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Genealogy of the extremal process of the branching random walk

The extremal process of a branching random walk is the point measure recording the position of particles alive at time n, shifted around the expected position of the minimal position. Madaule [Mad17] proved that this point measure converges, as n → ∞, toward a randomly shifted, decorated Poisson point process. In this article, we study the joint convergence of the extremal process together with its genealogical informations. This result is then used to describe the law of the decoration in the limiting process, as well as to study the supercritical Gibbs measures of the branching random walk.

Introduction

A branching random walk on R is a discrete time particle system on the real line, which can be defined as follows. It starts with a unique particle positioned at 0 at time 0. At each new time n ∈ N, each particle alive at time (n -1) dies, giving birth to children that are positioned according to i.i.d. versions of a random point measure, shifted by the position of their parent. We denote by T the genealogical tree of the branching random walk. For u ∈ T, we write V (u) for the position of the particle u and |u| for the time at which u is alive. The branching random walk is the random marked tree (T, V ).

We assume that the process is supercritical:

E (#{u ∈ T : |u| = 1}) > 1. (1.1)
It is a well-known result from Galton-Watson processes theory that this assumption is equivalent to the fact that the surviving event S = {#T = ∞}, in which the process never dies out, occurs with positive probability. Moreover, we assume the branching random walk to be in the boundary case:

E   |u|=1 e -V (u)   = 1 and E   |u|=1 V (u)e -V (u)   = 0, (1.2)
and that the reproduction law is non-lattice. This assumption guarantees that the minimal position M n = min |u|=n V (u) satisfies lim n→∞ Mn n = 0 a.s. (c.f.

Biggins [START_REF] Biggins | The first-and last-birth problems for a multitype age-dependent branching process[END_REF]). Any branching random walk satisfying mild assumptions can be reduced to this case by an affine transformation (see e.g. the discussion in [START_REF] Bérard | Survival probability of the branching random walk killed below a linear boundary[END_REF]). We set ∀n ≥ 0, W n = |u|=n e -V (u) and Z n = |u|=n V (u)e -V (u) .

By (1.2) and the branching property of the branching random walk, the processes (W n ) and (Z n ) are martingales, which are called the critical martingale and derivative martingale of the branching random walk respectively. We introduce the following additional integrability conditions:

σ 2 := E   |u|=1 V (u) 2 e -V (u)   ∈ (0, ∞) (1.3) and E    |u|=1 e -V (u) log +   |u|=1 (1 + V (u) + )e -V (u)   2    < ∞, (1.4) 
where x + = max(x, 0) and log + (x) = max(log x, 0). Under these assumptions, is is well-known (see [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF][START_REF] Biggins | Measure change in multitype branching[END_REF]) there exists a random variable Z ∞ , which is a.s. positive on the survival event S, such that lim n→∞ Z n = Z ∞ and lim n→∞ W n = 0 a.s.

(1.5) Assumption (1.4) is a rephrasing of [Aïd13, Equation (1.4)] (see Lemma A.1 for the proof of the equivalence of these two integrability conditions). However, this version appears directly in our computations, cf Lemma A.2. Recall that M n = min |u|=n V (u) is the minimal position at time n occupied by a particle. We set m n = 3 2 log n. Under the above integrability assumptions, Addario-Berry and Reed [START_REF] Addario-Berry | Minima in branching random walks[END_REF] observed that (M n -m n ) is tight, and Hu and Shi [START_REF] Hu | Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees[END_REF] proved this sequence has almost sure logarithmic size fluctuations. Finally, Aïdékon [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF] obtained the convergence in law of M n -m n , and Chen [START_REF] Chen | A necessary and sufficient condition for the nontrivial limit of the derivative martingale in a branching random walk[END_REF] proved the above integrability assumptions to be optimal for this convergence in law. We take interest in all particles that are at time n in a O(1) neighborhood of the minimal displacement M n .

We introduce some notation on point measures, the Radon measures on R that takes values in Z + ∪ {∞}. Given a point measure , we denote by P( ) the multiset of the atoms of the point measure , that satisfy = r∈P( ) δ r .

For any x ∈ R, we write θ x = r∈P( ) δ r+x the shift of the measure by x. The space of point measures is endowed with the topology of the vague convergence, meaning that we write lim n→∞ n = ∞ if lim n n (f ) = ∞ (f ) for any continuous function f on R with compact support. As observed in [Kal02, Theorem A2.3], the set of random point measures endowed with the topology of the vague convergence is a Polish space.

We use the extremal process of the branching random walk to record the positions of particles close to the maximal displacement at time n, defined by

γ n = |u|=n δ V (u)-mn .
(1.6)

Madaule [START_REF] Madaule | Convergence in Law for the Branching Random Walk Seen from Its Tip[END_REF] proved the convergence in law of the extremal process toward a decorated Poisson point process with exponential intensity, or more precisely the following result.

Fact 1.1 (Theorem 1.1 in [START_REF] Madaule | Convergence in Law for the Branching Random Walk Seen from Its Tip[END_REF]). We assume (1.1), (1.2), (1.3) and (1.4).

There exist c * > 0 and a point measure D satisfying min D = 0 a.s. such that

lim n→∞ (γ n , Z n ) = (γ ∞ , Z ∞ ) in law on S,
for the topology of the vague convergence, where (ξ n ) are the atoms of a Poisson point process with intensity c * e x dx, (D n , n ≥ 1) are i.i.d. copies of D and

γ ∞ = ∞ n=1 θ ξn-log Z∞ D n . (1.7)
We denote by D the law of the point measure D.

The point measure γ ∞ is called a shifted decorated Poisson point process with shiftlog Z ∞ and decoration law D (or SDPPP(c * e x dx,-log Z ∞ , D) for short). These point measures have been studied in particular by Subag and Zeitouni [START_REF] Subag | Freezing and decorated Poisson point processes[END_REF]. The proof of Fact 1.1 gives little information on the law D of the point measure D used for the decoration of γ ∞ . Indeed, the convergence of (γ n ) is obtained through the study of its Laplace transform, and the law of the limiting point measure γ ∞ is identified using its superposability property1 .

A result similar to Fact 1.1 was previously obtained for the branching Brownian motion independently by Arguin, Bovier and Kistler [START_REF] Arguin | The extremal process of branching Brownian motion[END_REF], and Aïdékon, Berestycki, Brunet and Shi [START_REF] Aïdékon | Branching Brownian motion seen from its tip[END_REF]. In this model as well, the extremal process converges toward a decorated Poisson point process. However, the decoration law is explicitly described in both these articles. In [START_REF] Aïdékon | Branching Brownian motion seen from its tip[END_REF], the point measure D corresponds to positions of the close relatives of the particle realizing the minimal displacement. In [START_REF] Arguin | The extremal process of branching Brownian motion[END_REF], it is described as the extremal process of the branching random walk conditioned on having an unusually small minimal displacement.

In this article, we observe that using the branching property as well as an enriched version of the extremal process, Fact 1.1 immediately implies a stronger version of itself. More precisely, thanks to a careful encoding of the genealogy of the branching random walk, which is presented in Section 2, we can prove the joint convergence in law of the extremal process with some genealogical informations in Section 3. This convergence yields the observation that in the point process γ ∞ , the Poisson point process correspond to leaders realizing independently a small displacement, while each decoration comes from the family of the close relatives to a leader. This is reminiscent of the result obtained in [START_REF] Arguin | Poissonian statistics in the extremal process of branching Brownian motion[END_REF] in the context of branching Brownian motion.

Similar results of convergence of enriched extremal processes have been recently obtained by Biskup and Louidor [BL18] for the 2 dimensional Gaussian free field, and by Bovier and Hartung [START_REF] Bovier | Extended convergence of the extremal process of branching Brownian motion[END_REF] for the branching Brownian motion. Cortines, Hartung and Louidor [START_REF] Cortines | The Structure of Extreme Level Sets in Branching Brownian Motion[END_REF] obtained refined results on the law of the decoration of the branching Brownian motion using among other things enrichment of the extremal process techniques. This method thus seems promising. For example, it might be used to proved simultaneous convergence in law of the rescaled trajectories of extremal particles toward Brownian excursions, as conjectured in [START_REF] Chen | On the trajectory of an individual chosen according to supercritical Gibbs measure in the branching random walk[END_REF], i.e. that for all β > 1

lim n→∞ 1 |u|=n e -βV (u) |u|=n e -βV (u) δ Hn(u) = k∈N p k δ e k in law, (1.8)
where We use here the convergence of the extremal process with genealogical informations to obtain simple proofs for a few additional results. We study the weak convergence of the so-called supercritical Gibbs measure of the branching random walk, as obtained in [START_REF] Barral | Limiting laws of supercritical branching random walks[END_REF]. We also prove a conjecture of Derrida and Spohn on the asymptotic behavior of the so-called overlap of the branching random walk. More precisely, conditionally on the branching random walk (T, V ) we select two particles u (n) , v (n) at the nth generation with probability proportional to e -β(V (u)+V (v)) , and denote by ω n,β the law of the age of their most recent common ancestors, rescaled by a factor n. We prove that (ω n,β ) converges, as n → ∞ toward the probability measure (1 -π β )δ 0 + π β δ 1 , where π β is a random variable whose law depend on β.

H n (u) : t ∈ [0, 1] → n -1/2 V (u nt ), (p k , k ≥ 1)
As an other application of the convergence of the enriched extremal process, we finally obtain a description of the law D of the decoration of this process as the limit of the position of close relatives of the minimal displacement at time n. This result mimics the one proved in [START_REF] Aïdékon | Branching Brownian motion seen from its tip[END_REF] for the decoration of the branching Brownian motion. We expect a result similar to [START_REF] Arguin | The extremal process of branching Brownian motion[END_REF] would also holds, i.e. that the law D could be obtained as the limit in distribution of the extremal process conditioned on having a very small minimum.

Outline. In the next section, we precise the encoding of the branching random walk, and use it to define the so-called critical measure: a measure on the boundary of the tree T of the branching random walk, whose distribution is related to the derivative martingale. We prove in Section 3 the convergence of the enriched extremal process. In Section 4, we use this enriched convergence to prove the weak convergence of the supercritical Gibbs measure and the Derrida-Spohn conjecture. The expression of the law of the decoration D as the position of close relatives of the minimal displacement at time n is obtained in Section 5.

The critical measure of the branching random walk

In this section, we first introduce the so-called Ulam-Harris notation for trees, that is used for a precise definition of the the branching random walk. In a second time we define the so-called critical measure of the branching random walk and study some of its properties. This measure is defined on the boundary of the tree of the branching random walk, and its distribution is related to the derivative martingale.

Construction of the branching random walk

We introduce the sets

U = n≥0 N n , ∂U = N N and U = U ∪ ∂U,
with the convention N 0 = {∅}. In the Ulam-Harris notation, a (plane, rooted) tree is constructed as a subset of U, each element u ∈ U representing a potential individual. Let u ∈ U, which is a finite or infinite sequence of integers. We denote by |u| the length of the sequence u and, for k ≤ |u| by u k the sequence consisting of the k first values of u. If u ∈ U\{∅}, we write πu = u |u|-1 the sequence obtained by erasing the last element. For u ∈ U and v ∈ U, we denote by u.v the concatenation of the sequences. For u, v ∈ U, we write u ≤ v if v |u| = u, which define a partial order on U. We then define |u ∧ v| = max{k ∈ N :

u k = v k } and u ∧ v = u |u∧v| = v |u∧v| .
The genealogical tree T of the branching random walk is encoded as a subset of U in the following way. The root is encoded by the empty sequence ∅, while u = (u(1), . . . u(n)) ∈ U represents the u(n)th child of the u(n -1)th child of the ... of the u(1)th child of the root. With this encoding, πu is the parent of u, |u| the generation to which u belongs, u k the ancestor of u at generation k. We write u < v if u is an ancestor of v, and u ∧ v is the most recent common ancestor of u and v.

The family of positions (V (u), u ∈ T) is then a random map from T to R, which can be extended as a random map U → R∪{-∞}, by setting V (u) = -∞ for u ∈ U\T. We then call V : U → R ∪ {-∞} the branching random walk, which can be constructed as follows. Let {( u j , j ∈ N), u ∈ U} be a family of i.i.d. random variables in (R ∪ {-∞}) N , we set

V (u) = |u| j=1 uj-1 u(j) , with the convention -∞ + x = x -∞ = -∞ for all x ∈ R ∪ {-∞}. The law of ( ∅ j , j ∈ N) is called the reproduction law of the branching random walk V . Note that one can recover T from V as {u ∈ U : V (u) > -∞}.

A topology on the set of leaves of infinite trees

With the above notation, the set ∂U represents the set of possible leaves in the tree T, infinite non-backtracking paths starting from the root. The critical measure of the branching random walk that we now describe is constructed as a Radon measure on the set of leaves. In this section, we introduce a topology on U that makes it a compact space, and observe that finite measures on that space are identified with flows on the tree U. We embed U in [0, 1], observing that the application

B(1, 1) Ψ(∅) Ψ(1) Ψ(2) Ψ(3) Ψ(1, 1) Ψ(1, 2)
Ψ : u ∈ U -→ 2 |u| j=1 3 -j i=1 u(i)
is a bijection between U and the Cantor ternary set K, depicted in Figure 2.2.

Using this bijection, we define a distance on U by

∀u, v ∈ U, d(u, v) = 2 1-min{n∈N:3 n |Ψ(u)-Ψ(v)|≥1} ,
with the convention that min ∅ = ∞ and 2 -∞ = 0. Note this distance can be rewritten as

d(u, v) = 2 1-min(u(|u∧v|+1),v(u∧v|+1))- |u∧v| j=1 u(j) ,
with the convention that if |u| = n, then u(n+1) = 0. This distance measures to which depth of construction of the Cantor set one should go before the images of u and v by Ψ are in distinct blocs. It is thus straightforward that U is a compact ultrametric space when endowed by this distance. Informally, the topology of (U, d) can be described as the topology of pointwise convergence for infinite sequences of integers, with the addition that lim n→∞ u.n = u, or in other words, identification between the sequence (u(1), . .

. u(n), ∞, v(1), . . .) with u, where u ∈ N n and v ∈ (N ∪ ∞) N .
Note that U is a dense countable subset of U for this topology. For any u ∈ U, we denote by

B(u) = v ∈ U : u ∧ v = u = u.w, w ∈ U / Observe that {B(u), u ∈ U} is a
family of open and close balls of U for the distance d. We also set, for u ∈ U and n ∈ N

C(u, n) = B(u)\ ∪ n-1 j=1 B(u.j) = {u} ∪ ∞ j=n B(u.j).
(2.1)

Lemma 2.1. The family {C(u, j), u ∈ U, j ∈ N} forms a countable base of open sets for (U, d).

Proof. Let O be an open subset of U. We define

Γ(O) = {u ∈ U : C(πu, u(|u|)) ⊂ O, ∃j ∈ N : C(u, j) ⊂ O} (2.2)
as well as

j u = inf{j ∈ N : C(u, j) ⊂ O} for u ∈ Γ(O). We observe that O = u∈Γ(O) C(u, j u ), (2.3)
and that the union is of pairwise disjoint elements. Indeed, for any v ∈ O, there exists

n ∈ N such that B(v n ) ⊂ O. We denote by n 0 = inf{n ∈ N : B(v n ) ⊂ O}. Then either v n0 ∈ Γ(O) and j v0 = 1, or v n0-1 ∈ Γ(O) and j vn 0 -1 ≤ v(n 0 ). Reciprocally, it follows from definition that C(u, j u ) ⊂ O for all u ∈ Γ(O).
We now observe that u ∈ C(u, n) for all n ∈ N. Hence, as

C(u, n) ⊂ B(u), if C(u, n) ∩ C(v, m) = ∅, then either u is an ancestor of v, or v is an ancestor of u, or u = v. Moreover, if u is an ancestor of v, then v ∈ C(u, n).
We assume there exists

u = v ∈ Γ(O) such that C(u, j u ) ∩ C(v, j v ) = ∅.
We can assume without loss of generality that u is an ancestor of v, hence v = u.l.w, with l ∈ N and w ∈ U. As v ∈ C(u, j u ), we have l ≥ j u . Hence, by definition, we have B(u.l) ⊂ O, which is in contradiction with the fact that v ∈ Γ(O).

Note that (2.3) can be rewritten as the disjoint union of elements belonging to the families {B(u), u ∈ U} and {{u}, u ∈ U}.

In the rest of the section, we study finite measures on the space (U, d). We first identify them with pseudo-flows on U, which we now define.

Definition 2.2. A function

f : U → R + is called a pseudo-flow on U if it satisfies ∀u ∈ U, f (u) ≥ j∈N f (u.j).
(2.4)

A function f : U → R + is called a flow on U if it satisfies ∀u ∈ U, f (u) = j∈N f (u.j).
(2.5)

To each Radon measure µ on (U, d) we can associate a pseudo-flow on U defined as

∀u ∈ U, f µ (u) = µ(B(u)).
Note that the function f µ is a flow if and only if µ(U) = 0. We now observe that µ → f µ realizes a bijection between the Radon measures and the pseudo-flows.

Proposition 2.3. For each pseudo-flow f on U, there exists a unique finite measure µ such that f = f µ . A measure µ is atomless if and only if f µ is a flow and

lim n→∞ max |u|=n f µ (u) = 0.
Proof. Let µ and ν be two finite measures such that

f µ = f ν . By definition, this indicates that ∀u ∈ U, µ(B(u)) = ν(B(u)).
Therefore, by sigma-additivity, one successively deduces that

∀u ∈ U, n ∈ N, µ(C(u, n)) = ∞ j=n µ(B(u.j)) = ∞ j=n ν(B(u.j)) = ν(C(u, n)),
and, thanks to (2.3), that µ(O) = ν(O) for all open subset of U. By monotone classes theorem, we deduce that µ = ν.

Let f be a pseudo-flow on U, we now construct a measure on U associated to that pseudo-flow. We first observe that if f (∅) = 0, then f (u) = 0 for all u ∈ U, hence the null measure is associated to that flow.

We now assume that f (∅) = 0. Up to replacing f by f /f (∅) we can assume without loss of generality that f (∅) = 1. We observe that for all n ∈ N, we can define the law µ n on {u ∈ U : |u| ≤ n} by

∀u ∈ U : |u| < n, µ n (u) = f (u) - ∞ j=1 f (u.j) ∀u ∈ U : |u| = n, µ n (u) = f (u).
Observe that thanks to the pseudo-flow property, the family of probability distributions (µ n , n ≥ 1) is consistent under the family of projections π n : u → u n . Hence, thanks to Kolmogorov extension theorem, there exists a probability measure µ on U such that its image measure by π n is µ n for all n ∈ N. Hence, one has straightforwardly f µ = f .

The second point is a straightforward consequence as if µ has an atom of mass x at point u ∈ U, then

f µ (u) = x + ∞ j=1 f µ (u.j),
if u ∈ U, by sigma-additivity, and

lim n→∞ f µ (u n ) = x if u ∈ ∂U, by dominated convergence.

The critical measure of the branching random walk

Let V be a branching random walk satisfying (1.1), (1.2), (1.3) and (1.4). We recall that we set T = {u ∈ U : V (u) = -∞}. For any n ∈ N, we denote by T(n) = {u ∈ T : |u| = n} the set of individuals alive at generation n. We introduce the filtration (F n ), defined by

F n = σ (V (u), u ∈ U : |u| ≤ n) .
Note that by definition of the branching random walk, if we set, for all u ∈ T

V u : v ∈ U → V (u.v) -V (u) (2.6)
the branching random walk issued from particle u, then by definition, for all n ∈ N, {V u , u ∈ T(n)} is a family of i.i.d. branching random walks, with same law as V , that are independent from F n . This fact is often called the branching property of the branching random walk. We denote the boundary of the branching random walk by

∂T = {u ∈ ∂U : ∀n ∈ N, u n ∈ T} .
An element of ∂T represent a spine of the tree: a semi-infinite path starting at and going away from the root in the tree T.

The critical measure of the branching random walk has been introduced by the physicists Derrida and Spohn in [START_REF] Derrida | Polymers on disordered trees, spin glasses, and traveling waves[END_REF]. Its existence is a consequence the precise study of the derivative martingale in [START_REF] Aïdékon | The Seneta-Heyde scaling for the branching random walk[END_REF]. This measure has been the subject of multiple studies [BKN + 14, Bur09, BDK18].

To define the critical measure, for any u ∈ T, we set

Z u n = |v|=n,v>u (V (v) -V (u))e V (u)-V (v) and Z u ∞ = lim inf n→∞ Z u n .
Thanks to the branching property, we observe (Z u ∞ , u ∈ T(k)) are i.i.d. copies of Z ∞ , which are independent of F k . Moreover, for any k ≤ n, we have

Z n = |u|=k e -V (u) Z u n + |u|=k V (u)e -V (u) |v|=n,v>u e V (u)-V (v) .
Letting n → ∞ and using (1.5), we deduce Z ∞ = |u|=k e -V (u) Z u ∞ a.s. More generally, almost surely, for all u ∈ T we have

e -V (u) Z u ∞ = j∈N e -V (u.j) Z u.j ∞ .
(2.7)

In other words, the function

f * : u ∈ U → e -V (u) Z u ∞ if u ∈ T 0
otherwise, is a.s. a flow on U. The critical measure of the branching random walk is the unique measure ν on U associated to the flow f * , i.e.

∀u ∈ U, ν (B(u)) = 1 {u∈T} e -V (u) Z u ∞ a.s. (2.8)
Existence and uniqueness of ν are proved in Proposition 2.3. Moreover, note that as Z ∞ > 0 a.s. on the survival event S of the branching random walk, the support of ν is a.s. the adherence of the boundary of the tree ∂T, for the distance d.

Remark 2.4. Note that the following convergence holds

ν = lim n→∞ |u|=n V (u)e -V (u) δ u a.s.
for the topology of weak convergence of measures on U, as for all v ∈ U, we have lim

n→∞ |u|=n 1 {u∈B(v)} V (u)e -V (u) = ν(B(v)) a.
s. We conclude using the Portmanteau theorem.

We end this section with a short proof that ν is non-atomic. We first note that that as f * is a (proper) flow, we have immediately ν({u}) = 0 a.s for all u ∈ U, therefore ν(U) = 0 a.s. As a result, the fact that ν is non-atomic is a consequence of the following lemma. Proof. We first recall the precise estimate on the tail of Z ∞ obtained by Madaule [START_REF] Madaule | The tail distribution of the Derivative martingale and the global minimum of the branching random walk[END_REF]: there exists c 1 > 0 such that for any x ≥ 0, P(Z ∞ ≥ x) ≤ c1

x . We now observe that for any ε > 0 and n ∈ N, we have 

P max |u|=n ν(B(u)) ≥ ε F n ≤ |u|=n P e -V (u) Z u ∞ ≥ ε F n ≤ c 1 ε |u|=n e -V ( 

Convergence in law of the extremal process with genealogical informations

Using the notation of the previous section, we can now state the main result of this paper, namely the convergence of the point measure

µ n = |u|=n δ u,V (u)-mn , (3.1)
on U ×R. The sketch of proof is the following: we first define a candidate for the limiting measure, then observe that Fact 1.1 implies that µ n converges toward this well-chosen limiting measure. Independently from the branching random walk V , let (ξ n , n ≥ 1) be the atoms of a Poisson point process with intensity c * e x dx, (u (n) , n ≥ 1) be i.i.d. random variables with law ν and (D n , n ≥ 1) be i.i.d. point measures with law D, with c * and D defined in Fact 1.1. For any n ∈ N, we set The convergence in Theorem 3.1 can be interpreted as follows. We can decompose the extremal process at time n, near position m n into families of individuals whose common ancestor was alive at generation n -O(1). In each of these families, there is a leader, a particle whose position is the smallest within the family. The point process of the leaders converge toward a Poisson point process with exponential intensity, and the relative positions of their relatives converge toward i.i.d. copies of a point process of law D. The fact that ν has no atom proves that with high probability, the most recent common ancestor between two individuals of two distinct families was alive at time O(1).

µ ∞ = ∞ n=1 d∈P(Dn) δ u (n) ,ξn+d-log Z∞ . ( 3 
This convergences gives some informations on the genealogical relationships for particles close to the smallest position at time n. For example, in the nonlattice case, if two particles u and v are at position M n at time n, they are close relatives with high probability. Note that this result would not hold in the lattice case, as observed by Pain [Pai17, Footnote 3].

Proof of Theorem 3.1. This is a direct consequence of Madaule's convergence in law for the extremal process of the branching random walk with its genealogy. For any v ∈ T, we denote by

µ v ∞ (.) = B(v) µ ∞ (du, .) = ∞ k=1 1 {u (k) >v} θ ξ k -log Z∞ D k , For every k ∈ N, conditionally on F k and (Z v ∞ , |v| = k), we observe that (θ -V (v) µ v ∞ , v ∈ T(k)) are independent SDPPP(c * e x dx, -log Z v ∞ , D).

In other words, µ v

∞ has the same law as the limit of the extremal process of the branching random walk V v issued from particle v, defined in (2.6). Thus, by Fact 1.1, conditionally on F k , for any v ∈ T(k), we have

lim n→∞   |u|=n,u>v δ V (u)-V (v)-mn , Z v n   = θ -V (v) µ v ∞ , Z v ∞ in law on S.
We denote by f a continuous non-negative function on R with compact support and k ∈ N. By the branching property, conditionally on F k , the subtrees of the branching random walk rooted at points v ∈ T(k) behave as independent branching random walk. Therefore

lim n→∞ µ n (1 B(v) f ), v ∈ T(k) , Z n = lim n→∞     |u|=n,u>v f (V (u) -m n ), v ∈ T(k)   , |v|=k e -V (v) Z v n   = ((µ v ∞ (f ), v ∈ T(k)) , Z ∞ ) in law on S.
By [Kal02, Theorem 14.16], we conclude that lim n→∞ (µ n , Z n ) = (µ ∞ , Z ∞ ) in law on the survival event S.

Using [SZ15, Theorem 10], we observe that writing µ x for a point measure with distribution θ -min µ∞ µ ∞ conditionally on {min µ ∞ < -x}, we have

lim x→∞ µ x = D 1 in law.
This result can be seen as a (weaker form of the) characterization of [START_REF] Arguin | The extremal process of branching Brownian motion[END_REF] of the law D. We provide an alternative characterization of this law in Section 5.

A straightforward consequence of Theorem 3.1 is the convergence for the extremal process seen from the smallest position.

Corollary 3.3. Under the same assumptions as Theorem 3.1, we set e a standard exponential random variable, ζ 1 = 0 and (ζ n , n ≥ 2) a Poisson point process with intensity ee x 1 {x>0} dx. We have

lim n→∞   M n -m n , |u|=n δ u,V (u)-Mn   =   log(e/Z ∞ ), d∈P(Dn) δ u (n) ,ζn+d   ,
in law, on the survival event S.

Remark 3.4. If the law of the decoration D is explicit, it becomes possible to compute the asymptotic probability for two particles within O(1) distance from the minimal displacement M n to belong to distinct families. For example, setting u 1,n and u 2,n the labels of the smallest two individuals at generation n, we have

lim n→∞ P(|u 1,n ∧ u 2,n | ≥ n/2) = P(d 2 ≤ ζ 2 ) = E(e -d2 ),
where d 2 the second smallest point of D 1 , as ζ 2 is distributed as an exponential random variable with parameter 1.

In the next sections, we derive some additional informations of the genealogy of particles close to the minimal displacement at time n, that can be extracted from the convergence in Theorem 3.1.

The supercritical Gibbs measure

In this section, we use Theorem 3.1 to give a simple construction of the so-called supercritical Gibbs measures on U, as obtained in [START_REF] Barral | Limiting laws of supercritical branching random walks[END_REF]. More precisely, the aim is to mimic the construction of the critical measure describe in Section 2.3, but instead of using the derivative martingale (Z n ) one use the supercritical additive martingale with parameter β > 1.

For any β ≥ 0, we denote by

κ(β) = log E   |u|=1 e -βV (u)   ∈ (-∞, ∞].
For all n ∈ N and β ≥ 0 such that κ(β) < ∞, we denote by

W (β) n = |u|=n e -βV (u)-nκ(β) .
By the branching property, (W

(β) n , n ≥ 0) is a non-negative martingale. If we assume that W (β)
∞ > 0 a.s. on the survival event of the branching random walk, then one can use the same techniques as in Section 2.3 to define a finite measure on U such that ν β (B(u)) = e -βV (u) W (β),u ∞ , which we call the Gibbs measure of the branching random walk. To justify this name, observe that

lim n→∞ |u|=n e -βV (u) δ u |u|=n e -βV (u) = ν β W ∞ (β) a.s. (4.1)
for the topology of weak convergence. However, under assumption (1.2), it is well-known that lim n→∞ W (β) n = 0 a.s. for all β > 1 (see e.g. [START_REF] Lyons | A simple path to Biggins' martingale convergence for branching random walk[END_REF]). Nevertheless, the aim of this section is to obtain a convergence similar to (4.1) for β > 1, thus defining the supercritical Gibbs measure on U.

Let β > 1, as lim n→∞ W (β) n = 0, one has to choose a different renormalization in order to obtain a non-degenerate limit. We set

W n,β = n 3β/2 e nκ(β) W (β) n = |v|=n e β(mn-V (v)) .
Madaule [Mad17, Theorem 2.3] proved there exists a random variable W β,∞ defined on the same probability space as

Z ∞ such that lim n→∞ (W n,β , Z n ) = (W ∞,β , Z ∞ ) in law,
with W ∞,β and Z ∞ being a.s. either both positive or both null. For all u ∈ T, we set

W u n,β = |v|=n,v>u e β(mn+V (u)-V (v)) ,
We construct a measure which gives mass W u ∞,β to the ball B(u) for all u ∈ T. This measure is then used to study the so-called overlap of the branching random walk.

We recall that (u (n) ) are i.i.d. random elements of U sampled with law ν. We denote by (ξ β n , n ≥ 1) the atoms of a Poisson point process with intensity c β e x dx, where we write c β = c * E d∈D e -βd . We introduce the random measures on U defined by

ν β,n = |u|=n e β(mn-V (u)) δ u and ν β,∞ = n∈N Z β ∞ e -βξ β n δ u (n) . (4.2)
Theorem 4.1. Assuming (1.1), (1.2), (1.3) and (1.4), for any β > 1, we have

lim n→∞ ν β,n = ν β,∞ in law,
for the topology of the weak convergence of measures.

Note that this convergence is similar to the one observed for the critical measure in Remark 2.4. However, the convergence holds in distribution, and not almost surely. We also have ν β,∞ (B(u)) = W u ∞,β in law, for all u ∈ T.

Proof. By [Mad17, Theorem 2.3], ν β,n (B(u)) converges in law for any u ∈ T as n → ∞. Consequently, using Theorem 3.1, for any u ∈ T, we can identify the law of the limit as

lim n→∞ ν β,n (B(u)) = ∞ k=1 1 {u (k) >u} d∈P(D k ) Z β ∞ e -β(ξ k +d) in law, = Z β ∞ ∞ k=1 1 {u (k) >u} e -βξ k d∈P(D k ) e -βd .
Setting

X β k = -1 β log d∈P(D k ) e -βd , we have lim n→∞ ν β,n (B(u)) = ∞ k=1 1 {u (k) >u} Z β ∞ e -β(ξ k +X β k )
in law.

Moreover, as (ξ k + X β k , k ∈ N) are the atoms of a Poisson point process with intensity c β e x dx independent of (u (k) ), we conclude that for any j ∈ N,

lim n→∞ (ν β,n (B(u)), u ∈ T(j)) = (ν β,∞ (B(u)), u ∈ T(j))
in law, which concludes the proof.

Remark 4.2. A straightforward consequence of this result is that under assumptions (1.1), (1.2), (1.3) and (1.4), the solution Y β of the supercritical smoothing transform (see e.g. [START_REF] Alsmeyer | The functional equation of the smoothing transform[END_REF])

Y β (d) = |u|=1 e -βV (u) Y (u) β can be written Y β = Z β ∞ ∞
k=1 e -βξ β k . Theorem 4.1 indirectly implies a proof of the conjecture of Derrida and Spohn [START_REF] Derrida | Polymers on disordered trees, spin glasses, and traveling waves[END_REF]: the rescaled distribution of the genealogy of the most recent common ancestor of two particles chosen independently at random according to the measure ν n,β /ν n,β (U) converges in law toward a random measure on [0, 1] with no mass on (0, 1). Theorem 4.3. For any n ∈ N and β > 1, we set

ω n,β = W -2 n,β |u|=|v|=n e β(2mn-V (u)-V (v)) δ |u∧v|/n . (4.3)
Assuming (1.1), (1.2), (1.3) and (1.4), conditionally on S, we have

lim n→∞ ω n,β = (1 -π β )δ 0 + π β δ 1 in law, where π β = ∞ k=1 p 2 k and (p k , k ≥ 1
) is a Poisson-Dirichlet mass partition with parameters (β -1 , 0).

A similar result was already known for multiple types of Gaussian processes with a logarithmic correlation structure, such as the Generalized Random Energy Model [START_REF] Bovier | Derrida's generalized random energy models 2: Models with continuous hierarchies[END_REF], log-correlated Gaussian fields such as the Gaussian Free Field [START_REF] Arguin | Poisson-Dirichlet statistics for the extremes of a log-correlated Gaussian field[END_REF], or the binary branching random walk with Gaussian increments [START_REF] Jagannath | On the overlap distribution of branching random walks[END_REF]. More precisely, it is proved that a measure similar to ν n,β /ν n,β (U) converges in law toward a Ruelle probability cascade. Ouimet [START_REF] Ouimet | Geometry of the Gibbs measure for the discrete 2D Gaussian free field with scale dependent variance[END_REF] recently extended this family of results to Gaussian fields with scale-dependent variance. Theorems 4.1 and 4.3 represent extensions of these results to branching random walks with non-Gaussian increments. Contrarily to what was done in this past literature, the proof relies on the study of the extremal point process instead of proving Ghirlanda-Guerra type identities. Thus Poisson-Dirichlet distributions appear as simple functional of a Poisson point process instead of the application of Talagrand's identity (see [Jag16, Remark 3.8]).

Proof. We first observe that it is enough to prove that conditionally on S, ∀t ∈ (0, 1) lim

n→∞ ω n,β ((t, 1]) = π β in law. (4.4) 
Indeed, the function t → ω n,β ((t, 1]) is decreasing on [0, 1], therefore (4.4) and Slutsky's lemma imply the convergence of the finite-dimensional distributions of the tail of ω n,β , which concludes the proof.

For k ≤ n and t ∈ [0, 1], we set

Λ k n = W -2 n,β |u|=|v|=n e 2βmn-βV (u)-βV (v) 1 {|u∧v|≥k} and ∆ k,t n = W -2 n,β |u|=|v|=n e 2βmn-βV (u)-βV (v) 1 {|u∧v|∈[k,tn]} .
We observe that for every k ∈ [1, tn) ∩ N, we have

Λ k n -∆ k,t n ≤ ω n,β ((t, 1]) ≤ Λ k n a.s. on S. (4.5) By Theorem 3.1, as S = {Z ∞ > 0} a.s. we have lim n→∞ Λ k n = Λ k ∞ := |u|=k ∞ j=1 1 {u (j) >u} e -βξ β j 2 ∞ j=1 e -βξ β j 2 in law on S.
Moreover, as ν is non-atomic by Lemma 2.5, letting k → ∞ we have 

lim k→∞ Λ k ∞ = ∞ j=1 e -2βξ β j ∞ j=1 e -
P   |u|=|v|=n 1 {|u∧v|∈[k,tn]} e β(mn-V (u))+β(mn-V (v)) > δε 2   = 0. (4.7)
The proof of this result, rather technical, is postponed to Lemma A.2.

Let x ∈ [0, 1] and δ > 0, using (4.5), we have

P(Λ k n ≤ x + δ, S) + P(∆ k,t n ≥ δ, S) ≥ P (ω n,β ((t, 1]) ≤ x, S) ≥ P Λ k n ≤ x, S .
Thus, letting n then k grows to ∞ and using (4.6), for any t ∈ (0, 1), ω n,β ((t, 1]) converges in law toward π β on S, proving (4.4).

Note that this proof can easily be adapted to the convergence of the overlap measure of more than two particles.

Remark 4.4. With similar computations, we can obtain a "local limit" convergence for the genealogy of two particles sampled according to the Gibbs measure. In effect, if we consider the non-rescaled measure

λ n,β = W -2 n,β |u|=|v|=n e β(2mn-V (u)-V (v)) δ |u∧v| ,
we obtain lim n→∞ λ n,β = λ ∞,β in law on S, where (p k ) is a Poisson-Dirichlet distribution with parameters (β -1 , 0) and

λ ∞,β = ∞ k,k =1 p k p k δ |u (k) ∧u (k ) | . Note that λ ∞,β ({∞}) = π β .
Remark 4.5. Chauvin and Rouault [START_REF] Chauvin | Boltzmann-Gibbs weights in the branching random walk[END_REF] studied similarly the overlap of subcritical measures, such that β < 1. They proved that in this case, the measure ω n,β converges toward δ 0 , and the measure λ n,β converges toward a proper probability measure on N. For the critical case, Pain [START_REF] Pain | The near-critical Gibbs measure of the branching random walk[END_REF] proves that if (β n ) is a sequence converging to 1, then lim n→∞ ω n,βn = δ 0 in probability.

The decoration as the close relatives of minimal displacement

In this section, we prove that the law D is the limiting distribution of the relative positions of the family of the particle that realizes the minimal displacement at time n. This result is similar to the one obtained in [START_REF] Aïdékon | Branching Brownian motion seen from its tip[END_REF] for branching Brownian motion. For any n ∈ N, we denote by u n a particle alive at time n such that V (u) = M n , for example the one which is the smallest for the lexicographical order on U. Observe that by Corollary 3.3, the triangular array ( n,k , n ≥ 1, k ≤ n) is tight. Indeed, for any continuous positive function f , we have

n,k (f ) ≤ n,0 (f ) = |u|=n f (V (u) -M n ).
A straightforward consequence of Theorem 5.1 is the following, more intuitive convergence. (5.3)

Proof. Using Fact 1.1, we observe that for any k ∈ N, conditionally on

F k , lim n→∞   |v|=n,v>u δ V (v)-mn , Z u n , u ∈ T(k)   = (µ u ∞ , Z u ∞ , u ∈ T(k)) in law on S.
Therefore, setting M u n = min |v|=n,v>u V (v), we have in particular

lim n→∞ |u|=k 1 {M u n =Mn} |v|=n,v>u δ V (v)-mn = |u|=k 1 {u (1) >u} µ u ∞ in law on S. Observe that |u|=k 1 {u (1) >u} µ u ∞ = ∞ n=1 1 u (n) k =u (1) k θ ξn-log Z∞ D n .
Let f be a continuous positive function with compact support, we prove that

lim k→∞ ∞ n=2 1 u (n) k =u (1) k d∈P(Dn) f (ξ n + d -log Z ∞ ) = 0 in probability. (5.4)
In effect, for any k ∈ N, we have

E   ∞ n=2 d∈P(Dn) f (ξ n + d -log Z ∞ )1 u (n) k =u (1) k F k   = |u|=k ν(B(u)) ∞ n=2 E 1 u (n) k =u g(ξ n -log Z ∞ ) F k , where g : x → E d∈P(D) f (x + d) . Therefore, E   ∞ n=2 d∈P(Dn) f (ξ n + d -log Z ∞ )1 u (n) k =u (1) k F k   =   |u|=k ν(B(u)) 2   ∞ n=2 E(g(ξ n -log Z ∞ )|F k ).
As lim k→∞ max |u|=k ν(B(u)) = 0 a.s. (see Lemma 2.5), we conclude that (5.4) holds. This result yields that lim k→∞ |u|=k 1 {u (1) >u} µ u ∞ (f ) = θ ξ1-log Z∞ D(f ) in law. We conclude the proof observing that we chose the law of the decoration such that min D = 0 a.s.

To complete the proof of Theorem 5.1, we first observe that the genealogy of particles close to the minimal displacement at time n in the branching random walk are either close relatives, or their most recent common ancestor is a close relative to the root. This well-known estimate can be found for example in [Mal16, Theorem 4.5]. For any z ≥ 1, we have 

lim k→∞ lim sup n→∞ P ∃u, v ∈ T : |u| = |v| = n, V (u), V (v) ≤ m n + z, |u ∧ v| ∈ [k, n -k] = 0 
n,k (f ) -n,n-k (f ) = |u|=n 1 {|u∧ un|∈[k,n-k]} f (V (u) -M n ).
We write z = sup{x ≥ 0 : f (x) > 0}, for any y ≥ 0, we have

P ( n,k (f ) -n,n-k (f ) > 0) ≤ P ∃u ∈ T(n) : |u ∧ u n | ∈ [k, n -k], V (u) -M n ≤ z ≤ P(M n -m n ≥ y) + P ∃u, v ∈ T(n) : |u ∧ v| ∈ [k, n -k], V (u), V (v) ≤ m n + y + z .
Letting n then k → ∞, we have by (5.5), lim sup

k→∞ lim sup n→∞ P ( n,k (f ) -n,n-k (f ) > 0) ≤ sup n∈N P(M n ≥ m n + y).
Moreover, (M n -m n ) is tight, by [START_REF] Aïdékon | Convergence in law of the minimum of a branching random walk[END_REF], thus letting y → ∞, we conclude that

lim k→∞ lim sup n→∞ P ( n,k (f ) -n,n-k (f ) > 0) = 0.
Using Lemma 5.3, we conclude the proof.

We were not able to study the limiting distribution of n,n-k , but this law can probably be constructed, similarly to the point process lim t→∞ Q(t, ζ) defined in [START_REF] Aïdékon | Branching Brownian motion seen from its tip[END_REF] for the branching Brownian motion.

Conjecture 5.5. For any k ∈ N, there exists a point measure k such that lim n→∞ n,n-k = k .

A Some technical results

In this section, we provide some technical estimates on the branching random walks. We first prove that (1.4) is equivalent to the usual integrability conditions for the branching random walk.

Lemma A.1. Under assumptions (1.1), (1.2) and (1.3), the condition (1.4) is equivalent to

E    |u|=n e -V (u) log +   |u|=n e -V (u)   2    < ∞ E   |u|=n V (u) + e -V (u) log +   |u|=n V (u) + e -V (u)     < ∞ Proof. The reciprocal part is a direct consequence of [Aïd13, Lemma B.1].
To prove the direct part, we first observe that by (1.4),

E    |u|=n e -V (u) log +   |u|=n e -V (u)   2    ≤ E    |u|=n e -V (u) log +   |u|=n (1 + V (u) + )e -V (u)   2    < ∞.
We now use the celebrated spinal decomposition of the branching random walk, introduced by Lyons [START_REF] Lyons | A simple path to Biggins' martingale convergence for branching random walk[END_REF]. Loosely speaking, it is an alternative description of the law of the branching random walk biased by the martingale (W n ), as the law of a branching random walk (T, V ) with a distinguished spine w ∈ ∂T that makes more children than usual. For any u ∈ T, we write ξ(u) = log + v∈Ω(πu) |u|=1 V (u) + e -V (u) . We denote by P = W n .P the size-biased distribution, and refer to [START_REF] Lyons | A simple path to Biggins' martingale convergence for branching random walk[END_REF] for more details on the spinal decomposition. We have

E   |u|=n V (u) + e -V (u) log +   |u|=n V (u) + e -V (u)     = E (ξ(w 1 )V (w 1 ) + ) ≤ E V (w 1 ) 2 1/2 E ξ(w 1 ) 2 1/2 < ∞,
by Cauchy-Schwarz inequality, using (1.3) and (1.4) to conclude.

We now prove that (4.7) holds.

Lemma A.2. For any β > 1 and k ≤ n, we set

R β n,k = |u|=|v|=n 1 {|u∧v|∈[k,n-k
]} e β(mn-V (u))+β(mn-V (v)) .

For any ε > 0, we have lim (1 + (V (v) -V (u)) + )e V (u)-V (v) .

For any n ∈ N and k ≤ n, we write f n (k) = 3 2 log n+1 n-k+1 and, for y, z, h ≥ 0, We introduce branching random walk estimates obtained in [START_REF] Mallein | Asymptotic of the maximal displacement in the branching random walk[END_REF]. There exist C > 0 and a function χ such that lim z→∞ χ(z) = 0 such that for any k ≤ n and y, z, h ≥ 1 we have

P ∃u, v ∈ A n (y, h) ∩ B n (y, z) : |u ∧ v| ∈ [k, n -k] ≤ C
zyh 2 e 2h-y k 1/2 , P A n (y, h) ∩ B c n (y, z) = ∅ ≤ χ(z)yhe h-y , P (A n (y) = ∅) ≤ Cye -y and E #A n (y, h) ≤ Cyhe h-y .

(A.1)

In the rest of this proof, C is a large positive constant, that depends only on the law of the branching random walk, and may change from line to line. We decompose R β n,k into three parts, that we bound separately. For any h ≥ 0, we have (j + y)e (1-β)j ≤ Cy(h + y)e (1-β)h .

We have E |u|=n 1 {u∈An(y)} e β(mn-V (u)) ≤ Cye (β-1)y by similar computations. Using the Markov inequality, there exists C > 0 such that for any ε ≥ 0 and y, h ≥ 0, we have Setting z = k 1/4 , we obtain lim sup k→∞ lim sup n→∞ P R β n,k ≥ δ ≤ δ, which concludes the proof.
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  .2) By classical properties of Poisson point processes, (u(n) , ξ n -log Z ∞ ) are the atoms of a Poisson point process with intensity c * ν ⊗ e x dx on U × R. Hence µ ∞ can alternatively be described as a Poisson point process with intensity c * ν ⊗ e x dx, with an i.i.d. decoration on the second coordinate. The main result of the article is the following convergence. The genealogical informations encoded in µ n only concern the local behavior in a neighborhood of the root of the process. Informally, we say that two individuals do not belong to the same family if the age of their most recent common ancestor if O(1). However, we know that with high probability, for individuals close to the minimal displacement at time n, the age of their most recent common ancestor is either O(1) or n -O(1) with high probability (see e.g. (5.5)). But to obtain informations on the genealogy within the group of the followers, different quantities should be considered, such as the branching random walk seen from the local leader, for the topology of local convergence.

	Theorem 3.1. Assuming (1.1), (1.2), (1.3) and (1.4), we have
	lim n→∞	(µ n , Z n ) = (µ ∞ , Z ∞ ) in law on S,
	for the topology of the vague convergence.
	Remark 3.2.	

Cf.Maillard [Mai13] for the characterization of point measures occurring as the limits of the extremal processes of branching random walks.
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