ η1 ∈ L(1, 1`1)

and (1, ξ0, ξ
′
2) is a commutative `-comonoid.

2.3.2 Vectors.

Let L be a *-autonomous category and let X1, . . . , Xn be objects of L.
A (X1, . . . , Xn)-vector is a family (uτ)τ∈Tn where uτ ∈ L(1,`τ (X1, . . . , Xn))

satisfies uτ ′ = `ττ ′ uτ for all τ, τ ′ ∈ Tn. Of course such a vector u is determined
as soon as one of the uτ ’s is given. The point of this definition is that none of
these uτ ’s is more canonical than the others, that is why we find more convenient
to deal with the whole family u. Let ~L(X1, . . . , Xn) be the set of these vectors.
Notice that, since Tn is infinite for all n, all vectors are infinite families.

2.3.3 MLL vector constructions.

LetX ∈ L. We define ax ∈ ~L(X⊥, X) by setting axτ = `〈∗,∗〉τ cur(ηX
−1⊗〈〈〉,∗〉∗) ∈

L(1, X⊥⊥(X) = L(1, X⊥`X) for all τ ∈ T2.

Let u ∈ ~L(X1, . . . , Xn, X, Y). We define `(u) ∈ ~L(X1, . . . , Xn, X`Y) as
follows. Let τ ∈ Tn, we know that

u〈τ,〈∗,∗〉〉 ∈ L(1, (`τ (X1, . . . , Xn)`(X`Y)) = L(1, (`〈τ,∗〉(X1, . . . , Xn, X`Y)) .

For any θ ∈ Tn+1, we set

`(u)θ = `〈τ,∗〉θ u〈τ,〈∗,∗〉〉 ∈ L(1,`θ(X1, . . . , Xn, X`Y)) .

One sees easily that this definition does not depend on the choice of τ : let
τ ′ ∈ Tn, we have

`〈τ,∗〉θ `(u)〈τ,〈∗,∗〉〉 = `〈τ,∗〉θ `〈τ ′,∗〉〈τ,∗〉 `(u)〈τ ′,〈∗,∗〉〉

= `〈τ ′,∗〉θ `(u)〈τ ′,〈∗,∗〉〉 .

thanks to the definition of vectors and to Equation (3).
Let Ui, Xi be objects of L for i = 1, 2. Given

ui ∈ L(1, Ui`Xi) = L(1, U⊥i (Xi)

for i = 1, 2, we define

⊗U1,X1,U2,X2(u1, u2) ∈ L(1, (U1`U2)`(X1 ⊗X2))

24

as follows. We have cur−1(ui)⊗∗〈〈〉,∗〉 ∈ L(U⊥i , Xi) and hence

v = (cur−1(u1)⊗∗〈〈〉,∗〉)⊗ (cur−1(u2)⊗∗〈〈〉,∗〉) ∈ L(U⊥1 ⊗ U⊥2 , X1 ⊗X2) .

We have
cur(v⊗〈〈〉,∗〉∗) ∈ L(1, ((U⊥1 ⊗ U⊥2)⊗ (X1 ⊗X2)⊥)⊥)

So we set

⊗U1,X1,U2,X2
(u1, u2) = (η(U⊥1 ⊗U⊥2)

−1 ⊗ (X1 ⊗X2)⊥)⊥ cur(v⊗〈〈〉,∗〉∗)

∈ L(1, (U1`U2)`(X1 ⊗X2))

where the natural iso η is defined in Section 2.3.
This construction is natural in the sense that, given fi ∈ L(Xi, X

′
i), gi ∈

L(Ui, U
′
i), one has

((g1`g2)`(f1 ⊗ f2)) ⊗U1,X1,U2,X2
(u1, u2)

= ⊗U ′1,X′1,U ′2,X′2((f1`g1)u1, (f2`g2)u2)
(5)

Let u ∈ ~L(X1, . . . , Xn, X) and v ∈ ~L(Y1, . . . , Yp, Y). Let σ ∈ Tn and τ ∈ Tp.
Then we have

u〈σ,∗〉 ∈ L(1, (`σ(X1, . . . , Xn))`X) and

v〈τ,∗〉 ∈ L(1, (`τ (Y1, . . . , Yp))`Y)

and we set

⊗(u, v)〈〈σ,τ〉,∗〉 = ⊗`σ(X1,...,Xn),X,`τ (Y1,...,Yp),Y (u〈σ,∗〉, v〈τ,∗〉)

∈ L(1,`〈〈σ,τ〉,∗〉(X1, . . . , Xn, Y1, . . . , Yp, X ⊗ Y)

since

(`σ(X1, . . . , Xn)`(`τ (Y1, . . . , Yp)))`(X ⊗ Y)

= `〈〈σ,τ〉,∗〉(X1, . . . , Xn, Y1, . . . , Yp, X ⊗ Y) .

Then, given θ ∈ Tn+p+1, one sets of course

⊗(u, v)θ = `〈〈σ,τ〉,∗〉θ ⊗(u, v)〈〈σ,τ〉,∗〉 .

One checks easily that this definition does not depend on the choice of σ and τ ,
using Equations (3) and (5), and one can check that

⊗(u, v) ∈ ~L(X1, . . . , Xn, Y1, . . . , Yp, X ⊗ Y) .

Let u ∈ ~L(X1, . . . , Xn) and ϕ ∈ Sn. Given σ ∈ Tn, we have uσ ∈
L(1,`σ(X1, . . . , Xn)) and hence ̂̀ϕ,σ uσ ∈ L(1,`σ(Xϕ(1), . . . , Xϕ(n))). Given
θ ∈ Tn, we set therefore

sym(ϕ, u)θ = `σθ ̂̀ϕ,σ uσ ∈ L(1,`θ(Xϕ(1), . . . , Xϕ(n)))

25

defining an element sym(ϕ, u) of ~L(Xϕ(1), . . . , Xϕ(n)) which does not depend
on the choice of σ. Indeed, let τ ∈ Tn, we know that uσ = `τσuτ and hence

sym(ϕ, u)θ = `σθ ̂̀ϕ,σ `τσuτ = `σθ `τσ ̂̀ϕ,τuτ = `τθ ̂̀ϕ,τuτ , using Diagram (4).

Let u ∈ ~L(X1, . . . , Xn, X
⊥) and v ∈ ~L(Y1, . . . , Yp, X). We have

⊗(u, v) ∈ ~L(X1, . . . , Xn, Y1, . . . , Yp, X
⊥ ⊗X)

Given σ ∈ Tn and τ ∈ Tp we have

⊗(u, v)〈〈σ,τ〉,∗〉 ∈ L(1, ((`σ(X1, . . . , Xn))`(`τY1, . . . , Yp))`(X⊥ ⊗X))

so that

(Id`ev⊥)⊗(u, v)〈〈σ,τ〉,∗〉 ∈ L(1,`〈〈σ,τ〉,〈〉〉(X1, . . . , Xn, Y1, . . . , Yp)) .

Given θ ∈ Tn+p, we set

cut(u, v)θ = `〈〈σ,τ〉,〈〉〉θ (Id`ev⊥)⊗(u, v)〈〈σ,τ〉,∗〉

and we define in that way an element cut(u, v) of ~L(X1, . . . , Xn, Y1, . . . , Yp).
Assume now that L is a mix *-autonomous category (in the sense of Para-

graph 2.3.1).

Let X1, . . . , Xn and Y1, . . . , Yp be objects of L. Let u ∈ ~L(X1, . . . , Xn) and

v ∈ ~L(Y1, . . . , Yp). Let σ ∈ Tn and τ ∈ Tp. We have uσ ∈ L(1,`σ(X1, . . . , Xn))
and vτ ∈ L(1,`τ (Y1, . . . , Yp)). Hence

(uσ`vτ) ξ′2 ∈ L(1, (`σ(X1, . . . , Xn))`(`τ (Y1, . . . , Yp)))

and we define therefore mix(u, v) ∈ ~L(X1, . . . , Xn, Y1, . . . , Yp) by setting

mix(u, v)θ = `〈σ,τ〉θ (uσ`vτ) ξ′2 ∈ L(1,`θ(X1, . . . , Xn, Y1, . . . , Yp))

for each θ ∈ Tn+p. As usual, this definition does not depend on the choice of σ
and τ .

2.3.4 Interpreting MLL derivations.

We start with a valuation which, with each α ∈ A, associates [α] ∈ L in such a
way that [α] = [α]⊥. We extend this valuation to an interpretation of all MLL
types as objects of L in the obvious manner, so that we have a De Morgan iso
dmA ∈ L([A⊥], [A]⊥) defined inductively as follows.

We set first dmα = Id[α]⊥ . We have dmA ∈ L([A⊥], [A]⊥) and dmB ∈
L([B⊥], [B]⊥), therefore dmA`dmB ∈ L([(A⊗B)⊥], [A]⊥`[B]⊥). We have

[A]⊥`[B]⊥ = ([A]⊥⊥ ⊗ [B]⊥⊥)⊥

by definition of ` and remember that η[A] ∈ L([A], [A]⊥⊥) and so we set

dmA⊗B = (η[A] ⊗ η[B])
⊥ (dmA`dmB) .

26

We have [(A`B)⊥] = [A⊥]⊗ [B⊥] so dmA ⊗ dmB ∈ L([(A`B)⊥], [A]⊥ ⊗ [A]⊥).
By definition we have [A`B]⊥ = ([A]⊥ ⊗ [B]⊥)⊥⊥. So we set

dmA`B = η[A]⊥⊗[B]⊥ (dmA ⊗ dmB) .

Given a sequence Γ = (A1, . . . , An) of types, we denote as [Γ] the sequence
of objects ([A1], . . . , [An]).

Given a derivation π of a logical judgment Φ ` p : Γ we define now [π] ∈
~L([Γ]), by induction on the structure of π.

Assume first that Γ = (A⊥, A), p = (; x, x) and that π is the axiom

axiom
Φ ` p : Γ

We have ax[A] ∈ L(1, [A]⊥`[A]) and dmA ∈ L([A⊥], [A]⊥) so that we can set

[π]σ = `〈∗,∗〉σ (dm−1
A `Id[A]) ax[A]

and we have [π] ∈ ~L([Γ]) as required.
Assume next that Γ = (∆, A`B), that p = (−→c ; −→s , s`t) and that π is the

following derivation, where λ is the derivation of the premise:

Φ ` (−→c ; −→s , s, t) : ∆, A,B `-rule
Φ ` (−→c ; −→s , s`t) : ∆, A`B

then by inductive hypothesis we have [λ] ∈ ~L([∆, A,B]) and hence we set

[π] = `([λ]) ∈ ~L([∆, A`B]) .

Assume now that Γ = (∆,Λ, A⊗B), that p = (−→c ,
−→
d ; −→s ,−→t , s⊗ t) and π is

the following derivation, where λ is the derivation of the left premise and ρ is
the derivation of the right premise:

Φ ` (−→c ; −→s , s) : ∆, A Φ ` (
−→
d ;
−→
t , t) : Λ, B

⊗-rule
Φ ` (−→c ,

−→
d ; −→s ,−→t , s⊗ t) : ∆,Λ, A⊗B

then by inductive hypothesis we have [λ] ∈ ~L([∆, A]) and [ρ] ∈ ~L([Λ, B]) and
hence we set

[π] = ⊗([λ], [ρ]) ∈ ~L([∆,Λ, A⊗B]) .

Assume that ϕ ∈ Sn, Γ = (Aϕ(1), . . . , Aϕ(n)), p = (−→c ; sϕ(1), . . . , sϕ(n)) and
that π is the following derivation, where λ is the derivation of the premise:

Φ ` (−→c ; s1, . . . , sn) : A1, . . . , An
permutation rule

Φ ` p : Γ

By inductive hypothesis we have [λ] ∈ ~L([A1], . . . , [An]) and we set

[π] = sym(ϕ, [λ]) ∈ ~L([Γ]) .

Assume that Γ = (∆,Λ), that p = (−→c ,
−→
d , 〈s | t〉 ; −→s ,−→t) and that π is the

following derivation, where λ is the derivation of the left premise and ρ is the
derivation of the right premise:

27

Φ ` (−→c ; −→s , s) : ∆, A⊥ Φ ` (
−→
d ;
−→
t , t) : Λ, A

cut rule
Φ ` (−→c ,

−→
d , 〈s | t〉 ; −→s ,−→t) : ∆,Λ

By inductive hypothesis we have [λ] ∈ ~L([∆, A⊥]) and [ρ] ∈ ~L([Λ, A]). Let n be
the length of ∆. Let σ ∈ Tn. We have [λ]〈σ,∗〉 ∈ L(1, (`σ([∆]))`[A⊥]) and hence

(Id`dmA) [λ]〈σ,∗〉 ∈ L(1, (`σ([∆]))`[A]⊥). We define therefore l ∈ ~L([∆], [A]⊥)
by l〈σ,∗〉 = (Id`dmA) [λ]〈σ,∗〉 (this definition of l does not depend on the choice
of σ). We set

[π] = cut(l, [ρ]) ∈ ~L([∆,Λ]) .

Assume last that Γ = (∆,Λ), that p = (−→c ,
−→
d ; −→s ,−→t) and that π is the

following derivation, where λ is the derivation of the left premise and ρ is the
derivation of the right premise:

Φ ` (−→c ; −→s) : ∆ Φ ` (
−→
d ;
−→
t) : Λ

mix rule
Φ ` (−→c ,

−→
d ; −→s ,−→t) : ∆,Λ

so that by inductive hypothesis [λ] ∈ ~L([∆]) and [ρ] ∈ ~L([Λ]). We set

[π] = mix([λ], [ρ]) ∈ ~L([∆,Λ]) .

The first main property of this interpretation of derivations is that they only
depend on the underlying nets.

Theorem 3 Let π and π′ be derivations of Φ ` p : Γ. Then [π] = [π′].

The proof is a (tedious) induction on the structure of the derivations π and π′.
We use therefore [p] to denote the value of [π] where π is an arbitrary deriva-

tion of ` p : Γ.

Remark : It would be much more satisfactory to be able to define [p] directly,
without using the intermediate and non canonical choice of a derivation π. Such
a definition would use directly the fact that p fulfills a correctness criterion in
order to build a morphism of L. It is not very clear yet how to do that in
general, though such definitions are available in many concrete models of LL,
such as coherence spaces.

The second essential property of this interpretation is that it is invariant
under reductions (subject reduction)

Theorem 4 Assume that Φ ` p : Γ, Φ ` p′ : Γ and that p; p′. Then [p] = [p′].

2.4 Preadditive models

Let L be a *-autonomous category. We say that L is preadditive if each hom-set
L(X,Y) is equipped with a structure of k-module (we use standard additive no-
tations: 0 for the neutral element and + for the operation), which is compatible

28

with composition of morphisms and tensor product:∑
j∈J

νjtj

 (∑
i∈I

µisi

)
=

∑
(i,j)∈I×J

νjµi (tj si)

(∑
i∈I

µisi

)
⊗

∑
j∈J

νjtj

 =
∑

(i,j)∈I×J

µiνj (si ⊗ tj)

where the µi’s and the νj ’s are elements of k. It follows that, given a finite
family (si)i∈I of morphisms si ∈ L(U ⊗ X,⊥), one has cur⊥

(∑
i∈I µisi

)
=∑

i∈I µicur⊥(si), and that the cotensor product is bilinear(∑
i∈I

µisi

)
`
∑
j∈J

νjtj

 =
∑

(i,j)∈I×J

µiνj (si`tj) .

Let (Xi)
n
i=1 be a family of objects of L. The set ~L(X1, . . . , Xn) inherits

canonically a k-module structure.

2.5 Exponential structure

If C is a category, we use Ciso to denote the category whose objects are those of
C and whose morphisms are the isos of C (so Ciso is a groupoid).

Let L be a preadditive *-autonomous category. An exponential structure
on L is a tuple (! ,w, c,w, c, d, d) where ! is a functor Liso → Liso and the
other ingredients are natural transformations: wX ∈ L(!X, 1) (weakening),
cX ∈ L(!X, !X ⊗ !X) (contraction), wX ∈ L(1, !X) (coweakening), cX ∈ L(!X ⊗
!X, !X) (cocontraction), dX ∈ L(!X,X) (dereliction) and dX ∈ L(X, !X) (codere-
liction).

These morphisms are assumed moreover to satisfy the following properties.
The structure (!X,wX , cX ,wX , cX) is required to be a commutative bialge-

bra. This means that (!X,wX , cX) is a commutative comonoid, (!X,wX , cX)
is a commutative monoid and that the following diagrams commute (where
ϕ = (1, 3, 2, 4) ∈ S4)

!X ⊗ !X (!X ⊗ !X)⊗ (!X ⊗ !X)

!X

!X ⊗ !X (!X ⊗ !X)⊗ (!X ⊗ !X)

!X

1

1

cX ⊗ cX

⊗̂ϕ,〈〈∗,∗〉,〈∗,∗〉〉

cX

cX

cX ⊗ cX

wX

wX

Id1

29

Moreover, we also require the following commutations (in the dereliction/cocontraction

and codereliction/contraction diagrams, we omit the isos ⊗〈〈〉,∗〉∗ and ⊗〈∗,〈〉〉∗ for
the sake of readability).

X

!X

1

X

!X

1

X

!X

!X ⊗ !X

X

!X

!X ⊗ !X

dX

wX

0

dX

wX

0

dX

cX

dX ⊗ wX + wX ⊗ dX

dX

cX

dX ⊗ wX + wX ⊗ dX

and

X

!X

X

dX

dX

IdX

2.5.1 The why not modality.

We define ?X = (!(X⊥))⊥ and we extend this operation to a functor Liso → Liso

in the same way (using the contravariant functoriality of ()⊥). We define

w′X = w⊥X⊥ : ⊥ → ?X .

Since cX⊥ : !(X⊥) → !(X⊥) ⊗ !(X⊥), we have c⊥X⊥ : (!(X⊥) ⊗ !(X⊥))⊥ → ?X.
But η!(X⊥) : !(X⊥) → (?X)⊥, hence (η!(X⊥) ⊗ η!(X⊥))

⊥ : ?X`?X → (!(X⊥) ⊗
!(X⊥))⊥ and we set

c′X = c⊥X⊥ (η!(X⊥) ⊗ η!(X⊥))
⊥ ∈ L(?X`?X, ?X) .

Then it can be shown that (?X,w′X , c
′
X) is a commutative `-monoid (that is,

a monoid in the monoidal category (L,`)). Of course, w′X and c′X are natural
transformations.

Last, we have dX⊥ : !(X⊥) → X⊥ and hence (dX⊥)⊥ : X⊥⊥ → ?X, so we
can define the natural morphism

d′X = (dX⊥)⊥ ηX : X → ?X .

2.5.2 Interpreting DiLL0 derivations.

We extend the interpretation of derivations presented in Section 2.3.4 to the
fragment DiLL0 presented in Section 1.4.

We first have to extend the interpretation of formulas – this is done in the
obvious way – and the definition of the De Morgan isomorphisms. We have

30

[(!A)⊥] = ?[A⊥] and [!A]⊥ = (![A])⊥. By inductive hypothesis, we have the iso

dmA : [A⊥] → [A]⊥, hence ?dmA : [(!A)⊥] = [?(A⊥)] → ?([A]⊥) = !([A]⊥⊥)
⊥

and since we have (!η[A])
⊥ : !([A]⊥⊥)

⊥ → (![A])⊥, we set

dm!A = (!η[A])
⊥ ?dmA ∈ Liso([(!A)⊥], [!A]⊥) .

We have [(?A)⊥] = ![A⊥] and [?A]⊥ = (!([A]⊥))⊥⊥ so we set

dm?A = η!([A]⊥) !dmA ∈ Liso([(?A)⊥], [?A]⊥)

Let π be a derivation of Φ ` p : Γ, where Γ = (A1, . . . , An).
Assume first that Γ = (∆, ?A), p = (−→c ; −→s ,w) and that π is the following

derivation, denoting with λ the derivation of the premise:

Φ ` (−→c ; −→s) : Γ
weakening

Φ ` (−→c ; −→s ,w) : Γ, ?A

By inductive hypothesis we have [λ] ∈ ~L([Γ]). Let τ ∈ Tn, we have [λ]τ ∈
L(1,`τ ([Γ])). We have w′[A] ∈ L(⊥, ?[A]) and hence

[λ]τ`w′[A] ∈ L(1`⊥,`〈τ,∗〉([Γ, ?A]))

so that we can set
[π]θ = `〈τ,∗〉θ ([λ]τ`w′[A])`∗〈∗,〈〉〉

for any θ ∈ Tn. The fact that the family [π] defined in that way does not depend

on the choice of τ results from the fact that [λ] ∈ ~L([Γ]).
Assume that Γ = (∆, ?A), p = (−→c ; −→s , c(t1, t2)) and that π is the following

derivation, denoting with λ the derivation of the premise:

` (−→c ; −→s , t1, t2) : ∆, ?A, ?A
contraction` (−→c ; −→s , c(t1, t2)) : ∆, ?A

We have c′[A] ∈ L([?A]`[?A], [?A]). By inductive hypothesis [λ] ∈ ~L([∆, ?A, ?A]).
Let τ ∈ Tn where n is the length of ∆. We have

[λ]〈τ,〈∗,∗〉〉 ∈ L(1, (`τ ([∆]))`([?A]`[?A]))

and hence, given θ ∈ Tn+1, we set

[π]θ = `〈τ,∗〉θ (`τ ([∆])`c′[A]) [λ]〈τ,〈∗,∗〉〉

defining in that way [π] ∈ ~L([∆, ?A]).
Assume that Γ = (!A), p = (; w) and that π is the following derivation

co-weakening
` (; w) : !A

31

then, for θ ∈ T1 we set [π]θ = `∗θ([!A])w[A] defining in that way an element [π]

of ~L([!A]).

Assume that Γ = (∆,Λ, !A), p = (−→c ,
−→
d ; −→s ,−→t , c(u, v)) and that π is the

following derivation

Φ ` (−→c ; −→s , u) : ∆, !A Φ ` (
−→
d ;
−→
t , v) : Λ, !A,

co-contraction
Φ ` (−→c ,

−→
d ; −→s ,−→t , c(u, v)) : ∆,Λ, !A

and we denote with λ and ρ the derivations of the two premises. By induc-
tive hypothesis, we have [λ] ∈ ~L([∆], [!A]) and [ρ] ∈ ~L([Λ], [!A]). We have

⊗([λ], [ρ]) ∈ ~L([∆], [Λ], [!A]⊗ [!A]).
Let m be the length of ∆ and n be the length of Λ. Let τ ∈ Tm+n, we have

⊗([λ], [ρ])〈τ,∗〉 ∈ L(1, (`τ ([∆], [Λ]))`(([!A]⊗ [!A])). Hence, given θ ∈ Tm+n+1

we set
[π]θ = `〈τ,∗〉θ ((`τ ([∆], [Λ]))`cX)⊗([λ], [ρ])〈τ,∗〉 .

so that [π] ∈ ~L([∆], [Λ], [!A]), and this definition does not depend on the choice
of τ .

Assume that Γ = (∆, ?A), p = (−→c ; −→s , d(s)) and that π is the following
derivation

Φ ` (−→c ; −→s , s) : ∆, A
dereliction

Φ ` (−→c ; −→s , d(s)) : ∆, ?A

Let λ be the derivation of the premise, so that [λ] ∈ ~L([∆], [A]).
We have d′[A] : [A] → [?A]. Let n be the length of ∆, let τ ∈ Tn and let

θ ∈ Tn+1. We set

[π]θ = `〈τ,∗〉θ ((`τ ([∆]))`d′[A]) [λ]〈τ,∗〉

and we define in that way an element π of ~L([∆], [?A]) which does not depend
on the choice of τ .

Assume that Γ = (∆, !A), p = (−→c ; −→s , d(s)) and that π is the following
derivation

Φ ` (−→c ; −→s , s) : ∆, A
co-dereliction

Φ ` (−→c ; −→s , d(s)) : ∆, !A

Let λ be the derivation of the premise, so that [λ] ∈ ~L([∆], [A]). We have
d[A] : [A]→ [!A]. Let n be the length of ∆, let τ ∈ Tn and let θ ∈ Tn+1. We set

[π]θ = `〈τ,∗〉θ ((`τ ([∆]))`d[A]) [λ]〈τ,∗〉

and we define in that way an element π of ~L([∆], [!A]) which does not depend
on the choice of τ .

Last assume that p =
∑n
i=1 µipi, that π is the following derivation

32

Φ ` pi : Γ ∀i ∈ {1, . . . , n}
sum

Φ `
∑n
i=1 µipi : Γ

and that λi is the derivation of the i-th premise in this derivation. Then by
inductive hypothesis we have [λi] ∈ ~L([∆]) and we set of course

[π] =

n∑
i=1

µi[λi] .

One can prove for this extended interpretation the same results as for the
MLL fragment.

Theorem 5 Let π and π′ be derivations of Φ ` p : Γ. Then [π] = [π′].

Again, we set [p] = [π] where π is a derivation of Φ ` p : Γ.

Theorem 6 Assume that Φ ` p : Γ, Φ ` p′ : Γ and that p; p′. Then [p] = [p′].

2.6 Functorial exponential

Let L be a preadditive *-autonomous category with an exponential structure.
A promotion operation on L is given by an extension of the functor ! to all
morphisms of L and by a lax symmetric monoidal comonad structure on the “!”
operation which satisfies additional conditions. More precisely:

• For each f ∈ L(X,Y) we are given a morphism !f ∈ L(!X, !Y) and the
correspondence f 7→ !f is functorial. This mapping f 7→ !f extends the
action of ! on isomorphisms.

• The morphisms dX , dX , wX , wX , cX and cX are natural with respect to
this extended functor.

• There is a natural transformation pX : !X → !!X which turns (!X, dX , pX)
into a comonad.

• There is a morphism µ0 : 1 → !1 and a natural transformation9 µ2
X,Y :

!X ⊗ !Y → !(X ⊗ Y) which satisfy the following commutations

1⊗ !X !1⊗ !X !(1⊗X)

!X

µ0 ⊗ !X µ2
1,X

!⊗〈〈〉,∗〉∗
⊗〈〈〉,∗〉∗

(6)

9These morphisms are not required to be isos, whence the adjective “lax” for the monoidal
structure.

33

!X ⊗ 1 !X ⊗ !1 !(X ⊗ 1)

!X

!X ⊗ µ0 µ2
X,1

!⊗〈∗,〈〉〉∗
⊗〈∗,〈〉〉∗

(7)

(!X ⊗ !Y)⊗ !Z !X ⊗ (!Y ⊗ !Z) !X ⊗ !(Y ⊗ Z)

!(X ⊗ Y)⊗ !Z !((X ⊗ Y)⊗ Z) !(X ⊗ (Y ⊗ Z))

⊗〈〈∗,∗〉,∗〉〈∗,〈∗,∗〉〉 !X ⊗ µ2
Y,Z

µ2
X,Y⊗Zµ2

X,Y ⊗ !Z

µ2
X⊗Y,Z !⊗〈〈∗,∗〉,∗〉〈∗,〈∗,∗〉〉

(8)

!X ⊗ !Y !Y ⊗ !X

!(X ⊗ Y) !(Y ⊗X)

σ!X,!Y

µ2
Y,Xµ2

X,Y

!σX,Y

(9)

• The following diagrams commute

!X ⊗ !Y !(X ⊗ Y)

X ⊗ Y

1 !1

1

µ2
X,Y

dX⊗Y
dX ⊗ dY

µ0

d1
1

!X ⊗ !Y !(X ⊗ Y)

!!X ⊗ !!Y !(!X ⊗ !Y) !!(X ⊗ Y)

1 !1

!1 !!1

µ2
X,Y

pX⊗YpX ⊗ pY
µ2
!X,!Y !µ2

X,Y

µ0

p1µ0

!µ0

When these conditions hold, one says that (µ0, µ2) is a lax symmetric monoidal
structure on the comonad (!, d, p).

2.6.1 Monoidality and structural morphisms.

This monoidal structure must also be compatible with the structural construc-
tions.

34

!X ⊗ !Y !(X ⊗ Y)

1⊗ 1 1

1 !1

1

µ2
X,Y

wX⊗YwX ⊗ wY
⊗〈〈〉,〈〉〉〈〉

µ0

w1
1

!X ⊗ !Y (!X ⊗ !X)⊗ (!Y ⊗ !Y)

(!X ⊗ !Y)⊗ (!X ⊗ !Y)

!(X ⊗ Y) !(X ⊗ Y)⊗ !(X ⊗ Y)

1 1⊗ 1

!1 !1⊗ !1

cX ⊗ cY

µ2
X,Y

⊗̂ϕ,σ

µ2
X,Y ⊗ µ

2
X,Y

cX⊗Y

⊗〈〉〈〈〉,〈〉〉

µ0 ⊗ µ0µ0

c1

where ϕ = (1, 3, 2, 4) ∈ S4 and σ = 〈〈∗, ∗〉, 〈∗, ∗〉〉.

2.6.2 Monoidality and costructural morphisms.

We need the following diagrams to commute in order to validate the reduction
rules of DiLL.

1⊗ !Y !X ⊗ !Y

1⊗ 1

1 !(X ⊗ Y)

(!X ⊗ !X)⊗ !Y !X ⊗ !Y

(!X ⊗ !X)⊗ (!Y ⊗ !Y)

(!X ⊗ !Y)⊗ (!X ⊗ !Y)

!(X ⊗ Y)⊗ !(X ⊗ Y) !(X ⊗ Y)

wX ⊗ !Y

1⊗ wY

⊗〈〈〉,〈〉〉〈〉
wX⊗Y

µ2
X,Y

cX ⊗ !Y

µ2
X,Y

(!X ⊗ !X)⊗ cY

⊗̂ϕ,σ

µ2
X,Y ⊗ µ

2
X,Y

cX⊗Y

where ϕ = (1, 3, 2, 4) ∈ S4 and σ = 〈〈∗, ∗〉, 〈∗, ∗〉〉.

X ⊗ !Y !X ⊗ !Y

X ⊗ Y !(X ⊗ Y)

dX ⊗ !Y

X ⊗ dY
dX⊗Y

µ2
X,Y

2.6.3 Digging and structural morphisms.

We assume that pX is a comonoid morphism from (!X,wX , cX) to (!!X,w!X , c!X),
in other words, the following diagrams commute.

35

!X !!X

1

!X !!X

!X ⊗ !X !!X ⊗ !!X

pX

w!X
wX

pX

cX c!X

pX ⊗ pX

2.6.4 Digging and costructural morphisms.

It is not required that pX be a monoid morphism from (!X,wX , cX) to (!!X,w!X , c!X),
but the following diagrams must commute.

1 !X

!1 !!X

!X ⊗ !X !X !!X

!!X ⊗ !!X !(!X ⊗ !X)

wX

pXµ0

!wX

cX pX

pX ⊗ pX
µ2
!X,!X

!cX

In the same spirit, we need a last diagram to commute, which describes the
interaction between codereliction and digging.

X !X !!X

1⊗X !X ⊗ !X !!X ⊗ !!X

dX pX

⊗∗〈〈〉,∗〉
wX ⊗ dX pX ⊗ d!X

!cX

2.6.5 Preadditive structure and functorial exponential.

Our last requirement justifies the term “exponential” since it expresses that
sums are turned into products by this functorial operation.

!X !X

1

!X !Y

!X ⊗ !X !Y ⊗ !Y

!0

wX wX

!(f + g)

cX cX

!f ⊗ !g

Remark : There is another option in the categorical axiomatization of models
of Linear Logic that we briefly describe as follows.

• One requires the linear category L to be cartesian, with a terminal object
> and a cartesian product usually denoted as X1 & X2, projections πi ∈
L(X1 & X2, Xi) and pairing 〈f1, f2〉 ∈ L(Y,X1 & X2) for fi ∈ L(Y,Xi).
This provides in particular L with another symmetric monoidal structure.

• As above, one require the functor ! to be a comonad. But we equip it
now with a symmetric monoidal structure (m0,m2) from the monoidal

36

category (L,&) to the monoidal category (L,⊗). This means in particu-
lar that m0 ∈ L(1, !>) and m2

X1,X2
∈ L(!X1 ⊗ !X2, !(X1 & X2)) are isos.

These isos are often called Seely isos in the literature, though Girard al-
ready stressed their significance in [Gir87], admittedly not in the general
categorical setting of monoidal comonads. An additional commutation is
required, which describes the interaction between m2 and p.

Using this structure, the comonad (! , d, p) can be equipped with a lax symmetric
monoidal structure (µ0, µ2). Again, our main reference for these notions and
constructions is [Mel09]. In this setting, the structural natural transformations
wX and cX can be defined and it is well known that the Kleisli category L! of
the comonad ! is cartesian closed.

If we require the category L to be preadditive in the sense of Section 2.4,
it is easy to see that > is also an initial object and that & is also a coproduct.
Using this fact, the natural transformations wX and cX can also be defined.

To describe a model of DiLL in this setting, one has to require these Seely
monoidality isomorphisms to satisfy some commutations with the d natural
transformation.

Here, we prefer a description which does not use cartesian products because
it is closer to the basic constructions of the syntax of proof-structures and makes
the presentation of the semantics conceptually simpler and more canonical, to
our taste at least.

2.6.6 Generalized monoidality, contraction and digging.

Just as the monoidal structure of a monoidal category, the monoidal structure
of ! can be parameterized by monoidal trees. Let n ∈ N and let τ ∈ Tn. Given

a family of objects
−→
X = (X1, . . . , Xn) of L, we define µτ−→

X
: ⊗τ (!

−→
X) → !⊗τ (

−→
X)

by induction on τ as follows:

µ〈〉 = µ0

µ∗X = Id!X

µ
〈σ,τ〉
−→
X,
−→
Y

= µ2

⊗σ(
−→
X),⊗τ (

−→
Y)

(µσ−→
X
⊗ µτ−→

Y
) .

Given σ, τ ∈ Tn and ϕ ∈ Sn, one can prove that the following diagrams
commute

⊗σ(!
−→
X) ⊗τ (!

−→
X)

!⊗σ(
−→
X) !⊗τ (

−→
X)

⊗σ(!
−→
X) ⊗σ(ϕ̂(!

−→
X))

!⊗σ(
−→
X) !⊗σ(ϕ̂(

−→
X))

⊗στ (!
−→
X)

µτ−→
X

µσ−→
X

!⊗στ (!
−→
X)

⊗̂ϕ,σ(!
−→
X)

µσ
ϕ̂(
−→
X)

µσ−→
X

!⊗̂ϕ,σ(
−→
X)

37

⊗σ(!
−→
X) ⊗σ−→1 = ⊗σ0

!⊗σ(
−→
X) 1 = ⊗〈〉

⊗σ(!
−→
X)

⊗σ
−→
X

!⊗σ(
−→
X)

⊗σ(w−→
X

)

⊗σ0〈〉µσ−→
X

w⊗σ(
−→
X)

⊗σ(d−→
X

)

d⊗σ(
−→
X)

µσ−→
X

where
−→
1 is the sequence (1, . . . , 1) (n elements) and σ0 = σ [〈〉/∗] ∈ T0 (the tree

obtained from σ by replacing each occurrence of ∗ by 〈〉).
Before stating the next commutation, we define a generalized form of contrac-

tion cσ−→
X

: ⊗σ!
−→
X → ⊗〈σ,σ〉(!

−→
X, !
−→
X) as the following composition of morphisms:

⊗σ!
−→
X ⊗σ2 !

−→
X ′ ⊗σ2(!

−→
X, !
−→
X) ⊗〈σ,σ〉(!

−→
X, !
−→
X)

⊗σc−→
X ⊗̂ϕ,σ ⊗σ2〈σ,σ〉

where
−→
X ′ = (X1, X1, X2, X2, . . . , Xn, Xn), σ2 = σ [〈∗, ∗〉/∗] and ϕ ∈ S2n is

defined by ϕ(2i + 1) = i + 1 and ϕ(2i + 2) = i + n + 1 for i ∈ {0, . . . , n − 1}.
With these notations, one can prove that

⊗σ!
−→
X ⊗〈σ,σ〉(!

−→
X, !
−→
X) = (⊗σ!

−→
X)⊗ (⊗σ!

−→
X)

!⊗σ
−→
X (!⊗σ

−→
X)⊗ (!⊗σ

−→
X)

cσ−→
X

µσ−→
X

µσ−→
X
⊗ µσ−→

X
c⊗σ(

−→
X)

We also define a generalized version of digging pσ−→
X

: ⊗σ!
−→
X → !⊗σ!

−→
X as the

following composition of morphisms:

⊗σ!
−→
X ⊗σ!!

−→
X !⊗σ!

−→
X

⊗σp−→
X

µσ
!
−→
X

With this notation, one can prove that

⊗σ!
−→
X !⊗σ!

−→
X

!⊗σ
−→
X !!⊗σ

−→
X

pσ−→
X

!µσ−→
X

µσ−→
X

p⊗σ−→X

We have p〈〉 = µ0, p∗X = pX , and observe that the following generalizations of
the comonad laws hold. The two commutations involving digging and dereliction
generalize to:

⊗σ!
−→
X

!⊗σ!
−→
X⊗σ!

−→
X !⊗σ

−→
X

pσ−→
X

⊗σ!
−→
X µσ−→

X

d⊗σ !
−→
X

!⊗σd−→
X

38

The square diagram involving digging generalizes as follows. Let
−→
Y = (Y1, . . . , Ym)

be another list of objects and let τ ∈ Tm. One can prove that

⊗σ!
−→
X !⊗σ!

−→
X

!⊗σ!
−→
X !!⊗σ!

−→
X

pσ−→
X

!pσ−→
X

pσ−→
X

p⊗σ !
−→
X

and then one can generalize this property as follows

(⊗σ!
−→
X)⊗ (⊗τ !

−→
Y) !((⊗σ!

−→
X)⊗ (⊗τ !

−→
Y))

!(⊗σ!
−→
X)⊗ (⊗τ !

−→
Y) !(!(⊗σ!

−→
X)⊗ (⊗τ !

−→
Y))

p
〈σ,τ〉
−→
X,
−→
Y

!(pσ−→
X
⊗ (⊗τ !

−→
Y))pσ−→

X
⊗ (⊗τ !

−→
Y)

p
〈∗,τ〉
⊗σ !
−→
X,
−→
Y

(10)

2.6.7 Generalized promotion and structural constructions.

Let f : ⊗σ!
−→
X → Y , we define the generalized promotion f ! : ⊗σ!

−→
X → !Y by

f ! = !f pσ−→
X

. Using the commutations of Section 2.6.6, one can prove that this

construction obeys the following commutations.

⊗σ!
−→
X !Y

⊗σ−→1 = ⊗σ0 ⊗〈〉 = 1

f !

wY⊗σw−→
X

⊗σ0〈〉

with the same notations as before.
With these notations, we have

⊗σ!
−→
X !Y

⊗〈σ,σ〉(!
−→
X, !
−→
X) !Y ⊗ !Y

f !

cYcσ−→
X

f ! ⊗ f !

The next two diagrams deal with the interaction between generalized pro-
motion and dereliction (resp. digging).

⊗σ!
−→
X !Y

Y

f !

dY
f

39

(⊗σ!
−→
X)⊗ (⊗τ !

−→
Y) !Y ⊗ (⊗τ !

−→
Y)

!((⊗σ!
−→
X)⊗ (⊗τ !

−→
Y)) !(!Y ⊗ (⊗τ !

−→
Y))

f ! ⊗ (⊗τ !
−→
Y)

p
〈∗,τ〉
Y,
−→
Y

p
〈σ,τ〉
−→
X,
−→
Y

!(f ! ⊗ (⊗τ !
−→
Y))

The second diagram follows easily from (10) and allows one to prove the fol-

lowing property. Let f : ⊗σ
−→
!X → Y and g : !Y ⊗ (⊗τ

−→
!Y) → Z so that

f ! : ⊗σ
−→
!X → !Y and g! : !Y ⊗ (⊗τ

−→
!Y)→ !Z; one has

g! (f ! ⊗ (⊗τ !
−→
Y)) = (g (f ! ⊗ (⊗τ !

−→
Y)))! : (⊗σ

−→
!X)⊗ (⊗τ

−→
!Y)→ !Z

Remark : We actually need a more general version of this property, where f ! is
not necessarily in leftmost position in the ⊗ tree. It is also easy to obtain, but
notations are more heavy. We use the same kind of convention in the sequel but
remember that the corresponding properties are easy to generalize.

2.6.8 Generalized promotion and costructural constructions.

Let f : !X⊗(⊗σ!
−→
X)→ Y . Observe that f (wX⊗(⊗σ!

−→
X))⊗σ〈〈〉,σ〉−→!X : ⊗σ!

−→
X → Y .

The following equation holds:

f ! (wX ⊗ (⊗σ!
−→
X))⊗σ〈〈〉,σ〉−→!X = (f (wX ⊗ (⊗σ!

−→
X))⊗σ〈〈〉,σ〉−→!X)!

Similarly, we have f (cX⊗(⊗σ!
−→
X)) : (!X ⊗ !X)⊗(⊗σ!

−→
X)→ Y and the following

equation holds:

f ! (cX ⊗ (⊗σ!
−→
X)) = (f (cX ⊗ (⊗σ!

−→
X)))!

This results from the commutations of Sections 2.6.2 and 2.6.4.

2.6.9 Generalized promotion and codereliction (also known as chain
rule).

Let f : !X ⊗ (⊗σ!
−→
X)→ Y . We set

f0 = f (wX ⊗ (⊗σ!
−→
X))⊗σ〈〈〉,σ〉 : ⊗σ!

−→
X → Y

Then we have

X ⊗ (⊗σ!
−→
X) !X ⊗ (⊗σ!

−→
X) !Y

!X ⊗ ((⊗σ!
−→
X)⊗ (⊗σ!

−→
X))

(!X ⊗ (⊗σ!
−→
X))⊗ (⊗σ!

−→
X) Y ⊗ !Y !Y ⊗ !Y

dX ⊗ (⊗σ !
−→
X) f !

dX ⊗ cσ−→
X

⊗〈∗,〈∗,∗〉〉〈〈∗,∗〉,∗〉
f ⊗ f !

0 dY ⊗ !Y

cY

This results from the commutations of Sections 2.6.2 and 2.6.4.

40

2.6.10 Interpreting DiLL derivations.

For the sake of readability, we assume here that the De Morgan isomorphisms
(see 2.3.4) are identities, so that [A⊥] = [A]⊥ for each formula A. The general
definition of the semantics can be obtained by inserting De Morgan isomor-
phisms at the correct places in the forthcoming expressions.

Let P be a net of arity n+1 and let pi = (−→ci ;
−→
ti , ti) for i = 1, . . . , n. Consider

the following derivation π, where we denote as λ, ρ1, . . . , ρn the derivations of
the premises.

Φ ` P : ?A⊥1 , . . . , ?A
⊥
n , B Φ ` p1 : Γ1, !A1 · · · Φn ` pn : Γn, !An

Φ ` (−→c1 , . . . ,−→cn ;
−→
t1 , . . . ,

−→
tn , P

!(n)(t1, . . . , tn)) : Γ1, . . . ,Γn, !B

By inductive hypothesis, we have [λ] ∈ ~L((![A1])⊥, . . . , (![An])⊥, [B]) so that,
picking an element σ of Tn we have

[λ]〈σ,∗〉 ∈ L(1,`σ((![A1])⊥, . . . , (![An])⊥)`[B])

= L(1,⊗σ(![A1], . . . , ![An])([B])

and hence

(cur−1([λ]〈σ,∗〉)⊗σ〈〈〉,σ〉)
! ∈ L(⊗σ(![A1], . . . , ![An]), ![B]) .

For i = 1, . . . , n, we have [ρi] ∈ ~L([Γi], ![Ai]). Let li be the length of Γi,
and let us choose τi ∈ Tli . We have [ρi]〈τi,∗〉 ∈ L(1,`τi([Γi])`![Ai]) and hence,
setting

ri = cur−1([ρi]〈τi,∗〉)⊗
τi
〈〈〉,τi〉 ∈ L(⊗τi([Γi])⊥, ![Ai])

we have ⊗σ(−→r) ∈ L(⊗θ([∆]⊥),⊗σ(![A1], . . . , ![An])) where

∆ = Γ1, . . . ,Γn

θ = σ(τ1, . . . , τn)

where σ(τ1, . . . , τn) (for σ ∈ Tn and τi ∈ Tni for i = 1, . . . , k) is the element of
Tn1+···+nk defined inductively by

〈〉() = 〈〉
∗(τ) = τ

〈σ, σ′〉(τ1, . . . , τn) = 〈σ(τ1, . . . , τk), σ′(τk+1, . . . , τn)〉
where σ ∈ Tk, σ′ ∈ Tn−k

We have therefore

(cur−1([λ]〈σ,∗〉)⊗σ〈〈〉,σ〉)
!⊗σ(−→r) ∈ L(⊗θ([∆]⊥), [B])

We set

[π]θ = cur((cur−1([λ]〈σ,∗〉)⊗σ〈〈〉,σ〉)
!⊗σ(−→r)⊗〈〈〉,θ〉θ) ∈ L(1,`〈θ,∗〉([∆, !B]))

and this gives us a definition of [π] ∈ ~L([∆, !B]) which does not depend on the
choice of θ.

41

Theorem 7 Let π and π′ be derivations of Φ ` p : Γ. Then [π] = [π′].

Again, we set [p] = [π] where π is a derivation of Φ ` p : Γ.

Theorem 8 Assume that Φ ` p : Γ, Φ ` p′ : Γ and that p; p′. Then [p] = [p′].

The proofs of these results are tedious inductions, using the commutations
described in paragraphs 2.6.7, 2.6.8 and 2.6.9.

2.7 The differential λ-calculus

Various λ-calculi have been proposed, as possible extensions of the ordinary λ-
calculus with constructions corresponding to the above differential and costruc-
tural rules of differential LL. We record here briefly our original syntax of [ER03],
simplified by Vaux in [Vau05]10.

A simple term is either

• a variable x,

• or an ordinary application (M)R where M is a simple terms and R is a
term,

• or an abstraction λxM where x is a variable and M is a simple term,

• or a differential application DM ·N where M and N are simple terms.

A term is a finite linear combination of simple terms, with coefficients in k.
Substitution of a term R for a variable x in a simple term M , denoted as
M [R/x] is defined as usual, whereas differential (or linear) substitution of a
simple term for a variable in another simple term, denoted as ∂M

∂x ·N , is defined
as follows:

∂y

∂x
· t =

{
t if x = y

0 otherwise

∂λyM

∂x
·N = λy

∂M

∂x
·N

∂DM ·N
∂x

· P = D

(
∂M

∂x
· P
)
·N + DM ·

(
∂N

∂x
· P
)

∂ (M)R

∂x
·N =

(
∂M

∂x
·N
)
R+

(
DM ·

(
∂R

∂x
·N
))

R

All constructions are linear, except for ordinary application which is not linear
in the argument. This means that when we write e.g. (M1 +M2)R, what we
actually intend is (M1)R+ (M2)R. Similarly, substitution M [R/x] is linear in

10Alternative syntaxes have been proposed, which are formally closer to Boudol’s calculus
with multiplicities or with resources and are therefore often called resource λ-calculi

42

M and not in R, whereas differential substitution ∂M
∂x · N is linear in both M

and N . There are two reduction rules:

(λxM)R β M [R/x]

D(λxM) ·N βd λx

(
∂M

∂x
·N
)

which have of course to be closed under arbitrary contexts. The resulting cal-
culus can be proved to be Church-Rosser using fairly standard techniques (Tait
- Martin-Löf), to have good normalization properties in the typed case etc,
see [ER03, Vau05]. To be more precise, Church-Rosser holds only up to the least
congruence on terms which identifies D(DM ·N1) ·N2 and D(DM ·N2) ·N1, a
syntactic version of Schwarz Lemma: terms are always considered up to this
congruence called below symmetry of derivatives.

2.7.1 Resource calculus.

Differential application can be iterated: given simple terms M,N1, . . . , Nn, we
define DnM · (N1, . . . , Nn) = D(· · ·DM ·N1 · · ·) · Nn; the order on the terms
N1, . . . , Nn does not matter, by symmetry of derivatives. The (general) resource
calculus is another syntax for the differential λ-calculus, in which the combina-
tion (DnM · (N1, . . . , Nn))R is considered as one single operation denoted e.g. as
M [N1, . . . , Nn, R

∞] where the superscript ∞ is here to remind that R can be
arbitrarily duplicated during reduction, unlike the Ni’s. This presentation of
the calculus, studied in particular by Tranquilli and Pagani, and also used for
instance in [BCEM11], has very good properties as well. It is formally close
to Boudol’s λ-calculus with multiplicities such as presented in [BCL99], with
the difference that the operational semantics of Boudol’s calculus is given as a
rewriting strategy whereas in the differential version of the resource λ-calculus,
redexes can be reduced everywhere in terms. The price to pay is that reduc-
tion becomes non-deterministic in the sense that it can produce formal sums of
terms.

2.7.2 The finite resource calculus.

If, in the resource calculus above, one restricts one’s attention to the terms
where all applications are of the form

M [N1, . . . , Nn, 0
∞]

which corresponds to the differential term (D(· · ·DM ·N1 · · ·) ·Nn) 0, then one
gets a calculus which is stable under reduction and where all terms are strongly
normalizing. This calculus, called the finite resource calculus, can be presented
as follows.

• Any variable x is a term.

• If x is a variable and s is a simple term then λx s is a simple term.

43

• If S is a finite multiset (also called bunch in the sequel) of simple terms
then 〈s〉S is a simple term. Intuitively, this term stands for the application
s[s1, . . . , sn, 0

∞] of the resource calculus, where [s1, . . . , sn] = S.

A term is a (possibly infinite11) linear combination of finite terms. This syntax
is extended from simple terms to general terms by linearity. For instance, the
term 〈x〉 [y + z, y + z] stands for 〈x〉 [y, y] + 2 〈x〉 [y, z] + 〈x〉 [z, z].

In the finite resource calculus, it is natural to perform several βd-reductions
in one step, and one gets

〈λx s〉S βd

{∑
f∈Sn s

[
sf(1)/x1, . . . , sf(n)/xn

]
if degsx = n

0 otherwise

where d = degxs is the number of occurrences of x in s (which is a simple term),
x1, . . . , xd are the occurrences of x in s and the multiset S is [s1, . . . , sn].

Again, this calculus enjoys confluence, and also strong normalization (even
in the untyped case). It can be used for hereditarily Taylor expanding λ-terms
as explained in [ER08, ER06, Ehr10].

Taylor expansion consists in hereditarily replacing, in a differential λ-term,
any ordinary application (M)N by the infinite sum

∞∑
n=0

1

n!
(DnM · (N, . . . , N)) 0 .

More precisely, it is a transformation M 7→ M∗ from resource terms to finite
resource terms which is defined as follows:

x∗ = x

(λxM)
∗

= λx (M∗)

M [N1, . . . , Nn, R
∞]
∗

=

∞∑
p=0

1

p!
〈M∗〉 [N1

∗, . . . , Nn
∗, R∗, . . . , R∗]

so that the Taylor expansion of a resource term is a generally infinite linear com-
bination of finite resource terms. In the definition above, we use the extension
by linearity of the syntax of finite resource terms to arbitrary (possibly infinite)
linear combinations. The coefficients belong to the considered semi-ring k where
division by positive natural numbers must be possible.

In [ER08, ER06] we studied the behavior of this expansion with respect to
differential β-reduction in the case where the expanded terms come from the
λ-calculus (that is, do not contain differential applications; this is the uniform
case), and we exhibited tight connections between this operation and Krivine’s
machine, an implementation of linear head reduction.

11When considering infinite linear combinations, one has to deal with the possibility of
unbounded coefficients appearing during the reduction. One option is to accept infinite coef-
ficients, but it is also possible to prevent this phenomenon to occur by topological means as
explained in [Ehr10].

44

There is a simple translation from resource terms (or differential terms) to
DiLL proof-nets. When restricted to the finite resource calculus, this translation
ranges in DiLL0. This translation extends Girard’s Translation from the λ-
calculus to LL proof-nets.

3 More on exponential structures

We address here two aspects of exponential structures: we study a simple con-
dition expressing that a map whose derivative is uniformly equal to 0 must be
constant, and we propose an axiomatization of antiderivatives in this categorical
setting.

So we assume to be given a preadditive *-autonomous category L equipped
with an exponential structure in the sense of Section 2.5, and we use the same
notations as in this section.

For the sake of notational simplicity, we do as if ⊗ were strictly associative
and 1 were strictly neutral for ⊗. In other words, we do not mention the isos
λ, ρ and α in our computations, just as if they were identities (see Section 2.2).
Given an object X and n ∈ N of L, we use X⊗n for the nth tensor power of X:
X⊗0 = 1 and X⊗(n+1) = X⊗n ⊗X.

Given an object X of L, we define a morphism ∂X ∈ L(!X ⊗X, !X) as the
following composition of morphisms

!X ⊗X !X ⊗ !X !X
!X ⊗ dX cX

More generally, we define ∂
n

X ∈ L(!X ⊗X⊗n, !X):

∂
0

X = Id!X

∂
n+1

X = ∂X (∂
n

X ⊗X)

Last we set
d
n

X = ∂
n

X (wX ⊗X⊗n) ∈ L(X⊗n, !X) .

We define dually ∂X ∈ L(!X, !X ⊗ X) as ∂X = (!X ⊗ dX) cX and ∂nX ∈
L(!X, !X ⊗X⊗n) by ∂0

X = Id!X and ∂n+1
X = (∂nX ⊗X) ∂X . And we set

dnX = (wX ⊗X⊗n) ∂nX ∈ L(!X,X⊗n) .

Observe that we have d
1

X = dX and d1
X = dX .

Consider now some f ∈ L(!X,Y), to be intuitively seen as a non linear
map from X to Y (if ! were assumed to be a comonad as in Section 2.6, then
f would be a morphism in the Kleisli category L!). Such a morphism will
sometimes be called a “regular function” in the sequel, but keep in mind that
it is not even a function in general. For instance, if X and Y are vector spaces
(with a topological structure, in the infinite dimensional case), such a regular
function could typically be a smooth or an analytic function.

45

With these notations, f wX ∈ L(1, Y) should be understood as the point of
Y obtained by applying the regular function f to 0. Similarly, f cX ∈ L(!X ⊗
!X,Y) should be understood as the regular function g : X ×X → Y defined by
g(x1, x2) = f(x1 + x2).

Dually, given y ∈ L(1, Y) considered as a point of Y , then ywX ∈ L(!X,Y)
should be understood as the constant regular function which takes y as unique
value. If g ∈ (!X ⊗ !X,Y), to be considered as a regular function with two
parameters X × X → Y , then f = g cX ∈ L(!X,Y) should be understood as
the regular function X → Y given by f(x) = g(x, x). Given g ∈ L(X,Y), to
be considered as a linear function from X to Y , f = g dX ∈ L(!X,Y) is g,
considered now as a regular function from X to Y .

The basic idea of DiLL is that f ′ = f ∂X ∈ L(!X ⊗ X,Y) (that is f ′ ∈
L(!X,X (Y), up to linear curryfication) represents the derivative of f .

Remember indeed that if f : X → Y is a smooth function from a vector
space X to a vector space Y , the derivative of f is a function f ′ from X to the
space X (Y of (continuous) linear functions from X to Y : f ′ maps x ∈ X
to a linear map f ′(x) : X → Y , the differential (or Jacobian) of f at point x,
which maps u ∈ X to f ′(x) · u.

In particular, f dX = f ∂X (wX ⊗ X) ∈ L(X,Y) corresponds to f ′(0), the
differential of f at 0.

More generally, f ∂
n

X ∈ L(!X ⊗X⊗n, Y) represents the nth derivative of f ,
which is a regular function from X to the space of n-linear functions from Xn to
Y (these n linear functions are actually symmetric, a property called “Schwarz
Lemma” and is axiomatized here by the commutativity of the algebra structure
of !X).

The axioms of an exponential structure express that this categorical defi-
nition of differentiation satisfies the usual laws of differentiation. Let us give
a simple example. Consider f ∈ L(!X ⊗ !X,Y), to be seen as a regular func-
tion f(x1, x2) depending on two parameters x1 and x2 in X. Remember that
g = f cX ∈ L(!X,Y) represents the map depending on one parameter x in X
given by g(x) = f(x, x).

Using the axioms of exponential structures, one checks easily that

cX ∂X = ((!X ⊗ ∂X) + (∂X ⊗ !X) (!X ⊗ σ)) (cX ⊗X)

which, by composing with f and using standard algebraic notations, gives

g′(x) · u = f ′1(x, x) · u+ f ′2(x, x) · u

where we use f ′i for the ith partial derivative of f and “·” for the linear appli-
cation of the differential. This is Leibniz law.

Similarly, the easily proven equation wX ∂X = 0 expresses that the derivative
of a constant map is equal to 0.

It is a nice exercise to interpret similarly the dual equations

∂X cX = (cX ⊗X) ((!X ⊗ ∂X) + (!X ⊗ σ) (∂X ⊗ !X))

∂X wX = 0

46

Consider g ∈ L(!X ⊗X,Y), to be considered as a regular function X ×X → Y
which is linear in its second parameter. Then f = g ∂X ∈ L(!X,Y) is the regular
function X → Y given by g(x) = f(x, x). The second equation corresponds to
the fact that g(0, 0) = 0, and the first one, to the fact that g(x1 +x2, x1 +x2) =
g(x1 + x2, x1) + g(x1 + x2, x2).

3.1 Taylor exponential structures.

Let L be an exponential structure and let f ∈ L(!X,Y), to be considered as a
“regular function” from X to Y . The condition f ∂X = 0 means intuitively that
the derivative of f is uniformly equal to 0, and hence, according to standard
intuitions on differentiation, f should be a constant map. In other words we
should have f = f wX wX .

This property can be stated in a more general way as follows: let f1, f2 :
!X → Y , then

f1 ∂X = f2 ∂X ⇒ f1 + (f2 wX wX) = f2 + (f1 wX wX)

and does not seem to be derivable from the other axioms of exponential struc-
tures. The converse implication is easy to prove.

Remark : There is a dual condition which reads as follows: if f1, f2 : Y → !X,
then

∂X f1 = ∂X f2 ⇒ f1 + (wX wX f2) = f2 + (wX wX f1)

The intuition is that, given f : Y → !X, to be considered as a generalized
point of !X, if ∂X f = 0, then the range of f is included in the subspace of !X
generated by the unit of the bialgebra !X. In other words, this condition means
that the kernel of ∂X is generated by this unit.

We say that the exponential structure L is Taylor if it satisfies the first
condition.

For n ∈ N, let TnX ∈ C(!X, !X) be defined by

TnX =

n∑
i=0

1

i!
d
i

X diX .

Lemma 9 For any n > 0, we have

TnX ∂X = ∂X (Tn−1
X ⊗ IdX) .

Proof.

This results from

d
n

X dnX ∂X = n∂X ((d
n−1

X dn−1
X)⊗ IdX)

which comes from the basic equations of exponential structures. 2

Remember that a commutative monoid M is cancellative if, in M , one has
u+ v = u′ + v ⇒ u = u′.

47

Proposition 10 Assume that L is Taylor and that each homset L(X,Y) is a

cancellative monoid. Let n ∈ N and let f1, f2 : !X → Y . If f1 ∂
n+1

X = f2 ∂
n+1

X

then f1 + (f2 TnX) = f2 + (f1 TnX).

In particular, if f ∂
n+1

X = 0 (that is, the (n+ 1)-th derivative of f is uniformly
equal to 0), then f = f TnX , meaning that f is equal to its Taylor expansion of
rank n.

Proof.

By induction on n. For n = 0, this is simply the hypothesis that L is Taylor.

Assume now that f1 ∂
n+2

X = f2 ∂
n+2

X and let us prove that f1 + (f2 Tn+1
X) =

f2 + (f1 Tn+1
X).

We have f1 ∂X (∂
n+1

X ⊗ IdX) = f2 ∂X (∂
n+1

X ⊗ IdX). By monoidal closeness,

we have cur(f1 ∂X) ∂
n+1

X = cur(f2 ∂X) ∂
n+1

X and hence, by inductive hypothesis,
we have

cur(f1 ∂X) + (cur(f2 ∂X) TnX) = cur(f2 ∂X) + (cur(f1 ∂X) TnX)

that is

cur(f1 ∂X) + (cur(f2 ∂X (TnX ⊗ IdX))) = cur(f2 ∂X) + (cur(f1 ∂X (TnX ⊗ IdX)))

and hence

(f1 ∂X) + (f2 ∂X (TnX ⊗ IdX)) = (f2 ∂X) + (f1 ∂X (TnX ⊗ IdX))

so applying Lemma 9, we get

(f1 + f2Tn+1
X) ∂X = (f2 + f1Tn+1

X) ∂X .

Applying the hypothesis that L is Taylor, we get

f1 + f2Tn+1
X + (f2 + f1Tn+1

X)wX wX = f2 + f1Tn+1
X + (f1 + f2Tn+1

X)wX wX

and since Tn+1
X wX wX = wX wX we get f1 + f2Tn+1

X + (f1 + f2)wX wX =
f2 +f1Tn+1

X +(f2 +f1)wX wX and so, applying the cancellativeness hypothesis,
we get finally

f1 + f2Tn+1
X = f2 + f1Tn+1

X

as required. 2

3.1.1 The category of polynomials.

We say that f ∈ L(!X,Y) is polynomial if there exists n ∈ N such that f ∂
n+1

X =
0, and we call degree of f the least such n. The morphism dX ∈ C(!X,X) is
polynomial of degree 1.

48

Let f ∈ L(!X,Y) and g ∈ L(!Y,Z) be polynomial of degree m and n respec-
tively. We define the composition g ◦ f ∈ L(!X,Z) as follows

g ◦ f =

n∑
i=0

1

i!
g d

i

Y f
⊗i ciX .

where f⊗i =

i×︷ ︸︸ ︷
f ⊗ · · · ⊗ f .

Since dX d
i

X = 0 for i 6= 1, we get dX ◦ g = g. Next observe that g ◦ dX =
gTnX = g by Proposition 10. One can prove that g ◦ f is polynomial of degree

≤ mn, that is (g ◦ f) ∂
mn

X = 0 by a straightforward (though boring) categorical
computation using the basic axioms of exponential structures. Using the same
axioms, one shows that this notion of composition is associative, so that we have
defined a category of polynomial morphisms.

3.1.2 Weak functoriality and the category of polynomials.

We do not require this operation X 7→ !X to be functorial, but some weak
form of functoriality can be derived from the above categorical axioms. Let
f ∈ L(X,Y). By induction on n, we define a family of morphisms fn : !X → !X
as follows: f0 = wX wX and

fn+1 = ∂X (fn ⊗ f) ∂X .

Proposition 11 Let f ∈ L(X,Y) and g ∈ L(Y,Z) and let n, p ∈ N. Then

gp fn =

{
n!(g f)n if n = p

0 otherwise.

Proof.

Simple calculation using the diagram commutations which define an exponential
structure. 2

So for each n ∈ N we can define !nf =
∑n
q=0

1
q!f

q : !X → !X, and we have

!ng !nf = !n(g f). So f 7→ !nf is a quasifunctor, but not a functor as it does not
map IdX to Id!X , but to an idempotent morphism ρnX : !X → !X.

In some concrete models, this sequence (!nf)n∈N can be said to be conver-
gent, in a sense which depends of course on the model. The limit is then denoted
as !f and the operation defined in that way turns out often to be a true functor,
defining a functorial exponential in the sense of Section 2.6.

3.2 Computing antiderivatives.

We say that an exponential structure L has antiderivatives if the morphism

JX = IdX +(∂X ∂X) : !X → !X

49

is an isomorphism. We explain why.
We assume to be given an exponential structure L which has antiderivatives

in that sense and we set IX = JX
−1.

In the sequel, we use the following notation

ψX = (∂X ⊗ IdX)σ23 (∂X ⊗ IdX) : !X ⊗X → !X ⊗X

where σ23 = !X⊗σ is an automorphism on !X⊗X⊗X, because this morphism
ψX will show up quite often. Observe in particular that

∂X ∂X = Id!X⊗X +ψX .

Lemma 12 The following commutation holds

(IX ⊗ IdX)ψX = ψX (IX ⊗ IdX) (11)

Proof.

Since IX = (Id!X +(∂X ∂X))
−1

, we have IX⊗IdX = ϕ−1 where ϕ = Id!X⊗X +((∂X ∂X)⊗
IdX) by functoriality of ⊗. To prove (11), it suffices therefore to prove that ϕ
commutes with ψX . For this, it suffices to show that

((∂X ∂X)⊗ IdX)ψX = ψX ((∂X ∂X)⊗ IdX) .

We have

((∂X ∂X)⊗ IdX)ψX = ((∂X ∂X ∂X)⊗ IdX)σ23 (∂X ⊗ IdX)

but remember that ∂X ∂X = Id!X⊗X +ψX , and hence

((∂X ∂X)⊗ IdX)ψX = ψX + ((∂X ψX)⊗ IdX)σ23 (∂X ⊗ IdX)

But ∂X (∂X ⊗ IdX)σ23 = ∂X (∂X ⊗ IdX) by commutativity of the bialgebra !X
and by definition of ∂X . Therefore ∂X ψX = ∂X ((∂X ∂X) ⊗ IdX). So we can
write

((∂X ∂X)⊗ IdX)ψX

= ψX + (∂X ⊗ IdX) ((∂X ∂X)⊗ IdX ⊗ IdX)σ23 (∂X ⊗ IdX)

= ψX + (∂X ⊗ IdX) ((∂X ∂X)⊗ σ) (∂X ⊗ IdX)

A similar, and completely symmetric computation, using this time the cocom-
mutativity of the bialgebra !X, leads to

ψX ((∂X ∂X)⊗ IdX) = ψX + (∂X ⊗ IdX) ((∂X ∂X)⊗ σ) (∂X ⊗ IdX)

and we are done. 2

We can now prove a completely categorical version of the following proposi-
tion which is the key step in the usual proof of Poincaré’s Lemma.

50

Proposition 13 Let f : !X⊗X → Y be such that the differential f (∂X⊗ IdX) :
!X ⊗X ⊗X → Y satisfies

f (∂X ⊗ IdX)σ23 = f (∂X ⊗ IdX) .

Then there exists g : !X → Y such that g ∂X = f ; in other words, g is an
“antiderivative” of f .

Proof.

One sets
g = f (IX ⊗ IdX) ∂X . (12)

Then we have

g ∂X = f (IX ⊗ IdX) ∂X ∂X

= f (IX ⊗ IdX) (Id!X⊗X +ψX)

= f (IX ⊗ IdX) + f (IX ⊗ IdX)ψX

= f (IX ⊗ IdX) + f ψX (IX ⊗ IdX)

by Lemma 12. But

f ψX = f (∂X ⊗ IdX)σ23 (∂X ⊗ IdX)

= f (∂X ⊗ IdX) (∂X ⊗ IdX) by our hypothesis on f

= f ((∂X ∂X)⊗ IdX) .

So we get

g ∂X = f (IX ⊗ IdX) + f ((∂X ∂X IX)⊗ IdX)

= f (((Id!X +(∂X ∂X)) IX)⊗ IdX)

= f

since IX is the inverse of Id!X +(∂X ∂X). 2

3.2.1 Comments.

Let us give some intuition about our axiom that JX has an inverse. Given
f : !X → Y seen as a “regular function” from X to Y , we explain why the
morphism f IX : !X → Y should be understood as representing the regular
function g defined by

g(x) =

∫ 1

0

f(tx) dt

assuming of course that this integral makes sense. With this interpretation,
g ∂X : !X ⊗ X → Y represents the differential Dg of g, a regular function
X×X → Y which maps (x, y) to Dg(x) ·y and is linear in y. Then, applying the

51

ordinary rules of differential calculus, and the fact that differentiation commutes
with integration, we get

Dg(x) · y =

∫ 1

0

t(Df(tx) · y)dt .

The morphism h = g ∂X ∂X : !X → Y corresponds to the regular function from
X to Y such that

h(x) =

∫ 1

0

(Df(tx) · (tx))dt

=

∫ 1

0

t(Df(tx) · x)dt

=

∫ 1

0

t
df(tx)

dt
dt

= f(x)−
∫ 1

0

f(tx) dt ,

integrating by parts. In other words, we have seen that

f IX ∂X ∂X = f − (f IX)

that is
f IX (Id!X +(∂X ∂X)) = f

this is why our first axiom on IX is that IX (Id!X +(∂X ∂X)) = Id!X . To explain
why we also require (Id!X +(∂X ∂X)) IX = Id!X , observe that

l = f ∂X ∂X : !X → Y

corresponds to the regular function defined by l(x) = Df(x) · x and hence l IX
corresponds to the regular function m : X → Y given by

m(x) =

∫ 1

0

(Df(tx) · (tx))dt = h(x)

by linearity of the differential. So we have

f ∂X ∂X IX = f − (f IX)

that is
f (Id!X +(∂X ∂X)) IX = f .

A remarkable and quite natural feature of this axiomatization of antideriva-
tives is the fact that it is actually a mere property of the exponential structure,
and not an additional structure: it must be such that Id!X +(∂X ∂X) has an
inverse.

52

Remark : The definition (12) of the antiderivative g of f in the proof above
reads as follows, if we use this intuitive interpretation of IX :

g(x) =

∫ 1

0

f(tx) · x dt (13)

which is exactly its definition, in the standard proof of Poincaré’s Lemma. The
proof of Proposition 13 is a rephrasing of the standard proof, which uses an
integration by parts.

3.2.2 The fundamental theorem of calculus.

This is the statement according to which one can use antiderivatives for comput-

ing integrals: if f, g : R→ R are such that g′ = f , then
∫ b
a
f(t) dt = g(b)− g(a).

In the present setting, it boils down to a simple categorical equation.

Proposition 14 Let L be an exponential structure which has antiderivatives
and is Taylor. Then

∂X (IX ⊗ IdX) ∂X + wX wX = Id!X .

Proof.

Let f1 = ∂X (IX ⊗ IdX) ∂X : !X → !X and let f2 = Id!X . We have

f1 ∂X = ∂X (IX ⊗ IdX) ∂X ∂X

= ∂X (IX ⊗ IdX) + ∂X (IX ⊗ IdX) (∂X ⊗ IdX)σ23 (∂X ⊗ IdX)

= ∂X (IX ⊗ IdX) + ∂X (∂X ⊗ IdX)σ23 (∂X ⊗ IdX) (IX ⊗ IdX)

by Lemma 12

= ∂X (IX ⊗ IdX) + ∂X (∂X ⊗ IdX) (∂X ⊗ IdX) (IX ⊗ IdX)

by commutativity of cocontraction

= ∂X ((Id!X +(∂X ∂X))⊗ IdX) (IX ⊗ IdX)

= ∂X since IX = (Id!X +(∂X ∂X))
−1

= f2 ∂X .

Since L is Taylor and since f1 wX wX = 0, we have therefore f1 + (f2 wX wX) =
f2 + (f1 wX wX), which is exactly the announced equation. 2

Remark : We give now an intuitive interpretation of this property. Let f : !X →
Y , considered as a regular function from X to Y . Then f ∂X (IX ⊗ IdX) ∂X :
!X → Y represents the regular function g : X → Y given by

g(x) =

∫ 1

0

Df(tx) · x dt =

∫ 1

0

df(tx)

dt
dt

so that g(x) = f(x)− f(0) by the Fundamental Theorem of Calculus. In other
words g(x) + f(0) = f(x), that is f (∂X (IX ⊗ IdX) ∂X + wX wX) = f .

53

3.3 Computing antiderivatives in the resource calculus

We can consider finite linear combinations of finite resource terms (see 2.7.2) as
polynomials, and with this respect, it seems natural to formally compute the
antiderivative of such a term, as one does for polynomials. This is the purpose
of this short section. We use ∆ for the set of simple resource terms and k〈S〉
for the free k-module generated by the set S.

As with ordinary polynomials, we define first the antiderivative of a mono-
mial, that is, of a simple resource term. Remember that, for ordinary one
variable polynomials, the antiderivative of Xd is 1

d+1X
d+1; the definition is

completely similar here. Let t ∈ ∆ be a simple resource term and let x be a
variable. We set

Ix(t) =
1

degxt+ 1
t .

We extend this operation by linearity to all elements u ∈ k〈∆〉, that is we set
Ix(u) =

∑
t∈∆ utIx(t).

For d ∈ N, let ∆
(d)
x = {t ∈ ∆ | degxt = d} be the set of all simple resource

terms of degree d in x. The elements of k〈∆(d)
x 〉 are said to be homogeneous of

degree d in x.
With these notations, we can write

Ix(u) =

∞∑
d=0

1

d+ 1

∑
t∈∆

(d)
x

utt

Intuitively, Ix(u) stands for the integral
∫ 1

0
u(τx) dτ which is the basic ingredient

in the proof above of Poincaré’s Lemma.

Let u ∈ k〈∆〉 which is linear in the variable h, in other words u ∈ k〈∆(1)
h 〉.

Let h′ be a variable which does not occur free in u, we assume that

∂u

∂x
· h′ =

∂u [h′/h]

∂x
· h

which is our symmetry hypothesis on u. In other words, for any d ∈ N, we have∑
t∈∆

(d)
x

ut
∂t

∂x
· h′ =

∑
t∈∆

(d)
x

ut
∂t [h′/h]

∂x
· h . (14)

Mimicking (13), we set
v = Ix(u) [x/h]

and we prove that
∂v

∂x
· h = u . (15)

Choose h′ as above, we prove that ∂v
∂x ·h

′ = u [h′/h] which of course implies (15).
We have, keeping in mind that h has exactly one free occurrence in each t ∈ ∆

54

such that ut 6= 0

∂v

∂x
· h′ =

∞∑
d=0

1

d+ 1

∑
t∈∆

(d)
x

ut
∂t [x/h]

∂x
· h′

=

∞∑
d=0

1

d+ 1

∑
t∈∆

(d)
x

ut

(
∂t

∂x
· h′ [x/h] + t [h′/h]

)

=

∞∑
d=0

1

d+ 1

∑
t∈∆

(d)
x

ut

((
∂t [h′/h]

∂x
· h
)

[x/h] + t [h′/h]

)
by (14)

=

∞∑
d=0

1

d+ 1

∑
t∈∆

(d)
x

ut

(
∂t [h′/h]

∂x
· x+ t [h′/h]

)

=

∞∑
d=0

1

d+ 1

∑
t∈∆

(d)
x

ut (d t [h′/h] + t [h′/h]) since
∂s

∂x
· x = d s for all s ∈ ∆(d)

x

= u [h′/h]

and we are done.

4 Concrete models

We want now to give concrete examples of categorical models of DiLL.

4.1 Products, coproducts and the Seely isomorphisms

In Section 2.6, we introduced the functorial version of the exponential without
mentioning the Seely isomorphisms: as explained in Paragraph 2.6.5, this choice
is very natural when presenting the denotational interpretation of proof-nets.
But when describing the structure of concrete models, as we want to do now, it
is more natural to assume that the linear category L is cartesian and that the
! comonad is equipped with a strong symmetric monoidal structure from & to
⊗.

So we assume to be given a preadditive *-autonomous category L equipped
with an exponential structure (Section 2.5) where ! is a monoidal comonad
satisfying the conditions of Section 2.6.

We assume moreover that L is cartesian, with terminal object >, cartesian
product &, projections πi ∈ L(X1 & X2, Xi). Because L is preadditive, this
implies that > is also an initial object, and that X1 & X2 (together with suitably
defined injections) is also the coproduct of X1 and X2. In other words, L is an
additive monoidal category.

We assume to be given an isomorphism m0 ∈ L(1, !>) and a natural isomor-
phism m2

X1,X2
∈ L(!X1 ⊗ !X2, !(X1 & X2)) which endow the functor ! with a

monoidal structure. This means that diagrams similar to (6), (7), (8) and (9)
hold.

55

We also require the following diagram to commute

!X ⊗ !Y !(X & Y)

!!(X & Y)

!!X ⊗ !!Y !(!X & !Y)

m2
X,Y

pX ⊗ pY

pX&Y

!〈!π1, !π2〉
m2

!X,!Y

Of course, there is a connection between these two monoidal structures on
! . The morphism µ0 is the following composition of morphisms:

1 !> !!> !1
m0 p> !((m0

1)
−1

)

and µ2
X,Y is

!X ⊗ !Y !(X & Y) !!(X & Y) !(!X ⊗ !Y) !(X ⊗ Y)
m2
X,Y pX&Y

!(m2
X,Y

−1
) !(dX ⊗ dY)

The bi-algebraic structure of !X presented in Section 2.5 is also related to
this Seely monoidal structure.

For the coalgebraic part, let ∆X ∈ L(X,X & X) be the diagonal morphism
associated with the cartesian product of X with itself. Then we have

cX = m2
X,X

−1
!∆X : !X → !X ⊗ !X

Similarly we set
wX = m0

1 !τX

where τX : X → > is the unique morphism to the terminal object. The algebraic
part satisfies similar conditions, using the codiagonal aX : X & X → X and the
morphism τ ′X : > → X.

4.2 Relational semantics

We introduce now the simplest ∗-autonomous category equipped with an expo-
nential structure: the category of sets and relations. For this model, we assume
that k = {0, 1} with addition defined by 1 + 1 = 1.

Let Rel be the category whose objects are sets and where Rel(X,Y) =
P(X × Y), identities being the diagonal relations and composition being defined
as follows: if R ∈ Rel(X,Y) and S ∈ Rel(Y, Z) then

S R = {(a, c) ∈ X × Z | ∃b ∈ Y (a, b) ∈ R and (b, c) ∈ S} .

56

Let x ⊆ X, we set Rx = {b ∈ Y | ∃a ∈ x (a, b) ∈ R} ⊆ Y which is the direct
image of x by R. We also define R⊥ = {(b, a) ∈ Y × X | (a, b) ∈ Y } which is
the transpose of R. Given x ⊆ X and y′ ⊆ Y , we have

(Rx) ∩ y′ = pr2(R ∩ (x× y′)) and (R⊥y′) ∩ x = pr1(R ∩ (x× y′)) (16)

where pr1 and pr2 are the two projections of the cartesian product in the category
Set of sets and functions (the ordinary cartesian product “×”).

Observe that an isomorphism in Rel is a relation which is a bijection.
The symmetric monoidal structure is given by the tensor product X ⊗ Y =

X × Y and the unit 1 an arbitrary singleton. The neutrality, associativity and
symmetry isomorphisms are defined as the obvious corresponding bijections
(for instance, the symmetry isomorphism σX,Y ∈ Rel(X ⊗ Y, Y ⊗ X) is given
by σ(a, b) = (b, a)). This symmetric monoidal category is closed, with linear
function space given by X (Y = X×Y , the natural bijection between Rel(Z⊗
X,Y) and Rel(Z,X (Y) being induced by the cartesian product associativity
isomorphism. Last, one takes for ⊥ an arbitrary singleton, and this turns Rel
into a ∗-autonomous category. One denotes as ? the unique element of 1 and ⊥.

This category is additive, with cartesian product X1 & X2 of X1 and X2

defined as {1} ×X1 ∪ {2} ×X2 with projections πi = {((i, a), a) | a ∈ Xi} (for
i = 1, 2), and terminal object > = ∅. Then the commutative monoid structure
on homsets Rel(X,Y) is defined by 0 = ∅ and f + g = f ∪ g and the action of k
on morphisms is defined by 0 f = 0 and 1 f = f (there are no other possibilities).

Rel is also a Seely category (see Section 4.1), for a comonad ! defined as
follows:

• !X is the set of all finite multisets of elements of X;

• if R ∈ Rel(X,Y), then we set !R = {([a1, . . . , an], [b1, . . . , bn]) | n ∈
N and ∀i (ai, bi) ∈ R};

• dX ∈ Rel(!X,X) is dX = {([a], a) | a ∈ X};

• pX = {(m1 + · · ·+mn, [m1, . . . ,mn]) | n ∈ N and m1, . . . ,mn ∈ !X}.

The monoidality isomorphism m2
X,Y ∈ Rel(!X ⊗ !Y , !(X & Y)) is the bijection

which maps ([a1, . . . , al], [b1, . . . , br]) to [(1, a1), . . . , (1, al), (2, b1), . . . , (2, br)].
Last, we also provide a codereliction natural transformation dX ∈ Rel(X, !X)

which is simply given by dX = {(a, [a]) | a ∈ X}.
With these definitions, it is easy to see that cX = {(l + r, (l, r)) | l, r ∈ !X},

wX = {([], ?)}, cX = {((l, r), l+ r) | l, r ∈ !X} and wX = {(?, [])}. The required
diagrams are easily seen to commute.

4.2.1 Antiderivatives.

This exponential structure is bicommutative and can easily seen to be Taylor
in the sense of Section 3.1. Moreover, it has antiderivatives in the sense of
Section 3.2, simply because the morphism JX = IdX +(∂X ∂X) : !X → !X

57

coincides here with the identity. Indeed ∂X = {(l + [a], (l, a)) | l ∈ !X and a ∈
X}, ∂X = {((l, a), l + [a]) | l ∈ !X and a ∈ X} and therefore ∂X ∂X = {(l, l) |
l ∈ !X and #l > 0}.

Concretely, saying that a morphism f ∈ Rel(!X ⊗X,Y) satisfies the sym-
metry condition of Proposition 13 simply means that, given m ∈ Mfin(X),
a, a′ ∈ X and b ∈ Y , one has ((m + [a], a′), b) ∈ f ⇔ ((m + [a′], a), b) ∈ f . In
that case, the antiderivative g ∈ Rel(!X,Y) given by that proposition is simply

g = {(m+ [a], b) | ((m, a), b) ∈ f} .

4.3 Finiteness spaces

This model can be seen as an enrichment of the model of sets and relations of
Section 4.2. It can also be described as a category of topological vector spaces
and linear continuous maps. From now on, k denotes an arbitrary field which
is always endowed with the discrete topology.

4.4 Linearly topologized vector spaces (ltvs)

Let E be a k-vector space. A linear topology on E is a topology λ such that
there is a filter L of linear subspaces of E with the following property: a subset
U of E is λ-open iff for any x ∈ U there exists V ∈ L such that x+V ⊆ U . One
says that such a filter L generates the topology L. A k-ltvs is a k-vector space
equipped with a linear topology. Observe that E is Hausdorff iff

⋂
L = {0} (for

some, and hence any, generating filter L); from now on we assume always that
this is the case.

Proposition 15 Let E be a k-ltvs. Any linear subspace U of E which is a
neighborhood of 0 is both open and closed. So E is totally disconnected (the only
subsets of E which are connected are the empty set and the one point sets).

Proof.

Let L be a generating filter for the topology of E. First, let x ∈ U and let V ∈ L
be such that V ⊆ U (such a V exists because U is a neghborhood of 0), then
we have x+ V ⊆ U since U is a linear subspace and hence U is open. Next let
x ∈ E \ U . If y ∈ U ∩ (x + U) then we have y − x ∈ U and hence x ∈ U since
y ∈ U and U is a linear subspace: contradiction. Therefore U ∩ (x + U) = ∅
and U is closed since U is open. 2

Any linear subspace which contains an open linear subspace is open.

4.4.1 Cauchy completeness.

A net in E is a family (x(d))d∈D of elements of E indexed by a directed set D.
The net (x(d))d∈D converges to x ∈ E if, for any neighborhood U of 0, there
exists d ∈ D such that ∀e ∈ D e ≥ d⇒ x(e)− x ∈ U . Because E is Hausdorff,
a net converges to at most one point. As usual, one can check that a subset U

58

of E is open iff, for any net (x(d))d∈D which converges to a point x ∈ U , there
exists d ∈ D such that ∀e ∈ D e ≥ d⇒ x(e) ∈ U .

A net (x(d))d∈D is Cauchy if, for any neighborhood U of 0, there exists
d ∈ D such that ∀e, e′ ∈ D e, e′ ≥ d⇒ x(e)− x(e′) ∈ U . This latter statement
is equivalent to ∀e ∈ D e ≥ d⇒ x(e)− x(d) ∈ U .

One says that E is complete if any Cauchy net in E converges.

4.4.2 Linear boundedness.

Let E be an ltvs and let U be an open linear subspace of E. Let πU : E → E/U
be the canonical projection. This map is of course linear, and its kernel is U
which is a neighborhood of 0. This means that, endowing E/U with the discrete
topology, πU is continuous. Hence the quotient topology on E/U is the discrete
topology.

We say that a subspace B of E is linearly bounded if πU (B) is finite dimen-
sional, for every linear open subspace U of E. In other words, for any linear open
subspace U , there is a finite dimensional subspace A of E such that B ⊆ U +A.

Proposition 16 Any finite dimensional subspace of an ltvs E is linearly bounded.
Let B1 and B2 be subspaces of E. If B1 ⊆ B2 and B2 is linearly bounded, so is
B1. If B1 and B2 are linearly bounded, so is B1 +B2.

A collection of subspaces of a vector space F having these properties is called a
linear bornology on F .

An ltvs E is locally linearly bounded if it has a linear open subspace which
is linearly bounded.

4.4.3 Linear and multilinear maps.

Let E1, . . . , En and F be k-ltvs’s. An n-multilinear function f : E1 × · · · ×
En → F is hypocontinuous if, for any i ∈ {1, . . . , n}, any linear open subspace
V ⊆ F and any linearly bounded subspaces B1 ⊆ E1,. . . ,Bi−1 ⊆ Ei−1, Bi+1 ⊆
Ei+1,. . . ,Bn ⊆ En, there exists an open linear subspace U ⊆ Ei such that
f(B1 × · · · ×Bi−1 × U ×Bi+1 × · · · ×Bn) ⊆ V .

We denote by (E1, . . . , En) (F the k-vector space of all such multilinear
maps. Given linearly bounded subspaces B1, . . . , Bn of E1, . . . , En respectively
and given a linear open subspace V of F , we define

Ann(B1, . . . , Bn, V) = {f ∈ (E1, . . . , En)(F | f(B1 × · · · ×Bn) ⊆ V } .

This is a linear subspace of (E1, . . . , En) (F and by Proposition 16 these
subspaces form a filter which defines a linear topology on (E1, . . . , En) (F
and this topology is Hausdorff. Indeed, if f ∈ (E1, . . . , En) (F is 6= 0, then
take xi ∈ Ei such that f(x1, . . . , xn) 6= 0. Since F is Hausdorff, there is a linear
neighborhood V of 0 in F such that f(x1, . . . , xn) /∈ V . Let Bi = kxi; this is a
linearly bounded subspace of Ei and f(B1 × · · · ×Bn) 6⊆ V .

59

In the case n = 1 (and E = E1), the corresponding maps f : E → F are
simply called linear, and they are continuous. The corresponding function space
is denoted as E (F .

If F = k, the corresponding maps are called (multi)linear (hypo)continuous
forms. If furthermore n = 1 the corresponding function space is denoted as E′

and is called topological dual of E.

Proposition 17 Let f : E1 × · · · ×En → F be multilinear and hypocontinuous
and let Bi ⊆ Ei be linearly bounded subspaces for i = 1, . . . , n. Then f(B1 ×
· · · ×Bn) is a linearly bounded subspace of F .

Proof.

Let V be an open linear subspace of F . Let U1 be an open linear subspace of E1

such that f(U1×B1×· · ·×Bn) ⊆ V . Let A1 be a finite dimensional subspace of
E1 such that B1 ⊆ U1+A1, we have f(B1×· · ·×Bn) ⊆ V +f(A1×B2×· · ·×Bn).
Since A1 is bounded, one can find similarly a finite dimensional subspace A2 of
E2 such that f(A1×B2×· · ·×Bn) ⊆ V +f(A1×A2×B3×· · ·×Bn) and hence
(since V + V = V) we get f(B1 × · · · ×Bn) ⊆ V + f(A1 ×A2 ×B3 × · · · ×Bn).
Continuing this process, we find finite dimensional subspaces Ai of Ei for i =
1, . . . , n such that f(B1×· · ·×Bn) ⊆ V +f(A1×· · ·×An) and we conclude that
f(B1×· · ·×Bn) is linearly bounded since f(A1×· · ·×An) is finite dimensional.

2

It is tempting to think that (multi)linear continuous maps could be charac-
terized as those which preserve linear boundedness. This cannot be the case:
think of a linear map f : E → F where F is finite dimensional. Such a map
preserves linear boundedness (any subspace of F is linearly bounded) but has
no reason to be continuous.

4.5 Finiteness spaces and the related ltvs’s

We restrict now our attention to particular ltvs’s which can be described in a
simple combinatorial way.

4.5.1 Basic definitions.

Let I be a set. Given F ⊆ P(I), we define F⊥ ⊆ P(I) by

F⊥ = {u′ ⊆ I | ∀u ∈ F u ∩ u′ is finite} .

We have F ⊆ G ⇒ G⊥ ⊆ F⊥, F ⊆ F⊥⊥ and therefore F⊥⊥⊥ = F⊥.
A finiteness space is a pair X = (|X|,F(X)) where |X| is a set and F(X) ⊆

P(|X|) satisfies F(X) = F(X)⊥⊥. The following properties follow easily from
the definition

• if u ⊆ |X| is finite then u ∈ F(X)

• if u, v ∈ F(X) then u ∪ v ∈ F(X)

60

• if u ⊆ v ∈ F(X), then u ∈ F(X).

Let us prove for instance the second statement. Let u′ ∈ F(X)⊥, then (u∪ v)∩
u′ = (u ∩ u′) ∪ (v ∩ u′) is finite since both sets u ∩ u′ and v ∩ u′ are finite by
our hypothesis that u, v ∈ F(X). Since this holds for all u′ ∈ F(X)⊥, we have
u ∪ v ∈ F(X)⊥⊥ = F(X).

A strong isomorphism12 between two finiteness spaces X and Y is a bijection
ϕ : |X| → |Y | such that, for all u ⊆ |X|, one has u ∈ F(X) iff ϕ(u) ∈ F(Y).

Let X be a finiteness space. We define a k-vector space k〈X〉 as the set of
all families x ∈ k|X| such that the set supp(x) = {a ∈ |X| | xa 6= 0} belongs to
F(X).

Given u′ ∈ F(X)⊥, we define a linear subspace of k〈X〉 by

VX(u′) = {x ∈ k〈X〉 | supp(x) ∩ u′ = ∅} .

Observe first that ∀u′, v′ ∈ F(X)⊥ u′ ⊆ v′ ⇔ VX(v′) ⊆ VX(u′).
Since, given u′, v′ ∈ F(X)⊥, we have VX(u′ ∪ v′) = VX(u′) ∩ VX(v′), the

set {VX(u′) | u′ ∈ F(X)⊥} is a filter of linear subspaces of k〈X〉. Moreover,
observe that

⋂
u′∈F(X)⊥ VX(u′) = {0} (because ∀a ∈ |X| {a} ∈ F(X)⊥), and

therefore this filter defines an Hausdorff linear topology on k〈X〉, that we call
the canonical topology of k〈X〉.

Proposition 18 For any finiteness space X, the ltvs k〈X〉 is Cauchy-complete.

Proof.

Let (x(d))d∈D be a Cauchy net in k〈X〉. Let a ∈ |X|. By taking u′ = {a} in
the definition of a Cauchy net, we see that there exist xa ∈ k and da ∈ D such
that ∀e ≥ da x(e)a = xa. In that way we have defined x = (xa)a∈|X| ∈ k|X|

We prove first that

∀u′ ∈ F(X)⊥ ∃d ∈ D ∀e ≥ d∀a ∈ u′ x(e)a = xa . (17)

Let u′ ∈ F(X)⊥. Let d0 ∈ D be such that x(e)− x(d0) ∈ VX(u′) for all e ≥ d0.
Let a ∈ u′ and let da ≥ d0 be such that x(e)a = xa for all e ≥ da. Let e ≥ d0.
Let e′ ≥ e, da. We have xa = x(e′)a since e′ ≥ da and x(e′)a = x(e)a since
e, e′ ≥ d0 and a ∈ u′. It follows that ∀a ∈ u′ xa = x(e)a.

From this we deduce now that x ∈ k〈X〉. Let u′ ∈ F(X)⊥. Let d ∈ D be
such that ∀e ≥ d∀a ∈ u′ x(e)a = xa. Then supp(x) ∩ u′ = supp(x(d)) ∩ u′ is
finite, so supp(x) ∈ F(X)⊥⊥ = F(X), that is x ∈ k〈X〉.

Now Condition (17) expresses exactly that limd∈D x(d) = x and hence the
net (x(d))d∈D converges. 2

12This would coincide with the categorical notion of isomorphism if we were using morphisms
which are defined as relations. With linear continuous maps (between the associated ltvs’s) as
morphisms, the present notion of isomorphism is a particular case of the standard categorical
one: we can have more linear homeomorphisms from k〈X〉 to k〈Y 〉 than those which are
generated by such finiteness-preserving bijections between webs.

61

A natural question is whether the ltvs k〈X〉, which is Hausdorff, is always
metrizable. We provide a necessary and sufficient condition under which this is
the case.

Proposition 19 Let X be a finiteness space. The ltvs k〈X〉 is metrizable iff
there exists a sequence (u′n)n∈N of elements of F(X)⊥ which is monotone (n ≤
m⇒ u′n ⊆ u′m) and such that ∀u′ ∈ F(X)⊥ ∃n ∈ N u′ ⊆ u′n.

Proof.

Let first (u′n)n∈N be a sequence of elements of F(X)⊥ which satisfies the condi-
tion stated above. Given x, y ∈ k〈X〉, we define

d(x, y) =


0 if x = y

2−n if x 6= y and n is the least integer

such that u′n ∩ supp(x− y) 6= ∅ .

Indeed, if x 6= y, then supp(x− y) 6= ∅ and hence, taking a ∈ supp(x− y), we
can find n ∈ N such that {a} ⊆ u′n. This function d is easily seen to be an
ultrametric distance (that is d(x, z) ≤ max(d(x, y), d(y, z))) and it generates
the canonical topology of k〈X〉. Indeed we have

d(x, y) < 2−n iff x− y ∈ VX(u′n)

(indeed, d(x, y) < 2−n means that the least m such that x−y /∈ VX(u′m) satisfies
m > n) and hence B2−n = VX(u′n), where Bε is the open ball centered at 0 and
of radius ε.

Conversely, assume that k〈X〉 is metrizable and let d be a distance defining
the canonical topology of k〈X〉. For each n ∈ N, B2−n is a neighborhood of 0 and
hence there exist v′n ∈ F(X)⊥ such that VX(v′n) ⊆ B2−n . Let u′n = v′0∪· · ·∪v′n ∈
F(X)⊥. Then VX(u′n) ⊆ VX(v′n) ⊆ B2−n . Now let u′ ∈ F(X)⊥, then VX(u′) is
a neighborhood of 0 and hence there exists n such that B2−n ⊆ VX(u′), which
implies VX(u′n) ⊆ VX(u′) and hence u′ ⊆ u′n. 2

It follows that there are non metrizable ltvs associated with finiteness spaces.
We give in Proposition 20 an example of this situation which arises in the se-
mantics of LL, using exponential constructions that will be introduced in Sec-
tion 4.5.3.

Proposition 20 The ltvs k〈!?1〉 is not metrizable

Proof.

Let X = !?1, so that |X| = Mfin(N) and a subset u for |X| belongs to F(X)
iff ∃n ∈ N u ⊆ Mfin({0, . . . , n}). The proof is a typical Cantor diagonal rea-
soning. We assume towards a contradiction that k〈X〉 is metrizable, that is
by Proposition 19, we assume that there is a monotone sequence (u′n)n∈N of

62

elements of F(X)⊥ such that ∀u′ ∈ F(X)⊥ ∃n ∈ N u′ ⊆ u′n. Let n ∈ N, we
have {p[n] | p ∈ N} ∈ Mfin({0, . . . , n}) and hence u′n ∩ {p[n] | p ∈ N} is finite.
Therefore we can find a function f : N → N such that ∀n ∈ N f(n)[n] /∈ u′n.
Let u′ = {f(n)[n] | n ∈ N}. Then u′ ∈ F(X)⊥ since, for any n ∈ N,
u′ ∩ Mfin({0, . . . , n}) = {f(i)[i] | i ∈ [0, n]} is finite. But for all n ∈ N we
have f(n)[n] ∈ u′ \ u′n and so u′ 6⊆ u′n. 2

We consider this as a very interesting phenomenon which seems to reveal a
relation between the topological complexity of the interpretation of a type with
its logical complexity (alternation of exponentials).

4.5.2 Linearly bounded subspaces.

Let X be a finiteness space. We are interested in characterizing the linearly
bounded subspaces of k〈X〉.

Given u ⊆ |X|, let BX(u) = {x ∈ k〈X〉 | supp(x) ⊆ u}. This is a linear
subspace of k〈X〉.

Let u ∈ F(X). We prove that BX(u) is linearly bounded. Let u′ in F(X)⊥.
Observe that VX(u′) = BX(|X| \ u′). We have therefore BX(u) ⊆ VX(u′) +
BX(u∩ u′), and since u∩ u′ is finite, the space BX(u∩ u′) is finite dimensional.
Let U be an open subspace of U , let u′ ⊆ F(X)⊥ be such that VX(u′) ⊆ U .
Then BX(u) ⊆ U +BX(u∩u′). Hence BX(u) is linearly bounded. We show now
that this condition is actually sufficient.

Proposition 21 A linear subspace B of k〈X〉 is linearly bounded iff there exists
u ∈ F(X) such that B ⊆ BX(u).

Proof.

Assume that B is linearly bounded. Let u =
⋃
x∈B supp(x), so that B ⊆ BX(u),

we prove that u ∈ F(X). Let u′ ∈ F(X)⊥. Let A be a finite dimensional
subspace of E such that B ⊂ VX(u′) +A. Let A0 be a finite generating subset
of A and let u0 =

⋃
y∈A0

supp(y) ∈ F(X). Then x ∈ A⇒ supp(x) ⊆ u0 (that is
A ⊆ BX(u0)).

Let x ∈ B, we write x = x1 + x2 where x1 ∈ VX(u′) and x2 ∈ A. We have
supp(x) ⊆ supp(x1) ∪ supp(x2) and hence u′ ∩ supp(x) ⊆ (u′ ∩ supp(x1)) ∪ (u′ ∩
supp(x2)) ⊆ u′ ∩ u0 since u′ ∩ supp(x1) = ∅. Since this holds for all x ∈ B, we
have u′ ∩ u ⊆ u′ ∩ u0 so u′ ∩ u is finite and hence u ∈ F(X) 2

Proposition 22 The ltvs k〈X〉 is locally linearly bounded iff there exist u ∈
F(X) and u′ ∈ F(X)⊥ such that u ∪ u′ = |X|.

This is an obvious consequence of Proposition 21.
Fink is the category whose objects are the finiteness spaces and such that

Fink(X,Y) is the set of all continuous linear maps k〈X〉 → k〈Y 〉.

63

4.5.3 Constructions of finiteness spaces.

We give a number of constructions on finiteness spaces which allow one to in-
terpret differential LL, starting with the most important one, which is the linear
function space.

The most striking features of these constructions can be summarized by the
two following statements.

• In spite of the fact that these constructions are algebraic in nature (tensor
product, linear function space, topological dual etc), they are entirely
performed on the webs of the finiteness spaces and do not involve the
scalar coefficients. This means in particular that they do not depend on
the choice of the field, and this is quite surprising.

• So, these constructions are performed on the webs, but they do not really
depend on them, in the following sense. Defining an intrinsic finiteness
space as a k-ltvs which is linearly homeomorphic to k〈X〉 for some finite-
ness space X, all these constructions can be transferred to the category of
intrinsic finiteness spaces and continuous and linear maps.

Let X and Y be finiteness spaces. Let X (Y be the finiteness space such
that |X (Y | = |X| × |Y | and

F(X (Y) = {u× v′ | u ∈ F(X) and v′ ∈ F(Y ⊥)}⊥

= {w ⊆ |X| × |Y | | ∀u ∈ F(X)∀v′ ∈ F(Y)⊥ w ∩ (u× v′) is finite}

Let w ∈ F(X (Y), u ∈ F(X) and v′ ∈ F(X)⊥. It follows from (16) that
wu ∈ F(Y) and that w⊥v′ ∈ F(X)⊥.

Let M ∈ k〈X (Y 〉. If x ∈ k〈X〉 and b ∈ |Y |, then supp(M)⊥{b} ∈ F(X)⊥

and hence the sum
∑
a∈|X|Ma,bxa is finite. Therefore we can define Mx ∈ k|Y |

by Mx = (
∑
a∈|X|Ma,bxa)b∈|Y |. Since supp(Mx) ⊆ supp(M) supp(x), we have

Mx ∈ k〈Y 〉 and hence the function fun(M) defined by fun(M)(x) = Mx is
a linear map k〈X〉 → k〈Y 〉. Moreover, fun(M) is continuous. Indeed, for

any v′ ∈ F(Y)⊥ we have VX(supp(M)⊥v′) ⊆ fun(M)
−1

(VY (v′)) and hence

fun(M)
−1

(VY (v′)) is open since supp(M)⊥v′ ∈ F(X)⊥.
Given finiteness spaces Z1, Z2, we define immediately the finiteness space

Z1 ⊗ Z2 as Z1 ⊗ Z2 = (Z1 (Z⊥2)⊥, so that |Z1 ⊗ Z2| = |Z1| × |Z2|. One
of the most pleasant features of the theory of finiteness spaces is the following
property (see [Ehr05]) which has been considerably generalized in [TV10].

Proposition 23 Let w ⊆ |Z1| × |Z2|. One has w ∈ F(Z1 ⊗ Z2) iff pri(w) ∈
F(Zi) for i = 1, 2.

Coming back to linear function spaces, this means in particular that, given
w ⊆ |X| × |Y |, one has w ∈ F(X (Y)⊥ iff there are u ∈ F(X) and v′ ∈ F(Y)⊥

such that w ⊆ u × v′, from which we derive a simple characterization of the
topology of linear function spaces.

64

Proposition 24 The function FunX,Y : M 7→ fun(M) is a linear homeomor-
phism from k〈X (Y 〉 to k〈X〉(k〈Y 〉, equipped with the topology of uniform
convergence on linearly bounded subspaces.

Proof.

The proof that FunX,Y is a linear isomorphism can be found in [Ehr05]. We
prove that this linear isomorphism is an homeomorphism. Let B ⊆ k〈X〉 be
a bounded subspace and V ⊆ k〈Y 〉 is an open subspace. Let u ∈ F(X) be
such that B ⊆ BX(u) and let v′ ∈ F(Y)⊥ be such that VY (v′) ⊆ V . Then
u×v′ ∈ F(X (Y)⊥ and hence VX(Y (u×v′) ⊆ k〈X (Y 〉 is an open subspace.
Let M ∈ VX(Y (u×v′), x ∈ B and b ∈ v′, we have (Mx)b = 0 since supp(x) ⊆ u,
which shows that FunX,Y (M)(B) ⊆ V and hence FunX,Y is continuous.

Let now W ⊆ k〈X (Y 〉 be an open subspace. Let w ∈ F(X (Y)⊥

be such that VX(Y (w) ⊆ W . By Proposition 23, there are u ∈ F(X) and
v′ ∈ F(Y)⊥ such that w ⊆ u× v′, and hence VX(Y (u× v′) ⊆ W . Then, given
M ∈ VX(Y (u × v′), we have FunX,Y (M)(BX(u)) ⊆ VY (v′), which shows that
FunX,Y (W) is an open linear subspace of k〈X〉(k〈Y 〉.

We have seen that FunX,Y is a continuous and open bijection and hence it
is an homeomorphism. 2

The tensor product X ⊗ Y defined above is characterized by a standard
universal property: it classifies the hypocontinuous bilinear maps.

Given vectors x ∈ k〈X〉 and y ∈ k〈Y 〉, then x⊗ y ∈ k|X⊗Y | defined by (x⊗
y)(a,b) = xayb is clearly an element of k〈X ⊗ Y 〉 since supp(x⊗ y) = supp(x)×
supp(y) ∈ F(X ⊗ Y). The map

τ : k〈X〉 × k〈Y 〉 → k〈X ⊗ Y 〉
(x, y) 7→ x⊗ y

is obviously bilinear, let us check that it is hypocontinuous.
Let W be an open linear subspace of k〈X ⊗ Y 〉 and let w′ ∈ F(X ⊗ Y)⊥

be such that VX⊗Y (w′) ⊆ W . Let B ⊆ k〈X〉 be a linearly bounded subspace
and let u ∈ F(X) be such that B ⊆ BX(u). Since w′ ∈ F(X (Y ⊥) we have
v′ = w′u ∈ F(Y)⊥. Let x ∈ B and y ∈ VY (v′), we have supp(x) ⊆ u and
hence pr2(supp(x⊗ y) ∩ w′) ⊆ pr2((u× supp(y)) ∩ w′) = (w′u)∩ supp(y) = ∅ by
definition of VY (v′). Therefore x⊗ y ∈ VX⊗Y (w′) ⊆W . Symmetrically, taking
a linearly bounded subspace C of k〈Y 〉, we show that there is an open linear
subspace U of k〈X〉 such that τ(U × C) ⊆ W . So the map τ is bilinear and
hypocontinuous.

Proposition 25 Let Z be a finiteness space and let f : k〈X〉 × k〈Y 〉 → k〈Z〉
be bilinear and hypocontinuous. There exists exactly one continuous linear map
f̃ : k〈X ⊗ Y 〉 → k〈Z〉 such that f = f̃ ◦ τ .

65

Proof.

We define a matrix M ∈ k|X|×|Y |×|Z| by Ma,b,c = f(ea, eb)c and we show first
that supp(M) ∈ F(X ⊗ Y (Z).

So let u ∈ F(X), v ∈ F(Y) and w′ ∈ F(Z)⊥; we must show that supp(M) ∩
(u× v × w′) is finite. Let v′ ∈ F(Y)⊥ and u′ ∈ F(X)⊥ be such that

f(BX(u)× VY (v′)) ⊆ VZ(w′) and f(VX(u′)× BY (v)) ⊆ VZ(w′) .

Let (a, b, c) ∈ supp(M) ∩ (u × v × w′), since f(ea, eb)c /∈ VZ(w′) (by definition
of VZ(w′) and by our assumption about (a, b, c)), we must have

(ea, eb) /∈ BX(u)× VY (v′) and (ea, eb) /∈ VX(u′)× BY (v).

But we know that a ∈ u and b ∈ v, that is ea ∈ BX(u) and eb ∈ BY (v). It
follows that ea /∈ VX(u′), that is a ∈ u′, and similarly b ∈ v′.

Since BX(u) and BY (v) are linearly bounded, so is f(BX(u) × BY (v)) by
Proposition 17 and hence there exists w ∈ F(Z) such that

f(BX(u)× BY (v)) ⊆ BZ(w) .

Therefore f(ea, eb) ∈ BZ(w) and hence c ∈ w.
We have shown that

supp(M) ∩ (u× v × w′) ⊆ (u ∩ u′)× (v ∩ v′)× (w ∩ w′)

and hence supp(M) ∩ (u× v × w′) is finite, so M ∈ k〈X ⊗ Y (Z〉.
Let f̃ = fun(M), it is a linear and continuous map from k〈X ⊗ Y 〉 to k〈Z〉.

We have f̃(ea ⊗ eb) = f(ea, eb) for each (a, b) ∈ |X| × |Y |. Let x ∈ F(X) and
y ∈ k〈Y 〉, by separate continuity of f (which is a consequence of hypocontinuity)
we have

f(x, y) = f(
∑
a∈|X|

xaea,
∑
b∈|Y |

ybeb)

=
∑

(a,b)∈|X|×|Y |

xaybf(ea, eb)

=
∑

(a,b)∈|X|×|Y |

xaybf̃(ea ⊗ eb)

= f̃(x⊗ y) by continuity of f̃ .

Uniqueness of the continuous linear map f̃ results from the fact that necessarily
f̃(ea ⊗ eb) = f(ea, eb). 2

Then one proves easily that the category Fink equipped with this tensor
product (whose neutral object is 1, which satisfies obviously k〈1〉 = k) is ∗-
autonomous, the object of morphisms from X to Y being X (Y and the
dualizing object being ⊥ = 1 (indeed, the finiteness spaces X (⊥ and X⊥ are
obviously strongly isomorphic).

66

This category is preadditive in the sense of Section 2.4 since homsets Fink(X,Y)
have an obvious structure of k-vector space which is compatible with all the cat-
egorical operations introduced so far.

Countable products and coproducts are available as well. Let (Xi)i∈I be
a countable family of finiteness spaces. The finiteness space X =

˘
i∈I Xi is

given by |X| =
⋃
i∈I |Xi| and F(X) = {w ⊆ |X| | ∀i ∈ I wi ∈ F(Xi)} where

wi = {a ∈ |Xi| | (i, a) ∈ w}. It is easy to check that

F(X)⊥ = {w′ ⊆ |X| | ∀i ∈ I w′i ∈ F(Xi)
⊥ and w′i = ∅ for almost all i}

and it follows that F(X)⊥⊥ = F(X). It is clear that k〈
˘
i∈I Xi〉 =

∏
i∈I k〈Xi〉

up to a straightforward strong isomorphism and that
˘
i∈I Xi together with

projections πj : k〈
˘
i∈I Xi〉 → k〈Xj〉 defined in the obvious way, is the cartesian

product of the Xi’s.
Thanks to ∗-autonomy, the coproduct of the Xi’s is given by

⊕
i∈I Xi =(˘

i∈I X
⊥
i

)⊥
and k〈

⊕
i∈I Xi〉 ⊆

∏
i∈I k〈Xi〉 is the space of all families (xi)i∈I

of vectors such that xi = 0 for almost all i ∈ I. Of course, the canonical linear
topology on k〈

˘
i∈I Xi〉 is the product topology, but the canonical topology on

k〈
⊕

i∈I Xi〉 is much finer: it is generated by all products
∏
i∈I Vi where Vi is a

linear neighborhood of 0 in k〈Xi〉.
For finite families of objects, products and coproducts coincide.
Let X be a finiteness space. We define !X by |!X| =Mfin(|X|) and

F(!X) = {A ⊆ |!X| |
⋃
m∈A

supp(m) ∈ F(X)}

and it can be proved that indeed F(!X) = F(!X)⊥⊥ (again, see [TV10] for more
general results of this kind).

Given x ∈ k〈X〉 and m ∈ |!X|, we set

xm =
∏
a∈|X|

xm(a)
a ∈ k

(this is a finite product since supp(m) is a finite set), so that

x! = (xm)m∈|!X| ∈ k〈!X〉

by definition of F(!X). Let M ∈ k〈!X (Y 〉, it is not hard to see that one
defines a map Fun(M) : k〈X〉 → k〈Y 〉 by setting

Fun(M)(x) =

 ∑
m∈|!X|

Mm,bx
m


b∈|Y |

all these sums are indeed finite, see [Ehr05] for the details. When the field k is
infinite, the map M 7→ Fun(M) is injective.

67

In [Ehr05], it is also proven that ! is a functor. Given M ∈ k〈X (Y 〉 one
defines !M ∈ k〈!X (!Y 〉 by setting, for m ∈ |!X| and p ∈ |!Y |,

(!M)m,p =
∑

r∈L(m,p)

[r]Mr

where

L(m, p) = {r ∈Mfin(|X| × |Y |) |
∑
b∈|Y |

r(a, b) = m(a) and
∑
a∈|X|

r(a, b) = p(b)}

(so that r ∈ L(m, p)⇒ #m = #r = #p) and

[r] =
∏
b∈|Y |

p(b)!∏
a∈|X| r(a, b)!

∈ N+ .

is a generalized multinomial coefficient.
This operation is functorial: !Id = Id and !M !N = !(M N), and we also have

Fun(!M)(x) = !M x! = (Mx)! .

When k is infinite, this latter equation completely characterizes !M , by injectiv-
ity of the operation Fun in that case. This functor has a comonad structure, of
which we recall here only the counit dX ∈ k〈!X (X〉 given by (dX)m,a = δm,[a].

The bijection |!(X & Y)| → |!X ⊗ !Y | which maps the element q ∈ |!(X & Y)|
to the pair (m, p) ∈ |!X ⊗ !Y | defined by m(a) = q(1, a) and p(b) = q(2, b)
is a strong isomorphism of finiteness spaces. We also have a strong isomor-
phism from !⊥ to 1. These strong isomorphisms induce natural isomorphisms
m2
X,Y ∈ Fink(!X ⊗ !Y , !(X & Y)) and m0 ∈ Fink(1, !>) which endow the func-

tor ! with a monoidality structure from (Fink,&,>) to (Fink,⊗, 1), satisfying
moreover the coherence diagram (??): to summarize, equipped with the struc-
ture described above, Fink is a Seely category, that is, a categorical model of
classical LL.

Applying the general recipe of Section 4.1, we get the contraction natural
transformation cX : !X → !X ⊗ !X and the weakening morphism wX : !X → 1.
We check that (wX)m,∗ = δm,[] and that (cX)m,(p,q) = δm,p+q. We also get the
cocontraction natural transformation cX : !X ⊗ !X → !X and the coweaken-
ing morphism wX : 1 → !X. And we check that (wX)∗,m = δm,[], and that

(cX)(p,q),m =
(
p+q
p

)
δm,p+q where(
m

p

)
=
∏
a∈|X|

m(a)!

p(a)!(m(a)− p(a))!
∈ N+

is a generalized binomial coefficient.
We also have a codereliction natural transformation dX : X → !X given by

(dX)a,m = δm,[a], which is easily seen to satisfy the conditions of Section 2.5

and 2.6, so that Fink is a model of full differential LL.

68

4.5.4 An intrinsic presentation of function spaces.

We have seen that a morphism from X to Y of the linear category Fink can be
seen both as an element of k〈X (Y 〉 and as a continuous linear function from
k〈X〉 to k〈Y 〉.

A morphism from X to Y in the Kleisli category Relk! is an element of
k〈!X (Y 〉. Given M ∈ k〈!X (Y 〉, we have seen that we can define a function
FunM : k〈X〉 → k〈Y 〉 by

Fun(M)(x) = M x! = (
∑

m∈|!X|

Mm,bx
m)b∈|Y | .

Moreover, the correspondence M → Fun(M) is functorial. We provide here an
intrinsic characterization of these functions.

Let E and F be ltvs’s. Let us say that a function f : E → F is polynomial if
there is n ∈ N and hypocontinuous i-linear maps fi : Ei → F (for i = 0, . . . , n)
such that

f(x) = f0 + f1(x) + · · ·+ fn(x, . . . , x) .

A polynomial map f of the form f(x) = fn(x, . . . , x), where fn is an n-linear
hypocontinuous function, is said to be homogeneous of degree n (this condition
implies of course ∀t ∈ k f(tx) = tnf(x), and when k is infinite, a polynomial
function is homogeneous iff it satisfies this latter condition).

Let Polk(E,F) be the k-vector space of polynomial functions from E to F .
This space can be endowed with the linear topology of uniform convergence
on all linearly bounded subspaces, which admits the following generating fil-
ter base of open neighborhoods of 0: the basic opens are the linear subspaces
Ann(B, V) = {f ∈ Polk(E,F) | f(B) ⊆ V }, where B is a linearly bounded
subspace of E and V is a linear open subspace of F . Let Anak(E,F) be the
completion13 of that ltvs.

Theorem 26 Assume that k is infinite. For any finiteness spaces X and Y ,
the ltvs k〈!X (Y 〉 is linearly homeomorphic to Anak(k〈X〉,k〈Y 〉).

Proof.

Let h : k〈X〉n → k〈Y 〉 be an hypocontinuous n-linear function of matrix M ∈
k〈X ⊗ · · · ⊗X (Y 〉, so that h(x1, . . . , xn) = M(x1 ⊗ · · · ⊗ xn).

Remember that, using contraction and dereliction, we have defined in Sec-
tion 3 the morphism dnX ∈ k〈!X (X ⊗ · · · ⊗X〉. Then we have N = M dnX ∈
k〈!X (Y 〉, and it is easy to see that

Fun(N)(x) = h(x, . . . , x) .

13A completion of an ltvs E is a pair (Ẽ, h) where Ẽ is a complete ltvs and h : E → Ẽ is a
linear and continuous map such that, for any complete ltvs F and any linear continuous map
f : E → F , there is an unique linear and continuous map f̃ : Ẽ → F such that f̃ ◦ h = f .
Using standard techniques, one can prove that any ltvs admits a completion, which is unique
up to unique isomorphism.

69

In that way, we see that any polynomial map from k〈X〉 to k〈Y 〉 is an element
of k〈!X (Y 〉; we have an inclusion Polk(k〈X〉,k〈Y 〉) ⊆ k〈!X (Y 〉. Actually,
the exponential structure Fink is Taylor and this notion of polynomial map
coincides with the general notion of Section 3.1.

Conversely, let (m, b) ∈ |!X (Y | with m = [a1, . . . , an]. The map f :
k〈X〉n → k defined by f(x(1), . . . , x(n)) = x(1)a1 . . . x(n)an is multilinear and
hypocontinuous. Hence the same holds for the map x 7→ f(x)eb from k〈X〉n
to k〈Y 〉. Therefore we have k(|!X(Y |) ⊆ Polk(k〈X〉,k〈Y 〉) (given a set I, re-
member that k(I) is the k-vector space generated by I, that is, the space of all
families (ai)i∈I of elements of k such that ai = 0 for almost all i’s).

Hence Polk(k〈X〉,k〈Y 〉) is a dense subspace of k〈!X (Y 〉. To show that
k〈!X (Y 〉 is the completion of Polk(k〈X〉,k〈Y 〉) it suffices to show that the
above defined linear topology on that space (uniform convergence on all linearly
bounded subspaces) is the restriction of the topology of k〈!X (Y 〉.

Let B ⊆ k〈X〉 be a linearly bounded subspace and let V ⊆ k〈Y 〉 be linear
open. Let v′ ∈ F(Y)⊥ be such that VY (v′) ⊆ V . By Proposition 21, supp(B) ∈
F(X), so Mfin(supp(B)) ∈ F(!X). Let

M ∈ V !X(Y (Mfin(supp(B))× v′) ⊆ k〈!X (Y 〉 ,

then fun(M)(x)b = 0 for each x ∈ B and b ∈ v′. So we have

V !X(Y (Mfin(supp(B))× v′) ∩ Polk(k〈X〉,k〈Y 〉) ⊆ Ann(B, V) .

Conversely let U ∈ F(!X) and v′ ∈ F(Y)⊥, then we have u =
⋃
m∈U supp(m) ∈

F(X) and hence the subspace B ⊆ k〈X〉 of all vectors which vanish outside u
is linearly bounded. Let M ∈ k〈!X (Y 〉 be such that the map Fun(M) :
k〈X〉 → k〈Y 〉 is polynomial and belongs to Ann(B,VY (v′)). Then for any
m = [a1, . . . , an] ∈ Mfin(u) and b ∈ v′ we have Mm,b = 0 because this

scalar is the coefficient of the monomial ξ
m(a1)
1 . . . ξ

m(an)
n in the polynomial

P ∈ k[ξ1, . . . , ξn] such that P (z1, . . . , zn) = Fun(M)(x)b where x ∈ k〈X〉 is
such that xa = zi if a = ai and xa = 0 if a /∈ supp(m), and P = 0 because
Fun(M)(B) ⊆ VY (v′) by assumption (we also use the fact that k is infinite).
Hence M ∈ V !X(Y (U × v′) and we have shown that

Ann(B,VY (v′)) ⊆ V !X(Y (U × v′) ∩ Polk(k〈X〉,k〈Y 〉) ,

showing that this latter set is a neighborhood of 0 in the space of polynomials.
2

The Taylor formula proved in [Ehr05] for the morphisms of this Kleisli cate-
gory shows that actually any morphism is the sum of a converging series whose
n-th term is an homogeneous polynomial of degree n.

As an example, take E = k[ξ] ' k〈!1(1〉. The corresponding topology on
E is the discrete topology. A typical example of generalized polynomial map
is the function ϕ : E → k which maps a polynomial P to P (P (0)), in other
words, ϕ(x0 + x1ξ + · · · + xnξ

n) = x0 + x1x0 + · · · + xnx
n
0 . Considered as a

70

generalized polynomial of infinitely many variables x0, x1, . . . , we see that ϕ is
not of bounded degree, and so it is not polynomial. Nevertheless, it corresponds
to a very simple and finite computation on polynomials.

4.5.5 Antiderivatives.

Just as Rel, the Fink exponential structure is Taylor in the sense of Sec-
tion 3.1. Moreover, if k is of characteristic 0 (meaning that ∀n ∈ N n 1 =
0 ⇒ n = 0) it has antiderivatives in the sense of 3.2, because the morphism
JX = IdX +(∂X ∂X) : !X → !X satisfies (JX)p,q = (#p+1)δp,q for all p, q ∈ |!X|
and hence is an isomorphism whose inverse IX is given by (IX)p,q = 1

#p+1δp,q.

Acknowledgment

Part of the work reported in this article has been supported by the French-
Chinese project ANR-11-IS02-0002 and NSFC 61161130530 Locali.

References

[Abr93] Samson Abramsky. Computational interpretations of linear logic.
Theoretical Computer Science, 111:3–57, 1993.

[BCEM11] Antonio Bucciarelli, Alberto Carraro, Thomas Ehrhard, and Giulio
Manzonetto. Full Abstraction for Resource Calculus with Tests. In
Marc Bezem, editor, CSL, volume 12 of LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2011.

[BCL99] Gérard Boudol, Pierre-Louis Curien, and Carolina Lavatelli. A se-
mantics for lambda calculi with resource. Mathematical Structures
in Computer Science, 9(4):437–482, 1999.

[BCS06] Richard Blute, Robin Cockett, and Robert Seely. Differential cate-
gories. Mathematical Structures in Computer Science, 16(6):1049–
1083, 2006.

[BET12] Richard Blute, Thomas Ehrhard, and Christine Tasson. A con-
venient differential category. Cahiers de Topologie et Géométrie
Différentielle Catégoriques, 53, 2012.

[Bie95] Gavin Bierman. What is a categorical model of intuitionistic linear
logic? In Mariangiola Dezani-Ciancaglini and Gordon D. Plotkin,
editors, Proceedings of the second Typed Lambda-Calculi and Appli-
cations conference, volume 902 of Lecture Notes in Computer Sci-
ence, pages 73–93. Springer-Verlag, 1995.

71

[Cur09] Pierre-Louis Curien, editor. Typed Lambda Calculi and Applications,
9th International Conference, TLCA 2009, Brasilia, Brazil, July 1-
3, 2009. Proceedings, volume 5608 of Lecture Notes in Computer
Science. Springer, 2009.

[DB87] N.G. De Bruijn. Generalizing Automath by means of a lambda-
typed lambda calculus. In D.W. Kueker, E.G.K. Lopez-Escobar,
and C.H. Smith, editors, Mathematical Logic and Theoretical Com-
puter Science, Lecture Notes in Pure and Applied Mathematics,
pages 71–92. Marcel Dekker, 1987. Reprinted in: Selected papers
on Automath, Studies in Logic, volume 133, pages 313-337, North-
Holland, 1994.

[DR99] Vincent Danos and Laurent Regnier. Reversible, irreversible and
optimal lambda-machines. Theoretical Computer Science, 227(1-
2):273–291, 1999.

[Ehr02] Thomas Ehrhard. On Köthe sequence spaces and linear logic. Math-
ematical Structures in Computer Science, 12:579–623, 2002.

[Ehr05] Thomas Ehrhard. Finiteness spaces. Mathematical Structures in
Computer Science, 15(4):615–646, 2005.

[Ehr10] Thomas Ehrhard. A finiteness structure on resource terms. In LICS,
pages 402–410. IEEE Computer Society, 2010.

[Ehr12] Thomas Ehrhard. The Scott model of Linear Logic is the exten-
sional collapse of its relational model. Theoretical Computer Science,
424:20–45, 2012.

[Ehr14] Thomas Ehrhard. A new correctness criterion for MLL proof nets.
In Thomas A. Henzinger and Dale Miller, editors, Joint Meeting of
the Twenty-Third EACSL Annual Conference on Computer Science
Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Aus-
tria, July 14 - 18, 2014, page 38. ACM, 2014.

[ER03] Thomas Ehrhard and Laurent Regnier. The differential lambda-
calculus. Theoretical Computer Science, 309(1-3):1–41, 2003.

[ER06] Thomas Ehrhard and Laurent Regnier. Böhm trees, Krivine ma-
chine and the Taylor expansion of ordinary lambda-terms. In
Arnold Beckmann, Ulrich Berger, Benedikt Löwe, and John V.
Tucker, editors, Logical Approaches to Computational Barriers, vol-
ume 3988 of Lecture Notes in Computer Science, pages 186–197.
Springer-Verlag, 2006. Long version available on http://www.pps.

univ-paris-diderot.fr/~ehrhard/.

72

[ER08] Thomas Ehrhard and Laurent Regnier. Uniformity and the Taylor
expansion of ordinary lambda-terms. Theoretical Computer Science,
403(2-3):347–372, 2008.

[Fio07] Marcelo P. Fiore. Differential structure in models of multiplicative
biadditive intuitionistic linear logic. In Simona Ronchi Della Rocca,
editor, TLCA, volume 4583 of Lecture Notes in Computer Science,
pages 163–177. Springer, 2007.

[FM99] Maribel Fernández and Ian Mackie. A Calculus for Interaction Nets.
In Gopalan Nadathur, editor, PPDP, volume 1702 of Lecture Notes
in Computer Science, pages 170–187. Springer-Verlag, 1999.

[Gim11] Stéphane Gimenez. Realizability proof for normalization of full dif-
ferential linear logic. In C.-H. Luke Ong, editor, TLCA, volume
6690 of Lecture Notes in Computer Science, pages 107–122. Springer-
Verlag, 2011.

[Gir86] Jean-Yves Girard. The system F of variable types, fifteen years
later. Theoretical Computer Science, 45:159–192, 1986.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–
102, 1987.

[Gir88] Jean-Yves Girard. Normal functors, power series and the λ-calculus.
Annals of Pure and Applied Logic, 37:129–177, 1988.

[Hut93] Michael Huth. Linear Domains and Linear Maps. In Stephen D.
Brookes, Michael G. Main, Austin Melton, Michael W. Mislove, and
David A. Schmidt, editors, MFPS, volume 802 of Lecture Notes in
Computer Science, pages 438–453. Springer-Verlag, 1993.

[Kri85] Jean-Louis Krivine. Un interprteur du lambda-calcul. Unpublished
note, 1985.

[Kri07] Jean-Louis Krivine. A call-by-name lambda-calculus machine.
Higher-Order and Symbolic Computation, 20(3):199–207, 2007.

[Mac71] Saunders Mac Lane. Categories for the Working Mathematician,
volume 5 of Graduate Texts in Mathematics. Springer-Verlag, 1971.

[Mel09] Paul-André Melliès. Categorical semantics of linear logic. Panora-
mas et Synthèses, 27, 2009.

[MS08] Ian Mackie and Shinya Sato. A Calculus for Interaction Nets Based
on the Linear Chemical Abstract Machine. Electronic Notes in The-
oretical Computer Science, 192(3):59–70, 2008.

[Pag09] Michele Pagani. The cut-elimination theorem for differential nets
with promotion. In Curien [Cur09], pages 219–233.

73

[PT09] Michele Pagani and Paolo Tranquilli. Parallel Reduction in Resource
Lambda-Calculus. In Zhenjiang Hu, editor, APLAS, volume 5904 of
Lecture Notes in Computer Science, pages 226–242. Springer, 2009.

[PT11] Michele Pagani and Paolo Tranquilli. The Conservation Theorem
for Differential Nets. Mathematical Structures in Computer Science,
2011. To appear.

[Ret03] Christian Retoré. Handsome proof-nets: perfect matchings and
cographs. Theoretical Computer Science, 294(3):473–488, 2003.

[Tas09a] Christine Tasson. Algebraic totality, towards completeness. In
Curien [Cur09], pages 325–340.

[Tas09b] Christine Tasson. Sémantiques et syntaxes vectorielles de la logique
linéaire. Thèse de doctorat, Université Paris Diderot – Paris 7, 2009.

[Tra09] Paolo Tranquilli. Confluence of pure differential nets with promo-
tion. In Erich Grädel and Reinhard Kahle, editors, CSL, volume
5771 of Lecture Notes in Computer Science, pages 500–514. Springer-
Verlag, 2009.

[TV10] Christine Tasson and Lionel Vaux. Transport of finiteness structures
and applications. Mathematical Structures in Computer Science,
2010. To appear.

[Vau05] Lionel Vaux. The differential lambda-mu calculus. Theoretical Com-
puter Science, 379(1-2):166–209, 2005.

[Vau09] Lionel Vaux. The algebraic lambda-calculus. Mathematical Struc-
tures in Computer Science, 19(5):1029–1059, 2009.

[Win04] Glynn Winskel. Linearity and non linearity in distributed computa-
tion. In Thomas Ehrhard, Jean-Yves Girard, Paul Ruet, and Philip
Scott, editors, Linear Logic in Computer Science, volume 316 of
London Mathematical Society Lecture Notes Series. Cambridge Uni-
versity Press, 2004.

74

