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Abstract

Let (T, V ) be a branching random walk on the real line. The extremal process of the
branching random walk is the point process of the position of particles at time n shifted by the
position of the minimum. Madaule [Mad15] proved that this point process converges toward
a shifted decorated Poisson point process. In this article we study the joint convergence of
the extremal process with its genealogy informations. This result is then used to characterize
the law of the decoration in the limiting process as well as to study the supercritical Gibbs
measures of the branching random walk.

1 Introduction

A branching random walk on R is a discrete time particle process on the real line defined as follows.
It starts with a unique particle positioned at 0 at time 0. At each new time n ∈ N, each particle
alive at time (n − 1) dies, giving birth to children that are positioned according to i.i.d. versions
of a point process, shifted by the position of their parent. We denote by T the genealogical tree of
the branching random walk. For u ∈ T, we set V (u) for the position of the particle u and |u| for
the time at which u is alive. The branching random walk is the random marked tree (T, V ).

In this article, we assume that the branching random walk is in the so-called boundary case:

E



∑

|u|=1

1


 > 1, E



∑

|u|=1

e−V (u)


 = 1 and E



∑

|u|=1

V (u)e−V (u)


 = 0, (1.1)

and that the reproduction law is non-lattice. Any branching random walk satisfying some mild as-
sumption can be reduced to this case by an affine transformation (see e.g. the discussion in [BG11]).
Under these assumptions, the Galton-Watson tree T is supercritical. Therefore, the surviving event
of the branching random walk S = {#T = +∞} occurs with positive probability. For any n ≥ 1,
we denote by Wn =

∑
|u|=n e−V (u) and Zn =

∑
|u|=n V (u)e−V (u). By (1.1) and the branching

property of the branching random walk, (Wn) and (Zn) are martingales.
We introduce the following integrability conditions:

σ2 := E



∑

|u|=1

V (u)2e−V (u)


 ∈ (0, +∞) (1.2)

and E



∑

|u|=1

e−V (u) log+



∑

|u|=1

(1 + V (u)+)e−V (u)




2

 , (1.3)

where x+ = max(x, 0) and log+(x) = max(log x, 0). Under these assumptions, is is well-known
(see [Aïd13, BK04]) that there exists Z∞, which is a.s. positive on the survival event S, such that

lim
n→+∞

Zn = Z∞ and lim
n→+∞

Wn = 0 a.s. (1.4)
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Assumption (1.3) is different from [Aïd13, Equation (1.4)], but we prove in Lemma A.1 that these
two conditions are equivalent.

We write Mn = min|u|=n V (u) for the minimal position at time n occupied by a particle and
mn = 3

2 log n. The study of the asymptotic behaviour of Mn has been the subject of intense studies.
Under the above integrability assumptions, Biggins [Big76] proved that limn→+∞

Mn

n = 0 a.s.
Addario-Berry and Reed [ABR09], and Hu and Shi [HS09] independently observed that Mn − mn

is tensed, while experiencing almost sure logarithmic size fluctuations. Finally, Aïdékon [Aïd13]
obtained the convergence in law of Mn − mn, and Chen [Che15] proved the above integrability
assumptions to be optimal for this convergence in law.

We introduce some notation on point processes. In this article, a point process is understood
both as a random measure on R that takes values in Z+, as well as the collection of atoms that
compose this measure. Therefore, for a point process D, we authorize the notation D =

∑
d∈D δd.

For any x ∈ R, we write θxD =
∑

d∈D δd+x the shift of D by x.
The random measure

∑
|u|=n δV (u)−mn

is the extremal process of the branching random walk.
Madaule [Mad15] proved the convergence in law of the extremal process toward a decorated Poisson
point process with exponential intensity. More precisely, the following holds.

Fact 1.1 (Theorem 1.1 in [Mad15]). Under assumptions (1.1), (1.2) and (1.3), there exists c∗ > 0
and a point process D satisfying max D = 0 a.s. such that given (ξn) the atoms of a Poisson point
process with intensity c∗Z∞exdx, and (Dn, n ≥ 1) i.i.d. copies of D we have

lim
n→+∞



∑

|u|=n

δV (u)−mn
, Zn


 =

(
+∞∑

n=1

∑

d∈Dn

δξn+d, Z∞

)

In the rest of the article, we write D for the law of the point process D, that we call the law
of the decoration of the branching random walk. The proof of Fact 1.1 gives few information on
this law, as identifies the limiting point process using its property of superposability. More general
results and a characterization of decorated Poisson point processes have been studied by [SZ15].

A result similar to Fact 1.1 has been obtained for the branching Brownian motion independently
by Arguin, Bovier and Kistler [ABK13], and Aïdékon, Berestycki, Brunet and Shi [ABBS13]. In this
model as well, the extremal process converges toward a decorated Poisson point process. However,
the decoration law is explicitly described in both these articles. In [ABBS13], the point process D
corresponds to the set of positions of individuals that are close relatives to the individual realizing
the minimal displacement. In [ABK13], it is described as the extremal process of the branching
random walk conditioned on having an unusually small minimal displacement.

In this article, we prove that the extremal process of the branching random walk converges
conjointly with additional genealogy information. Using this result, we are able to study the so-
called supercritical measures on the boundary of the branching random walk, which allows to prove
a conjecture of Spohn and Derrida [DS88]. In particular, we observe that these measures are purely
atomic, in a “glassy” phase. Finally, we obtain the law D as as the limit of the positions of close
relatives of the maximal displacement at time n, as in the result of [ABBS13]. We expect a result
similar to [ABK13] would also holds, i.e. the law D could be obtained as the limit in distribution
of the extremal process conditioned on having a very small minimum. Very similar result has been
recently obtained by Biskup and Louidor [BL16] for the 2 dimensional Gaussian free field.

In the next section, we use Fact 1.1 as well as simple properties of the branching random walk
to study the convergence in law of the extremal process with its genealogy. This result is used in
Section 3 to study the supercritical measures on the boundary of the branching random walk. In
Section 4, we obtain a representation of the law of the decoration of the branching random walk.

2 Convergence in law of the marked extremal process

To study the joint convergence in law of the extremal process and its genealogy, we introduce the so-
called critical measure of the branching random walk. This measure has been introduced by Derrida
and Spohn in [DS88]. Its existence is a consequence the precise study of the derivative martingale
in [AS14]. This measure has been the subject of multiple studies [BKN+14, Bur09, BDK16].
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We first introduce the Ulam-Harris notation for the branching random walk. We set

U = ∪n≥0N
n, ∂U = NN and U = U ∪ ∂U ,

with the convention N0 = {∅}. Let u ∈ U . We denote by |u| the length of u and, for k ≤ |u|, by
uk the k first values of u. Let u, v ∈ U , we write u < v if v|u| = u, |u ∧ v| = max{k ∈ N : uk = vk}
and u ∧ v = u|u∧v| = v|u∧v|.

We observe that the application Ψ : u 7→
∑|u|

j=1 2−
∑

j

i=1
u(i) is a bijection between U and [0, 1).

We use it to define a distance on U by d(u, v) = |Φ(u) − Φ(v)|, that makes it a compact metric
space.

A tree T is constructed as a subset of U such that u ∈ T with |u| = n represents the u(n)th
child of the u(n − 1)th child of the ... of the u(1)th child of the root ∅. We observe that uk is the
ancestor alive at generation k of u. Similarly, we have u < v if u is an ancestor of v. We denote by

∂T = {u ∈ ∂U : ∀n ∈ N, un ∈ T}

the boundary of the tree, i.e. the set of all infinite rays and T(n) = {u ∈ T : |u| = n} the nth
generation of the tree. We often shorten the notation for this set into {|u| = n}.

Let (T, V ) be a branching random walk that satisfies (1.1), (1.2) and (1.3). For n ∈ N, we
write Fn = σ(u, V (u), |u| ≤ n). For any u ∈ T, we set

Zu
n =

∑

|v|=n,v>u

(V (v) − V (u))eV (u)−V (v) and Zu
∞ = lim inf

n→+∞
Zu

n .

By the branching property of the branching random walk, (Zu
∞, |u| = k) are i.i.d. versions of Z∞,

that are independent of Fk. Moreover, observe that for any k ≤ n,

Zn =
∑

|u|=k

∑

|v|=n,v>u

V (v)e−V (v) =
∑

|u|=k

e−V (u)Zu
n +

∑

|u|=k

V (u)e−V (u)
∑

|v|=n,v>u

e−V (v).

Letting n → +∞, by (1.4), for any k ∈ N, we have Z∞ =
∑

|u|=k e−V (u)Zu
∞ a.s.

The critical measure of the branching random walk is the random measure ν, defined on U by

∀u ∈ U , ν
({

v ∈ U : v > u
})

= 1{u∈T}e−V (u)Zu
∞.

This measure is well-defined and unique by Caratheodory’s extension theorem. Moreover, note
that the support of ν is T a.s. In Lemma A.3, we give a short proof of the fact hat ν is a.s.
non-atomic. To simplify notation, we set B(u) =

{
v ∈ U : v > u

}
for any u ∈ U . In particular, we

have ν(B(∅)) = Z∞.
Conditionally on (T, V ), we construct (ξn, n ≥ 1) the atoms of a Poisson point process with

intensity c∗ν(B(∅))exdx, i.i.d. random variables (u(n), n ≥ 1) with distribution ν
ν(B(∅)) and i.i.d.

point processes (Dn, n ≥ 1) with law D. For any n ∈ N, we set

µn =
∑

|u|=n

δu,V (u)−mn
and µ∞ =

+∞∑

n=1

∑

d∈Dn

δu(n),ξn+d.

Note that by classical properties of Poisson point processes (ξn, u(n)) are the atoms of a Poisson
point process with intensity c∗exdx ⊗ ν.

Using this notation, we observe that Madaule’s convergence in law for the extremal process of
the branching random walk directly implies the joint convergence in law of the extremal process
and its genealogy.

Theorem 2.1. Assuming (1.1), (1.2) and (1.3), we have limn→+∞(µn, Zn) = (µ∞, Z∞) in law.

Proof. For any v ∈ T, we set µv
∞(.) =

∫
B(v) µ∞(du, .) =

∑+∞
k=1 1{u(k)>v}

∑
d∈Dk

δd+ξk
. Let k ∈ N,

observe that conditionally on Fk and (Zv
∞, |v| = k), (θ−V (v)µ

v
∞, v ∈ T(k)) are independent decorate
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Poisson point process with intensity c∗Zv
∞exdx and decoration law D. In particular, by Fact 1.1,

conditionally on Fk, we have

lim
n→+∞


 ∑

|u|=n,u>v

δV (u)−V (v)−mn
, Zv

n, v ∈ T(k)


 =

(
θ−V (v)µ

v
∞, Zv

∞, v ∈ T(k)
)

in law.

Let f be a continuous positive function with compact support, k ∈ N and A ⊂ {|v| = k}. By
the branching property, conditionally on Fk, the subtrees of the branching random walk rooted at
points v ∈ A are independent. Therefore

lim
n→+∞

(
µn(1{.∈A}f), Zn

)
= lim

n→+∞


∑

|v|=k

1{v∈A}

∑

|u|=n,u>v

f(V (u) − mn),
∑

|v|=k

e−V (v)Zv
n




=

(
∑

v∈A

µv
∞(f), Z∞

)
in law.

We conclude that limn→+∞(µn, Zn) = (µ∞, Z∞) in law using [Kal02, Theorem 14.16].

Using this result, setting µ̂x a point process with distribution θ− min µ∞
µ∞ conditionally on

min µ∞ < −x, we have limx→+∞ µ̂x = D1 in law. This result is a straightforward consequence of
[SZ15, Corollary 9]. In Section 4, we provide alternative characterizations of D.

A straightforward consequence of Theorem 2.1, is the following estimate for the extremal process
seen from the smallest position.

Corollary 2.2. Under the same assumptions as Theorem 2.1, setting e a standard exponential
random variable, ζ1 = 0 and (ζn, n ≥ 2) the atoms of a Poisson point process with intensity
eex1{x>0}dx, we have

lim
n→+∞

(Mn − mn,
∑

|u|=n

δu,V (u)−Mn
) = (log(e),

+∞∑

n=1

∑

d∈Dn

δζn+d).

3 The supercritical Gibbs measure

Theorem 2.1 can be used to obtain a simple construction of the so-called supercritical measures
on U , as obtained in [BRV12]. Let (T, V ) be a branching random walk. For any n ∈ N, β > 1 and
u ∈ T, we set

Wn,β =
∑

|v|=n

eβ(mn−V (v)) and W u
n,β =

∑

|v|=n,v>u

eβ(mn+V (u)−V (v)).

We introduce the sequence of random measures νn,β by writing

∀u ∈ U : |u| ≤ n, νβ,n(B(u)) = 1{u∈T}e−βV (u)W u
n,β .

Madaule [Mad15, Theorem 2.3] proved that limn→+∞(Wn,β , Zn) = (W∞,β , Z∞) in law, that verifies
W∞,β > 0 a.s. on {Z∞ > 0}.

We recall that (u(n)) are i.i.d. random elements of ∂U sampled with law ν
ν(B(∅)) . We denote

by (ξβ
n , n ≥ 1) the atoms of a Poisson point process with intensity cβν(B(∅))exdx, where we

write cβ = c∗ E
(∑

d∈D e−βd
)
. We introduce the random measure on ∂U defined by

νβ,∞ =
∑

n∈N

e−βξβ
nδu(n) .

We note that this random measure is purely atomic, whereas ν is a.s. non-atomic on ∂U .

Theorem 3.1. Assuming (1.1), (1.2) and (1.3), νβ,n converges in law to νβ,∞, as n → +∞.
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Proof. We observe that by Theorem 2.1, for any u ∈ T we have

lim
n→+∞

νβ,n(B(u)) =
+∞∑

k=1

1{u(k)>u}

∑

d∈Dk

e−β(ξk+d) in law.

Setting Xβ
k = 1

β

∑
d∈Dk

e−βd, we rewrite limn→+∞ νβ,n(B(u)) =
∑+∞

k=1 1{u(k)>u}e−β(ξk+Xk) in law.

Moreover, as (ξk + Xk, k ∈ N) are the atoms of a Poisson point process with intensity cβν(∅)exdx,
we conclude that for any j ∈ N, we have

lim
n→+∞

(νβ,n(B(u)), u ∈ T(j)) =

(
+∞∑

k=1

e−βξβ

k 1{u(n)>u}, u ∈ T(j)

)
in law,

= (νβ,∞(B(u)), u ∈ T(j)) ,

which concludes the proof.

This result indirectly implies a proof of the conjecture of Derrida and Spohn [DS88]: the
rescaled distribution of the position of the most recent common ancestor of two individuals chosen
independently at random according to the measure νn,β/νn,β(B(∅)) converges in law toward a
random measure on [0, 1] with no mass on (0, 1).

Theorem 3.2. For any n ∈ N and β > 1, on the survival event S = {#T = +∞}, we set

ωn,β = W −2
n,β

∑

|u|=|v|=n

eβ(2mn−V (u)−V (v))δ|u∧v|/n.

Assuming (1.1), (1.2) and (1.3), conditionally on the survival of the branching random walk,

lim
n→+∞

ωn,β = (1 − πβ)δ0 + πβδ1 in law

where πβ =
∑+∞

k=1 pk and (pk, k ≥ 1) is a Poisson-Dirichlet mass partition with parameters (β−1, 0).

Proof. We first prove that for any t ∈ (0, 1), ωn,β((t, 1]) converges in law toward πβ on S. For
k ≤ n and t ∈ [0, 1], we set

Λk
n =

∑
|u|=|v|=n e−βV (u)−βV (v)1{|u∧v|≥k}

W 2
n,β

and ∆k,t
n =

∑
|u|=|v|=n e−βV (u)−βV (v)1{|u∧v|∈[k,tn]}

W 2
n,β

.

We observe that
Λk

n − ∆k,t
n ≤ ωn,β((t, 1]) ≤ Λk

n a.s. on S. (3.1)

By Theorem 2.1, as S = {Z∞ > 0} a.s. we have

lim
n→+∞

Λk
n = Λk

∞ :=

∑
|u|=k

(∑+∞
j=1 1{u(j)>u}e−βξβ

j

)2

(∑+∞
j=1 e−βξβ

j

)2 in law.

Moreover, as ν is a non-atomic measure (see Lemma A.3), letting k → +∞ we obtain

lim
k→+∞

Λk
∞ =

∑+∞
j=1 e−2βξβ

j

(∑+∞
j=1 e−βξβ

j

)2 a.s.

Using [PY97, Proposition 10], we conclude that limk→+∞ Λk
∞ = πβ in law on S, where πβ is the

sum of the square of the masses of a Poisson-Dirichlet distribution with parameters (β−1, 0).
We now study the asymptotic behaviour of ∆k,t

n , more precisely we prove that for any δ > 0,

lim
k→+∞

lim sup
n→+∞

P
(
∆k,t

n > δ, #T = +∞
)

= 0. (3.2)
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Observe, by [Mad15, Theorem 2.3], that lim
ε→0

lim
n→+∞

P
(

n3β/2Wn,β ≤ ε, #T = +∞
)

= 0, therefore

it is enough to prove that for any ε > 0,

lim
k→+∞

lim sup
n→+∞

P


 ∑

|u|=|v|=n

1{|u∧v|∈[k,tn]}eβ(mn−V (u))+β(mn−V (v)) > δε2


 = 0. (3.3)

The proof of this result, rather technical, is postponed to Lemma A.2.
Let x ∈ [0, 1] and δ > 0, using (3.1), we have

P(Λk
n ≤ x + δ, S) + P(∆k,t

n ≥ δ, S) ≥ P (ωn,β((t, 1]) ≤ x, S) ≥ P
(
Λk

n ≤ x, S
)

.

Thus, letting n then k grows to +∞ and using (3.2), for any t ∈ (0, 1), ωn,β((t, 1]) converges in
law toward πβ on S, which concludes the proof.

Remark 3.3. With similar computations, we can obtain a “local limit” convergence for the ge-
nealogy of two individuals sampled according to the Gibbs measure. In effect, if we consider the
non-rescaled measure

λn,β = W −2
n,β

∑

|u|=|v|=n

eβ(2mn−V (u)−V (v))δ|u∧v|,

we obtain limn→+∞ λn,β = λ∞,β in law on S, where (pk) is a Poisson-Dirichlet distribution with
parameters (β−1, 0) and λ∞,β =

∑+∞
k,k′=1 pkpk′δ|u(k)∧u(k′)|. Note that λ∞,β({+∞}) = πβ .

Chauvin and Rouault [CR97] studied similarly the overlap of subcritical measures, such that
β < 1. They proved that in this case, the measure ωn,β converges toward δ0, and the measure λn,β

converges toward a proper probability measure on N.

4 The decoration as the close relatives of maximal displace-

ment

In this section, we prove that the law D is the limiting distribution of the relative positions of the
family of the individual that realizes the minimal displacement at time n. This result is similar to
the one obtained in [ABBS13] for branching Brownian motion. For any n ∈ N, we denote by ûn

an individual alive at time n such that V (u) = Mn, for example the one which is the smallest for
the lexicographical order on U .

Theorem 4.1. For any n ∈ N and k < n, we set ̺n,k =
∑

|u|=n 1{|u∧ûn|≥k}δV (u)−Mn
. Under the

assumptions of Theorem 2.1, we have

lim
k→+∞

lim
n→+∞

̺n,k = lim
k→+∞

l̃im
n→+∞

̺n,n−k = D1 in law,

where l̃im
n→+∞

̺n,n−k represents any accumulation point for the sequence (̺n,n−k).

Observe that by Corollary 2.2, the sequence (̺n,k, n ≥ 1, k ≤ n) is tensed. In effect, for any con-
tinuous positive function f , we have ̺n,k(f) ≤ ̺n,0(f) =

∑
|u|=n f(V (u) − Mn). A straightforward

consequence of Theorem 4.1 is the following, more intuitive convergence.

Corollary 4.2. Let (kn) be such that limn→+∞ kn = limn→+∞ n − kn = +∞. Under the assump-
tions of Theorem 2.1, limn→+∞ ̺n,kn

= D1 in law.

Proof. We observe that for any i ≤ j ≤ k, and any continuous positive function f , we have
̺n,i(f) ≥ ̺n,j(f) ≥ ̺n,k(f). Consequently, for any k ∈ N, for all n ≥ 1 large enough, we have
̺n,k(f) ≥ ̺n,kn

(f) ≥ ̺n,n−k(f). Applying Theorem 4.1, we have

lim
k→+∞

lim sup
n→+∞

P(̺n,kn
(f) − ̺n,k(f) > ε) = 0 for any ε > 0,

which concludes the proof.
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The first limit in distribution for Theorem 4.1 is a straightforward consequence of Fact 1.1.

Lemma 4.3. We have lim
k→+∞

lim
n→+∞

̺n,k = D in law.

Proof. Using Fact 1.1, we observe that for any k ∈ N, conditionally on Fk,

lim
n→+∞




∑

|v|=n,v>u

δV (v)−mn
, Zu

n , u ∈ T(k)


 = (µu

∞, Zu
∞, u ∈ T(k)) in law.

Therefore, setting Mu
n = min|v|=n,v>u V (v), we have in particular

lim
n→+∞

∑

|u|=k

1{Mu
n =Mn}

∑

|v|=n,v>u

δV (v)−mn
=
∑

|u|=k

1{u(1)>u}µu
∞ in law.

Observe that
∑

|u|=k 1{u(1)>u}µu
∞ =

∑+∞
n=1

∑
d∈Dn

1{
u

(n)

k
=u

(1)

k

}δξn+d.

Let f be a continuous positive function with compact support, we prove that

lim
k→+∞

+∞∑

n=2

∑

d∈Dn

1{
u

(n)

k
=u

(1)

k

}f(ξn + d) = 0 in probability.

In effect, for any k ∈ N, we have

E

(
+∞∑

n=2

∑

d∈Dn

f(ξn + d)1{
u

(n)

k
=u

(1)

k

}
∣∣∣∣∣Fk

)
=
∑

|u|=k

ν(u)
ν(∅)

+∞∑

n=2

P(u(n)
k = u|Fk)E(g(ξn)),

where g : x 7→ E
(∑

d∈D f(x + d)
)
. Therefore,

E

(
+∞∑

n=2

∑

d∈Dn

f(ξn + d)1{
u

(n)

k
=u

(1)

k

}
∣∣∣∣∣Fk

)
=

(∑
|u|=k ν(u)2

ν(∅)2

)
+∞∑

n=2

E(g(ξn)).

As limk→+∞ max|u|=k ν(u) = 0 a.s. (see Lemma A.3), we conclude that

lim
k→+∞

+∞∑

n=2

∑

d∈Dn

f(ξn + d)1{
u

(n)

k
=u

(1)

k

} = 0 in probability.

This result yields that limk→+∞
∑

|u|=k 1{u(1)>u}µu
∞(f) = τξ1 D(f) in law. We conclude the proof

observing that we chose the law of the decoration such that max D = 0 a.s.

To complete the proof of Theorem 4.1, we first observe that the genealogy of individuals close
to the maximal displacement at time n in the branching random walk are either close relatives, or
their most recent common ancestor is a close relative to the root. This well-known estimate can
be found for example in [Mal16, Theorem 4.5]. For any z ≥ 1, we have

lim
k→+∞

lim sup
n→+∞

P (∃u, v ∈ T(n) : V (u), V (v) ≤ mn + z, |u ∧ v| ∈ [k, n − k]) = 0. (4.1)

Lemma 4.4. For any k ∈ N, we set (nk
p, p ≥ 1) an increasing sequence such that (̺nk

p ,nk
p−k)

converges. We have
lim

k→+∞
lim

p→+∞
̺nk

p,nk
p−k = D in law.

Proof. For any positive continuous function f with compact support and k ∈ N, we have

̺n,k(f) − ̺n,n−k(f) =
∑

|u|=n

1{|u∧ûn|∈[k,n−k]}f(V (u) − Mn).
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We write z = sup{x ≥ 0 : f(x) > 0}, for any y ≥ 0, we have

P (̺n,k(f) − ̺n,n−k(f) > 0) ≤ P (∃u ∈ T(n) : |u ∧ ûn| ∈ [k, n − k], V (u) − Mn ≤ z)

≤ P(Mn − mn ≥ y) + P (∃u, v ∈ T(n) : |u ∧ v| ∈ [k, n − k], V (u), V (v) ≤ mn + y + z) .

Letting n then k → +∞, we have by (4.1),

lim sup
k→+∞

lim sup
n→+∞

P (̺n,k(f) − ̺n,n−k(f) > 0) ≤ sup
n∈N

P(Mn ≥ mn + y).

Moreover, (Mn − mn) is tensed, by [Aïd13], thus letting y → +∞, we conclude that

lim
k→+∞

lim sup
n→+∞

P (̺n,k(f) − ̺n,n−k(f) > 0) = 0.

Using Lemma 4.3, we conclude the proof.

We were not able to study the limiting distribution of ̺n,n−k, but this law probably exists.

Conjecture 4.5. For any k ∈ N, there exists a point process ̺k such that limn→+∞ ̺n,n−k = ̺k.

A Some technical results

In this section, we provide some technical estimates on the branching random walks. We first prove
that (1.3) is equivalent to the usual integrability conditions for the branching random walk.

Lemma A.1. Under assumptions (1.1) and (1.2), the condition (1.3) is equivalent to

E



∑

|u|=n

e−V (u) log+



∑

|u|=n

e−V (u)




2

 < +∞

E



∑

|u|=n

V (u)+e−V (u) log+



∑

|u|=n

V (u)+e−V (u)




 < +∞

Proof. The reciprocal part is a direct consequence of [Aïd13, Lemma B.1]. To prove the direct
part, we first observe that by (1.3),

E



∑

|u|=n

e−V (u) log+



∑

|u|=n

e−V (u)




2



≤ E



∑

|u|=n

e−V (u) log+



∑

|u|=n

(1 + V (u)+)e−V (u)




2

 < +∞.

We now use the celebrated spinal decomposition of the branching random walk, introduced
by Lyons [Lyo97]. Loosely speaking, it is an alternative description of the law of the branching
random walk biased by the martingale (Wn), as the law of a branching random walk (T, V )
with a distinguished spine w ∈ ∂T that makes more children than usual. For any u ∈ T, we
write ξ(u) = log+

(∑
v∈Ω(πu)

∑
|u|=1 V (u)+e−V (u)

)
. We denote by P̂ = Wn.P the size-biased

distribution, and refer to [Lyo97] for more details on the spinal decomposition. We have

E



∑

|u|=n

V (u)+e−V (u) log+



∑

|u|=n

V (u)+e−V (u)




 = Ê (ξ(w1)V (w1)+)

≤ Ê
(
V (w1)2

)1/2
Ê
(
ξ(w1)2

)1/2
< +∞,

by Cauchy-Schwarz inequality, using (1.2) and (1.3) to conclude.
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We now prove that (3.3) holds.

Lemma A.2. For any β > 1 and k ≤ n, we set

Rβ
n,k =

∑

|u|=|v|=n

1{|u∧v|∈[k,n−k]}eβ(mn−V (u))+β(mn−V (v)).

For any ε > 0, we have lim
k→+∞

lim sup
n→+∞

P
(

Rβ
n,k ≥ ε

)
= 0.

Proof. To prove this result, we first introduce some notation. For any u ∈ T, we set

ξ(u) = log
∑

|v|=|u|+1,v>u

(1 + (V (v) − V (u))+)eV (u)−V (v).

For any n ∈ N and k ≤ n, we write fn(k) = 3
2 log n+1

n−k+1 and, for y, z, h ≥ 0,

An(y) = {|u| ≤ n : V (uj) ≥ fn(j) − y, j ≤ |u|} ,

An(y, h) = {|u| = n : u ∈ An(y), V (u) − fn(n) + y ∈ [h − 1, h]}

Bn(y, z) = {|u| ≤ n : ξ(uj) ≤ z + (V (uj) − fn(j) + y)/2, j ≤ |u|} .

We introduce branching random walk estimates obtained in [Mal16]. There exists C > 0 and a
function χ such that limz→+∞ χ(z) = 0 such that for any k ≤ n and y, z, h ≥ 1 we have

P (An(y) 6= ∅) ≤ Cye−y, P
(
An(y, h) ∩ Bc

n(y, z) 6= ∅
)

≤ χ(z)yheh−y, E
(
#An(y, h)

)
≤ Cyheh−y

and P
(
∃u, v ∈ An(y, h) ∩ Bn(y, z) : |u ∧ v| ∈ [k, n − k]

)
≤ C

zyh2e2h−y

k1/2
. (A.1)

In the rest of this proof, C is a large positive constant, that depends only on the law of the
branching random walk, and may change from line to line.

We decompose Rβ
n,k into three parts, that we bound separately. For any h ≥ 0, we have

Rβ
n,k ≤ R̃β

n,k(h) + 2Wn,β(h)Wn,β ,

where we denote by R̃β
n,k(y, h) =

∑
|u|=|v|=n 1{|u∧v|∈[k,n−k]}1{V (u)−mn≤h}eβ(mn−V (u))+β(mn−V (v)),

and by Wn,β(h) =
∑

|u|=n 1{V (u)−mn≥h}eβ(mn−V (u)).
By (A.1), for any y, h ≥ 0, we have

E


∑

|u|=n

1{u∈An(y),V (u)≥mn+h}eβ(mn−V (u))


 =

+∞∑

j=h+1

e−β(j−1) E
(
#An(y, j + y)

)

≤ Cye−y
+∞∑

j=h+1

(j + y)e(1−β)j ≤ Cy(h + y)e(1−β)h.

With similar computations, we have E
(∑

|u|=n 1{u∈An(y)}eβ(mn−V (u))
)

≤ Cye(β−1)y. Using the
Markov inequality, there exists C > 0 such that for any ε ≥ 0 and y, h ≥ 0, we have

P (Wn,β(h) ≥ ε) ≤ P (An(y) 6= ∅) + Cy(h + y)e(1−β)h/ε ≤ Cye−y + Cy(h + y)e(1−β)h/ε,

and similarly for any A > 0, P(Wn,β ≥ A) ≤ Cye−y + Cy2e(β−1)y/A. Thus, for any δ > 0, we have

P (Wn,β(h)Wn,β ≥ δ) ≤ P(Wn,β(h) ≥ δε) + P(Wn,β ≥ 1/ε)

≤ Cye−y + Cy(h + y)e(1−β)h/(δε) + Cεye(β−1)y.

Choosing y ≥ 1 large enough, then ε > 0 small enough and h large enough, we obtain

sup
n∈N

P (Wn,β(h)Wn,β ≥ 2δ) ≤ δ.
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In a second time,we bound R̃β
n,k, by observing that for any y, z ≥ 0,

P(R̃β
n,k(h) 6= 0) ≤ P(An(y) 6= ∅) +

h+y∑

j=0

P
(
An(y, j) ∩ Bc

n(y, z) 6= ∅
)

+
h+y∑

j=0

P
(
∃u, v ∈ An(y, j) ∩ Bn(y, z) : |u ∧ v| ∈ [k, n − k]

)

≤Cye−y + χ(z)y(h + y)eh + C
zy(y + h)2e2h+y

k1/2
,

using again (A.1).
As a consequence, for any δ > 0, we can choose y ≥ 1, ε > 0, and h ≥ 0 large enough such that

for any k, z ≥ 0 and n ≥ k, we have

P
(

Rβ
n,k ≥ δ

)
≤ δ + χ(z)y(h + y)eh + C

zy(y + h)2e2h+y

k1/2
.

Setting z = k1/4, we conclude that lim supk→+∞ lim supn→+∞ P
(

Rβ
n,k ≥ δ

)
≤ δ, which concludes

the proof.

Finally, we prove that the measure ν is a.s. non-atomic.

Lemma A.3. Under assumptions (1.1), (1.2) and (1.3), we have

lim
n→+∞

max
|u|=n

ν(B(u)) = 0 a.s.

Proof. We first prove that Z∞ has finite mean. We introduce the renewal function of the spine of
the branching random walk, defined by

R : x 7→ 1{x≥0} E

(
∑

u∈T

e−V (u)1{V (u)≥−x}1{V (uj)<0,1≤j<|u|}

)
.

It is well-known (see e.g. [Fel71, Chapter XII]) that there exists c1 > 0 such that c1(1 + x) ≤ R(x)
for all x ≥ 0. In particular, we have

∀n ≥ 0, c1Zn ≤
∑

|u|=n

R(V (u))e−V (u) =: Dn a.s.

Moreover, we observe that for a branching random walk satisfying (1.1), the process (Dn) is a
non-negative martingale. By [Aïd13, BK04], we have limn→+∞ Dn = D∞ a.s. and in L1 under
assumptions (1.2) and (1.3). As 0 ≤ Z∞ ≤ D∞

c1
a.s., this yields E(Z∞) < +∞.

We now observe that for any ε > 0 and n, p ∈ N, using the Markov inequality we have

P

(
max
|u|=n

ν(B(u)) ≥ ε

∣∣∣∣Fn

)
≤
∑

|u|=n

P
(

e−V (u)Zu
∞ ≥ ε

∣∣∣Fn

)
≤

E(Z∞)
ε

∑

|u|=n

e−V (u) a.s.

This yields limn→+∞ P
(
max|u|=n ν(B(u)) ≥ ε

∣∣Fn

)
= 0 a.s. As max|u|=n ν(B(u)) is decreasing

in n, we conclude that limn→+∞ max|u|=n B(u) = 0 a.s.

Acknowledgements. I thank Thomas Madaule and Julien Barral for many useful discussions,
as well as pointing me references [SZ15] and [BKN+14] respectively.
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