René Lozi 
  
A Dieudonné 
  
Designing Chaotic Mathematical Circuits for Solving Practical Problems

Keywords: Chaotic mathematical circuit, circuit modeling, chaos, Chua s circuit, pseudo-random number generator

We introduce the paradigm of chaotic mathematical circuitry which shows some similarity to the paradigm of electronic circuitry, especially in the frame of chaotic attractors for solving practical problems (generating hyperchaos; developing chaos based pseudo random number generator (CPRNG) and chaotic multistream PRNG; secure communication via synchronization). They can also be used in cryptography, generic algorithms in optimization, control, etc.

Introduction

Our purpose is to build up an analogue to the paradigm of electric circuitry, which is the design of electronic circuits: the paradigm of chaotic mathematical circuitry, in order to easily improve the performance of well known chaotic attractors for application purposes (chaotic cryptography, evolutionary and genetic algorithms in optimization, control, etc). However, some differences occur in the analogy: Mathematical circuits are generic rather than specific like electric circuits.

An electronic circuit is composed of individual electronic components, such as resistors, transistors, capacitors, inductors and diodes, connected by conductive wires through which electric current can flow. The combination of components and wires allows various simple and complex operations to be performed: Signals can be amplified, computations can be accomplished, and data can be moved from one place to another. Very complex systems can be analyzed using various sophisticated methods [START_REF] Arounassalame | Analysis of nonlinear electrical circuits using Bernstein polynomials[END_REF][START_REF] Vaidyanathan | Anti-synchronization of fourwing chaotic systems via sliding mode control[END_REF][START_REF] Sheng | H∞ synchronization of chaotic systems via delayed feedback control[END_REF] . We introduce in the same way mathematical circuits which are composed of individual components (generators, couplers, samplers, mixers, reducers and cascaders, etc.) connected through streams of data. The combination of such mathematical components leads to several new applications such as improving the performance of well known chaotic attractors (Chua, Lorenz, Rössler, etc.) for application purposes.

From a mathematical point of view, at least in order to implement applications of chaotic behaviors, all these chaotic attractors have the same structure: Given initial values and a set of parameters, they provide three streams of data symbolized by three arrows. On the contrary, the electric realization of their equation leads to very different electric circuits. In fact, mathematical circuits capture the essential of dynamics of chaotic attractors.

In Section 2, we present several symbols of generators (both continuous and discrete) used in the paradigm of mathematical circuits, and we compare mathematical cir- cuits with the electric ones. In Section 3, we introduce others circuit elements (couplers, sampler, mixer, reducer and cascader) in practical problems: generating hyperchaos, developing chaos based pseudo random number generators (CPRNGs), and chaotic multistream pseudo random number generators (Cms-PRNGs), secure communication via synchronization. The conclusions are given in Section 4.

Elementary mathematical circuit elements

Continuous generators: Chua s circuit, Rössler and Lorenz attractors

Analog electric circuits are very commonly represented by schematic diagrams, in which wires are shown as lines, and each component has a unique symbol (Fig. 1). We present in this section some symbols we design in order to draw mathematical schematic diagrams. First, we describe generator symbols, which are, from a mathematical point of view, equivalent to a battery or a variable current generator in an electric circuit. In the paradigm of mathematical circuitry, they generate a digital signal (in one or several dimensions) rather than an electrical current characterized by its voltage and intensity variations (nonetheless, a voltage or an intensity variation can be considered as a physical signal which can be discretized).

This signal can be either continuous as in Chua s circuit, Lorenz or Rössler attractors or discrete as in the Lozi mapping or the symmetric tent map. We consider first the continuous ones, inspired by the Chua s famous circuit [START_REF] Chua | The double scroll family[END_REF] (Fig. 2 (a)) which contains three linear energy-storage elements (an inductor and two capacitors), a linear resistor, and a single nonlinear resistor, namely Chua s diode (Fig. 2 (b)) with three segment linear characteristics defined by

f (vR) = m0vR + 1 2 (m1 -m0) [|vR + Bp| -|vR -Bp|] (1)
where the slopes in the inner and the outer regions are m0 and m1, respectively, and ±Bp denote the breakpoints. The dynamics of Chua s circuit is governed by (2) where VC 1 , VC 2 , and iL are the voltages across the capacitors C1 and C2, and the intensity of the electrical current through the inductor L, respectively.

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ C1 dvC 1 dt = G(vC 2 -vC 1 ) -f (vC 1 ) C2 dvC 2 dt = G(vC 1 -vC 2 ) + iL L diL dt = -vC 2 .
(

) 2 
Equation ( 2) can be transformed into the system of three first-order autonomous differential equations whose dimension-less form is is very often used in order to generate chaotic signal. Even if the scheme of Fig. 2 (a) is easily understandable by electric engineers, it is of no help to build a device using mathematical properties of chaos (like a secure communication system based on it [START_REF] Lozi | Secure communications via chaotic synchronization II: Noise reduction by cascading two identical receivers[END_REF] ). This is why it is more useful to represent Chua s circuit as a chaos generator by the diagram of Fig. 3 (a). On this detailed flowchart of continuous generator, the solid line arrows coming out from the generator represent the three components of the signal x(t) = (x(t), y(t), z(t)), the dashed line arrow which points at λ stands for the parameter value, and the dot line arrow which points at x 0 = x(0) indicates the given initial value.

⎧ ⎪ ⎨ ⎪ ⎩ ẋ = α(y -x -f (x)) ẏ = x -y + z ż = -βy f (x) = bx + 1 2 (a -b) [|x + 1| -|x -1|] (3) 
If there is no ambiguity on the nature of the generator used, the symbol can be simplified as in Fig. 3 (b). The diagram defined above is suitable, even if we use others types of equations, for generating streams of data, provided the number of streams is the same as in Chua s circuit (if it is not the case, more arrows can be added (Fig. 9)). For example, the Lorenz attractor [START_REF] Lorenz | Deterministic nonperiodic flow[END_REF] ⎧ ⎪ ⎨

⎪ ⎩ ẋ = -σ(x + y) ẏ = ρx -y -xz ż = xy -βz (4)
often studied using the parameter values σ = 10, ρ = 28, β = 8 3

and the Rössler attractor [START_REF] Rössler | Chaotic behavior in simple reaction system[END_REF] ⎧ ⎪ ⎨

⎪ ⎩ ẋ = -y -z ẏ = x + ay ż = b + z(x -c) (5)
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for which the parameter values a = 0.2, b = 0.2, c = 5.7 exhibits a strange attractor.

In the next subsection, we show that from a mathematical point of view, in order to build an application of chaotic behaviors, all the attractors generated by these equations have the same structure: Given initial values and a set of parameters, they provide three streams of data symbolized by three arrows. Quite the contrary the electric realization of their equation leads to very different electric circuits.

Mathematical circuits vs. electric circuits

Although our goal is to build up mathematical circuits that are analogue to the paradigm of electric circuitry, there are some differences between both kinds of circuits. Mathematical circuits are generic rather than specific like electric circuits. The symbol of Fig. 3 (b) shall apply to a class of chaotic (or non-chaotic as well) attractors in 3-dimensional phase space, for instance Chua, Lorenz and Rössler attractors. In contrast, electric implementation of such attractors looks very different. Fig. 2 (a) displays the electric realization of Chua s circuit which displays Chua attractor on oscilloscope screen.

One among several realizations of Lorenz s circuit [START_REF] Blakely | A simple Lorenz circuit and its radio frequency implementation[END_REF] is showed in Fig. 4. The variables, x, y, z of ( 4) are the voltages across capacitors C1, C2, and C3 after a suitable rescaling. [START_REF] Blakely | A simple Lorenz circuit and its radio frequency implementation[END_REF] An hardware electronic circuit based on slightly modified Rössler equations [START_REF] Datta | Realisation of electronic circuit based on modified rössler system and its application in secure communication[END_REF] is shown in Fig. 5. In this circuit, the operational amplifiers OP-1, OP-2 and OP-3 act as integrators for the system with x, y and z as their outputs, respectively.

In fact, mathematical circuits capture the essential of dynamics of chaotic attractors.

Discrete generators: Symmetric tent map and Lozi mappings

Apart from chaotic circuits running with continuous signal, there are chaotic circuits functioning with discrete signal. There is a need to design such generators. For this purpose, some classical chaotic mappings can be considered: in dimension 1 symmetric tent map, and in dimension 2 Lozi mappings.

Fig. 5 Electronic circuit representation of a modified Rössler s system [START_REF] Datta | Realisation of electronic circuit based on modified rössler system and its application in secure communication[END_REF] The symmetric tent map [START_REF] Sprott | Chaos and Time-series Analysis[END_REF] :

f (x) = 1 -2 |x| (6)
associated with the dynamical system

xn+1 = 1 -2 |xn| (7)
is represented by the symbol of Fig. 6. For dimension 2, Lozi mappings [START_REF] Lozi | Un attracteur étrange (?) du type attracteur de Hénon[END_REF] defined by

L a,b : x y = y + 1 -a |x| bx (8)
which exhibit a strange attractor for the parameter values a = 1.7, b = 0.5 are represented by the symbols of Fig. 7. 

Other circuits elements

Rather than to give a tedious list of elementary mathematical components used for mathematical circuit design, we will introduce them each time they are first used for a practical purpose.

That list includes: generators, couplers, sampler, mixer, reducer and cascader. They are connected through streams of data represented by continuous or dashed line and arrows.

Solving practical problems

Building up hyperchaotic electronic and mathematical circuits using a ring coupler

As highlighted in [12], "One of the most interesting features of Chua s circuit is its easy electronic implementation. Soon after its inception, the circuit was studied experimentally thereby confirming the presence of double scroll in it. Due to the presence of linear passive devices, the task of designing Chua s circuit was reduced to designing Chua s diode. In fact, unlike many other chaotic systems, the presence of grounded capacitors and inductors makes Chua s circuit a very-large-scale integration (VLSI) friendly chaotic system." However, Chua s circuit provides only 3-dimensional chaos, as Figs. 3 (a) and (b), with its three arrows emphasized. For studying a more complex chaotic behavior called hyperchaos, which has been reported in hydrodynamics and semiconductor devices, one has to combine the behavior of several Chua s circuits and couple them in various ways.

The experimental observation of hyperchaotic attractors in open and closed chains of Chua s circuits was reported in 1994 [START_REF] Kapitaniak | Experimental hyperchaos in coupled Chua s circuits[END_REF] . The layout of the five identical coupled Chua s circuits forming a ring is shown in Fig. 8.

The state equations of this circuit are as (9). Through identifying symbols (V

(i) C 1 , V (i) C 2 , I (i)
L ) in each Chua s circuit with (x i , y i , z i ), the state equations of the circuit can be translated into the system of fifteen differential equations shown in (10), and the electronic circuit of Fig. 8 is symbolized by the mathematical circuit of Fig. 9.

In Fig. 9, the double rounded arrows symbolize the coupling of one Chua s circuit to the next one. In order to represent the coupling between mathematical equations, depending on the nature of the coupling, we can use two different symbols: The ring coupler corresponding to the coupling of one generator to the next one (Fig. 9) and the full coupler when the coupling involves more connections be-tween the couplers as shown in the next subsection (Fig. 10).

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ C1 dv (1) C 1 dt = G v (1) C 2 -v (1) C 1 -f v (1) C 1 C2 dv (1) C 2 dt = G v (1) C 1 -v (1) C 2 + i (1) L + K1 v (2) C 2 -v (1) C 2 L di (1) L dt = -v (1) C 2 C1 dv (2) C 1 dt = G v (2) C 2 -v (2) C 1 -f v (2) C 1 C2 dv (2) C 2 dt = G v (2) C 1 -v (2) C 2 + i (2) L + K2 v (3) C 2 -v (2) C 2 L di (2) L dt = -v (2) C 2 • • • C1 dv (5) C 1 dt = G v (5) C 2 -v (5) C 1 -f v (5) C 1 C2 dv (5) C 2 dt = G v (5) C 1 -v (5) C 2 + i (5) L + K5 v (1) C 2 -v (5) C 2 L di (5) L dt = -v (5) C 2 (9) ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ẋ1 = α(y 1 -x 1 -f (x 1 )) ẏ1 = x 1 -y 1 + z 1 + k1(y 2 -y 1 ) ż1 = -βy 1 ẋ2 = α(y 2 -x 2 -f (x 2 )) ẏ2 = x 2 -y 2 + z 2 + k2(y 3 -y 2 ) ż2 = -βy 2 • • • ẋ5 = α(y 5 -x 5 -f (x 5
)) ẏ5 = x 5y 5 + z 5 + k5(y 1y 5 ) ż5 = -βy 5 .

(10)

Developing chaos based pseudo random number generator (CPRNG) using full coupler, sampler, mixer, and reducer

It is well known that industrial mathematics is greedy of massive amounts of random and pseudorandom numbers, as they are vital in many areas of modern technology such as fast communication systems, economy, equity trading and in a wide range of engineering applications. US and European patents using discrete maps for providing these numbers are registered by specialists of discrete dynamical systems [START_REF] Petersen | Method of Generating Pseudo-random Numbers in an Electronic Device, and a Method of Encrypting and Decrypting Electronic Data[END_REF][START_REF] Ruggiero | Method of generating successions of pseudo-random bits or numbers[END_REF] . We have recently proposed efficient chaotic pseudo random number generators (CPRNGs) [START_REF] Lozi | Complexity Leads to Randomness in Chaotic Systems[END_REF] . They are based on the ultra weak multidimensional coupling of p 1-dimensional dynamical systems which preserve the chaotic properties of the continuous models in numerical experiments. Combined with chaotic sampling and mixing processes, ultra weak coupling leads to families of CPRNGs which are very effective [START_REF] Lozi | Emergence of randomness from chaos[END_REF] .

It was shown a few years ago [START_REF] Lozi | Giga-periodic orbits for weakly coupled tent and logistic discretized maps[END_REF] that the ultra-weak coupling of several logistic or symmetric tent maps (6) allows the production of long series of chaotic numbers equally distributed over the interval [-1, 1] of the real line. page 4

The system of p-coupled tent map is given by

Xn+1 = F (Xn) = A(f (Xn)) ( 11 
)
where

Xn = ⎛ ⎜ ⎜ ⎝ x 1 n . . . x p n ⎞ ⎟ ⎟ ⎠ , f(Xn) = ⎛ ⎜ ⎜ ⎝ f (x 1 n ) . . . f (x p n ) ⎞ ⎟ ⎟
⎠ , and A is the matrix that is shown at the bottom of this page.

The design of the corresponding mathematical circuit is displayed in Fig. 10.

Fig. 8 Five identical coupled Chua s circuits forming a ring [START_REF] Kapitaniak | Experimental hyperchaos in coupled Chua s circuits[END_REF] Fig. 9 Mathematical circuit of five identical coupled Chua s circuits forming a ring At this point it is important to note that chaotic numbers are not pseudo-random numbers because the plot of the couples of any component (x l n , x l n+1 ) of the iterated f points (Xn, Xn+1) in the corresponding phase f plane reveals the map used as 1-dimensional dynamical systems to generate them via (11). Nevertheless a family of enhanced CPRNG in order to compute very fast long series of pseudorandom numbers with desktop computer has been introduced [START_REF] Lozi | New enhanced chaotic number generators[END_REF] . The way to conceal the chaotic genuine function is the ultra-weak coupling mechanism which has been improved.

Fig. 10 Circuit of ultraweak coupling of p 1-dimensional chaotic map

In order to hide f of (11) in the phase space (x l n , x l n+1 ), the sequence ( The pseudo-code, for computing such chaotically subsampled numbers is

x l 0 , x l 1 , x l 2 , • • • , x l n , x l n+1 , • • • )
X0 = (x 1 0 , x 2 0 , • • • x p-1 0 , x p 0 ) = seed n = 0; q = 0; do {while n < N do {while x m n < T compute (x 1 n , x 2 n , • • • , x p-1 n , x p n ); n + +} compute (x 1 n , x 2 n , • • • , x p-1 n
, x p n ); then n(q) = n; xq = x 1 n(q) ; n + +; q + +}.

This chaotic under-sampling is possible due to the independence of each component of the iterated points Xn vs. the others [START_REF] Lozi | New enhanced chaotic number generators[END_REF] . We introduce the symbol of this sampler on the right-hand side of Fig. 11 in order to give a schematic representation of this chaotic under-sampling process. 

A = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ε1,1 = 1 - j=p j=2 ε1,j ε1,2 • • • ε1,p-1 ε1,p ε2,1 ε2,2 = 1 - j=p j=1,j =2 ε2,j • • • ε2,p-1 ε2,p . . . . . . . . . . . . . . . . . . . . . . . . εp,1 • • • • • • εp,p-1 εp,p = 1 - j=p-1 j=1 εp,j ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ .
A second mechanism can improve the unpredictability of the pseudo-random sequence generated as above, using synergistically all the components of the vector Xn instead of two.

Given p -1 thresholds

0 < T1 < T2 < • • • Tp-1 < 1 which define a partition J1, J2, • • • , Jp-1 of the interval [-1, 1]
, the pseudo-code for computing such chaotically subsampled numbers is

X0 = (x 1 0 , x 2 0 , • • • x p-1 0 , x p 0 ) = seed n = 0; q = 0; do {while n < N do {while x m n ∈ J0 compute (x 1 n , x 2 n , • • • , x p-1 n , x p n ); n + +} compute(x 1 n , x 2 n , • • • , x p-1 n , x p n ) let k be such that x p n ∈ J k then n(q) = n; xq = x k n(q) ; n + +; q + +}.
We draw the symbol on the right-hand side of Fig. 12 in order to give a schematic representation of the chaotic mixing process. For sake of simplicity, we have only displayed a circuit with three 1-dimensional generators. However, the mixing process runs better when more generators are coupled. We can say that the design of mathematical circuit including couplers, samplers or mixers allows the emergence of complexity in chaotic systems which leads to randomness [START_REF] Lozi | Emergence of randomness from chaos[END_REF] .

We introduce now another process which can directly provide random numbers without sampling or mixing, although it is possible to combine those processes with it. The idea underlying this process is to confine on [-1, 1] p considered as a torus, a ring of p-coupled symmetric tent maps (or logistic maps) [START_REF] Espinel | Dynamical and statistical analysis of a new Lozi function for random numbers generation[END_REF] .

Consider the equalities:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ x 1 n+1 = 1 -2 x 1 n + k1x 2 n . . . x m n+1 = 1 -2 |x m n | + kmx m+1 n . . . x p-1 n+1 = 1 -2 x p-1 n + kp-1x p n x p n+1 = 1 -2 |x p n | + kpx 1 n ( 12 
)
where the parameters ki = ∓1. In order to confine the variables x i n+1 on the torus [-1, 1] p , we do for every iteration the transform:

add 2, if (x j n+1 < -1) substract 2, if (x j n+1 > 1). ( 13 
)
We design a new symbol: the reducer, on the right-hand side of Fig. 13, in order to give a schematic representation of the projection of the variable on the torus. For the sake of simplicity, we have again displayed a circuit with only three 1-dimensional generators. However, this new pseudorandom number generator works better when more generators are coupled as in the previous example. The particularity of this coupling is that each variable x j is coupled only with itself and x j+1 , i.e., using a ring coupler as shown in Fig. 13. At first glance, in order to enrich the random properties of the map, it could seem interesting to add supplementary cross couplings between these variables, i.e., using a full coupler as in Fig. 10. However, in this case, a full coupling is inappropriate because it would increase the determinism and therefore deteriorate the statistical properties which we are looking for.

To evaluate the random property of these generators, the set of National Institute of Standards and Technology (NIST) tests [START_REF] Rukhin | A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications[END_REF] have been used.

The random property validations of both a 4-dimensional system and a 10-dimensional one have been carried out [START_REF] Rojas | New alternate ringcoupled map for multi-random number generation[END_REF] . For this purpose, the chaotic carrier output needs to be quantized and binarized (0 and 1) in order to be validated as random using NIST tests. Therefore, different methods of binarization (converting real signals to binary ones) have been implemented and compared.

A first 1-bit binarization has been applied to the system output (12, 13), defined as yn

= x j n with j ∈ [[1, p]], b = 1, if (yn 0) b = 0, else. (14) 
The results proved to be highly sensitive to the type of binarization. Eventually, after testing several different methods, a 32-bit binarization was chosen as the most suitable solution. Because the system is confined to the pdimensional torus [-1, 1] p , 31 bits are assigned to represent the decimal part, and 1 bit to the sign. To illustrate the results, the NIST tests for the 4-dimensional system with parameters ki ∈ (-1) i+1 are shown in Fig. 14. The chosen conditions are: The length of the original sequence = 10 8 bits, the length of bit string = 10 6 bits, the quantity of bit n . Furthermore, as the results show their independence of the initial conditions, every bit string in this test is the resulting sequence of a different randomly chosen initial condition. The criterion for a successful test is that the p-value has to be superior to the significance level (0.01 for this case). For the present model, all tests were successful thus the sequences can be accepted as random.

Chaotic multistream pseudo random number generators (Cms-PRNG)

It is possible to combine several equations in order to design chaotic multistream pseudo random number generators (Cms-PRNGs) or combine several processes in order to generate uncorrelated sequences of pseudo-random numbers, possessing a large number of keys for a cryptographic use. This is simply obtained by adding a full coupler as a keyer as shown in the circuit of Fig. 15, corresponding to (15) with the reduction process of (13).

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ x 1 n+1 = 1 -2 |x 1 n | + k1 1 - p j=3 ε1,j x 2 n + p j=3 ε1,jx j n . . . x m n+1 = 1 -2 |x m n | + km 1 - p j=1,j =m;m+1 εm,j x m+1 n + p j=1,j =m;m+1
εm,jx j n . . .

x p-1 n+1 = 1 -2 |x p-1 n | + kp-1 1 - p-2 j=1 εp-1,j x p n + p-2 j=1 εp-1,jx j n x p n+1 = 1 -2 |x p n | + kp 1 - p-1 j=2 εp,j x 1 n + p-1 j=2
εp,jx j n .

(
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Fig. 15 Circuit of Cms-PRNG with only 3 streams

Secure communication via chaotic synchronization using a cascader

The synchronization of two Chua s circuits was studied experimentally eight years after its discovery in 1992 [START_REF] Chua | Experimental chaos synchronization in Chua s circuit[END_REF] , soon followed by its application to encrypted transmission. In 1992, the first laboratory demonstration of a secure communication system using a chaotic signal for masking purposes was built [START_REF] Oppenheim | Signal processing in the context of chaotic signals[END_REF] . The technique exploited the chaotic synchronization in order to recover the signal [START_REF] Kocarev | Experimental demonstration of secure communications via chaotic synchronization[END_REF] . While the "transmitter" [START_REF] Kocarev | Experimental demonstration of secure communications via chaotic synchronization[END_REF] is a direct implementation of the method proposed in [24], the "receiver" differs from the computer simulation approach, because it actually contains two subsystems of the "chaotic transmitter" (Chua s circuit).

The mathematical translation of the dynamics of the circuit used in [25] for the experimental demonstration of secure communication is as follows: The basic building block is a Chua s circuit, and the dynamics of which is given by the Chua s equations (3). The noise-like signal u(t) is used to hide the message. If s(t) is an information-bearing signal, the transmitted one is r(t) = u(t) + s(t), where s(t) is assumed to have a significantly lower power level than that of u(t). Hence the signal s(t) is effectively "masked".

Two sub-systems compose the receiver. The first sub-system is driven by the transmitted signal r(t):

v1 = r(t) -v1 + w1 ẇ1 = -βv1. ( 16 
)
The second one is driven by the signal v1(t) as

u2 = α[v1 -u2 -f (u2)]. ( 17 
)
The signal s(t) is then recovered using

s2(t) = r(t) -u2(t) ≈ s(t). ( 18 
)
Actually the dynamics of the experimental set-up (Fig. 16) is described by

u2 = α(v1 -u2 -f (u2)) ẇ2 = -βv1. ( 19 
)
Remark 2. As long as we do not need w2(t) to recover s2(t), we continue to use (18) instead of (19) in the following improved system. Remark 3. In both implementations (electronic circuit realization (Fig. 17) and computer simulation (Fig. 16)) of the circuit [START_REF] Kocarev | Experimental demonstration of secure communications via chaotic synchronization[END_REF] , there is an inevitable error which is intro- duced by using the signal s(t). C 2 ). The triangular symbols are OpAmps which decouple the systems, acting as the signal drive elements [START_REF] Kocarev | Experimental demonstration of secure communications via chaotic synchronization[END_REF] The performance of the chaotic masking technique need to be enhanced by means of improving the convergence of the recovered signal s2(t) towards the information-bearing signal s(t). Using an analog of relaxation method in numerical analysis (in numerical mathematics, relaxation methods are iterative methods for solving systems of equations, including nonlinear systems), it has been proposed to iterate the process of recovering the signal, cascading a second identical receiver to the first one, i.e., introducing a second system of equations comparable to (16, 17) driven by u2(t) instead of r(t), as shown in Fig. 18. Two subsystems build the second receiver. The signal u2(t) drives the first subsystem. It is assumed to be more synchronized to u(t) than the transmitted signal r(t):

v3 = u2 -v3 + w3 ẇ3 = -βv3. ( 20 
)
The second subsystem of the second receiver is then driven by the signal v3(t) from ( 20):

u4 = α[v3 -u4 -f (u4)]. (21) 
Then s(t) is recovered as

s4(t) = r(t) -u4(t) ≈ s(t). ( 22 
)
In practice, we simply build two copies of the receiver as shown in Fig. 19. By identifying the symbols (vC 1 , vC 2 , iL) in Chua s circuit (see Figs. 16 and17) with (u, v, w), the electronic circuit implementation in Fig. 19 can be translated into the block diagram shown in Fig. 18. Although no two electronic circuits can be made perfectly identical in practice. One can approach this ideal situation with the help of the integrated circuit technology [START_REF] Delgado-Restituto | A CMOS monolithic Chua s circuit[END_REF] . By fabricating several identical Chua s circuits on the same silicon chip, the resulting circuits are almost "clones" of each other. The additional security supported by this technique has the advantage that even if someone else has discovered the parameters (α, β) used in the system, integrating it into another silicon chip will invariably introduce discrepancies due to the different processing parameters from different silicon "foundries". Computer experiments show that by connecting two identical receivers, a significant amount of noise can be reduced. The recovered signal [START_REF] Aziz Alaoui | Secure communications via chaotic synchronization in Chua s circuit: Numerical analysis of the errors of the recovered signal[END_REF] has thereby a much higher quality. At that point of this article, the last symbol we introduce in order to schematise mathematically that cascading method is the cascader displayed in Fig. 20. In the limited extent of this paper, the last example of mathematical circuits we give is an improvement of the cascading of two identical receivers of Chua s circuit. Albeit this improvement is rather from a numerical point of view than a practical one, it is given in order to illustrate more in depth the combination of circuit elements. It is possible to combine two cascading receivers as in Fig. 21. A clear improvement of the results [START_REF] Aziz Alaoui | Secure communications via chaotic synchronization in Chua s circuit: Numerical analysis of the errors of the recovered signal[END_REF][START_REF] Lozi | Secure communications via chaotic synchronization in Chua s circuit and Bonhoeffer-Van der Pol equation: Numerical analysis of the errors of the recovered signal[END_REF] is shown by numerical experiments.

Conclusions

Following the worldwide tradition of using Chua s circuits for various purposes, we have introduced the paradigm of chaotic mathematical circuitry which shows some similarity to the paradigm of electronic circuitrythe design of electronic circuits. This new paradigm allows, for instance, building new chaotic and random number generators. However, there are some differences in the analogy: Mathematical circuits are generic rather than specific like electric circuits. In fact, they capture the essential of dynamics of chaotic attractors.

We have presented the symbols of generators (both continuous and discrete) used in the paradigm of mathematical circuits, and compared mathematical circuits with the electric ones.

We considered others circuit elements (couplers, sampler, mixer, reducer and cascader) in practical problems: generating hyperchaos; developing chaos based pseudo random number generators (CPRNGs), chaotic multistream pseudo random number generators (Cms-PRNGs) and secure communication via synchronization.

Alongside electronic circuits, the new theory of mathematical circuits allows many new applications in chaotic cryptography [START_REF] Lozi | Engineering of Mathematical Chaotic Circuits[END_REF] , genetic algorithms in optimization and in control [START_REF] Pluhacek | Designing PID controller for DC motor system by means of enhanced PSO algorithm with discrete chaotic Lozi map[END_REF] , etc. Due to the versatility of the new components we introduce, the combined operation of these chaotic mathematical circuits remains largely unexplored.
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Fig. 1

 1 Fig. 1 Electrical symbols (left-hand side column) and electronic circuit symbols (right-hand side column) used for drawing schematic diagram

Fig. 2

 2 Fig. 2 Chua s circuit. (a) Electronic realization; (b) Threesegment piecewise-linear v-i characteristic of nonlinear voltage controlled resistor (Chua s diode)

  for which the set of parameter values α = 15.60, b = 28.58, a = -

Fig. 3

 3 Fig. 3 Continuous generator. (a) Chua s circuit; (b) Simplified symbol

Fig. 4

 4 Fig. 4 Lorenz s circuit. (a) Schematic diagram of a simple circuit. Analog multipliers M1 and M2 are configured as current output devices; (b) Schematic diagram of a generic analog multiplier Mi configured as a current output device[START_REF] Blakely | A simple Lorenz circuit and its radio frequency implementation[END_REF] 

Fig. 6

 6 Fig. 6 One-dimensional discrete generator (e.g., symmetric tent map)

Fig. 7 2 1 .

 71 Fig. 7 2-dimensional discrete generator. (a) Lozi map, expanded symbol; (b) Simplified symbol

  generated by the l-th component of Xn is sampled chaotically, selecting x l n every time the value of x m n the m-th component of Xn, is strictly greater than a threshold T belonging to the interval [-1, 1] of the real line.

Fig. 11

 11 Fig. 11 Circuit of enhanced CPRNG based on chaotic undersampling

Fig. 12

 12 Fig. 12 Circuit of enhanced CPRNG based on chaotic mixing

Fig. 13

 13 Fig. 13 Reducer for the circuit (12) and the transform (13) with p = 3

Fig. 14

 14 Fig. 14 Example of NIST Test for k i = (-1) i+1 , i = 1, 2, • • • , 4 , each sequence of components satisfies the NIST test for randomness strings = 100. The output of the system has been arbitrary chosen to be y = x 4n . Furthermore, as the results show their independence of the initial conditions, every bit string in this test is the resulting sequence of a different randomly chosen initial condition. The criterion for a successful test is that the p-value has to be superior to the significance level (0.01 for this case). For the present model, all tests were successful thus the sequences can be accepted as random.

Fig. 16

 16 Fig. 16 Experimental set up. Block diagram of the system. It contains one Chua s circuit and two partial Chua s circuits, that is, subsystems #1 and #2 of Fig. 17[[START_REF] Kocarev | Experimental demonstration of secure communications via chaotic synchronization[END_REF] 

  Fig. 16 Experimental set up. Block diagram of the system. It contains one Chua s circuit and two partial Chua s circuits, that is, subsystems #1 and #2 of Fig. 17[[START_REF] Kocarev | Experimental demonstration of secure communications via chaotic synchronization[END_REF] 

Fig. 17

 17 Fig. 17 Practical realization of the receiver. The first subsystem is a partial Chua s circuit consisting of the (vC 2 , iL) -subsystem driven by the transmitted signal r(t). The second subsystem is a partial Chua s circuit consisting of the vC 1 -subsystem driven by the transmitted signal (v (1)C 2 ). The triangular symbols are OpAmps which decouple the systems, acting as the signal drive elements[START_REF] Kocarev | Experimental demonstration of secure communications via chaotic synchronization[END_REF] 

Fig. 18

 18 Fig. 18 Block diagram of the electronic circuit implemented in Fig. 19

Fig. 19

 19 Fig.19 Electronic circuit implementation of the two-stage "receiver" consisting of two identical copies of the circuit given in Fig.18

Fig. 20

 20 Fig. 20 Cascader symbol

  This circuit is governed byv5 = u4 -v5 + w5 ẇ5 = -βv5 (23) u6 = α[v5 -u6f (u6)] (24) v7 = u6 -v7 + w7 ẇ7 = -βv7 (25) u8 = α[v7 -u8f (u8)].(26)Then s(t) is recovered as s8(t) = r(t) -u8(t) ≈ s(t).(27) 
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