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NORMALIZATION IN BANACH SCALE LIE ALGEBRAS VIA MOULD

CALCULUS AND APPLICATIONS

THIERRY PAUL AND DAVID SAUZIN

Abstract. We establish perturbative solutions for problems involving resonances of the unper-

turbed situation, and therefore the necessity of a normal form, in the general framework of Banach

scale Lie algebras defined below. This situation covers the case of classical and quantum normal

forms in a unified way which allows a direct comparison. In particular we prove a precise estimate

for the difference between quantum and classical normal forms, proven to be of order of the square

of the Planck constant. Our method uses heavily mould calculus and in particular a universal

mould equation studied in [PS16]
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1. Introduction

Perturbation theory is a fascinating subject which appears to have been fundamental for the

birth of dynamical systems through Poincaré and quantum mechanics in the Göttingen school.

It is also of fundamental importance for the large computation in physics and chemistry, leading

to a panel of different algorithms for computing perturbation series. Each such a method (e.g.

generating functions for dynamical systems, functional analysis (expansion of the Neumann series)

in quantum mechanics) is very well adapted to emblematic situations (small divisors and KAM

theory in classical dynamics, Kato method and existence of dynamics in quantum mechanics),

but each methodology seems to be strictly tied to the different underlying paradigms.

In the present article we will present in a unified way new results concerning the use of mould

theory for (classical) Birkhoff normal forms (namely in presence of Hamiltonian resonances) and

for quantum perturbation theory, this last topics having never met, to our knowledge, mould

calculus.

As a by-product we also obtain a precise estimate of the difference between quantum normal

forms and the classical ones corresponding to the underlying classical situation, Theorem D. Note

that this estimate is of order of the square of the Planck constant and involve only the size of the

perturbation.

Mould calculus has been introduced and was developed by Jean Écalle ([Eca81], [Eca93]) in

the 80-90’s in order to give powerful tools for handling problems in local dynamics, typically the

normalization of vector fields or diffeomorphisms at a fixed point.

Beside the two topics already mentioned (classical and quantum normal forms), the large

difference of paradigm between them has led us to formulate mould calculus in a kind of abstract

operational setting able to include both classical and quantum dynamics, and probably many

other situations.

This formulation leads to mould resolutions of general perturbation problems, that is problems

where a perturbation is added to a bare problem already explicitly solved.
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To put it in a nutshell, one of the key ideas of mould calculus can be phrased by saying

that mould expansions are done on non-universal – namely related to the perturbation involved

in the problem to be solved – objects (comould), with universal – namely dependent only on

the unperturbed, solved problem – coefficients (mould). This is quite unfamiliar for people using

standard perturbative tools (e.g. Taylor expansions) where universality is more placed on “active”

objects. This might explain the poor penetration of the beautiful theory of moulds in other fields

than local dynamics.

Thus, in the present article, we want to consider a general formalism that would include the

following cases:

 the construction of the Birkhoff form for perturbations of integrable Hamiltonian systems

hpI, ϕq � h0pIq � V pI, ϕq, I P Rd, ϕ P Td,
 the unitary conjugation to a quantum Birkhoff form B � BpH1, . . . ,Hdq for perturbations

of quantum “bare” operators H � H1�� � ��Hd, rHk, H`s � 0 (e.g. Hk � �1
2 h̄

2B2
xk
� 1

2ω
2
kx

2
k

on L2pR, dxkq or Hk � �ih̄ωkBxk on L2pT, dxkq).

Let us notice that the following two situations have been already considered via mould theory in

our companion article [PS16]:

 the formal linearization, or at least the formal normalization, of a vector field X �
N°
i�1

ωiziBzi �B (where B represents higher order terms) in Crrz1, . . . , zN ss,

 the formal symplectic conjugation to a normal form of Hamiltonians hpz, z̄q �
d°
i�1

1
2ωipx2

i �
y2
i q � V px, yq near the origin.

Though these four situations are quite different and belong to different paradigms, we would

like to emphasize that mould theory can provide a general formulation handling all of them.

Let us present this general framework. It consists of

 a Lie algebra L, filtered or a Banach scale Lie algebra defined in Section 2 (the case of a

filtered algebra has been treated in [PS16]),

 assumptions on L insuring the existence of an exponential map defined on L,

 an element B of L,
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 elements Y, Z of L to be determined so that

rX0, Zs � 0 and eadY pX0 �Bq � X0 � Z, (1.1)

for an “unperturbed” X0 P L.

Let us present now briefly mould calculus.

Mould theory relies drastically on the notion of homogeneity, more precisely on the decompo-

sition of the perturbation into homogeneous pieces. In the general setting we suppose that the

starting point is an element X of a Lie algebra of the form

X � X0 �B

where B is a “perturbation” of X0, for which everything is supposed fully known.

The problem to solve consists in finding a Lie algebra automorphism Θ such that, at any

approximation of size any power of ‖B‖ for a certain norm ‖�‖,

ΘX � ΘpX0 �Bq � X0 � Z (1.2)

where Z is a normal form, namely a 0�homogeneous element is a sense we will explain now.

We define an alphabet Λ � C of letters λ through the decomposition

B �
¸
λPΛ

Bλ

where Bλ satisfies

rX0, Bλs � λBλ. (1.3)

An operator satisfying (1.3) is called λ�homogeneous and 0�homogeneous operators are called

resonant.

To the alphabet Λ we can associate the set of words

Λ ��� tλ � λ1λ2 � � �λr | r P N, λi P Λ u. (1.4)

If λ � λ1 . . . λr, then we use the notation rpλq ��� r, with the convention r � 0 for the empty word

λ � I.

We can now define the Lie comould as the mapping

Br  s : λ P Λ ÞÑ Brλ s ��� rBλr , rBλr�1 , . . . rBλ2 , Bλ1s . . .ss P L (1.5)

with the convention BrIs � 0 and we call mould any mapping

M : λ P Λ PÞÑMλ �Mλ1���λr P C (1.6)
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(in this article we use only complex-valued moulds, but [PS16] considers more generally k-valued

moulds, where k is the field of scalars of L, an arbitrary field of characteristic zero). To a

mould M, we associate an element of L defined by

MBr  s ���
¸
λPΛ

1

rpλqM
λBrλ s. (1.7)

Returning ot our problem of solving equation (1.2), the key idea will be to process a “mould

ansatz”, that is looking to a solution of (1.2) of the form

Z � F Br  s, Θ �
¸
λPΛ

Sλ adBλr � � � adBλ1
, (1.8)

with two moulds F  and S to be determined.

We will show that (1.2) is satisfied through (1.8) as soon as S and F  are solution of the

universal mould equation

∇S � I � S � S � F , (1.9)

universal because in (1.9) the perturbation B does not show up.

In (1.9) one has$''''&
''''%

∇M : λ ÞÑ ΣpλqMλ where Σpλq :�
r°
i�1

λi

M �N : λ ÞÑ °
λ�a b

MaN b

Iλ1...λr � δ1r, therefore I �M : λ ÞÑM ‘λ, with ‘λ1 . . . λr :� λ2 . . . λr.

(1.10)

Constructing solutions of (1.9) process in a way familiar to any perturbative setting: first we

note that, precisely because B is perturbation of X0, Θ must be close to the identity and Z to

zero. This entails that SI � 1 and FI � 0 from which it follows that S � F  � F  � S �1 F 

where M �1 N : λ ÞÑ °
λ�a b

rpaq,rpbq rpλq

MaN b. Moreover willing Z to be 0-homogeneous is fulfilled

by imposing F  to be resonant, i.e. that ∇F  � 0. Putting all these properties together leads to

the fact that F  and the non-resonant part of S can be determined by induction on the length

of letters. What is not determined because it disappears from the equation is the resonant part

of S, since it is “killed” by ∇.

We showed in [PS16] that this ambiguity is removed – leading to uniqueness of the solution –

by fixing a gauge generator, namely an arbitrary mould A, resonant and alternal. More precisely,

for any gauge A, (1.9) has a unique solution pS, F q. Moreover it happens that S � eG


(where
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e has to be understood as the exponential in the algebra of moulds, that is eG
 �

8°
k�0

G�k

k! where

� is defined in (1.10)) and G and F  are alternal, a notion we define now.

The notion of alternality has to do with the notion of shuffling of two words a and b which is

the set of words λ obtained by interdigitating the letters of a and those of b while preserving their

internal order in a or b. The number of different ways a word λ can be obtained out of a and b

is denoted by sh
� a, b
λ

�
. Saying that F  is alternal is nothing but saying that for all non-empty

words a, b,
°
λPΛ

sh
� a, b
λ

�
F λ � 0.

To be more precise, in [PS16] was proven the following “existence-uniqueness” result for the

mould equation. Let us define an operator ∇1 : M ÞÑ ∇1M
 by the formula

∇1M
 : λ P Λ ÞÑ rpλqMλ (1.11)

for an arbitrary mould M (recall that rpλq denotes the length of λ), and denote by M
0 the

resonant part of the mould, defined by M
λ
0
��� 1tΣpλq�0uM

λ for all λ P Λ (where Σpλq is by

defined in (1.10)).

Proposition 1.1. Let k be a field of characteristic zero and Λ a subset of k. For any resonant

alternal mould A, there exists a unique pair pF , Gq of alternal moulds such that

∇F  � 0, ∇
�
eG

� � I � eG
 � eG

 � F , (1.12)�
e�G

 �∇1eG

�

0
� A. (1.13)

The proof of Proposition 1.1 is constructive in the sense that we will obtain the following simple

algorithm to compute the values of F  and S ��� eG


on any word λ by induction on its length

rpλq: introducing an auxiliary alternal mould N, one must take SI � 1, FI � NI � 0 and, for

rpλq ¥ 1,

Σpλq � 0 ñ F λ � 0, Sλ � 1

Σpλq
�
S‘λ �

¸�

λ�a b

Sa F b
	
, Nλ � rpλqSλ �

¸�

λ�a b

SaN b,

(1.14)

Σpλq � 0 ñ F λ � S‘λ �
¸�

λ�a b

Sa F b, Sλ � 1

rpλq
�
Aλ �

¸�

λ�a b

SaN b
	
, Nλ � Aλ, (1.15)

where we have used the notation ‘λ ��� λ2 � � �λr for λ � λ1λ2 � � �λr and the symbol
¸�

indicates

summation over non-trivial decompositions (i.e. a, b � I in the above sums); the mould F  thus



7

inductively defined is alternal and

GI � 0, Gλ �
rpλq̧

k�1

p�1qk�1

k

¸�

λ�a1���ak

Sa
1 � � �Sak for λ � I (1.16)

then defines the alternal mould G which solves (1.12)–(1.13).

Finally we prove in [PS16], Propositions 3.8 and 3.9, the following result, crucial for the link

between the mould equation and the original problem (1.2).

Proposition 1.2. If M and N are two alternal moulds, then

rM, NsBr  s � rNBr  s,M
Br  ss,

where rM, Ns ���M �N �N �M, and

e
adMBr  s

�
NBr  s

� � �
e�M

 �N � eM

	
Br  s.

Moreover,

rX0,M
Br  ss � p∇MqBr  s, e

adMBr  sX0 � X0 �
�

e�M
 �∇peMq

	
Br  s.

This result shows that (1.2) is solved by Z � F Br  s and Θ � eadY with Y � GBr  s, where F 

and G solve (1.12) (see [PS16] for the details).

The goal of the present article is twofold: first we want to show how we can solve perturbatively

the normal form problem (1.1) in the general setting of an X0-extended Banach scale Lie algebra –

Theorem A – and second we want to show applications to the aforementioned dynamical problems

– Theorems B and C. As a by-product we give also a quantitative estimate concerning the

difference between classical and quantum normal forms – Theorem D.

The different situations in dynamics which can be realized as an X0-extended Banach scale Lie

algebra are displayed in the next table.
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Banach scale

Lie algebra

Banach spaces

pincluded inq
Element to be

normalized

Normalizing

transformation

near-integrable

Hamiltonians

Cωρ ppTn � Rn�qq �
bounded functions

analytic in the strip

|=z|   ρ

r�, �s � Poisson bracket

Hamiltonian

H � H0 � V

H0 �
°
ωiIi

V � °
Vλ,

λ � i k � ω, k P Zn

eadHam
χ H � H � Φ

Φ � formal

symplectomorphism,

flow of the v.f.

adHam
χ � tχ, �u

quantum

perturbation

theory

tpseudodifferential

operators

of Weyl symbols

in Cωρ |Tn�Rn�u
r� , �sQ � commutator

ih̄

Hamiltonian

H � H0 � V

H0 �
°
En|ϕnyxϕn|

V � °
Vλ,

λ � Em � En

eadQχH � UHU�1

U � eiχ

unitary operator

quantum

perturbation

theory

h̄Ñ 0

tpseudodifferential

operators

of Weyl symbols

in Cωρ |Tn�Rn�u
r� , �sQ � commutator

ih̄ ,

h̄Ñ 0

Hamiltonian

H � H0 � V

H0 �°
i
p�h̄2B2

xi � ω2
i x

2
i q,

V � °
Vλ,

λ � k � ω, k P Zn

eadQχH � UHU�1

U � eiχ

unitary operator

� quantization of Φ

The paper is organized as follows. The first part is devoted to the result valid in any X0-

extended Banach scale Lie algebra whose definition is given in Section 2 and in Section 3 we state

the general result of the article, proven in Section 4. The second part is devoted to applying

the main result to classical dynamical situations, Section 5, the quantum ones, Section 6, and

semiclassical approximation, Section 7. Appendix A gives the minimal setting in semiclassical

analysis necessary to the present paper.

Let us finally mention that the present article is self-contained (it uses only Theorem B of

[PS16], rephrased in Proposition 1.1 of the present article) and all the constants are explicit.
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Normalization in X0-extended Banach scale Lie algebras

2. X0-extended Banach scale Lie algebras

Let
�
L, r� , �s� be a Lie algebra over k � R or C. We say that we have an “X0-extended Banach

scale Lie algebra ” if:

(1) L contains a family pBρ, ‖ � ‖ρqρPR�� of Banach spaces over k such that

0   ρ1   ρ ñ Bρ � Bρ1 , with ‖X‖ρ1 ¤ ‖X‖ρ for all X P Bρ,

(2) there exists a constant γ ¡ 0 such that

0   ρ1   ρ2 ¤ ρ, X P Bρ, Y P Bρ2 ñ ‖rX,Y s‖ρ1 ¤ γ

e2pρ� ρ1qpρ2 � ρ1q‖X‖ρ‖Y ‖ρ2 ,

(3) L contains an element X0 (which does not necessary belong to any of the Bρ’s) and there

exists a function χ : R�
� Ñ R�

� such that

0   ρ1   ρ ñ ‖rX0, Y s‖ρ1 ¤ 1

χpρ� ρ1q‖Y ‖ρ for all Y P Bρ.

Let us denote the adjoint representation of L by ad, i.e. for each Y P L, adY is the Lie algebra

derivation defined by adY X � rY,Xs for all X P L. One can check (see Corollary 4.5) that,

for an X0-extended Banach scale Lie algebra as above, if Y P Bρ satisfies ‖Y ‖ρ   ρ2{γ, then

eadY ���
°
k¥0

1
k!padY qk is a well-defined linear map

eadY : Bρ Ñ Bρ1 for each ρ1 such that 0   ρ1   ρ�a
γ‖Y ‖ρ

and

eadY rX1, X2s �
�
eadYX1, e

adYX2

�
for all X1, X2 P Bρ.

Moreover, eadYX0 ���
°
k¥0

1
k!padY qkX0 too is well-defined and eadYX0 � X0 P Bρ1 for each ρ1 as

above.

3. The general result

Notation 3.1. Let Λ be a nonempty subset of k. For a word λ � λ1 � � �λr P Λ of length r ¥ 1

and a subset σ of t1, . . . , ru, we set

λσ ���
¸
`Pσ

λ`. (3.1)
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For τ P R�, we define a function βτ : Λ Ñ R� by the formula

βτ pλq ���
¸

σ�t1,...,rpλqu
such that λσ�0

1

|λσ|1{τ
. (3.2)

Theorem A. Let L be an X0-extended Banach scale Lie algebra and let ρ ¡ 0 and B P Bρ.
Suppose that there exist a subset Λ of k and a decomposition

B �
¸
λPΛ

Bλ with Bλ P Bρ such that (3.3)

(i) rX0, Bλs � λBλ

(ii) for all r P N�, there exist ηr ¡ 0 and τr ¥ 1, such that¸
λ�λ1,...,λrPΛ

‖Bλ1‖ρ . . . ‖Bλr‖ρeηrβτr pλq :� εr   8. (3.4)

Then, for all N P N�and 0   ρ1   ρ, there exists ε� � ε�pN, ρ1q and D � DpN, ρ1q, expressed by

(4.19)-(4.20) below, such that, if F λ1,...,λr , Gλ1,...,λr , λ1, . . . , λr P Λ, are the coefficients satisfying

(1.12)-(1.13) with A � 0 and given recursively by (1.14)–(1.16),

(a) the two following expansions converge in Bρ1,

Ņ

r�1

¸
λ1,...,λrPΛ

1

r
F λ1,...,λr rBλr , r. . . rBλ2 , Bλ1s . . .ss ��� RN P Bρ1 ,

Ņ

r�1

¸
λ1,...,λrPΛ

1

r
Gλ1,...,λr rBλr , r. . . rBλ2 , Bλ1s . . .ss ���WN P Bρ1

(b) for ε1 � � � � � εN   ε�,

$''&
''%

eadWN

�
X0 �B

	
� X0 �RN � ZN ,

rX0, RN s � 0,

‖ZN‖ρ1 ¤ Dppε1 � � � � � εN qN�1 � εN�1 � . . . εN2q
(3.5)

(see (4.18) for a more precise result).

Remark 3.2. If in Theorem A we take B � Bpεq depending on a perturbation parameter ε

so that ‖Bλpεq‖ρ ¤ Cλ|ε| for each λ P Λ, with non-negative constants Cλ, then condition (3.4)

factorises and εr � Opεrq. In this case, the final estimates reduces to ‖EN‖ρ1 � OpεN�1q.
Moreover ε1 � � � � � εN and εN�1 � � � � � εN2 can be replaced obviously by NpN�1q

2 sup
r�1...N

εr and

NpN3�1q
2 sup

r�N�1...N2

εr respectively in (3.4).
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Remark 3.3. Below, in Sections 5 and 6, we will take Λ of the form Λ � t i k � ω | k P Zd u for

a given ω P Rd. We shall see that, if there exist α ¡ 0 and τ ¥ 1 such that the Diophantine

condition

@k P Zd, k � ω � 0 or |k � ω| ¥ α|k|�τ (3.6)

holds, then one can find X0-extended Banach scale Lie algebras such that any B P Bρ has a

decomposition satisfying (3.4) provided τr � τ and ηr ¤ ρα1{τ

2r�1 . Moreover, εr � Op‖B‖rρq and

‖EN‖ρ1 � Op‖B‖N�1
ρ q in (3.5) in this case.

Remark 3.4. There are alphabets for which there exists C ¡ 0 such that, for each λ P Λ and

σ � t1, . . . , rpλqu, either λσ � 0 or |λσ| ¥ C. Then, condition (3.4) reduces to ‖Bλ‖ρ   8 and

entails εr � Op‖B‖rρq and ‖EN‖ρ1 � Op‖B‖rρq. This is the case for example in Remark 3.3 in

dimension one, or when ω is totally resonant.

4. Proof of Theorem A

4.1. More about the mould equation. We start by proving the following results concerning

the solution of the mould equation (1.9) as expressed in Proposition 1.1.

Lemma 4.1. Let us fix A � 0 in Theorem 1.1. Then, for the solution of the mould equation,

F λ1���λr (resp. Gλ1���λr) is a linear combination of inverses of homogeneous monomials of order

r � 1 (resp. r) in the variables tλi, λi1 � λi2 , . . . , λi1 � λi2 � � � � � λir | λi, . . . , λir P Λu.
More precisely, setting Λr ��� tλ1 � � � � �λk | 1 ¤ k ¤ r, λ1, . . . , λk P Λ u and making use of the

notation (3.1),

λ � λ1 . . . λr ñ F λ �
¸

tσjuj�1...r�1

σj�t1,...,ru

Crpλσ1
, . . . , λσr�1

q
r�1±
j�1

λσj

, (4.1)

λ � λ1 . . . λr ñ Gλ �
¸

tσjuj�1...r

σj�t1,...,ru

Drpλσ1
, . . . , λσrq
r±
j�1

λσj

, (4.2)

where Cr : pΛrqr�1 Ñ Q and Dr : pΛrqr Ñ Q are piecewise constant (with finite number of values)

symmetric functions such that

Crpz1, . . . , zr�1q � 0 when
r�1¹
j�1

zj � 0, Drpz1, . . . , zrq � 0 when
r¹
j�1

zj � 0.

Note that the sum in (4.1) (resp. (4.2)) contains
�

2r

r�1

�
(resp.

�
2r

r

�
) terms.
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Proof. The fact of having evaluations of F , G in the form of sums of inverse of monomials in

the variables mentioned in the statement of Lemma 4.1 is a property obviously stable by mould

multiplication. Therefore it is enough to prove it for S in order to get it satisfied for G. It is

easily shown to be true by induction using (1.14) and (1.15) and the fact, easy to prove, that

(once again we take A � 0)

F 0 � 1, S0 � N0 � 0 and F λ � 0, Sλ � Nλ � 1

λ
, for λ � 0.

The homogeneity property follows also easily from the induction generated by (1.14) and (1.15)1.

Finally we get the fact that the functions Cr and Dr are piecewise constant with a finite number

of values from the fact that the dichotomy which governs the use, for each λ, of one of the two

equations (1.14), (1.15) selects for each value of r a finite number of domains of Cr, the resonance

condition being linear. �

Since the functions Cr and Dr take only a finite number of values we can define

Fr � sup
z1,...,zr�1PΛr

|Crpz1, . . . , zr�1q|, Gr � sup
z1,...,zrPΛr

|Drpz1, . . . , zrq|.

Corollary 4.2. Making use of the notation (3.2), we have

|F λ1,...,λr | ¤ Fr

�
τr
eηr


pr�1qτr

eηrβτr pλq, |Gλ1,...,λr | ¤ Gr

�
τr
eηr


rτr
eηrβτr pλq.

Proof. We first remark that F  and G are well defined for each words, so the denominators in

each rational functions component don’t contain any term of the form n � ω � 0. We finish using

first the inequality

x   τ

eη
eηx

1{τ
for all τ, η, x ¡ 0 (4.3)

with x � |λσ|�1{τr , τ � τr and η � ηr, and second the fact that |Crpλσ1
, . . . , λσr�1

| ¤ Fr and

|Drpλσ1
, . . . , λσr | ¤ Gr for all σ1, . . . σr � t1, . . . , ru. �

Using (4.5) in Lemma 4.4 below we get immediately the following result.

1We get also the homogeneity by a simple physical dimension reasoning: since the letters are defined by

tX0, Bλu � λBλ we have that λ must have the dimension of energy
action

(the dimension of action is the one of p�q). An

evaluation of the comould on a word of length r, tBλrtBλr�1t. . . , Bλ1uu . . . u has the dimension energyr

actionr�1 . Finally

the dimension of the normal form is the one of an energy. Since all the constants in the mould equation (with

zero gauge) are universal and therefore have no dimension, we conclude that the dimension of the evaluation of the

mould F  on a word of length r is energy � actionr�1

energyr
�
�
action
energy

	r�1

� pdimension of λq�pr�1q. In the same way

one sees that since one take the exponential of adG, adG must have no dimension and therefore Y must have the

dimension of an action and get the desired homogeneity.
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Corollary 4.3. Under the hypothesis (3.4) of Theorem A we have that

‖
¸

λ1,...,λrPΛ

1

r
F λ1,...,λr |rBλr , r. . . rBλ2 , Bλ1s . . .ss‖ρ1 ¤

pr � 1q!
r

�
γ

pρ� ρ1q2

r�1

Fr

�
τr
eηr


τrpr�1q

εr

‖
¸

λ1,...,λrPΛ

1

r
Gλ1,...,λr rBλr , r. . . rBλ2 , Bλ1s . . .ss‖ρ1 ¤

pr � 1q!
r

�
γ

pρ� ρ1q2

r�1

Gr

�
τr
eηr


τrr
εr

4.2. More estimates. The following Lemma is a slight generalization of [PS14, inequality (5.11)]

(see also [GP12]).

Lemma 4.4. Let us suppose that for 0   ρ1   ρ2   ρ and i � 1 . . . d, d P N�

‖rXi, Y s‖ρ1 ¤ γ

e2pρ� ρ1qpρ2 � ρ1q‖Xi‖ρ‖Y ‖ρ2 , }rX0, Xis}ρ1 ¤ 1

χpρ� ρ1q}Xi}ρ . (4.4)

Then,

1

d!
‖rXd, rXd�1, . . . rX1, Y sss‖ρ1 ¤ γd

pρ� ρ1q2d ‖Y ‖ρ
d¹
i�1

‖Xi‖ρ (4.5)

and

1

d!
‖rXd, rXd�1, . . . rX1, X0sss‖ρ1 ¤ γd

pρ� ρ1q2d
pρ� ρ1q2
χpρ� ρ1q

d¹
i�1

‖Xi‖ρ. (4.6)

Writing eadXY �
8°
d�0

1
d! rX, rX, . . . rXlooooooomooooooon

d times

, Y sss we get easily the following Corollary.

Corollary 4.5.

‖eadXY ‖ρ1 ¤ ‖Y ‖ρ
1� γ

pρ�ρ1q2
‖X‖ρ

and

‖eadXX0 �X0‖ρ1 ¤ γ‖X‖ρ
χpρ� ρ1q

�
1� γ

pρ�ρ1q2
‖X‖ρ

	
Moreover

‖eadXY �
Ņ

d�0

1

d!
rX, rX, . . . rXlooooooomooooooon

d times

, Y sss‖ρ1 ¤ ‖Y ‖ρ

�
γ

pρ�ρ1q2
‖X‖ρ

	N�1

1� γ
pρ�ρ1q2

‖X‖ρ

and

‖eadXX0 �X0 �
Ņ

d�1

1

d!
rX, rX, . . . rXlooooooomooooooon

d times

, X0sss‖ρ1 ¤ pρ� ρ1q2
χpρ� ρ1q

�
γ

pρ�ρ1q2
‖X‖ρ

	N�1

1� γ
pρ�ρ1q2

‖X‖ρ
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Proof of Lemma 4.4. (following [GP12] and [PS14] where the case Xi � X is studied) (4.5) is

easily obtained by iteration of the first part of (4.4). Consider the finite sequence of numbers δs �
d�s
d δ. We have δ0 � δ, δd � 0 and δs�1 � δs � δ

d . Let us define G0 :� Y and Gs�1 :� rXs�1, Gss,
for 0 ¤ s ¤ d� 1. According to (4.4), we have, denoting C � γ

e2
,

‖Gs‖ρ�δd�s ¤
C

δd�sp δdq
‖Xs‖ρ‖Gs�1‖ρ�δd�s�1

for 1 ¤ s ¤ d.

Hence, by induction, we obtain, since δ0 � δ and G0 :� Y ,

1

d!
}Gd}ρ�δ0 ¤ Cd

d!δ0 � � � δd�1p δdqd
d¹
i�1

}Xi}ρ}Y }ρ

¤ Cd

d!d!p δdqdp δdqd
d¹
i�1

}Xi}ρ}Y }ρ

¤
�
Cd2

δ2


d
1

d!d!

d¹
i�1

}Xi}ρ}Y }ρ

� 1

2πd

� γ
δ2

	d�?
2πddde�d

d!

�2 d¹
i�1

}Xi}ρ}Y }ρ

¤ 1

2πd

� γ
δ2

	d d¹
i�1

}Xi}ρ}Y }ρ  
� γ
δ2

	d d¹
i�1

}Xi}ρ}Y }ρ.

The proof of (4.6) follows exactly the same lines. �

The following Lemma is a direct consequence of Corollary 4.3 and the definition of YN in

Theorem A.

Lemma 4.6.

‖YN‖ρ1 ¤
Ņ

r�1

pr � 1q!
r

�
γ

pρ� ρ1q2

r�1

Gr

�
τr
eηr


τrr
εr :� EN,ρ�ρ1 . (4.7)
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Let us now perform a truncation of eadYN as in Corollary 4.5. We get, defining e
adYN
N �

N°
d�0

1
d! rYN , rYN , . . . rYNlooooooooomooooooooon

d times

, �sss,

‖eadYN

�
X0 �B

	
� e

adYN
N

�
X0 �B

	
‖ρ1

¤
� pρ2 � ρ1q2
χpρ2 � ρ1q � ‖B‖ρ2


 �
γ

pρ2�ρ1q2
‖YN‖ρ2

	N�1

�
1� γ

pρ2�ρ1q2
‖YN‖ρ2

	

�
�
pρ� ρ1q2
4χpρ�ρ12 q

� ‖B‖ρ

� �
4γ

pρ�ρ1q2
‖YN‖ ρ�ρ1

2

	N�1

�
1� 4γ

pρ�ρ1q2
‖YN‖ ρ�ρ1

2

	
by taking ρ2 � ρ�ρ1

2 ¤ ρ and using ‖�‖ρ2 ¤ ‖�‖ρ.

Lemma 4.7. Let

E
N, ρ�ρ

1

2

¤ 1

2

pρ� ρ1q2
4γ

. (4.8)

Then

‖eadYN

�
X0 �B

	
� e

adYN
N

�
X0 �B

	
‖ρ1 ¤ CsgN�1pEN, ρ�ρ1

2

qN�1

with

CsgN�1 � 2

�
pρ� ρ1q2
4χpρ�ρ12 q

� ‖B‖ρ

��
4γ

pρ� ρ1q2

N�1

(4.9)

4.3. End of the proof. Let us go back now to the mould equation:

∇F  � 0, ∇
�
eG

�� I � eG
 � eG

 � F  � 0.

Let us call FN and GN the moulds of ZN and YN , that is F
λ
N � F λ if rpλq ¤ N and F

λ
N � 0

otherwise.

Let us define peGqN as for FN and GN . Obviously peGqN � peG
N qN , and�

∇
�
eG

�	
N
�

�
∇
�
eG


N
�	

N
,
�
I � eG


	
N
�

�
I � eG


N

	
N
,
�

eG
 � F 

	
N
�

�
eG


N � F 

N

	
N
.

Moreover the mould equation reads�
∇
�
eG

�� I � eG
 � eG

 � F 
	
N
� 0, @N

and therefore �
∇
�
eG


N
�� I � eG


N � eG


N � F 

N

	
N
� 0, @N (4.10)
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We get

eadYN

�
X0 �B

	
(4.11)

� e
adYN
N pX0 �Bq � E1

N (4.12)

� X0 �
Ņ

d�1

1

d!
rG

N , rG
N , . . . , rG

Nlooooooooooomooooooooooon
d�1 times

,∇G
N � rG

N , I
sssBr  s � E1

N (4.13)

� X0 �

�
�� Ņ

d�1

1

d!
rG

N , rG
N , . . . , rG

Nlooooooooooomooooooooooon
d�1 times

,∇G
N � rG

N , I
sss

�
�
N

Br  s � E2
N � E1

N (4.14)

� X0 �
�
e�G


N � p∇eG

N q � e�G

N � I � eG


N

	
N
Br  s � E2

N � E1
N (4.15)

� X0 � F 
NBr  s � E2

N � E1
N (4.16)

� X0 � ZN � EN

with ‖E1
N‖ρ1 ¤ CsgN�1E

N�1
N,pρ�ρ1q{2 and

‖E2
N‖ρ1 ¤ 2

N2¸
r�N�1

�
����

Ņ

d�1

¸
k1�k2�...kN�d

k1�2k2�����NkN�r

N !
N±
i�1

ki!

�
���pr � 1q!

r

�
γ

pρ� ρ1q2

r�1

Gr

�
τr
eηr


τrr
εr

¤ 2
N2¸

r�N�1

�
Ņ

d�1

Nd

�
pr � 1q!

r

�
γ

pρ� ρ1q2

r�1

Gr

�
τr
eηr


τrr
εr

¤ 2NN pEN2,ρ�ρ1 � EN,ρ�ρ1q (4.17)

where EN,ρ is defined by (4.8). Let us explain how we derive the chain of inequalities after (4.12):

 (4.11)ñ(4.12); is Lemma 4.7.

 (4.12)ñ(4.13); writing the first part of (4.12) in mould calculus by Proposition 1.2.

 (4.13)ñ(4.14) with (4.17): since the support of G
N contains only words of length up to

N , we can expand the mould in (4.13) up to words of length N , which appears in (4.14),

plus the rest. The rest, whose support contains only words on length between N � 1 and

N2, gives (4.17) by combinatorial coefficients and Corollary 4.3.

 (4.14)ñ(4.15); is obtained by developing e�G

N � p∇eG

N q � e�G

N � I � eG


N in the form

8°
d�0

1
d! rG

N , rG
N , . . . , rG

Nlooooooooooomooooooooooon
d times

,∇G
N�rG

N , I
sss and noticing that, since GH

N � 0, one has that

rG
N , rG

N , . . . , rG
Nlooooooooooomooooooooooon

M times, M¡N

,∇G
N � rG

N , I
sss contains only word on length greater than N .
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 (4.15)ñ(4.16); is obtained by (4.10).

 (4.16)ñ(4.17); by writing EN :� E1
N � E2

N .

Therefore

‖EN‖ρ1 ¤ CsgN�1E
N�1
N,pρ�ρ1q{2 �NN pEN2,ρ�ρ1 � EN�1,ρ�ρ1q for E

N, ρ�ρ
1

2

¤ 1

2

pρ� ρ1q2
4γ

(4.18)

where CsgN�1 and EN,pρ�ρ1q are defined in (4.9) and (4.7). We now take

ε� � pρ� ρ1q2

32γ sup
r�1...N

pr�1q!
r

�
γ

pρ�ρ1q2

	r�1 �
2rτr
eηr

	r � pρ� ρ1q2

32γ pN�1q!
N

�
γ

pρ�ρ1q2

	N�1
�

2N τr
e inf
r�1...N

ηr


N (4.19)

and

D � CsgN�1

�
��4

pN � 1q!
N

�
γ

pρ� ρ1q2

N�1

�
� 2Nτr
e inf
r�1...N

ηr

�

N
�
�
N�1

�NN pN2 � 1q!
N2

�
γ

pρ� ρ1q2

N2�1

�
� 2N

2
τr

e inf
r�N�1...N2

ηr

�

N2

. (4.20)

Theorem A is proved.
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Applications to dynamics

5. Quantitative classical formal normal forms

We denote the circle by

T ��� R{2πZ.
Let d ¥ 1 be integer. We are interested in two situations: the phase-space P is either

T �Rd � Rd � Rd and then X0px, ξq � 1

2

� ḑ

j�1

ξ2
j �

ḑ

j�1

ω2
jx

2
j

	
,

or it is

T �Td� Td � Rd and X0px, ξq � ω � ξ.
In both cases, we suppose that ω P Rd has components ωj ¡ 0, and we will denote the variable

in P by px, ξq. The symplectic 2-form being
°
dξj ^ dxj , the Hamiltonian vector field associated

with X0 is tX0, �u �
°�

ξj
B
Bxj

� ω2
jxj

B
Bξj

�
in the first case, and

°
ωj

B
Bxj

in the second.

We want to perturb X0 by a “small” perturbation B and want to show that it is possible,

after a symplectic change of coordinates, to put the new Hamiltonian X0 �B into a normal form

X0 � Z, tX0, Zu � 0, modulo an arbitrarily small error.

The result will be expressed in Theorem B below, which will follow from Theorem A. We first

have to show how our situation enters in the framework of the first part of this article.

Let

P
�

��� Rd � Rd if P � Rd � Rd, P
�

��� Rd � Zd if P � T �Td.

We define the (symplectic) Fourier transform G
�

of a function G P L1pP, dxdξq by

G
�

pq, pq � 1

p2πqd
»
P
Gpx, ξqe�ippx�qξqdxdξ for pq, pq P P

©

. (5.1)

Let dµ denote either the Lebesgue measure dqdp on Rd � Rd or the product of the Lebesgue

measure dq by the Dirac mass on Zd � Rd. If G
�

P L1pP
�

, dµq, then

Gpx, ξq � 1

p2πqd
»
G
�

pq, pqeippx�qξqdµpq, pq for a.e. px, ξq P P. (5.2)

By a slight abuse of notation, from now on, we will denote dµpq, pq by dqdp in both

cases.

Let us write X0 � X0,1 � � � � �X0,d with, for each j � 1, . . . , d,

X0,j ��� 1
2pξ2

j � ω2
jx

2
j q on P � T �Rd, X0,j ��� ωjξj on P � T �Td.
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Since the X0,j ’s Poisson-commute and since, for each j, all the solutions of the Hamiltonian vector

field tX0,j , �u are 2π
ωj

-periodic, we get an action of Td on P by defining

Φt
0
��� exp

�"
t1
ω1
X0,1 � � � � � td

ωd
X0,d, �

*

for t � pt1, . . . , tdq P Td.

Given k P Zd and an integrable function G, we now define

Gpkqpx, ξq ���
1

p2πqd
»
Td
GpΦt

0px, ξqqe�iktdt for px, ξq P P.

Lemma 5.1. For any real-analytic G, one has
°
kPZd

Gpkq � G (pointwise convergence on P) and,

for each k P Zd,

tX0, Gpkqu � ik � ωGpkq. (5.3)

Proof. For each px, ξq P P, the function t P Rd ÞÑ G � Φt
0px, ξq is analytic and 2π-periodic in

each tj ; for each k P Zd, its kth Fourier coefficient is Gpkqpx, ξq. The first statement thus follows

from the fact that G � Φt
0px, ξq is the sum of its Fourier series.

For each j, tX0,j , Gpkqu is the kth Fourier coefficient of the function tX0,j , G � Φt
0u, and this

function coincides with ωj
B
Btj

�
G � Φt

0

�
, hence tX0,j , Gpkqu � ikjωjGpkq, and the second statement

follows. �

For ρ ¡ 0 we will denote by Jρ the space of all integrable functions G whose associated family

of functions Gpkq have a Fourier transform whose modulus is integrable with respect to dqdp

weighted by eρp|q|�|p|q, the family of integrals obtained that way being itself summable with the

weight eρ|k|.

Namely,2 we set Jρ ��� t G P L1pP, dxdξq | ‖G‖ρ   8u, with

‖G‖ρ ���
¸
kPZd

»
P
� |G

�

pkqpq, pq|eρp|q|�|p|�|k|qdqdp.

Note that each function in Jρ is real analytic and has a bounded holomorphic extension to the

complex strip
 px, ξq P Cd�Cd | |=mx1|, . . . , |=mxd|, |=mξ1|, . . . , |=mξd|   ρ

(
. Jρ is obviously

a Banach space satisfying }G}ρ1 ¤ }G}ρ whenever ρ1   ρ.

In the case P � Rd � Rd let us denote by X
�

0,1, . . . , X
�

0,d the functions defined on P
�

by

X
�

0,jpq, pq � X0,jpq, pq and let Φ
�t

0 be the corresponding torus action on P
�

. It is easy to check that,

2Note that in the case of T�Td, Gpkq is nothing but the Fourier coefficient of Gp�, ξq times e�ik�. Therefore in

this case Gpkq

�

pq, pq � δk,pGpkq

�

pq, pq and so ‖G‖ρ �
³
|G
�

pq, pq|eρp|q|�2|p|qdqdp. We present nevertheless the two cases

(T�Td and T�Rd) in a unified way.
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defining px, ξq � pp, qq :� px� qξ, we have

Φt
0px, ξq � Φ

�t

0pq, pq � px, ξq � pq, pq. (5.4)

Defining now

pF
�

qpkqpq, pq :� 1

p2πqd
»
Tdω
F
�

pΦ
�t

0pq, pqqe�iktdt

we get by (5.4) and the conservation of the Liouville measure by symplectomorphisms that

Fpkq
�

� pF
�

qpkq. (5.5)

In the case P � T �Td we get easily

Fpkq
�

pq, pq � F
�

pq, pqδk,p. (5.6)

Lemma 5.2.

‖tF,Gu‖ρ1 ¤ 1

e2pρ� ρ1qpρ2 � ρ1q‖F‖ρ‖G‖ρ2

whenever ρ1   ρ2 ¤ ρ.

Proof. We will first prove, in the two cases P � Rd � Rd and P � T �Td the following identity.

tF,Gupkq
�

pq, pq �
¸
k1PZd

»
dp1dq1ppq � q1qp1 � pp� p1qq1qFpk�k1q

�

pq � q1, p� p1qGpk1q

�

pq1, p1q. (5.7)

Proof of (5.7). tF,Gupx, ξq � BxF px, ξqBξGpx, ξq � BξF px, ξqBxGpx, ξq. So

tF,Gu
�

pq, pq �
»
ppq � q1qp1 � pp� p1qq1qF

�

pq � q1, p� p1qG
�

pq1, p1qdq1dp1 (5.8)
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In the case P � Rd�Rd, tF,Gupkq
�

� tF,Gu
�

pkq so, since Φt
0 is linear symplectic and so preserves

Liouville measure,

tF,Gupkq
�

pq, pq

�
»
dtdp1dq1ppΦt

0pqq � q1qpp1q � pΦt
0ppq � p1qΦt

0pqqqF
�

pΦt
0pqq � q1,Φt

0ppq � p1qqG
�

pq1, p1qeikt

�
»
dtdp1dq1ppΦt

0pq � q1qqΦt
0pp1q � pΦt

0pp� p1qqΦt
0pqqqF

�

pΦt
0pq � q1q,Φt

0pp� p1qqG
�

pΦt
0pq1q,Φt

0pp1qqeikt

�
»
dtdp1dq1ppq � q1qp1 � pp� p1qq1qF

�

pΦt
0pq � q1q,Φt

0pp� p1qqG
�

pΦt
0pq1q,Φt

0pp1qqeikt

�
»
dtdp1dq1dt1

¸
k1PZd

eik
1pt1�tqppq � q1qp1 � pp� p1qq1qF

�

pΦt
0pq � q1q,Φt

0pp� p1qqG
�

pΦt1

0 pq1q,Φt1

0 pp1qqeikt

�
¸
k1PZd

»
dp1dq1ppq � q1qp1 � pp� p1qqqFpk�k1q

�

pq � q1, p� p1qGpk1q

�

pq1, p1q

�
¸
k1PZd

»
dp1dq1ppq � q1qp1 � pp� p1qqqFpk�k1q

�

pq � q1, p� p1qGpk1q

�

pq1, p1q.

In the case P � T �Td, tF,Gupkq
�

pq, pq � tF,Gu
�

pq, pqδk,p, so

tF,Gupkq
�

pq, pq

� δk,p

»
ppq � q1qp1 � pp� p1qq1qF

�

pq � q1, p� p1qG
�

pq1, p1qdq1dp1

�
¸
k1PZd

δp�p1,k�k1δp1,k1

»
ppq � q1qp1 � pp� p1qq1qF

�

pq � q1, p� p1qG
�

pq1, p1qdq1dp1

�
¸
k1PZd

»
dp1dq1ppq � q1qp1 � pp� p1qq1qFpk�k1q

�

pq � q1, p� p1qGpk1q

�

pq1, p1q.

�

Using now |q| ¤ |q�q1|�|q1|, |p| ¤ |p�p1|�|p1|, |k| ¤ |k�k1|�|k1| and xepρ
1qx ¤ 1

epρ2�ρ1qe
ρ2x. x ¥

0, one get, by (5.7),
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‖tF,Gu‖ρ1 �
¸
kPZd

»
dqdp|tF,Gupkq
�

pq, pq|eρ1p|q|�|p|�|k|q (5.9)

¤
¸
k,k1

»
dqdq1dpdp1p|q � q1||p1| � |p� p1||q1|q|Fpk�k1q

�

pq � q1, p� p1qGpk1q

�

pq1, p1q|eρ1p|q|�|p|�|k|q

¤
¸
k,k1

»
p|q � q1||p1| � |p� p1||q1|q|Fpk�k1q

�

pq � q1, p� p1qGpk1q

�

pq1, p1q|

eρ
1p|q�q1|�|p�p1|�|k�k1|�|q1|�|p1|�|k1|qdqdq1dpdp1

¤
¸
k,k1

»
p|q � q1| � |p� p1|q|Fpk�k1q

�

pq � q1, p� p1qGpk1q

�

pq1, p1q|

1

epρ2 � ρ1qe
ρ1p|q�q1|�|p�p1|�|k�k1|q�ρ2p|q1|�|p1|�|k1|qdqdq1dpdp1

¤
¸
k,k1

»
p|q| � |p|q|Fpkq

�

pq, pqGpk1q

�

pq1, p1q|

1

epρ2 � ρ1qe
ρ1p|q|�|p|�|k1|q�ρ2p|q1|�|p1|�|k1|qdqdq1dpdp1

¤
¸
k,k1

»
|Fpkq
�

pq, pqGpk1q

�

pq1, p1q|

1

epρ2 � ρ1q
1

epρ� ρ1qe
ρp|q|�|p|�|k1|q�ρ2p|q1|�|p1|�|k1|qdqdq1dpdp1

since ρ1   ρ2 ¤ ρ and one easily concludes. �

The same argument, used this time the weighted sum in k, leads to the next result.

Lemma 5.3.

‖tX0, Gu‖ρ1 ¤ 1

epρ� ρ1q‖G‖ρ.

Proof. We first remark that

tX0, Gupkq �
»
tX0, Gu � Φt

0e
iktdt �

»
tX0, G � Φt

0ueiktdt � tX0, Gpkqu � ik � ωGpkq

by (5.3), and we easily concludes using again |k|eρ1|k| ¤ 1
epρ�ρ1qe

ρ|k|. �

Let L be the space of real analytic functions on P. We just proved that pL, r�, �sq endowed with

Jρ � Bρ, 0   ρ   8 and with r�, �s � t�, �u, γ � 1 and χpρq � 1
eρ , is an X0-extended Banach scale

Lie algebra.
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Let us remark now that the homogeneous components of a perturbation B are easily deduced

from the family pBpkqqkPZd . Indeed, let us define

Λ � t i k � ω | k P Zd u (5.10)

as in Remark 3.3. In view of Lemma 5.1, we see that, for each λ P Λ,

tX0, Bλu � λBλ with Bλ ���
¸

kPZd|ik�ω�λ

Bpkq, (5.11)

and B � °
λPΛ

Bλ. Moreover, since

pFpkqqpk1q �
1

p2πq2d
»
F �Φt

0 �Φt1

0 e
�ipkt�k1t1qdtdt1 � 1

p2πq2d
»
F �Φs

0e
�iksds

»
eipk

1�kqt1dt1 � Fpkqδkk1 ,

we have that

‖B‖ρ �
¸
kPZd

‖Bpkq‖ρ eρ|k|. (5.12)

In particular,
°
kPZd

‖Bpkq‖ρ eη|k| is convergent for each η ¤ ρ.

Let us assume that the Diophantine condition (3.6) is satisfied.

By (5.11), ‖Bλ‖ρ ¤
°

kPZd|ik�ω�λ
‖Bpkq‖ρ, hence, we have, using the notation (3.1),

εr ¤
¸

k1,...,krPZd
‖Bpk1q‖ρ � � � ‖Bpkrq‖ρ e

ηrβτr

�
pik1�ωq���pikr�ωq

�
.

Now, given k1, . . . , kr P Zd, we have

βτr
�pik1 � ωq � � � pikr � ωq

� �
¸

σ�t1,...,ru
such that kσ �ω�0

1

|kσ � ω|1{τ
¤ 1

α1{τ

¸
σ�t1,...,ru

such that kσ�0

|kσ|

¤ 2r

α1{τ

�
|k1|� � � � � |kr|

�
.

We get

εr ¤
¸

k1,...,krPZd
‖Bpk1q‖ρ � � � ‖Bpkrq‖ρ e

η
�
|k1|�����|kr|

�

¤
¸

k1,...,krPZd
‖Bpk1q‖ρ � � � ‖Bpkrq‖ρ e

ρ
�
|k1|�����|kr|

�
� ‖B‖rρ   8, @r P N�.

Therefore hypotheses piq � piiq are satisfied for all B P Jρ, with ηr � ηα1{τ {2r�1 and τr � τ .

Theorem A applies.
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Before to state it in the present setting, let us remark tha,t since εr ¤ ‖B‖rρ, one can im-

prove (3.5) (or rather (4.18)). To do so we first remark that in Lemma 4.6, if ‖B‖ρ ¤ 1,

EN,ρ�ρ1 ¤ ‖B‖ρ
Ņ

r�1

pr � 1q!
r

�
γ

pρ� ρ1q2

r�1

Gr

�
τ

eηr


τr
:� ‖B‖ρΓN .

Therefore for ε � inf p1, ρ�ρ18γΓN
q we have that the second inequality of (4.18) is satisfied when

‖B‖ρ ¤ ε.

Under the same condition on ‖B‖ρ we find that

CsgN�1E
N�1
N,pρ�ρ1q{2 ¤ ‖B‖N�1

ρ Csg
1

N�1pΓN qN�1

with

Csg
1

N�1 � 2

�
pρ� ρ1q2
4χpρ�ρ12 q � 1

��
4γ

pρ� ρ1q2

N�1

,

and

NN pEN2,ρ�ρ1 � EN�1,ρ�ρ1q ¤ ‖B‖N�1
ρ NNΓN2,N

with

ΓN2,N �
N2¸

r�N�1

pr � 1q!
r

�
γ

pρ� ρ1q2

r�1

Gr

�
τ

eηr


τr
,

Thus we define:

D � Csg
1

N�1pΓN qN�1 � 2NNΓN2,N and ε � inf
�

1, ρ�ρ
1

8γΓN

�
. (5.13)

Finally, ZN and YN are real functions, and eadYN corresponds to a composition by a symplectic

transform. We get the following rephrasing of Theorem A.

Theorem B. Let ρ ¡ 0 such that ‖B‖ρ   8.

For all N P N� and 0   ρ1   ρ, let D and ε be given by (5.13). Then

(a) the following two expansions converge in Bρ1

ZN ���
N�1̧

r�1

¸
λ1,...,λrPΛ

1

r
F λ1,...,λrtBλr , t. . . tBλ2 , Bλ1u . . .uu,

YN ���
N�1̧

r�1

¸
λ1,...,λrPΛ

1

r
Gλ1,...,λrtBλr , t. . . tBλ2 , Bλ1u . . .uu
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(b) and, if moreover ‖B‖ρ ¤ ε, then$''&
''%

pX0 �Bq � ΦN � X0 � ZN � EN ,
tX0, ZNu � 0,

‖EN‖ρ1 ¤ D‖B‖N�1
ρ ,

(5.14)

ΦN being the Hamiltonian flow at time 1 of Hamiltonian YN .

6. Quantitative quantum formal normal forms

This section constitutes the quantum counterpart of the preceding section.

Let the Hilbert space H be either L2pRdq and in this case let X0 � 1
2p�h̄2∆ �

d°
i�1

ω2
i x

2
i q or

L2pTdq and X0 � �ih̄ω � ∇, corresponding indeed to the quantization of the two situations of

Section 5. Let us recall that in both cases X0 is essentially self-adjoint on H.

Here again we want to perturb X0 by a “small” perturbation B and want to show that it is

possible, after a conjugation by a unitary operator on H, to put the new quantum Hamiltonian

X0 �B into a normal form X0 � Z, rX0, Zs :� X0Z � ZX0 � 0, modulo an error we want to be

as small as we wish.

The result will be expressed in Theorem C below but let us first see how the quantum situations

just mentioned enter also in the framework of the first part of this article, though they seat on a

very different paradigm than the one of the preceding section.

Let Jρ be the set of all pseudo-differential operators whose Weyl symbols belong to Jρ. We

define the norm of an operator belonging to Jρ as the } � }ρ norm of its symbol and we denote it

by the same expression ‖ � ‖ρ.
There are different ways of defining Weyl quantization (see Appendix A below for elementary

definitions). In the case P � T �Rd, one of them, actually the historical one exposed in the book by

Hermann Weyl [W28] consists in writing again the formula (5.2) for the inverse Fourier transform

Gpx, ξq � 1

p2πqd
»
G
�

pq, pqeippx�qξqdµpq, p, q

and replace in the right hand side x and ξ by �x and �ih̄∇ respectively, in the case where

P � T �Rd. We get the operator B associated to the symbol σB by the formula

B � 1

p2πqd
»
σB
�pq, pqeippx�ih̄q∇qdµpq, p, q.
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The reader can check easily that when σB � x (resp. ξ) on recover B � �x (resp. �ih̄∇).

Moreover, using the Campbell-Hausdorff formula, one gets that

eippx�ih̄q∇q � ei
pq
2 eipxe�qh̄∇.

This is this formulation that we use in the case where P � T �Td since px � ih̄q∇ doesn’t make

any sense on the torus, so we cannot use e�ippx�ih̄q∇q, but e�ipx does (remember p is the dual

variable of x so is discrete). Therefore we define in both cases

B � 1

p2πqd
»
σB
�pq, pqei pq2 e�ipxe�qh̄∇dµpq, p, q. (6.1)

Note that a straightforward computation gives back the usual formula (A.2) or (A.3) of the

Appendix:

Bfpxq �
»
σBppx� yq{2, ξqe�iξpx�yq{h̄fpyqdy dξ

p2πh̄qd .

But the main interest of this formula for our purpose is the fact that ei
pq
2 e�ipxe�qh̄∇ is unitary,

since ei
pq
2 e�ipxe�qh̄∇ϕpxq � ei

pq
2 e�ipxϕpx� qq, so ‖ei

pq
2 e�ipxe�qh̄∇‖L2ÑL2 � 13 and therefore

‖B‖L2ÑL2 ¤ ‖σ
�

B‖L1pPq � “‖σB‖0” ¤ ‖σB‖ρ :� ‖B‖ρ for all ρ ¡ 0. (6.2)

Moreover it is straightforward to show that when σB is real valued, B is a symmetric operator so

that, when bounded, is constitutes a symmetric bounded perturbation of X0, therefore we just

proved the following result.

Lemma 6.1. Let B be defined by (6.1) with σB real valued and let ‖B‖ρ :� ‖σB‖ρ   8 for some

ρ ¡ 0. Then X0 �B is essentially self-adjoint on H.

It has been proven in [BGP99] for L2pRdq and [GP12, PS14] for L2pTdq the following Lemma.

Lemma 6.2. Suppose 0   ρ1   ρ and F,G P Jρ. Then

‖ 1

ih̄
rF,Gs‖ρ1 ¤ 1

e2pρ� ρ1qpρ2 � ρ1q‖F‖ρ‖G‖ρ2

‖ 1

ih̄
rX0, Gs‖ρ1 ¤ 1

epρ� ρ1q‖G‖ρ

Proof. Since the evolution byX0 commutes with quantization by Corollary A.2 (see the appendix),

we get that σrF,Gsk{ih̄ � pσrF,Gs{ih̄qk, @k P Zd. Moreover, by Lemma A.1, σrF,Gs{ih̄ � ApσF b σGq.
Therefore

σ
�

rF,Gs{ih̄pp, qq �
»

1

h̄
sin h̄ppq � q1qp1 � pp� p1qq1qσF

�pq � q1, p� p1qσ�Gpq1, p1qdq1dp1 (6.3)

3We denote by ‖�‖L2ÑL2 the operator norm on H.
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a formula similar to (5.8) by the change ppq � q1qp1 � pp� p1qq1q Ñ 1
h̄ sin h̄ppq � q1qp1 � pp� p1qq1q.

The proof of the first inequality is identical to the one of Lemma 5.2 modulo this change up to

(5.7), and the rest of the proof, after (5.9) is vertabim the same using the inequality

|1
h̄

sin h̄ppq � q1qp1 � pp� p1qq1q| ¤ |ppq � q1qp1 � pp� p1qq1q|.

The proof of the second inequality is similar to the proof of Lemma 5.3. �

Let L be the space of hermitian operators on H. We just proved that pL, r�, �sqq endowed with

Jρ � Bρ, 0   ρ   8 and with r�, �sq � 1
ih̄ r�, �s, γ � 1 and χpρq � 1

eρ , is an X0-extended Banach

scale Lie algebra.

The decomposition into λ�homogeneous components of an arbitrary B P Jρ involves the letters

of the same alphabet Λ defined by (5.10) as in Section 5. In fact, the homogeneous components

of B can be obtained by Weyl quantization of the homogeneous components of the symbol σB,

or directly as

Bλ �
¸

kPZd|ik�ω�λ

1

p2πqd
»
Td
e

1
ih̄
t�X0 B e

1
ih̄
�X0 e�ik�t dt for each λ P Λ, (6.4)

whereX0,j � �h̄2B2
xj�ω2

jx
2
j in the case of Rd andX0,j � �ih̄ωjBxj for Td, since linear Hamiltonian

flows commute with quantization (see Lemma A.2 below).

Therefore the hypothesis piq�piiq of Theorem A are satisfied for the same values ηr � ηα1{τ {2r�1

and τr � τ as in Section 5.

Moreover, if YN is a self-adjoint operator, then eadYN corresponds to conjugation by the unitary

transform e
1
ih̄
YN , hence the conclusions of Theorem A for this situation can be rephrased as:

Theorem C. Let ρ ¡ 0 such that ‖B‖ρ   8.

For all N P N� and 0   ρ1   ρ, let D and ε be given by (5.13). Then

(a) the following two expansions converge in Bρ1

ZN ���
N�1̧

r�1

¸
λ1,...,λrPΛ

1

r
F λ1,...,λr 1

ih̄
rBλr ,

1

ih̄
r. . . 1

ih̄
rBλ2 , Bλ1s . . .ss,

YN ���
N�1̧

r�1

¸
λ1,...,λrPΛ

1

r
Gλ1,...,λr 1

ih̄
rBλr ,

1

ih̄
r. . . 1

ih̄
rBλ2 , Bλ1s . . .ss
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(b) and, if moreover ‖B‖ρ ¤ ε, then$''&
''%

e
1
ih̄
YN pX0 �Bqe� 1

ih̄
YN � X0 � ZN � EN ,

rX0, ZN s � 0,

‖EN‖ρ1 ¤ D‖B‖N�1
ρ .

(6.5)

7. Semiclassical approximation

In this final section we would like to link in a quantitative way the two preceding Section 5

and 6. Since the estimates in Section 6 are uniform in the Planck constant, it is natural to think

that the quantum normal form should be “close” to the classical one when the Planck constant is

close to zero. Since such a comparison invoque objects of different nature (operators for quantum,

functions for classical), it is natural to use the symbol “functor” σ to quantify this link. Let us use

the superscripts C and Q for denoting the “same” object in Sections 5 and 6 respectively, so that

XC
0 px, ξq � 1

2pξ2�
d°
i�1

ω2
i x

2
i q or XC

0 px, ξq � ω �ξ and XQ
0 � 1

2p�h̄2∆�
d°
i�1

ω2
i x

2
i q or XQ

0 � �ih̄ω �∇.

Note that in both cases, σ
XQ

0
� XC

0 . So it seems natural to link BC and BQ by σBQ � BC .

Expressing, for all N , ZQN in its mould-comould expansion, we see that, on one hand, the mould

in independent of h̄, and (therefore) is the same as the one in the mould-comould expansion of

ZCN . On the other hand, by Lemma A.1, the symbol of any 1
ih̄ rBλi , Bλj s tends to the Poisson

bracket between the two symbols of Bλi , Bλj . Moreover the symbol of Bλi is nothing else that

the homogeneous parts of the symbol of BQ (i.e. BC) by Corollary A.2. Finally, by iteration

of Lemma A.1, iteration precisely estimated in Propositon A.3, we see that the symbol of the

quantum normal form is, term by term in the mould-comould expansion graduaded by the length

of the words (i.e. N), close to the classical normal form, as h̄Ñ 0.

Our next result expresses quantitatively this fact, improving the results of [GP87] and [DGH91].

Let us recall ZQN (resp. ZCN ) is the quantum (resp. classical) normal form in Theorem C (resp.

theorem B).

Theorem D. Let N ¥ 1. Then

‖σ�
ZQN�Z

Q
N�1

� � pZCN � ZCN�1q‖ρ1 ¤ h̄2CN‖B‖Nρ

where CN � 1
6N

�
22N�1τ
eρα1{N

	N�1 �
N�2
epρ�ρ1q

	N�2
.

The proof of Theorem D is easily obtained by using the mould expansion of ZQN , in particular

ZQN � ZQN�1 �
¸

λ1,...,λNPΛ

1

N
F λ1,...,λN

1

ih̄
rBλN ,

1

ih̄
r. . . 1

ih̄
rBλ2 , Bλ1s . . .ss,
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the linearity of the “functor” σ, Corollary 4.2, Proposition A.3, and the arguments expressed just

before the statement of the theorem.

Note that the correction is of order 2 in the Planck constant, which means that the classical

perturbation theory incorporates the entire Bohr-Sommerfeld quantization, including the Maslov

index.
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Appendix A. Weyl quantization and all that

Weyl quantization has been defined in Section 6. Defining the unitary operator Upq, pq where

pq, pq are the Fourier variables of P � T �Rd or T �Td by:

Upq, pqφpxq � ei
pq
2 eipxe�qh̄∇ϕpxq � ei

pq
2h̄ eipxφpx� h̄qq, φ P L2pRd or Tdq,

the Weyl quantization of a function σV on P is the operator

V � 1

p2πqd
»
dpdqσV

�pq, pqUpq, pq :� OpW pσV q (A.1)

where dpdq is used for dµpq, pq as in Section 5 page 18 and �� is the symplectic Fourier transform

defined by (5.1)4.

Obviously, as mentioned earlier, ‖Upq, pq‖L2ÑL2 � 1 and therefore

‖V ‖L2ÑL2 ¤ ‖σV ‖ρ, @ρ ¡ 0. (A.4)

Note that (A.1) makes also sense when σV is a polynomial on P (polynomial in the variable ξ in

the case P � T �Td) since Upq, pq as defining an unbounded operator. One check easily that this

is the case for X0 in the two examples of Section 5 and 6.

The following result is the fundamental one concerning the transition quantum-classical and,

as presented here, is the only one we really need in the present article.

Lemma A.1. Let V � OpW pσV q, V 1 � OpW pσV 1q with σV , σV 1 either belong to Jρ for a certain

ρ ¡ 0 or are polynomials on P.

Then
1

ih̄
rV, V 1s � OpW pσV �h̄ σV 1qq

4The goal of this appendix is not to give a crash course on pseudo-differential operators, but rather to recall the

strict minimum used in the present paper. The reader is referred to [F89] for a general exposition. The reader not

familiar with the presentation here can recognize easily the Weyl quantization of a symbol σV being, e.g. of the

Schwartz class. That is to say that, when σV P SpR2dq, V defined by (A.1) acts on a function ϕ P L2pRdq through

the formula

V ϕpxq �

»
Rd�Rd

σV
�x� y

2
, ξ
�
e�i

ξpx�yq
h̄ ϕpyq

dξdy

p2πh̄qd
. (A.2)

and, in the case where σV P C8pTdq b SpRdq, V acts on a function ϕ P L2pTdq by the same formula

V ϕpxq �

»
Rd�Rd

σV
�x� y

2
, ξ
�
e�i

ξpx�yq
h̄ ϕpyq

dξdy

p2πh̄qd
(A.3)

where, in (A.3), it is understood that σV p�, ξq and ϕ are extended to Rd by periodicity (see [PS14]). Note that

(A.2) and (A.3) make sense thanks to the Schwartz property of V in ξ and that in (A.3) the r.h.s. depends only on

the values of σV px, ξq for ξ P h̄Zd.
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where �h̄ is defined through the Fourier transform by

σ �h̄ σ1
�

pq, pq �
»
P

sin
�
h̄ppq � q1qp1 � pp� p1qq1q�

h̄
σ
�pp� p1, q � q1qσ1

�

pp1, q1qdp1dq1. (A.5)

In particular

lim
h̄Ñ0

σ �h̄ σ1 � tσ, σ1u.

and

σ2 �h̄ σ1 � tσ2, σ
1u

when σ2 is a quadratic form. Therefore, in this case,

exp
�
adOpW pσ2q

�
OpW pσV q � OpW peadσ2σV q. (A.6)

Using (6.4) and (A.6) we get the following result.

Corollary A.2. Let X0 be as in Section 6. Then the homogeneous component Bλ, λ � k � ω,
k P Zd of any pseudodifferential operator B is the Weyl quantization of the λ�homogeneous part

(with respect to σX0) of σB, that is

Bλ � OpW ppσBqλq.

Using the operator A of Lemma A.1 and similar arguments that the ones used in the proof of

Lemma 4.4 we get the following result.

Proposition A.3. Let 0   ρ1   ρ. Then for any d ¥ 2

‖σBd �h̄ pσBd�1
�h̄ p� � � �h̄ pσB2 �h̄ σB1qqq � tσBd , tσBd�1

, . . . tσB2 , σB1uuu‖ρ1

¤ h̄2

6

�
d� 2

epρ� ρ1q

d�2 d¹

k�1

‖Bk‖ρ.

Note that

rBd, rBd�1, . . . rB2, B1sss
pih̄qd � OpW pσrBd,rBd�1,...rB2,B1sss{pih̄qdq

with σrBd,rBd�1,...rB2,B1sss{pih̄qd � σBd �h̄ pσBd�1
�h̄ p� � � �h̄ pσB2 �h̄ σB1qqq.

Proof. The proof will be using the methods of the one of Lemma 6.2.
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Iterating (A.7) we get

σ
�

rBd,rBd�1,...rB2,B1sss{pih̄qdppd, qdq �
»
dp1dq1 . . . dpd�1dqd�1

1

h̄
sin h̄ppqd � qd�1qpd�1 � ppd � pd�1qqd�1qσ

�

Bdppd � pd�1, qd � qd�1q
1

h̄
sin h̄ppqd�1 � qd�2qpd�2 � ppd�1 � pd�2qqd�2qσ

�

Bd�1
ppd�1 � pd�2, qd�1 � qd�2q

. . .

1

h̄
sin h̄ppq3 � q2qp2 � pp3 � p2qq2qσ

�

B3pp3 � p2, q3 � q2q
1

h̄
sin h̄ppq2 � q1qp1 � pp2 � p1qq1qσ

�

B2pp2 � p1, q2 � q1q
σ
�

B1pp1, q1q.

Expanding

d¹
i�1

1

h̄
sin h̄xi �

d¹
i�1

xi � h̄2

6

ḑ

k�1

x3
k sin h̄1xk

¹
l�k

1

h̄
sin h̄1xl

for some 0 ¤ h̄1 ¤ h̄, one realizes that the first term gives precisely after integration the Fourier

transform of tσBd , tσBd�1
, . . . tσB2 , σB1uuu.

Using | sin h̄1xk| ¤ 1 and | 1h̄ sin h̄1xl| ¤ |xl| we get

‖σrBd,rBd�1,...rB2,B1sss{pih̄qd � tσBd , tσBd�1
, . . . tσB2 , σB1uuu‖ρ1

¤ h̄2

6

»
eρ

1p|q1|�|p1|�����|qd|�|pd|qdpddqddpd�1dqd�1 . . . dp1dq1

ḑ

k�1

|xk|3
¹
l�k

|xl||σ
�

Bkppk � pk�1, qk � qk�1||σ
�

Blppl � pl�1, ql � ql�1|

with p�1 � q�1 :� 0 and xk :� ppk � pk�1qqk�1 � pqk � qk�1qpk�1 � pkqk�1 � qkpk�1.

We have obviously that

ḑ

k�1

|xk|3
¹
l�k

|xl| ¤
¸

pa1,...,amq
Pt|p1|,|q1|,...,|pd|,|qd|ud�2

d�2¹
m�1

am ¤ p|p1| � |q1| � � � � � |pd| � |qdqd�2

Therefore, using a last time the magic tool xβe�ηx ¤
�
β
eη

	β
, β, η, x ¥ 0, we get that

ḑ

k�1

|xk|3
¹
l�k

|xl|eρ1p|q1|�|p1|�����|qd|�|pd|q ¤
�

d� 2

epρ� ρ1q

d�2

eρp|q1|�|p1|�����|qd|�|pd|q. (A.7)
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Defining Pk � pk � pk�1 and Qk � qk � qk�1 and using

|qd| � |pd| ¤ |qd � qd�1| � |qd�1 � qd�2| � . . . |q2 � q1| � |q1| � |pd � pd�1| � � � � � |p1|q

�
ḑ

k�1

p|Pk| � |Qk|q

in eρp|q1|�|p1|�����|qd|�|pd|q, we get the result by (A.7) and the change of variables ppk, qkq Ñ pPk, Qkq
(note that the covariance property with respect to the flow generated by X0 is exactly the same

as explained in the beginning of the proof of Lemma 6.2). �
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