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In this paper, we propose a new linear representation to model the behavior of Timed Automata with Guards (TAGs) using the formalism of dioids algebra. This linear modeling is used to define the parallel composition and properties of determinism for TAGs. The contribution is illustrated with an example of a jobshop to analyze the performances of this system.

I. INTRODUCTION

We are interested in this work to analyze the behavior of a class of timed Discrete Event Systems (DES). The timing aspect of DES can be handled through several modeling tools and analysis. In this paper, we will consider two complementary formalisms: approaches based on dioids algebra (in particular (max,+) and (min,+) algebra), and models based on timed automata.

On the first hand, (max,+) algebra (introduced in [START_REF] Baccelli | Synchronization and Linearity[END_REF]) is particularly effective for the study of quantitative measures of DES, such as asymptotic performances, earliest or latest behaviors. However, this formalism is not adapted to dealing with conflicts or choices that are very common in DES. It has been shown in [START_REF] Gaubert | Performance Evaluation of (max,+) Automata[END_REF] that automata with multiplicities in (max,+) algebra, also called (max,+) automata, can be used to handle this issue. This approach combines ideas of automata with results on (max,+) algebra, to manage both logical and timing aspects of DES. (max,+) automata are the subject of numerous publications during the last years on performance evaluation ( [START_REF] Gaubert | Performance Evaluation of (max,+) Automata[END_REF], [START_REF] Gaubert | Modeling and Analysis of Timed Petri nets using Heaps of Pieces[END_REF]) and control ( [START_REF] Komenda | Supervisory control of (max,+) automata: a behavioral approach[END_REF], [START_REF] Lahaye | Compositions of (max,+) automata[END_REF], [START_REF] Su | The synthesis of time optimal supervisors by using heaps-of-pieces[END_REF]). More recently, an approach presented in [START_REF] Boukra | New representations for (max,+) automata with applications to performance evaluation and control of discrete event systems[END_REF] proposes a new representation of (max,+) automata that takes advantages of both (max,+) and (min,+) algebras to determine the completion dates for the worst and the best schedules. Nevertheless, (max,+) automata only consider single weighted transitions (transitions associating a single duration to an event), which are not suited for industrial application. This comes from the fact that in practice, an event does not occur at the exact same time, and a task does not have an exact duration. It is more realistic to use intervals in order to describe these aspects.

On the other hand, timed automata are particularly efficient at handling intervals as durations of tasks and bounds of occurrences. There were first presented in [START_REF] Alur | Model-checking for realtime systems[END_REF] as timed graphs that use comparison between clocks values and transitions guards to rule the system evolutions. Based on works about timed transitions systems ( [START_REF] Henzinger | Timed transition systems[END_REF]), a first extension of these automata were proposed in [START_REF] Alur | A theory of timed automata[END_REF]. In order to prevent that the system evolve into deadlocks caused by time elapsing (no more transition is validated for the clocks values), timed automata completed with state invariants, called Timed Automata with Guards (TAGs), were introduced in [START_REF] Gaubert | Performance Evaluation of (max,+) Automata[END_REF]. Finally, timed automata used in UPPAAL software were presented in [START_REF] Pettersson | Modeling and Verification of Real-Time Systems Using Timed Automata : Theory and practice[END_REF]. UPPAAL automata are particularly powerful thanks to the high number of possibilities they offer (urgencies, synchronizations). However, to the best of our knowledge, none of these formalisms had been used as a base for a linear representation. Hence, it is not possible to use results of (max,+) algebra on these automata.

In order to fill the gap between timed automata and (max,+) based approaches, [START_REF] Komenda | Synchronous composition of interval weighted automata[END_REF] proposed an utilization of techniques based on semirings of interval and linear algebra to model a class of timed automata (Interval Weighted Automata) in a linear manner. However, the clocks used in these automata are reset at every transition. This restriction is not suitable for modeling systems in which durations are stated for sequences instead of events. This paper proposes a linear representation of TAGs by means of dioids, taking advantage of the modeling capacity of TAGs and the analysis possibilities of (max,+) automata at the same time.

The paper is organized as follows. In the following section, we recall the formalism of TAGs. A linear representation of TAGs is introduced in section III, and an application of this representation is presented in section IV. Finally, conclusions and possible future works are drawn up.

II. TIMED AUTOMATA WITH GUARDS

This section reminds the formalism of Timed Automata with Guards presented in [START_REF] Cassandras | Introduction to Discrete event Systems[END_REF] and provides some illustrative examples.

A. Definition of a TAG

Definition 1 [START_REF] Cassandras | Introduction to Discrete event Systems[END_REF]: A Timed Automaton with Guards, denoted by 𝐺𝐺, is a 7-tuple 𝐺𝐺 = (𝑄𝑄, Σ, 𝑄𝑄 0 , 𝑄𝑄 𝑚𝑚 , 𝑇𝑇𝑇𝑇𝑇𝑇, 𝐼𝐼𝐼𝐼𝐼𝐼, 𝐶𝐶) where:

• 𝑄𝑄 is the set of states;

• 𝑄𝑄 0 ⊂ 𝑄𝑄 is the set of initial states;

• 𝑄𝑄 𝑚𝑚 ⊂ 𝑄𝑄 is the set of final (or marked) states;

• Σ is a finite set of events;

• 𝐶𝐶 is the set of clocks, 𝑐𝑐 1 , … , 𝑐𝑐 𝑛𝑛 , with 𝑐𝑐 𝑖𝑖 (𝑡𝑡) ∈ ℝ + , 𝑡𝑡 ∈ ℝ + ;

• 𝑇𝑇𝑇𝑇𝑇𝑇 is the set of timed transitions of the automaton with 𝑇𝑇𝑇𝑇𝑇𝑇 ⊆ 𝑄𝑄 × 𝒞𝒞(𝐶𝐶) × Σ × 2 𝐶𝐶 × 𝑄𝑄 where 𝒞𝒞(𝐶𝐶) is the set of admissible constraints for the clocks in the set 𝐶𝐶;

• 𝐼𝐼𝐼𝐼𝐼𝐼 is the set of state invariants, 𝐼𝐼𝐼𝐼𝐼𝐼 ∶ 𝑄𝑄 → 𝒞𝒞(𝐶𝐶);

The set 𝑇𝑇𝑇𝑇𝑇𝑇 of timed transitions is to be interpreted as follows. If (𝑞𝑞 𝑖𝑖𝑛𝑛 , 𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔, 𝑒𝑒, 𝑇𝑇𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡, 𝑞𝑞 𝑜𝑜𝑜𝑜𝑜𝑜 ) ∈ 𝑇𝑇𝑇𝑇𝑇𝑇 then there is a transition from 𝑞𝑞 𝑖𝑖𝑛𝑛 to 𝑞𝑞 𝑜𝑜𝑜𝑜𝑜𝑜 with the complete label (𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇, ; 𝑒𝑒, 𝑇𝑇𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡) where 𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔 ∈ 𝒞𝒞(𝐶𝐶), 𝑒𝑒 ∈ Σ, and 𝑇𝑇𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡 ⊆ 𝐶𝐶.

The set of admissible clock constraints 𝒞𝒞(𝐶𝐶) is specified as follows:

• If 𝑰𝑰 ⊆ ℝ + , then all conditions of the form 𝑐𝑐 𝑖𝑖 (𝑡𝑡) ∈ 𝑰𝑰 are in 𝒞𝒞(𝐶𝐶).

• If 𝑔𝑔 1 and 𝑔𝑔 2 belong to 𝒞𝒞(𝐶𝐶), then 𝑔𝑔 1 ∧ 𝑔𝑔 2 belongs to 𝒞𝒞(𝐶𝐶)

Example 1: Fig. 1 depicts an example of an alarm modeled with a TAG, called 𝐺𝐺 1 , with a clock 𝑐𝑐 1 and a state invariant in state 2. This automaton will issue an event alarm if the duration between 2 consecutive occurrences of msg is smaller than 1 time unit. State 1 is considered as final. For the sake of simplicity, when the guard is [0; +∞[, i.e. when an event can occur at any time, the notationis used in place of [0; +∞[. • There is no need for the bounds of admissible clock constraints to be integer.

• All clocks are set to 0 when the system is initialized.

• Initial (final) states are indicated with incoming (outgoing) arrows. In Fig. 1, state 0 is initial and state 1 is final.

• The mechanism of 𝑇𝑇𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡 allow modeling systems in which durations are stated for sequences of events. For example, the constraint "sequence 𝑇𝑇𝑎𝑎 must last at least 5 t.u. and at most 10 t.u." can be modeled as follow. This kind of constraint cannot be treated with automata used in [START_REF] Komenda | Synchronous composition of interval weighted automata[END_REF].

Properties of TAGs, such as determinism and model execution are detailed in [START_REF] Cassandras | Introduction to Discrete event Systems[END_REF] 

B. Parallel Composition

Definition 2 [START_REF] Cassandras | Introduction to Discrete event Systems[END_REF]: Consider two timed automata with guards

𝐺𝐺 1 = �𝑄𝑄 1 , Σ 1 , 𝑄𝑄 0,1 , 𝑄𝑄 𝑚𝑚,1 , 𝑇𝑇𝑇𝑇𝑇𝑇 1 , 𝐼𝐼𝐼𝐼𝐼𝐼 1 , 𝐶𝐶 1 � and 𝐺𝐺 2 = �𝑄𝑄 2 , Σ 2 , 𝑄𝑄 0,2 , 𝑄𝑄 𝑚𝑚,2 , 𝑇𝑇𝑇𝑇𝑇𝑇 2 , 𝐼𝐼𝐼𝐼𝐼𝐼 2 , 𝐶𝐶 2 �.
The parallel composition of 𝐺𝐺 1 and 𝐺𝐺 2 is the automaton:

𝐺𝐺 1||2 = 𝒜𝒜𝒜𝒜�𝑄𝑄 1 × 𝑄𝑄 2 , Σ 1 ∪ Σ 2 , 𝑄𝑄 0,1 × 𝑄𝑄 0,2 , 𝑄𝑄 𝑚𝑚,1 × 𝑄𝑄 𝑚𝑚,2 , 𝑇𝑇𝑇𝑇𝑇𝑇 1||2 , 𝐼𝐼𝐼𝐼𝐼𝐼 1||2 , 𝐶𝐶 1 ∪ 𝐶𝐶 2 �
where 𝒜𝒜𝒜𝒜 corresponds to accessible transitions and states,

𝐼𝐼𝐼𝐼𝐼𝐼 1||2 ∶ 𝑄𝑄 1 × 𝑄𝑄 2 → 𝒞𝒞�𝐶𝐶 1||2 � = 𝒞𝒞(𝐶𝐶 1 ) ∧ 𝒞𝒞(𝐶𝐶 2 ) with 𝐼𝐼𝐼𝐼𝐼𝐼 1||2 (𝑞𝑞 1 , 𝑞𝑞 2 ) = 𝐼𝐼𝐼𝐼𝐼𝐼 1 (𝑞𝑞 1 ) ∧ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑞𝑞 2 )
, and 𝑇𝑇𝑇𝑇𝑇𝑇 1||2 is defined as follows:

𝑇𝑇𝑇𝑇𝑇𝑇 1||2 ⊆ (𝑄𝑄 1 × 𝑄𝑄 2 ) × 𝒞𝒞(𝐶𝐶) 1||2 × (Σ 1 ∪ Σ 2 ) × 2 𝐶𝐶 1 ∪𝐶𝐶 2 × (𝑄𝑄 1 × 𝑄𝑄 2 ) • For all 𝑒𝑒 ∈ Σ 1 ∩ Σ 2 , if (𝑞𝑞 𝑖𝑖,𝑖𝑖𝑛𝑛 , 𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔 𝑖𝑖 , 𝑒𝑒, 𝑇𝑇𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡 𝑖𝑖 , 𝑞𝑞 𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜 ) ∈ 𝑇𝑇𝑇𝑇𝑇𝑇 𝑖𝑖 for 𝑖𝑖 = 1,2, then ��𝑞𝑞 1,𝑖𝑖𝑛𝑛 , 𝑞𝑞 2,𝑖𝑖𝑛𝑛 �, 𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔 1 ∧ 𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔 2 , 𝑒𝑒, 𝑇𝑇𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡 1 ∪ 𝑇𝑇𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡 2 , �𝑞𝑞 1,𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑞𝑞 2,𝑜𝑜𝑜𝑜𝑜𝑜 �� ∈ 𝑇𝑇𝑇𝑇𝑇𝑇 1||2 ; • For all 𝑒𝑒 1 ∈ Σ 1 \Σ 2 and 𝑞𝑞 2 ∈ 𝑄𝑄 2 , if (𝑞𝑞 1,𝑖𝑖𝑛𝑛 , 𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔 1 , 𝑒𝑒 1 , 𝑇𝑇𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡 1 , 𝑞𝑞 1,𝑜𝑜𝑜𝑜𝑜𝑜 ) ∈ 𝑇𝑇𝑇𝑇𝑇𝑇 1 , then ��𝑞𝑞 1,𝑖𝑖𝑛𝑛 , 𝑞𝑞 2 �, 𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔 1 , 𝑒𝑒 1 , 𝑇𝑇𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡 1 , �𝑞𝑞 1,𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑞𝑞 2 �� ∈ 𝑇𝑇𝑇𝑇𝑇𝑇 1||2 ; • For all 𝑒𝑒 2 ∈ Σ 2 \Σ 1 and 𝑞𝑞 1 ∈ 𝑄𝑄 1 , if (𝑞𝑞 2,𝑖𝑖𝑛𝑛 , 𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔 2 , 𝑒𝑒 2 , 𝑇𝑇𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡 2 , 𝑞𝑞 2,𝑜𝑜𝑜𝑜𝑜𝑜 ) ∈ 𝑇𝑇𝑇𝑇𝑇𝑇 2 , then ��𝑞𝑞 1 , 𝑞𝑞 2,𝑖𝑖𝑛𝑛 �, 𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔 2 , 𝑒𝑒 2 , 𝑇𝑇𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡 2 , �𝑞𝑞 1 , 𝑞𝑞 2,𝑜𝑜𝑜𝑜𝑜𝑜 �� ∈ 𝑇𝑇𝑇𝑇𝑇𝑇 1||2 .
Example 2: Recall the automaton 𝐺𝐺 1 of Fig. 1. Suppose that a second TAG, called 𝐺𝐺 2 and shown in Fig. 2.1, was built in order to issue an event 𝑇𝑇𝑎𝑎𝑇𝑇𝑇𝑇𝑎𝑎5 if two occurrences of events 𝑎𝑎𝑟𝑟𝑔𝑔 are more than 5 time units apart. The parallel composition of 𝐺𝐺 1 and 𝐺𝐺 2 , called G 1||2 , is shown in Fig. 

C. Case of single-clock systems

In most cases, for small-size systems, only one clock is sufficient. Concerning larger systems, they can be handled by using decentralized approaches, in which each sub-system is modeled with a single clock. In that specific case of single clock systems, the parallel composition could be simplified since the conjunction of two guards would become equivalent to the intersection of the intervals. If the result of that intersection is the empty set, then the guard can never be validated, and the associated transition can be deleted. This section presents our proposition for a linear representation of TAGs using dioids. In this section, we will assume that for all 𝑞𝑞 ∈ 𝑄𝑄, 𝐼𝐼𝐼𝐼𝐼𝐼(𝑞𝑞) = 𝑡𝑡𝑇𝑇𝑔𝑔𝑒𝑒, that is, the linear notation proposed below does not consider the set of state invariants 𝐼𝐼𝐼𝐼𝐼𝐼. To maintain the coherence of the examples, state invariants from Fig. 1, 2 and 3 will be held by outgoing transitions of these states e.g. the state invariant 𝑐𝑐 < 1 of the state (1,D) in Fig. 3 will become a guard in the transition from state (1,D) to state (1,F): ([0; 1[ ; 𝑇𝑇𝑎𝑎𝑇𝑇𝑇𝑇𝑎𝑎5 ; -). Moreover, we will only consider single-clock system in this section.

A. Definition

Consider a dioid (𝔻𝔻,⊕,⊗, 𝜖𝜖, 𝑒𝑒), such that 𝜖𝜖 (resp. 𝑒𝑒) is the neutral element for ⊕ (resp. ⊗).

The set ℝ ∪ {-∞} with the maximum playing the role of addition and conventional addition playing the role of multiplication is a dioid, denoted ℝ 𝑀𝑀𝑀𝑀𝑀𝑀 and usually called (max,+) algebra, with 𝑒𝑒 = 0 and 𝜖𝜖 = -∞. Dioid ℝ 𝑀𝑀𝑀𝑀𝑀𝑀 completed with ⊤ = +∞ is denoted ℝ � 𝑀𝑀𝑀𝑀𝑀𝑀 .

Similarly, the (min,+) algebra is the set ℝ ∪ {+∞} with the minimum as addition, the conventional addition as multiplication, 𝑒𝑒 = 0 and 𝜖𝜖 = +∞. Definition 3: A TAG can be defined as a 7-tuple �𝑄𝑄, Σ, 𝑇𝑇𝑇𝑇𝑇𝑇, 𝛼𝛼, 𝛽𝛽, 𝜇𝜇 𝑆𝑆𝑜𝑜𝑝𝑝 , 𝜇𝜇 𝐼𝐼𝑛𝑛𝐼𝐼 �, called linear representation, where:

• 𝑄𝑄 is the set of states;

• Σ is a finite set of events;

• 𝑇𝑇𝑇𝑇𝑇𝑇 is the set of timed transitions of the automaton; Namely, for 𝔻𝔻 = ℝ � 𝑀𝑀𝑀𝑀𝑀𝑀 ., a TAG can be represented with two (max,+) automata as presented in [START_REF] Cassandras | Introduction to Discrete event Systems[END_REF]. These automata correspond to the extremal behavior of the system modeled: 𝜇𝜇 𝑆𝑆𝑜𝑜𝑝𝑝 (resp. 𝜇𝜇 𝐼𝐼𝑛𝑛𝐼𝐼 ) describes the upper bound (resp. lower bound) of the system. For the sake of simplicity, we will use the notation ⊤ = +∞ in the examples presented below. Similarly to generalized daters introduced in [START_REF] Gaubert | Performance Evaluation of (max,+) Automata[END_REF] in order to describe the evolution and the dynamic of (max,+) automata, we propose a definition for generalized bounds for a TAG. 

• 𝛼𝛼 ∈ ℝ � 𝑀𝑀𝑀𝑀𝑀𝑀 1×|𝑄𝑄| , if 𝑞𝑞 ∈ 𝑄𝑄 0 then 𝛼𝛼 𝑞𝑞 = 𝑒𝑒 else 𝛼𝛼 𝑞𝑞 = 𝜖𝜖; • 𝛽𝛽 ∈ ℝ � 𝑀𝑀𝑀𝑀𝑀𝑀 |𝑄𝑄|×1 , if 𝑞𝑞 ∈ 𝑄𝑄 𝑚𝑚 then 𝛽𝛽 𝑞𝑞 = 𝑒𝑒 else 𝛽𝛽 𝑞𝑞 = 𝜖𝜖; • 𝜇𝜇 𝑆𝑆𝑜𝑜𝑝𝑝 : Σ → 𝔻𝔻 |𝑄𝑄|×|𝑄𝑄| , [𝜇𝜇 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑒𝑒 𝑣𝑣 )] 𝑞𝑞 𝑖𝑖𝑖𝑖 𝑞𝑞 𝑜𝑜𝑜𝑜𝑜𝑜 ≜ � sup(𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔) 𝑖𝑖𝑖𝑖 (𝑞𝑞 𝑖𝑖𝑛𝑛 ,
𝐼𝐼𝐼𝐼 ℝ � 𝑀𝑀𝑀𝑀𝑀𝑀 , � 𝑥𝑥 𝑆𝑆𝑜𝑜𝑝𝑝 (𝜀𝜀) = 𝛼𝛼 𝑥𝑥 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑤𝑤𝑒𝑒 𝑣𝑣 ) = 𝑥𝑥 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑤𝑤) ⊗ 𝜇𝜇 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑒𝑒 𝑣𝑣 ) 𝐼𝐼𝐼𝐼ℝ � 𝑀𝑀𝑀𝑀𝑀𝑀 , � 𝑥𝑥 𝐼𝐼𝑛𝑛𝐼𝐼 (𝜀𝜀) = 𝛼𝛼 𝑥𝑥 𝐼𝐼𝑛𝑛𝐼𝐼 (𝑤𝑤𝑒𝑒 𝑣𝑣 ) = 𝑥𝑥 𝐼𝐼𝑛𝑛𝐼𝐼 (𝑤𝑤) ⊗ 𝜇𝜇 𝐼𝐼𝑛𝑛𝐼𝐼 (𝑒𝑒 𝑣𝑣 )
where 𝜀𝜀 is the empty word and 𝑒𝑒 𝑣𝑣 ∈ Σ.

�𝑥𝑥 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑤𝑤)�

𝑞𝑞 can be interpreted as the maximal date at which the state 𝑞𝑞 can be reached following a sequence 𝑤𝑤 from an initial state. By convention, �𝑥𝑥 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑤𝑤)� 𝑞𝑞 = 𝜖𝜖 if the state 𝑞𝑞 cannot be reached following the sequence 𝑤𝑤 from an initial state. An application of generalized bounds is exposed in section IV.

B. Determinism

The determinism of a TAG can be expressed with its linear representation. However, we can find two definitions of the determinism:

• Time-determinism [START_REF] Cassandras | Introduction to Discrete event Systems[END_REF]: an automaton is deterministic if for all events at all states, the guards of the associated transitions are mutually exclusive.

• Event-determinism [START_REF] Lahaye | Compositions of (max,+) automata[END_REF]: an automaton is deterministic if there is a single 𝑖𝑖 such that 𝛼𝛼 𝑖𝑖 ≠ 𝜖𝜖 and for all 𝑒𝑒 𝑣𝑣 ∈ Σ, there exists at most one 𝑗𝑗 such that 𝜇𝜇(𝑇𝑇) 𝑖𝑖𝑖𝑖 ≠ 𝜖𝜖.

It is clear that the second definition is stronger than the first one. For the example in Fig 3 . From the state (1B), there is more than one outgoing transition labelled with the event 𝑎𝑎𝑟𝑟𝑔𝑔, which means that the automaton is not eventdeterministic. However, the guards of these transitions do not overlap, hence the automaton is time-deterministic.

Property 1: if an automaton is event-deterministic, then for a sequence 𝑤𝑤, there exists at most one 𝑘𝑘 such that �𝑥𝑥 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑤𝑤)� 𝑘𝑘 ≠ 𝜖𝜖 and �𝑥𝑥 𝐼𝐼𝑛𝑛𝐼𝐼 (𝑤𝑤)� 𝑘𝑘 ≠ 𝜖𝜖.

Proof: Consider a TAG with its linear representation 𝐺𝐺 = �𝑄𝑄, Σ, 𝑇𝑇𝑇𝑇𝑇𝑇, 𝛼𝛼, 𝛽𝛽, 𝜇𝜇 𝑆𝑆𝑜𝑜𝑝𝑝 , 𝜇𝜇 𝐼𝐼𝑛𝑛𝐼𝐼 �. We suppose that 𝐺𝐺 is eventdeterministic.

• 𝑥𝑥 𝑆𝑆𝑜𝑜𝑝𝑝 (𝜖𝜖) = 𝛼𝛼 and 𝑥𝑥 𝐼𝐼𝑛𝑛𝐼𝐼 (𝜖𝜖) = 𝛼𝛼. Since 𝐺𝐺 is eventdeterministic, there is a single 𝑖𝑖 such that 𝛼𝛼 𝑖𝑖 ≠ 𝜖𝜖. Hence the property is true for 𝑤𝑤 = 𝜖𝜖

• Suppose that the property is true for a sequence 𝑤𝑤 (the calculation will only be shown for 𝑥𝑥 𝑆𝑆𝑜𝑜𝑝𝑝 since it works in a similar way for 𝑥𝑥 𝐼𝐼𝑛𝑛𝐼𝐼 

𝛼𝛼 1||2 ∈ ℝ � 𝑀𝑀𝑀𝑀𝑀𝑀 1×|𝑄𝑄 1 ×𝑄𝑄 2 | , �𝛼𝛼 1||2 � 𝑞𝑞 𝑖𝑖 ×𝑞𝑞 𝑗𝑗 = � [𝛼𝛼 1 ] 𝑞𝑞 𝑖𝑖 ⊕ [𝛼𝛼 2 ] 𝑞𝑞 𝑗𝑗 𝑖𝑖𝑖𝑖 [𝛼𝛼 1 ] 𝑞𝑞 𝑖𝑖 ≠ 𝜖𝜖 𝑇𝑇𝐼𝐼𝑔𝑔 [𝛼𝛼 2 ] 𝑖𝑖 ≠ 𝜖𝜖 𝜖𝜖 𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒 𝛽𝛽 1||2 ∈ ℝ � 𝑀𝑀𝑀𝑀𝑀𝑀 |𝑄𝑄 1 ×𝑄𝑄 2 |×1 , �𝛽𝛽 1||2 � 𝑞𝑞 𝑖𝑖 ×𝑞𝑞 𝑗𝑗 = � [𝛽𝛽 1 ] 𝑞𝑞 𝑖𝑖 ⊕ [𝛽𝛽 2 ] 𝑞𝑞 𝑗𝑗 𝑖𝑖𝑖𝑖 [𝛽𝛽 1 ] 𝑞𝑞 𝑖𝑖 ≠ 𝜖𝜖 𝑇𝑇𝐼𝐼𝑔𝑔 [𝛽𝛽 2 ] 𝑖𝑖 ≠ 𝜖𝜖 𝜖𝜖 𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒 • 𝜇𝜇 1||2,𝑆𝑆𝑜𝑜𝑝𝑝 = Σ → 𝔻𝔻 |𝑄𝑄 1 ×𝑄𝑄 2 |×|𝑄𝑄 1 ×𝑄𝑄 2 | • 𝜇𝜇 1||2,𝐼𝐼𝑛𝑛𝐼𝐼 = Σ → 𝔻𝔻 |𝑄𝑄 1 ×𝑄𝑄 2 |×|𝑄𝑄 1 ×𝑄𝑄 2 |
Coefficients matrices of 𝜇𝜇 1||2,𝑆𝑆𝑜𝑜𝑝𝑝 and 𝜇𝜇 1||2,𝐼𝐼𝑛𝑛𝐼𝐼 can be calculated as follows: In other words, if the k th column of 𝜇𝜇 1||2,𝑆𝑆𝑜𝑜𝑝𝑝 (𝑒𝑒 𝑣𝑣 ) and 𝜇𝜇 1||2,𝐼𝐼𝑛𝑛𝐼𝐼 (𝑒𝑒 𝑣𝑣 ) are empty for all 𝑒𝑒 𝑣𝑣 ∈ Σ 1||2 , then there will be no transition entering the corresponding state.

• For all 𝑒𝑒 𝑣𝑣 ∈ Σ 1 ∩ Σ 2 , 𝐼𝐼𝐼𝐼 ℝ � 𝑀𝑀𝑖𝑖𝑛𝑛 , �𝜇𝜇 1||2,𝑆𝑆𝑜𝑜𝑝𝑝 (𝑒𝑒 𝑣𝑣 )� �𝑞𝑞 1,𝑖𝑖𝑖𝑖 × 𝑞𝑞 2,𝑖𝑖𝑖𝑖 �,�𝑞𝑞 1,𝑜𝑜𝑜𝑜𝑜𝑜 × 𝑞𝑞 2,𝑜𝑜𝑜𝑜𝑜𝑜 � = � ⨁ 𝑖𝑖=1,
�𝜇𝜇 1||2,𝑆𝑆𝑜𝑜𝑝𝑝 (𝑒𝑒 1 )� �𝑞𝑞 1,𝑖𝑖𝑖𝑖 × 𝑞𝑞 2 �,�𝑞𝑞 1,𝑜𝑜𝑜𝑜𝑜𝑜 × 𝑞𝑞 2 � = �𝜇𝜇 1,𝑆𝑆𝑜𝑜𝑝𝑝 (𝑒𝑒 1 )� 𝑞𝑞 1,𝑖𝑖𝑖𝑖 ,𝑞𝑞 1,𝑜𝑜𝑜𝑜𝑜𝑜 �𝜇𝜇 1||2,𝐼𝐼𝑛𝑛𝐼𝐼 (𝑒𝑒 1 )� �𝑞𝑞 1,𝑖𝑖𝑖𝑖 × 𝑞𝑞 2 �,�𝑞𝑞 1,𝑜𝑜𝑜𝑜𝑜𝑜 ×𝑞𝑞 2 � = �𝜇𝜇 1,𝐼𝐼𝑛𝑛𝐼𝐼 (𝑒𝑒 1 )� 𝑞𝑞 1,𝑖𝑖𝑖𝑖 ,𝑞𝑞 1,𝑜𝑜𝑜𝑜𝑜𝑜 • For all 𝑒𝑒 2 ∈ Σ 2 \Σ 1 and 𝑞𝑞 1 ∈ 𝑄𝑄 1 , �𝜇𝜇 1||2,𝑆𝑆𝑜𝑜𝑝𝑝 (𝑒𝑒 2 )� �𝑞𝑞 1 × 𝑞𝑞 2,𝑖𝑖𝑖𝑖 �,�𝑞𝑞 1 × 𝑞𝑞 2,𝑜𝑜𝑜𝑜𝑜𝑜 � = �𝜇𝜇 𝑖𝑖,𝑆𝑆𝑜𝑜𝑝𝑝 (𝑒𝑒 2 )� 𝑞𝑞 2,𝑖𝑖𝑖𝑖 ,𝑞𝑞 2,𝑜𝑜𝑜𝑜𝑜𝑜 �𝜇𝜇 1||2,𝐼𝐼𝑛𝑛𝐼𝐼 (𝑒𝑒 2 )� �𝑞𝑞 1 × 𝑞𝑞 2,𝑖𝑖𝑖𝑖 �,�𝑞𝑞 1 ×𝑞𝑞 2,𝑜𝑜𝑜𝑜𝑜𝑜 � = �𝜇𝜇 𝑖𝑖,𝐼𝐼𝑛𝑛𝐼𝐼 (𝑒𝑒 2 )� 𝑞𝑞 2,𝑖𝑖𝑖𝑖 ,𝑞𝑞 2,𝑜𝑜𝑜𝑜𝑜𝑜
Hence, the notations 𝜇𝜇̇1 ||2,𝑆𝑆𝑜𝑜𝑝𝑝 and 𝜇𝜇̇1 ||2,𝐼𝐼𝑛𝑛𝐼𝐼 can be introduced, corresponding to 𝜇𝜇 1||2,𝐼𝐼𝑛𝑛𝐼𝐼 and 𝜇𝜇 1||2,𝑆𝑆𝑜𝑜𝑝𝑝 in which every column of 𝜖𝜖 is deleted.

Example 5: According to the definition 5, the dimension of matrices of 𝜇𝜇 1||2,𝐼𝐼𝑛𝑛𝐼𝐼 and 𝜇𝜇 1||2,𝑆𝑆𝑜𝑜𝑝𝑝 for the automaton resulting of the parallel composition of 𝐺𝐺 1 and 𝐺𝐺 2 is too important to be detailed in this paper (|𝑄𝑄 1 × 𝑄𝑄 2 | = 16). However, it is possible to determine matrices 𝜇𝜇̇1 ||2,𝑆𝑆𝑜𝑜𝑝𝑝 and 𝜇𝜇̇1 ||2,𝐼𝐼𝑛𝑛𝐼𝐼 , that are detailed in the following order: 

𝐴𝐴 = 𝜇𝜇̇1 ||2,𝑖𝑖𝑛𝑛𝐼𝐼 (𝑎𝑎𝑟𝑟𝑔𝑔), 𝐵𝐵 = 𝜇𝜇̇1 ||2,𝑆𝑆𝑜𝑜𝑝𝑝 (𝑎𝑎𝑟𝑟𝑔𝑔), 𝐶𝐶 = 𝜇𝜇̇1 ||2,𝐼𝐼𝑛𝑛𝐼𝐼 (𝑇𝑇𝑎𝑎𝑇𝑇𝑇𝑇𝑎𝑎), 𝐷𝐷 = 𝜇𝜇̇1 ||2,𝑆𝑆𝑜𝑜𝑝𝑝 (𝑇𝑇𝑎𝑎𝑇𝑇𝑇𝑇𝑎𝑎), 𝐸𝐸 = 𝜇𝜇̇1 ||2,𝐼𝐼𝑛𝑛𝐼𝐼 (𝑇𝑇𝑎𝑎𝑇𝑇𝑇𝑇𝑎𝑎5), 𝐹𝐹 = 𝜇𝜇̇1 ||2,𝑆𝑆𝑜𝑜𝑝𝑝 (𝑇𝑇𝑎𝑎𝑇𝑇𝑇𝑇𝑎𝑎5). 𝐴𝐴 = ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 𝜖𝜖 0 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 1 0 𝜖𝜖 5 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ ; 𝐵𝐵 = ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 𝜖𝜖 ⊤ 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 5 

;

It can be noted that defined as such, 𝜇𝜇̇𝑆𝑆 𝑜𝑜𝑝𝑝 and 𝜇𝜇̇𝐼𝐼 𝑛𝑛𝐼𝐼 may contain cycles of states that cannot be reached from the initial states. However, the corresponding coefficients will not impact the representation aside from the size of matrices.

IV. APPLICATION TO A JOBSHOP

We consider here a jobshop processing with two jobs 𝒥𝒥 1 and 𝒥𝒥 2 to illustrate our contribution (this example come from [START_REF] Gaubert | Modeling and Analysis of Timed Petri nets using Heaps of Pieces[END_REF] and [START_REF] Lahaye | Compositions of (max,+) automata[END_REF]). This jobshop will be studied using TAGs and their linear representations. However, for the sake of simplicity, the system is presented with a Petri net model in Fig. 4.

Job 𝒥𝒥 1 (resp. 𝒥𝒥 2 ) consists of three tasks 𝑇𝑇, 𝑎𝑎 and 𝑐𝑐 (𝑔𝑔, 𝑒𝑒 and 𝑖𝑖). Processing times are exposed in Fig. 4. We will consider that a task does not have an exact duration, hence, we will associate an interval to every transition of the system, that corresponds to the processing times ±10% (e.g. a processing time of 2 time unites will be represented as the interval [1.8; 2.2]). Two resources ℛ 1 and ℛ 2 are shared by tasks, such as ℛ 1 can be used by 𝑇𝑇, 𝑎𝑎, 𝑔𝑔 and 𝑒𝑒, and ℛ 2 by 𝑎𝑎, 𝑐𝑐, 𝑒𝑒 and 𝑖𝑖.

Figure 4 -Jobshop represented as a Petri net

The transformation of timed Petri nets into TAG is not addressed in this paper. For our application, the TAG model of Fig. 5 is inferred from the (max,+) automaton presented in [START_REF] Lahaye | Compositions of (max,+) automata[END_REF]. Also, it is simple to see that the system is eventdeterministic in Fig 5. 

A. Analysis for one job

It is possible to determine generalized bounds (def. 4) for processing times of jobs 𝒥𝒥 1 and 𝒥𝒥 2 :

• Processing time of one job The end of the job 𝒥𝒥 2 corresponds to the state 9. For this reason, the processing time of one job 𝒥𝒥 2 is from 4.5 to 5.5 time units.

It can be noted that proposition 1 is respected for both sequences: since the TAG is event-deterministic, generalized bounds of sequences 𝑇𝑇𝑎𝑎𝑐𝑐 and 𝑒𝑒𝑔𝑔𝑖𝑖 only have one coefficient different from 𝜖𝜖.

B. Analysis for a set of jobs

Another analysis can be done on the completion date for a given number of jobs, whatever the kind of job. Jobs 𝒥𝒥 1 and 𝒥𝒥 2 both consist of three tasks, which may be executed in parallel (e.g. tasks 𝑇𝑇 and 𝑐𝑐 do not use the same resource, hence, the (n+1) th job 𝒥𝒥 1 can start before the end of the n th job 𝒥𝒥 1 ). For this reason, jobs may overlap and the duration of a succession of n job could be different from n times the duration of a single job.

Since a TAG of the system can be interpreted as two (max,+) automata, it is possible to adapt the method presented in [START_REF] Boukra | New representations for (max,+) automata with applications to performance evaluation and control of discrete event systems[END_REF] in order to determine bounds of completion dates for the worst and the best cases.

For the completion date of 10 jobs:

• In the worst case, we found that the interval of the completion date is [37.8; 46.2] time units that corresponds to a succession of 10 jobs 𝒥𝒥 1 .

Representation of TAG in Fig. 5: • In the best case, we found that the interval of the completion date is [36.9; 45.1] time units that corresponds to an alternation of 𝒥𝒥 2 𝒥𝒥 1 .

𝜇𝜇 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑇𝑇) = ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 𝜖𝜖 2 
We managed here to get bounds that estimate the possible durations of sequences in the best and the worst cases, where [START_REF] Boukra | New representations for (max,+) automata with applications to performance evaluation and control of discrete event systems[END_REF] only provides a single value for the same durations. This is a clear improvement in the way that in a real application, the completion date of a succession of tasks cannot be exactly evaluated since the duration of a single task may vary depending to the environment of the system.

V. CONCLUSIONS

The paper has presented a new formal modeling of Timed Automata with Guards (TAGs) by dioids algebra. A linear representation of the behavior of TAGs is given. The definitions of a parallel composition and properties concerning the determinism of TAGs are proposed. This linear representation of TAGs is applied on a jobshop system to evaluate the temporal performances. In future works, an extension of the formalism to multiple-clocks systems could be considered. It would be also interesting to use this linear modeling of TAGs for diagnosis and fault-tolerant control of discrete event systems.

Figure 1 :

 1 Figure 1: A Timed Automaton with Guards 𝐺𝐺 1 Remark 1:

2 . 2 .

 22 The set of transitions has been built exhaustively according to definition 2. Since clocks 𝑐𝑐 1 and 𝑐𝑐 2 reset when entering the state (1,B) as shown in the transition (-; 𝑎𝑎𝑟𝑟𝑔𝑔; 𝑐𝑐 1 , 𝑐𝑐 2 ), conditions 𝑐𝑐 1 ∈ ]0; 1[ and 𝑐𝑐 2 ∈ ]5; +∞[ of the transition (]0; 1[ 1 ∧ ]5; +∞[ 2 ; 𝑎𝑎𝑟𝑟𝑔𝑔 ; 𝑐𝑐 1 , 𝑐𝑐 2 ) cannot be satisfied. Hence, the state (2,D) and its successors are not reachable.

Figure 2 -

 2 Figure 2 -1. A Timed Automaton with Guards 𝐺𝐺 2 (top) -2. Parallel composition 𝐺𝐺 1||2 of 𝐺𝐺 1 and 𝐺𝐺 2 (bottom)

Example 3 :

 3 Consider that the automata 𝐺𝐺 1 and 𝐺𝐺 2 from examples 1 and 2 share the same clock 𝑐𝑐. The automaton 𝐺𝐺 1||2 ′ shown in Fig. 3 is the result of the parallel composition.

Figure 3 -

 3 Figure 3 -TAG 𝐺𝐺 1||2 ′ for a single-clock case III. LINEAR REPRESENTATION OF TIMED AUTOMATA WITH GUARDS USING DIOIDS ALGEBRA

  𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔, 𝑒𝑒 𝑣𝑣 , 𝑇𝑇𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡, 𝑞𝑞 𝑜𝑜𝑜𝑜𝑜𝑜 ) ∈ 𝑇𝑇𝑇𝑇𝑇𝑇 𝜖𝜖 𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒 • 𝜇𝜇 𝐼𝐼𝑛𝑛𝐼𝐼 : Σ → 𝔻𝔻 |𝑄𝑄|×|𝑄𝑄| , 𝜇𝜇 𝐼𝐼𝑛𝑛𝐼𝐼 (𝑒𝑒 𝑣𝑣 ) 𝑞𝑞 𝑖𝑖𝑖𝑖 𝑞𝑞 𝑜𝑜𝑜𝑜𝑜𝑜 ≜ � inf(𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔) 𝑖𝑖𝑖𝑖 (𝑞𝑞 𝑖𝑖𝑛𝑛 , 𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔, 𝑒𝑒 𝑣𝑣 , 𝑇𝑇𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡, 𝑞𝑞 𝑜𝑜𝑜𝑜𝑜𝑜 ) ∈ 𝑇𝑇𝑇𝑇𝑇𝑇 𝜖𝜖 𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒 In other words, coefficients �𝜇𝜇 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑒𝑒 𝑣𝑣 )� 𝑖𝑖𝑖𝑖 and �𝜇𝜇 𝐼𝐼𝑛𝑛𝐼𝐼 (𝑒𝑒 𝑣𝑣 )� 𝑖𝑖𝑖𝑖 correspond respectively to the upper and lower bounds of the intervals in guard for every (𝑞𝑞 𝑖𝑖𝑛𝑛 , 𝑔𝑔𝑔𝑔𝑇𝑇𝑇𝑇𝑔𝑔, 𝑒𝑒 𝑣𝑣 , 𝑇𝑇𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡, 𝑞𝑞 𝑜𝑜𝑜𝑜𝑜𝑜 ) ∈ 𝑇𝑇𝑇𝑇𝑇𝑇.

Remark 2 :

 2 it is possible to take into account initial and final delays through vectors 𝛼𝛼 and 𝛽𝛽. 𝛼𝛼 𝑞𝑞 𝑖𝑖 = 𝐼𝐼 (resp. 𝛽𝛽 𝑞𝑞 𝑖𝑖 = 𝐼𝐼) means than the state 𝑖𝑖 is initial (final) with an initial (final) delay of n time unit. By convention, if a state 𝑖𝑖 is not initial (final), 𝛼𝛼 𝑞𝑞 𝑖𝑖 = 𝜖𝜖 (𝛽𝛽 𝑞𝑞 𝑖𝑖 = 𝜖𝜖). Example 4: Recall the automaton 𝐺𝐺 1 from Fig. 1. We had 𝑄𝑄 = {0,1,2,3} , Σ = {𝑎𝑎𝑟𝑟𝑔𝑔, 𝑇𝑇𝑎𝑎𝑇𝑇𝑇𝑇𝑎𝑎} , 𝑄𝑄 0 = {0}, 𝑄𝑄 𝑚𝑚 = {1}. For this example, we obtain the following initial/final vectors and matrices (these four matrices represent the behavior at the latest and at the earliest of the TAG 𝐺𝐺 1 ): 𝛼𝛼 = (𝑒𝑒 𝜖𝜖 𝜖𝜖 𝜖𝜖) ; 𝛽𝛽 = � 𝜖𝜖 𝑒𝑒 𝜖𝜖 𝜖𝜖 � ; 𝜇𝜇 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑎𝑎𝑟𝑟𝑔𝑔) = � 𝜖𝜖 ⊤ 𝜖𝜖 𝜖𝜖 𝜖𝜖 ⊤ 1 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 � ; 𝜇𝜇 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑇𝑇𝑎𝑎𝑇𝑇𝑇𝑇𝑎𝑎) = � 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 1 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 � ; 𝜇𝜇 𝐼𝐼𝑛𝑛𝐼𝐼 (𝑎𝑎𝑟𝑟𝑔𝑔) = � 𝜖𝜖 0 𝜖𝜖 𝜖𝜖 𝜖𝜖 1 0 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 � ; 𝜇𝜇 𝐼𝐼𝑛𝑛𝐼𝐼 (𝑇𝑇𝑎𝑎𝑇𝑇𝑇𝑇𝑎𝑎) = � 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 0 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 � ;

Definition 4 :

 4 Consider two vectors 𝑥𝑥 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑤𝑤) ∈ ℝ � 𝑀𝑀𝑀𝑀𝑀𝑀 1×|𝑄𝑄| and 𝑥𝑥 𝐼𝐼𝑛𝑛𝐼𝐼 (𝑤𝑤) ∈ ℝ � 𝑀𝑀𝑀𝑀𝑀𝑀 1×|𝑄𝑄| , 𝑤𝑤 ∈ Σ * , called generalized bounds, and defined as follows:

Remark 3 :

 3 Following that definition, built matrices of 𝜇𝜇 1||2,𝐼𝐼𝑛𝑛𝐼𝐼 and 𝜇𝜇 1||2,𝑆𝑆𝑜𝑜𝑝𝑝 contain values for transitions that cannot be reached from the initial states. In particular, if ∃𝑘𝑘 ∈ [1; |𝑄𝑄 1 × 𝑄𝑄 2 |] such that for all 𝑒𝑒 𝑣𝑣 ∈ Σ 1||2 , 𝛼𝛼 𝑘𝑘 �𝜇𝜇 1||2,𝑆𝑆𝑜𝑜𝑝𝑝 (𝑒𝑒 𝑣𝑣 )� :,𝑘𝑘 = 𝜖𝜖 and �𝜇𝜇 1||2,𝐼𝐼𝑛𝑛𝐼𝐼 (𝑒𝑒 𝑣𝑣 )� :,𝑘𝑘 = 𝜖𝜖 then the corresponding states cannot be reached from the initial states.

Figure 5 -

 5 Figure 5 -Jobshop represented as a TAGThe linear representation of this TAG is:𝛼𝛼 = (𝑒𝑒𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖), 𝛽𝛽 = (𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝑒𝑒𝜖𝜖𝜖𝜖𝑒𝑒𝜖𝜖𝜖𝜖) ⊤ , 𝜇𝜇 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑇𝑇) ∈ 𝔻𝔻 |11|×|11| , 𝜇𝜇 𝐼𝐼𝑛𝑛𝐼𝐼 (𝑇𝑇) ∈ 𝔻𝔻 |11|×|11| , 𝜇𝜇 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑎𝑎) ∈ 𝔻𝔻 |11|×|11| , 𝜇𝜇 𝐼𝐼𝑛𝑛𝐼𝐼 (𝑎𝑎) ∈ 𝔻𝔻 |11|×|11| , 𝜇𝜇 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑐𝑐) ∈ 𝔻𝔻 |11|×|11| , 𝜇𝜇 𝐼𝐼𝑛𝑛𝐼𝐼 (𝑐𝑐) ∈ 𝔻𝔻 |11|×|11| , 𝜇𝜇 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑔𝑔) ∈ 𝔻𝔻 |11|×|11| , 𝜇𝜇 𝐼𝐼𝑛𝑛𝐼𝐼 (𝑔𝑔) ∈ 𝔻𝔻 |11|×|11| , 𝜇𝜇 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑒𝑒) ∈ 𝔻𝔻 |11|×|11| , 𝜇𝜇 𝐼𝐼𝑛𝑛𝐼𝐼 (𝑒𝑒) ∈ 𝔻𝔻 |11|×|11| , 𝜇𝜇 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑖𝑖) ∈ 𝔻𝔻 |11|×|11| , 𝜇𝜇 𝐼𝐼𝑛𝑛𝐼𝐼 (𝑖𝑖) ∈ 𝔻𝔻 |11|×|11| .Three of these matrices are detailed as an example. The other are not shown for the sake of clarity.

𝒥𝒥 1 : 2 = 5 . 4

 1254 𝑥𝑥 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑇𝑇𝑎𝑎𝑐𝑐) = 𝛼𝛼 ⊗ 𝜇𝜇 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑇𝑇) ⊗ 𝜇𝜇 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑎𝑎) ⊗ 𝜇𝜇 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑐𝑐) 𝑥𝑥 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑇𝑇𝑎𝑎𝑐𝑐) = (𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 6.6 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖) 𝑥𝑥 𝐼𝐼𝑛𝑛𝐼𝐼 (𝑇𝑇𝑎𝑎𝑐𝑐) = 𝛼𝛼 ⊗ 𝜇𝜇 𝐼𝐼𝑛𝑛𝐼𝐼 (𝑇𝑇) ⊗ 𝜇𝜇 𝐼𝐼𝑛𝑛𝐼𝐼 (𝑎𝑎) ⊗ 𝜇𝜇 𝐼𝐼𝑛𝑛𝐼𝐼 (𝑐𝑐) 𝑥𝑥 𝐼𝐼𝑛𝑛𝐼𝐼 (𝑇𝑇𝑎𝑎𝑐𝑐) = (𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 5.4 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖) Hence, it is possible to reach the state 6 between �𝑥𝑥 𝐼𝐼𝑛𝑛𝐼𝐼 (𝑇𝑇𝑎𝑎𝑐𝑐)� and �𝑥𝑥 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑇𝑇𝑎𝑎𝑐𝑐)� 2 = 6.6 time units. Since the state 2 correspond to the end job 𝒥𝒥 1 , the processing time of one job 𝒥𝒥 1 is from 5.4 to 6.6 time units. • Processing time of one job 𝒥𝒥 2 : 𝑥𝑥 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑔𝑔𝑒𝑒𝑖𝑖) = 𝛼𝛼 ⊗ 𝜇𝜇 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑔𝑔) ⊗ 𝜇𝜇 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑒𝑒) ⊗ 𝜇𝜇 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑖𝑖) 𝑥𝑥 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑔𝑔𝑒𝑒𝑖𝑖) = (𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 5.5 𝜖𝜖 𝜖𝜖) 𝑥𝑥 𝐼𝐼𝑛𝑛𝐼𝐼 (𝑔𝑔𝑒𝑒𝑖𝑖) = 𝛼𝛼 ⊗ 𝜇𝜇 𝐼𝐼𝑛𝑛𝐼𝐼 (𝑔𝑔) ⊗ 𝜇𝜇 𝐼𝐼𝑛𝑛𝐼𝐼 (𝑒𝑒) ⊗ 𝜇𝜇 𝐼𝐼𝑛𝑛𝐼𝐼 (𝑖𝑖) 𝑥𝑥 𝐼𝐼𝑛𝑛𝐼𝐼 (𝑔𝑔𝑒𝑒𝑖𝑖) = (𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 4.5 𝜖𝜖 𝜖𝜖)

  𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 2.2 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 ⎦ 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 2.2 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 1.1 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 0 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 𝜖𝜖 ⎦

  ). For 𝑒𝑒 𝑣𝑣 ∈ Σ, 𝑥𝑥 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑤𝑤𝑒𝑒 𝑣𝑣 ) = 𝑥𝑥 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑤𝑤) ⊗ 𝜇𝜇 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑒𝑒 𝑣𝑣 ) �𝑥𝑥 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑤𝑤𝑒𝑒 𝑣𝑣 )� 𝑘𝑘 = ��𝑥𝑥 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑤𝑤)� 𝑖𝑖 ⊗ �𝜇𝜇 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑒𝑒 𝑣𝑣 )� Since the property is true for 𝑤𝑤, there is at most one 𝑗𝑗 such that �𝑥𝑥 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑤𝑤)� 𝑖𝑖 ≠ 𝜖𝜖. Hence �𝑥𝑥 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑤𝑤𝑒𝑒 𝑣𝑣 )� 𝑘𝑘 = �𝑥𝑥 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑤𝑤)� 𝑖𝑖 ⊗ �𝜇𝜇 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑒𝑒 𝑣𝑣 )� Then there is at most one 𝑎𝑎 such that �𝜇𝜇 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑒𝑒 𝑣𝑣 )� 𝑖𝑖𝑗𝑗 ≠ 𝜖𝜖, hence, such that �𝑥𝑥 𝑆𝑆𝑜𝑜𝑝𝑝 (𝑤𝑤𝑒𝑒 𝑣𝑣 )� 𝑗𝑗 ≠ 𝜖𝜖. The property is true for a sequence 𝑤𝑤𝑒𝑒 𝑣𝑣 . The property is true for 𝜖𝜖, and the heredity has been proved for any 𝑤𝑤. Hence, the property is proved by induction. █ �𝑄𝑄 1 , Σ 1 , 𝑇𝑇𝑇𝑇𝑇𝑇 1 , 𝛼𝛼 1 , 𝛽𝛽 1 , 𝜇𝜇 1,𝑆𝑆𝑜𝑜𝑝𝑝 , 𝜇𝜇 1,𝐼𝐼𝑛𝑛𝐼𝐼 � and 𝐺𝐺 2 = �𝑄𝑄 2 , Σ 2 , 𝑇𝑇𝑇𝑇𝑇𝑇 2 , 𝛼𝛼 2 , 𝛽𝛽 2 , 𝜇𝜇 2,𝑆𝑆𝑜𝑜𝑝𝑝 , 𝜇𝜇 2,𝐼𝐼𝑛𝑛𝐼𝐼 �. The parallel composition of 𝐺𝐺 1 and 𝐺𝐺 2 is the automaton 𝐺𝐺

					𝑖𝑖𝑘𝑘
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Moreover, 𝐺𝐺 is event-deterministic. 1||2 = 𝐴𝐴𝑐𝑐�𝑄𝑄 1 × 𝑄𝑄 2 , Σ 1 ∪ Σ 2 , 𝑇𝑇𝑇𝑇𝑇𝑇 1||2 , 𝛼𝛼 1||2 , 𝛽𝛽 1||2 , 𝜇𝜇 1||2,𝑆𝑆𝑜𝑜𝑝𝑝 , 𝜇𝜇 1||2,𝐼𝐼𝑛𝑛𝐼𝐼 � with:

  2 �𝜇𝜇 𝑖𝑖,𝑆𝑆𝑜𝑜𝑝𝑝 (𝑒𝑒 𝑣𝑣 )� 𝑞𝑞 𝑖𝑖,𝑖𝑖𝑖𝑖 ,𝑞𝑞 𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 �𝜇𝜇 𝑖𝑖,𝑆𝑆𝑜𝑜𝑝𝑝 (𝑒𝑒 𝑣𝑣 )� For all 𝑒𝑒 1 ∈ Σ 1 \Σ 2 and 𝑞𝑞 2 ∈ 𝑄𝑄 2 ,

				𝑞𝑞 𝑖𝑖,𝑖𝑖𝑖𝑖 ,𝑞𝑞 𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜	≠ 𝜖𝜖
			𝜖𝜖 𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒	
	𝐼𝐼𝐼𝐼 ℝ � 𝑀𝑀𝑀𝑀𝑀𝑀 ,				
	�𝜇𝜇 1||2,𝐼𝐼𝑛𝑛𝐼𝐼 (𝑒𝑒 𝑣𝑣 )�	�𝑞𝑞 1,𝑖𝑖𝑖𝑖 × 𝑞𝑞 2,𝑖𝑖𝑖𝑖 �,�𝑞𝑞 1,𝑜𝑜𝑜𝑜𝑜𝑜 ×𝑞𝑞 2,𝑜𝑜𝑜𝑜𝑜𝑜 �	
	= � ⨁ 𝑖𝑖=1,2 �𝜇𝜇 𝑖𝑖,𝐼𝐼𝑛𝑛𝐼𝐼 (𝑒𝑒 𝑣𝑣 )�	𝑞𝑞 𝑖𝑖,𝑖𝑖𝑖𝑖 ,𝑞𝑞 𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜	𝑖𝑖𝑖𝑖 �𝜇𝜇 𝑖𝑖,𝐼𝐼𝑛𝑛𝐼𝐼 (𝑒𝑒 𝑣𝑣 )�	𝑞𝑞 𝑖𝑖,𝑖𝑖𝑖𝑖 ,𝑞𝑞 𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜	≠ 𝜖𝜖
			𝜖𝜖 𝑒𝑒𝑎𝑎𝑟𝑟𝑒𝑒	
	•