
HAL Id: hal-01326553
https://hal.science/hal-01326553

Submitted on 9 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parametric compact modelling of dynamical systems
using meshfree method with multi-port technique

Moncef Hammadi, Jean-Yves Choley

To cite this version:
Moncef Hammadi, Jean-Yves Choley. Parametric compact modelling of dynamical systems using
meshfree method with multi-port technique. International journal of dynamical systems and differen-
tial equations, 2015, 5 (3), pp.206-219. �10.1504/IJDSDE.2015.071002�. �hal-01326553�

https://hal.science/hal-01326553
https://hal.archives-ouvertes.fr


Int. J. Dynamical Systems and Differential Equations, Vol. x, No. x, xxxx 1

Parametric compact modelling of dynamical
systems using meshfree method with
multi-port technique

Moncef Hammadi*
and Jean-Yves Choley

LISMMA,
SUPMECA-PARIS,
3 rue Fernand Hainaut 93407 Saint-Ouen Cedex, France
Fax: +33 1 49 45 29 29 E-mail*: moncef.hammadi@supmeca.fr
E-mail: jean-yves.choley@supmeca.fr
∗Corresponding author

Abstract: Several dynamical systems require parametric compact mod-
elling of physical behaviour taking into account the tight coupling with
the control system. In this paper, we present an approach combining
meshfree method with multi-port technique for the analysis of physi-
cal systems modelled with partial differential equations. The meshfree
technique used is based on radial basis functions and differential quadra-
ture method. Thermal modelling and simulation of a power electronic
converter is considered as an application to validate the proposed ap-
proach. Obtained results of temperatures and heat fluxes in different
layers of the power converter are compared with finite element analysis.
It is shown that with small stencil sizes, it is possible to produce solu-
tions for complex systems with an accuracy comparable to finite element
method, but with less computation time.
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1 Introduction

Several dynamical systems such as mechatronic systems require integrated de-
sign of mechanical-based systems and their embedded control systems (Amerongen,
2003). The mechanical-based system could also be considered as a multi-physics
system coupling the mechanical structure with other multi-physical sub-systems:
fluid, thermal, electrical, electromagnetic, etc. This means that the optimal dy-
namical system performance can be obtained when the overall system (physical
system + control system) is designed and optimized in an integrated way.
In most of cases, the dynamical system behaviour is modelled with partial differ-
ential equations (PDEs) and the control system is modelled using ordinary differ-
ential equations (ODEs) or differential-algebraic equations (DAEs). For instance,
control of flexible robots (Lee et al., 2001), electro-thermal simulation of Micro-
electromechanical systems (MEMS) (Bechtold et al., 2007), simulation of integrated
power electronic converters (Emadi et al., 2009) and dynamics of smart structures
(Vepa, 2010) are examples of dynamical systems concerned with this subject.

Multi-port technique is a graphical representation for modelling of dynamical
systems addressing problems associated with physical behaviour modelling and de-
sign of control systems. Multi-port modelling tools, such as Bond-Graph (Thoma,
1975) and Modelica (Elmqvist et al., 1998), support modelling with DAEs. How-
ever, PDE modelling is currently not quite supported by these tools, which is con-
sidered as a limitation for multi-port technique.
PDEs can be solved numerically using mainly mesh-based methods, such as finite
element method (FEM), finite difference method (FDM) and finite volume method
(FVM). However, modelling tools based on meshing methods do not currently sup-
port design of control systems.

In recent years, meshfree (or meshless) methods have been used by many re-
searchers for treating a wide range of linear and non-linear phenomena and engi-
neering problems (Tiago and V.M.A.Leito, 2006). Compared to mesh-based tech-
niques, meshfree methods require only nodal data without explicit connectivity
between nodes (Alfaro et al., 2006). Among a variety of meshfree methods, radial
basis function collocation method is one of the most frequently used. Radial basis
functions (RBF) were first used to solve partial differential equations by Kansa
(Kansa, 1990a; Kansa, 1990b), to model fluid dynamics using the method of collo-
cation with Multiquadric RBF.
However, accuracy in most of meshfree methods depends on a shape parameter ”c”
that needs to be correctly selected. Choosing optimal values of shape parameter
has been addressed in several previous works (Carlson and Foley, 1991; Shmuel,
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1999; Larsson and Fornberg, 2003; Fornberg and Wright, 2004; Fornberg and Zuev,
2007). For more information about meshfree techniques, the reader may refer to
(Nguyen et al., 2008).
To overcome some of the drawbacks of the classic RBF collocation method, (Shu
et al., 2003) proposed the radial basis function-differential quadrature method RBF-
DQM. In RBF-DQM, the differential operators in a given node are approximated
as a linear weighted sum of values of the unknown function at some surrounding
nodes. In (Bayona et al., 2010), authors showed that there is a range of values of
the shape parameter for which the convergence of RBF-DQM is signicantly more
accurate than the classic DQM technique.

Few previous works for implementing mesh-based PDE modelling with multi-
port technique (Saldamli et al., 2005; Li et al., 2008) did not show practical use,
due to the difficulties of implementing mesh and long computation time, compared
to standard mesh-based tools. Other approaches based on multi-tool integration
cannot be easily applied to all dynamical systems. For instance, a technique like co-
simulation requires developing exchange interfaces between the tools to be coupled,
and also to define efficient strategies for data exchange between solvers. Otherwise,
the co-simulation could fail or would be with long computing time (Hammadi et al.,
2011).
In this paper we propose a meshfree method based on RBF-DQM to solve problems
modelled with PDEs in multi-port environments. We show through an application
to thermal modelling of a power converter, that the method can be applied to model
multi-component systems with an accuracy compared to finite element method, but
with a shorter computation time. The parametric compact model proposed is suited
for sensitivity analysis, control system design and overall design optimization.

The rest of the paper is organized as follows: in section 2, the mathematical
formulation of RBF-DQM is presented. In section 3, RBF-DQM is applied to elab-
orate a one-dimension thermal component in the multi-port modelling language
Modelica. In section 4, a thermal model of a power converter is considered using
the Modelica component developed with RBF-DQM. In section 5, results of tem-
peratures and heat fluxes obtained in different layers of the power converter are
exposed and compared to finite element analysis. Finally, a conclusion is given in
section 6.

2 RBF-DQM formulation

Considering a PDE-based problem modelled in a bounded domain Ω ⊂ Rd

 Lt[u(x, t)] + Lx[u(x, t)] = f(x, t), in Ω,
Lx[u(x, t)] = g(x, t), on ∂Ω,
Lt[u(x, 0)] = h(x), at t = 0.

(1)

where Lt[.] and Lx[.] are time differential operator and space differential operator,
respectively.
In RBF-DQM, the unknown function u is interpolated using radial basis func-
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tions(Bayona et al., 2010),

u(x, t) =

N∑
j=1

λj(t).Φ(rj(x), cj), (2)

where λj(t) are the unknown variables of the interpolation, x ∈ Rd, rj = ‖x− µj‖
is the distance to the RBF centre µj, µj ∈ Σ and Σ is a set of nodes (Σ ⊂ Rd).
Φ(rj(x), cj) is a radial basis function which depends on a shape parameter cj . In
this study, we consider a constant value shape parameter, thus cj = c.
Commonly used RBFs are:

Gaussian : Φ(r) = e−
r2

c2 , (3)

Multiquadric : Φ(r) =
√
r2 + c2, (4)

Inverse Quadratic : Φ(r) =
1

r2 + c2
, (5)

Inverse Multiquadric : Φ(r) =
1√

r2 + c2
. (6)

In the RBF-DQM, the Lx[.] operator is approximated at nodes xi using the
values of the unknown function u at the N scattered nodes surrounding xi, thus

Lx[u(xi)] ≈
N∑

k=1

aik.u(xk). (7)

Substituting Eq. 2 in Eq. 7

Lx[u(xi)] ≈
N∑

k=1

aik.

N∑
j=1

λj(t).Φ(rj(xk), c). (8)

Applying the operator Lx[.] to Eq. 2 for x = xi

Lx[u(xi)] =

N∑
j=1

λj(t).Lx[Φ(rj(xi), c)]. (9)

Using Eq. 8 and Eq. 9 a linear algebraic system is obtained and can be solved to
determine the coefficients aik; aik are only dependent on radial function and the
shape parameter c.
The Lt[.] will not be approximated in this study, since multi-port tools are able to
solve differential equations with time derivatives.

3 Application of RBF-DQM to one-dimensional heat conduction

Considering the one-dimensional heat conduction problem

ρ.Cp.
∂T (z, t)

∂t
= k.

∂2T (z, t)

∂z2
, (10)
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where ρ[kg/m3] is the mass density of the material, Cp[J.kg−1.K−1] is the specific
heat capacity and k[W.m−1.K−1] the thermal conductivity, which is supposed con-
stant in this study.
With two boundary conditions:

k.
∂T (z, t)

∂z
= −Qz, for z = Hz, (11)

and

T (z = 0, t) = Tz0 , (12)

with an initial condition

T (z, t = 0) = Ti, (13)

where Qz[W/m2] is the heat flux imposed to one boundary (z = Hz), Tz0 [◦C] is
a temperature imposed to the other boundary (z = z0) and Ti[

◦C] is the initial
temperature.
Considering the Multiquadric RBF expressed as

Φ(z − µj) =
√

(z − µj)2 + c2. (14)

The first derivative of Φ with respect to z can easily be determined

∂Φ

∂z
=

z − µj√
(z − µj)2 + c2

, (15)

and the second derivative is

∂2Φ

∂z2
=

1√
(z − µj)2 + c2

− (z − µj)
2

(
√

(z − µj)2 + c2)3
. (16)

By substituting Eq. 16 in Eq. 10 and Eq. 15 in Eq. 11, a DAE system is obtained.

Both regular and irregular stencils can be used in RBF-DQM. The so-called
Gauss-Lobatto-Chbyshev sampling technique has been used to generate an irregular
stencil

zi =
Hz

2
[1− cos( i− 1

N − 1
π)] (for i = 1, 2, · · · , N). (17)

The multi-port modelling language Modelica has been chosen to encapsulate the
DAE system to define a thermal element as shown in Figure 1. Compared to other
modeling tools, such as Bond-Graph, Modelica is an object-oriented and acausal
language, which offers a high flexibility and simplicity to build complex physical
systems.
Connectors are used in multi-port tools to define interfaces between components.

Two type of variables can be defined in this case, flow variable which corresponds to
heat flux and potential variable which is temperature in our case. Thus, boundary
conditions defined by Eq. 11 and Eq. 12 can be associated to connector variables.
The thermal element developed can then be used to model more complex multi-
component systems such as thermal modelling of power converters.
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Figure 1 Thermal RBF-DQM model in Modelica.

4 Case study: Thermal modelling of a power converter

Several dynamic technical systems include power electronic converters to trans-
duce electric energy from one form to another (DC/DC, DC/AC, AC/DC and
AC/AC). Changes in temperature have a significant influence on electrical and me-
chanical behaviour of power converters. These devices may fail catastrophically if
the junction temperature becomes high enough to cause melting and thermal run-
away. Heat generation, caused primarily by semiconductors, must be removed as
efficiently as possible by thermal exchange with ambient. Thus, designing an opti-
mal layout with an optimal control system using integrated configurations is a real
challenge for industry looking to improve packaging and power density. Parametric
compact thermal models are therefore required for optimizing both the layout and
control systems of power converters.

In the case of the thermal modelling of a power converter, the thickness of com-
ponents is small relative to other dimensions, so the system may be governed by 1-D
heat transfer equations. Assuming the temperature is uniform over cross-sections,
heat transfer is therefore performed by conduction along z-axis.

To apply the proposed approach based on the RBF-DQM, the power converter
presented in Figure 2 is considered.
For simplification reasons we consider only one chip semiconductor and its associ-
ated components. Figure 2-a shows the superposition of the components making
the power converter. Figure 2-b shows a 3D-FEM model of the power converter
used to validate the RBF-DQM. The physical and geometrical characteristics of the
power converter are given in Table 1.

Table 1 Dimensions and material characteristics of power converter components.

Ref. Lx(mm) Ly(mm) Hz(mm) ρ(kg/m3) k(W/(m.K)) Cp(J/kg.K)

Chip 1 10 10 0.35 2330 124 771
Solder1 2 10 10 0.1 7300 60 180
Copper plate 3 10 10 0.3 8900 390 385
Solder2 4 10 10 0.1 7300 60 180
Substrate 5 45 25 0.5 3960 23 880
Solder3 6 45 25 0.1 7300 60 180
Heat Sink 7 45 25 0.5 2700 237 897

The chip device (Ref. 1), which is a transistor, is supposed to receive a variable heat
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Figure 2 Power converter: a) Layout of the components, b) FEM model.

flux Qin, due to electric dissipation during device switching. Electric modelling is
not considered in this study. The bottom face of the heat sink (Ref. 7) is supposed
to be at a constant temperature Tin. The initial temperature T0 is supposed the
same for all the components.
Figure 3 shows the thermal model of the power converter performed in Modelica
buy connecting instances of the thermal element developed using RBF-DQM.

1: Chip

2: Solder1

3: Copper

4: Solder2

5: Substrate

6: Solder3

7: Heat Sink

Figure 3 Thermal model of the power converter using RBF-DQM and Modelica.

The results obtained with the RBF-DQM-Modelica approach are compared to those
obtained with FEM analysis using Ansys Workbench software. Thus, temperatures
and heat fluxes are measured in different layers of FEM study and compared to
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temperatures and heat fluxes measured in the interfaces of the thermal model in
Modelica.

5 Results and discussion

For FEM and RBF-DQM simulations, a transient thermal analysis were per-
formed considering a sinusoidal input heat flux with a frequency of 20Hz and an
amplitude of 4W/cm2. The temperature of the bottom face of the heat sink (Ref.
7) is Tin = 30◦C. The initial temperature for all components is T0 = 30◦C. The
time of simulation is chosen to be 0.25 second with a step equal to 125.10−5 second,
for both FEM and RBF-DQM analysis.

To study the stability and convergence of the proposed approach and its ap-
plication to the thermal modelling of a power converter, the number of nodes per
thermal component and the shape parameter were firstly considered.
Figure 4 shows the relative error variation of the junction temperature depending
on time for different number of nodes per thermal element N . The junction tem-
perature is measured in the face receiving the input heat flux of the chip device
(Ref. 1).
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]

Figure 4 Relative error of junction temperature depending on number of nodes per
thermal element.

Results show that for a number of nodes per thermal element less than or equal to
6, the relative error can be more than 24%. However for a number of nodes equal
to or more than 7 the relative error is less than 2%. This shows that with small
stencil sizes, it is possible to produce accurate results with RBF-DQM comparable
to finite element method.

Figure 5 shows the mean value of the relative error for the junction temperature
depending on shape parameter c1 of plates (Refs: 1, 3, 5 and 7).
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Figure 5 Relative error depending on shape parameter c1.

Results show that for c1 between 0.0003 and 0.002 the mean relative error remains
less than 1%, which confirms the existence of a domain for which convergence of
the solution is achieved.

For the next RBF-DQM analysis, we chose a configuration defined by a number
of nodes per thermal element N = 7 and shape parameter for components (1, 3, 5
and 7 ) c1 = 0.0003 and c2 = 0.0001 for other components.
Figure 6 shows results for heat fluxes obtained with FEM and RBF-DQM analysis.

H
ea

t f
lu

x 
[W

/m
²]

Time[s]

Figure 6 RBF-DQM and FEM analysis: Heat fluxes in three interfaces and input
heat flux.

Heat fluxes were measured in three layers: top face of the copper plate (Ref. 3),
top face of substrate plate (Ref. 5) and top face of heat sink plate (Ref. 7).
It can be deduced that results show a good agreement between RBF-DQM and
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FEM method. The relative error between the two results varies between 0.2% and
1%, which shows a good approximation of the first derivatives used to calculate
heat fluxes with RBF-DQM. Heat fluxes, calculated at thermal element bound-
aries, have a direct influence on temperatures calculated in thermal elements and
in their interfaces. Therefore, they have to be calculated as accurately as possible.

Results of temperature simulation with FEM and RBF-DQM are superposed in
Figure 7. These results are arranged as following: junction temperature in ’Port1’

Time [s] 

T
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tu
re

 [°
C

]

Figure 7 Comparison of temperature results for FEM and RBF-DQM simulation.

of Chip component, temperature in interface between Solder1 (Ref. 2) and Copper
plate (Ref. 3), temperature in interface between Solder2 (Ref 4) and Substrate
(Ref. 5), temperature in interface between Substrate (Ref. 5) and Solder3 (Ref. 6)
and temperature in interface between Solder3 (Ref. 6) and Heat Sink (Ref. 7).
As for heat fluxes, RBF-DQM and FEM analysis show a good correlation for tem-
peratures measured in different interfaces. These results help to understand the
effect of every component in the thermal exchange process with ambient, allowing
better thermal management of the power converter. Results show that a signifi-
cant drop in temperature is found in the substrate layer (Ref. 5) due to its low
conductivity. We can also remark delays introduced in different temperatures due
to specific heat capacities related to component materials used.

Figure 8 shows the relative error of the junction temperature. The value of the
relative error in the starting phase is between 5% and 6%. This relatively high
value can be explained with the complexity of numerical solving of the transient
heating phase. Therefore, the numerical solutions given by FEM and RBF-DQM
are not exactly the same. However, the relative error in the steady-state phase is
less than 2%, which is coherent with the results previously presented.
To compare computation time, both FEM and RBF-DQM analysis were performed
on the same computer (4 Go RAM, Intel Processor 2.8 Ghz). Computing time for
FEM analysis was 94 seconds, whereas it was only 11 seconds for the RBF-DQM
analysis. This gain of time is significantly important especially when dealing with
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Figure 8 Relative error for junction temperature.

sensitivity analysis and optimization of complex power converters with a bigger
number of components.

The parametric thermal model developed in this study allows sensitivity anal-
ysis to measure the effect of design parameters on the desired results. For this
we chose to study the effect of component thickness on the junction temperature.
In this analysis four thicknesses (noted Hz) are analyzed: Substrate (Sb), Solder
(So), Heat Sink (Hs) and Copper (Co). Figure 9 shows the results of the sensitivity
analysis.

% effect on Junction Temerature

Hz_SbHz_Sb

Hz_So

Hz_Hs

Hz_Co

Figure 9 Component thickness effect on junction temperature

Results show that the substrate plate thickness has the most important effect (66%),
and the copper plate thickness has the least effect (1%). Other thickness effects
are: Solder (25 %) and Heat sink (6%).

The Figure 10 (left) shows the relationship between the junction temperature
and the substrate thickness which varies between 0.1 and 1 mm.
The junction temperature is varying quasi-linearly between 70 and 130◦ C.
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Figure 10 Substrate (left) and copper plate (right) thickness effects on junction tem-
perature

The Figure 10 (right) shows the variation of the junction temperature depending
on the copper plate thickness, which is varying between 0.1 and 0.5 mm. The figure
shows that the difference between the maximum and minimum temperatures is 4◦

C. It is also shown that a minimum value for the junction temperature is found for
a copper plate thickness around 0.35 mm.
Therefore, The parametric compact thermal model developed allows us to analyse
the sensitivity and then can help to perform design optimization. Moreover, the
model can be used as a support for the design of the control system.

6 Conclusion

In this paper a meshfree method is presented for parametric compact modelling
of PDE-based systems in multi-port modelling environments. One-dimensional
thermal model is developed using RBF-DQM and applied to thermal modelling
of a power converter. Modelica language with Dymola software have been used
for the implementation of the method. Any other multi-port modeling tool could
also be used. Then, a comparison is made between RBF-DQM and FEM. Results
considered are temperatures and heat fluxes in different layers of the power con-
verter. Results show that with small stencil sizes, it is possible to produce solutions
with accuracy comparable to FEM, but with less computation time. The paramet-
ric model elaborated allows sensitivity analysis, design optimization and helps for
elaborating integrated control models.

Due to its dependence on the distance between centres and not the location,
the method could be easily applied to 2D and 3D problems. RBF-DQM has been
applied to thermal modelling, but it is also extendible to other dynamical problems.
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