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Introduction

Several dynamical systems such as mechatronic systems require integrated design of mechanical-based systems and their embedded control systems [START_REF] Amerongen | Mechatronic design[END_REF]. The mechanical-based system could also be considered as a multi-physics system coupling the mechanical structure with other multi-physical sub-systems: fluid, thermal, electrical, electromagnetic, etc. This means that the optimal dynamical system performance can be obtained when the overall system (physical system + control system) is designed and optimized in an integrated way. In most of cases, the dynamical system behaviour is modelled with partial differential equations (PDEs) and the control system is modelled using ordinary differential equations (ODEs) or differential-algebraic equations (DAEs). For instance, control of flexible robots [START_REF] Lee | Adaptive robust controller design for multilink flexible robots[END_REF], electro-thermal simulation of Microelectromechanical systems (MEMS) [START_REF] Bechtold | Fast Simulation of Electro-Thermal MEMS[END_REF], simulation of integrated power electronic converters [START_REF] Emadi | Integrated Power Electronic Converters and Digital Control[END_REF] and dynamics of smart structures [START_REF] Vepa | Dynamics of Smart Structures[END_REF] are examples of dynamical systems concerned with this subject.

Multi-port technique is a graphical representation for modelling of dynamical systems addressing problems associated with physical behaviour modelling and design of control systems. Multi-port modelling tools, such as Bond-Graph [START_REF] Thoma | Bond graphs: introduction and applications[END_REF] and Modelica [START_REF] Elmqvist | Modelica : The new objectoriented modeling language[END_REF], support modelling with DAEs. However, PDE modelling is currently not quite supported by these tools, which is considered as a limitation for multi-port technique. PDEs can be solved numerically using mainly mesh-based methods, such as finite element method (FEM), finite difference method (FDM) and finite volume method (FVM). However, modelling tools based on meshing methods do not currently support design of control systems.

In recent years, meshfree (or meshless) methods have been used by many researchers for treating a wide range of linear and non-linear phenomena and engineering problems [START_REF] Tiago | Application of radial basis functions to linear and nonlinear structural analysis problems[END_REF]. Compared to mesh-based techniques, meshfree methods require only nodal data without explicit connectivity between nodes [START_REF] Alfaro | Meshless methods with application to metal forming[END_REF]. Among a variety of meshfree methods, radial basis function collocation method is one of the most frequently used. Radial basis functions (RBF) were first used to solve partial differential equations by Kansa (Kansa, 1990a;[START_REF] Kansa | Multiquadrics: A scattered data approximation scheme with applications to computational fluid-dynamics-2 solutions to parabolic, hyperbolic and elliptic partial differential equations[END_REF], to model fluid dynamics using the method of collocation with Multiquadric RBF. However, accuracy in most of meshfree methods depends on a shape parameter "c" that needs to be correctly selected. Choosing optimal values of shape parameter has been addressed in several previous works [START_REF] Carlson | The parameter r2 in multiquadric interpolation[END_REF][START_REF] Shmuel | An algorithm for selecting a good value for the parameter c in radial basis function interpolation[END_REF][START_REF] Larsson | A numerical study of some radial basis function based solution methods for elliptic pdes[END_REF][START_REF] Fornberg | Stable computation of multiquadric interpolants for all values of the shape parameter[END_REF][START_REF] Fornberg | The runge phenomenon and spatially variable shape parameters in rbf interpolation[END_REF]. For more information about meshfree techniques, the reader may refer to [START_REF] Nguyen | Meshless methods: A review and computer implementation aspects[END_REF]. To overcome some of the drawbacks of the classic RBF collocation method, [START_REF] Shu | Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible navier-stokes equations[END_REF] proposed the radial basis function-differential quadrature method RBF-DQM. In RBF-DQM, the differential operators in a given node are approximated as a linear weighted sum of values of the unknown function at some surrounding nodes. In [START_REF] Bayona | Rbf-fd formulas and convergence properties[END_REF], authors showed that there is a range of values of the shape parameter for which the convergence of RBF-DQM is signicantly more accurate than the classic DQM technique.

Few previous works for implementing mesh-based PDE modelling with multiport technique [START_REF] Saldamli | A framework for describing and solving pde models in modelica[END_REF][START_REF] Li | Solving pde models in modelica[END_REF] did not show practical use, due to the difficulties of implementing mesh and long computation time, compared to standard mesh-based tools. Other approaches based on multi-tool integration cannot be easily applied to all dynamical systems. For instance, a technique like cosimulation requires developing exchange interfaces between the tools to be coupled, and also to define efficient strategies for data exchange between solvers. Otherwise, the co-simulation could fail or would be with long computing time [START_REF] Hammadi | Layout optimization of power modules using a sequentially coupled approach[END_REF].

In this paper we propose a meshfree method based on RBF-DQM to solve problems modelled with PDEs in multi-port environments. We show through an application to thermal modelling of a power converter, that the method can be applied to model multi-component systems with an accuracy compared to finite element method, but with a shorter computation time. The parametric compact model proposed is suited for sensitivity analysis, control system design and overall design optimization.

The rest of the paper is organized as follows: in section 2, the mathematical formulation of RBF-DQM is presented. In section 3, RBF-DQM is applied to elaborate a one-dimension thermal component in the multi-port modelling language Modelica. In section 4, a thermal model of a power converter is considered using the Modelica component developed with RBF-DQM. In section 5, results of temperatures and heat fluxes obtained in different layers of the power converter are exposed and compared to finite element analysis. Finally, a conclusion is given in section 6.

RBF-DQM formulation

Considering a PDE-based problem modelled in a bounded domain Ω ⊂ R d    L t [u(x, t)] + L x [u(x, t)] = f (x, t), in Ω, L x [u(x, t)] = g(x, t), on ∂Ω, L t [u(x, 0)] = h(x), at t = 0.
(

) 1 
where L t [.] and L x [.] are time differential operator and space differential operator, respectively.

In RBF-DQM, the unknown function u is interpolated using radial basis func-author tions [START_REF] Bayona | Rbf-fd formulas and convergence properties[END_REF],

u(x, t) = N j=1 λ j (t).Φ(r j (x), c j ), (2) 
where λ j (t) are the unknown variables of the interpolation, x ∈ R d , r j = x -µ j is the distance to the RBF centre µ j , µ j ∈ Σ and Σ is a set of nodes (Σ ⊂ R d ). Φ(r j (x), c j ) is a radial basis function which depends on a shape parameter c j . In this study, we consider a constant value shape parameter, thus c j = c.

Commonly used RBFs are:

Gaussian : Φ(r) = e -r 2 c 2 , (3) 
M ultiquadric : Φ(r) = r 2 + c 2 , ( 4 
)
Inverse Quadratic : Φ(r) = 1 r 2 + c 2 , ( 5 
)
Inverse M ultiquadric : Φ(r) = 1 √ r 2 + c 2 . ( 6 
)
In the RBF-DQM, the L x [.] operator is approximated at nodes x i using the values of the unknown function u at the N scattered nodes surrounding x i , thus

L x [u(x i )] ≈ N k=1 a ik .u(x k ). ( 7 
)
Substituting Eq. 2 in Eq. 7

L x [u(x i )] ≈ N k=1 a ik . N j=1 λ j (t).Φ(r j (x k ), c). ( 8 
)
Applying the operator L x [.] to Eq. 2 for

x = x i L x [u(x i )] = N j=1 λ j (t).L x [Φ(r j (x i ), c)]. (9) 
Using Eq. 8 and Eq. 9 a linear algebraic system is obtained and can be solved to determine the coefficients a ik ; a ik are only dependent on radial function and the shape parameter c. The L t [.] will not be approximated in this study, since multi-port tools are able to solve differential equations with time derivatives.

Application of RBF-DQM to one-dimensional heat conduction

Considering the one-dimensional heat conduction problem

ρ.C p . ∂T (z, t) ∂t = k. ∂ 2 T (z, t) ∂z 2 , ( 10 
)
where ρ[kg/m 3 ] is the mass density of the material, C p [J.kg -1 .K -1 ] is the specific heat capacity and k[W.m -1 .K -1 ] the thermal conductivity, which is supposed constant in this study. With two boundary conditions:

k. ∂T (z, t) ∂z = -Q z , f or z = H z , (11) 
and

T (z = 0, t) = T z0 , (12) 
with an initial condition

T (z, t = 0) = T i , (13) 
where

Q z [W/m 2 ] is the heat flux imposed to one boundary (z = H z ), T z0 [ • C] is a temperature imposed to the other boundary (z = z 0 ) and T i [ • C] is the initial temperature.
Considering the Multiquadric RBF expressed as

Φ(z -µ j ) = (z -µ j ) 2 + c 2 . ( 14 
)
The first derivative of Φ with respect to z can easily be determined

∂Φ ∂z = z -µ j (z -µ j ) 2 + c 2 , ( 15 
)
and the second derivative is

∂ 2 Φ ∂z 2 = 1 (z -µ j ) 2 + c 2 - (z -µ j ) 2 ( (z -µ j ) 2 + c 2 ) 3 . ( 16 
)
By substituting Eq. 16 in Eq. 10 and Eq. 15 in Eq. 11, a DAE system is obtained.

Both regular and irregular stencils can be used in RBF-DQM. The so-called Gauss-Lobatto-Chbyshev sampling technique has been used to generate an irregular stencil

z i = H z 2 [1 -cos( i -1 N -1 π)] (f or i = 1, 2, • • • , N ). ( 17 
)
The multi-port modelling language Modelica has been chosen to encapsulate the DAE system to define a thermal element as shown in Figure 1. Compared to other modeling tools, such as Bond-Graph, Modelica is an object-oriented and acausal language, which offers a high flexibility and simplicity to build complex physical systems.

Connectors are used in multi-port tools to define interfaces between components. Two type of variables can be defined in this case, flow variable which corresponds to heat flux and potential variable which is temperature in our case. Thus, boundary conditions defined by Eq. 11 and Eq. 12 can be associated to connector variables. The thermal element developed can then be used to model more complex multicomponent systems such as thermal modelling of power converters. 4 Case study: Thermal modelling of a power converter Several dynamic technical systems include power electronic converters to transduce electric energy from one form to another (DC/DC, DC/AC, AC/DC and AC/AC). Changes in temperature have a significant influence on electrical and mechanical behaviour of power converters. These devices may fail catastrophically if the junction temperature becomes high enough to cause melting and thermal runaway. Heat generation, caused primarily by semiconductors, must be removed as efficiently as possible by thermal exchange with ambient. Thus, designing an optimal layout with an optimal control system using integrated configurations is a real challenge for industry looking to improve packaging and power density. Parametric compact thermal models are therefore required for optimizing both the layout and control systems of power converters.

In the case of the thermal modelling of a power converter, the thickness of components is small relative to other dimensions, so the system may be governed by 1-D heat transfer equations. Assuming the temperature is uniform over cross-sections, heat transfer is therefore performed by conduction along z-axis.

To apply the proposed approach based on the RBF-DQM, the power converter presented in Figure 2 is considered. For simplification reasons we consider only one chip semiconductor and its associated components. Figure 2-a shows the superposition of the components making the power converter. Figure 2-b shows a 3D-FEM model of the power converter used to validate the RBF-DQM. The physical and geometrical characteristics of the power converter are given in Table 1. The chip device (Ref. 1), which is a transistor, is supposed to receive a variable heat flux Q in , due to electric dissipation during device switching. Electric modelling is not considered in this study. The bottom face of the heat sink (Ref. 7) is supposed to be at a constant temperature T in . The initial temperature T 0 is supposed the same for all the components. Figure 3 shows the thermal model of the power converter performed in Modelica buy connecting instances of the thermal element developed using RBF-DQM. The results obtained with the RBF-DQM-Modelica approach are compared to those obtained with FEM analysis using Ansys Workbench software. Thus, temperatures and heat fluxes are measured in different layers of FEM study and compared to author temperatures and heat fluxes measured in the interfaces of the thermal model in Modelica.

Results and discussion

For FEM and RBF-DQM simulations, a transient thermal analysis were performed considering a sinusoidal input heat flux with a frequency of 20Hz and an amplitude of 4W/cm 2 . The temperature of the bottom face of the heat sink (Ref. 7) is T in = 30 • C. The initial temperature for all components is T 0 = 30 • C. The time of simulation is chosen to be 0.25 second with a step equal to 125.10 -5 second, for both FEM and RBF-DQM analysis.

To study the stability and convergence of the proposed approach and its application to the thermal modelling of a power converter, the number of nodes per thermal component and the shape parameter were firstly considered. Figure 4 shows the relative error variation of the junction temperature depending on time for different number of nodes per thermal element N . The junction temperature is measured in the face receiving the input heat flux of the chip device (Ref. 1).
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Figure 4

Relative error of junction temperature depending on number of nodes per thermal element.

Results show that for a number of nodes per thermal element less than or equal to 6, the relative error can be more than 24%. However for a number of nodes equal to or more than 7 the relative error is less than 2%. This shows that with small stencil sizes, it is possible to produce accurate results with RBF-DQM comparable to finite element method.

Figure 5 shows the mean value of the relative error for the junction temperature depending on shape parameter c 1 of plates (Refs: 1, 3, 5 and 7). Figure 5

Relative error depending on shape parameter c1.

Results show that for c 1 between 0.0003 and 0.002 the mean relative error remains less than 1%, which confirms the existence of a domain for which convergence of the solution is achieved.

For the next RBF-DQM analysis, we chose a configuration defined by a number of nodes per thermal element N = 7 and shape parameter for components (1, 3, 5 and 7 ) c 1 = 0.0003 and c 2 = 0.0001 for other components. Figure 6 shows results for heat fluxes obtained with FEM and RBF-DQM analysis. It can be deduced that results show a good agreement between RBF-DQM and author FEM method. The relative error between the two results varies between 0.2% and 1%, which shows a good approximation of the first derivatives used to calculate heat fluxes with RBF-DQM. Heat fluxes, calculated at thermal element boundaries, have a direct influence on temperatures calculated in thermal elements and in their interfaces. Therefore, they have to be calculated as accurately as possible.

Results of temperature simulation with FEM and RBF-DQM are superposed in Figure 7. These results are arranged as following: junction temperature in 'Port1' As for heat fluxes, RBF-DQM and FEM analysis show a good correlation for temperatures measured in different interfaces. These results help to understand the effect of every component in the thermal exchange process with ambient, allowing better thermal management of the power converter. Results show that a significant drop in temperature is found in the substrate layer (Ref. 5) due to its low conductivity. We can also remark delays introduced in different temperatures due to specific heat capacities related to component materials used.

Figure 8 shows the relative error of the junction temperature. The value of the relative error in the starting phase is between 5% and 6%. This relatively high value can be explained with the complexity of numerical solving of the transient heating phase. Therefore, the numerical solutions given by FEM and RBF-DQM are not exactly the same. However, the relative error in the steady-state phase is less than 2%, which is coherent with the results previously presented. To compare computation time, both FEM and RBF-DQM analysis were performed on the same computer (4 Go RAM, Intel Processor 2.8 Ghz). Computing time for FEM analysis was 94 seconds, whereas it was only 11 seconds for the RBF-DQM analysis. This gain of time is significantly important especially when dealing with author Figure 10 Substrate (left) and copper plate (right) thickness effects on junction temperature

The Figure 10 (right) shows the variation of the junction temperature depending on the copper plate thickness, which is varying between 0.1 and 0.5 mm. The figure shows that the difference between the maximum and minimum temperatures is 4 • C. It is also shown that a minimum value for the junction temperature is found for a copper plate thickness around 0.35 mm. Therefore, The parametric compact thermal model developed allows us to analyse the sensitivity and then can help to perform design optimization. Moreover, the model can be used as a support for the design of the control system.

Conclusion

In this paper a meshfree method is presented for parametric compact modelling of PDE-based systems in multi-port modelling environments. One-dimensional thermal model is developed using RBF-DQM and applied to thermal modelling of a power converter. Modelica language with Dymola software have been used for the implementation of the method. Any other multi-port modeling tool could also be used. Then, a comparison is made between RBF-DQM and FEM. Results considered are temperatures and heat fluxes in different layers of the power converter. Results show that with small stencil sizes, it is possible to produce solutions with accuracy comparable to FEM, but with less computation time. The parametric model elaborated allows sensitivity analysis, design optimization and helps for elaborating integrated control models.

Due to its dependence on the distance between centres and not the location, the method could be easily applied to 2D and 3D problems. RBF-DQM has been applied to thermal modelling, but it is also extendible to other dynamical problems.

  Figure 1Thermal RBF-DQM model in Modelica.
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 2 Figure 2Power converter: a) Layout of the components, b) FEM model.
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 3 Figure 3Thermal model of the power converter using RBF-DQM and Modelica.
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 6 Figure 6 RBF-DQM and FEM analysis: Heat fluxes in three interfaces and input heat flux. Heat fluxes were measured in three layers: top face of the copper plate (Ref. 3), top face of substrate plate (Ref. 5) and top face of heat sink plate (Ref. 7). It can be deduced that results show a good agreement between RBF-DQM and
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 7 Figure 7 Comparison of temperature results for FEM and RBF-DQM simulation. of Chip component, temperature in interface between Solder1 (Ref. 2) and Copper plate (Ref. 3), temperature in interface between Solder2 (Ref 4) and Substrate (Ref. 5), temperature in interface between Substrate (Ref. 5) and Solder3 (Ref. 6) and temperature in interface between Solder3 (Ref. 6) and Heat Sink (Ref. 7).As for heat fluxes, RBF-DQM and FEM analysis show a good correlation for temperatures measured in different interfaces. These results help to understand the effect of every component in the thermal exchange process with ambient, allowing better thermal management of the power converter. Results show that a significant drop in temperature is found in the substrate layer (Ref. 5) due to its low conductivity. We can also remark delays introduced in different temperatures due to specific heat capacities related to component materials used.

  

Table 1

 1 Dimensions and material characteristics of power converter components.

		Ref. Lx(mm) Ly(mm) Hz(mm) ρ(kg/m 3 ) k(W/(m.K)) Cp(J/kg.K)
	Chip	1	10	10	0.35	2330	124	771
	Solder1	2	10	10	0.1	7300	60	180
	Copper plate 3	10	10	0.3	8900	390	385
	Solder2	4	10	10	0.1	7300	60	180
	Substrate	5	45	25	0.5	3960	23	880
	Solder3	6	45	25	0.1	7300	60	180
	Heat Sink	7	45	25	0.5	2700	237	897
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Relative error [%] Figure 8 Relative error for junction temperature.

sensitivity analysis and optimization of complex power converters with a bigger number of components.

The parametric thermal model developed in this study allows sensitivity analysis to measure the effect of design parameters on the desired results. For this we chose to study the effect of component thickness on the junction temperature. In this analysis four thicknesses (noted H z ) are analyzed: Substrate (Sb), Solder (So), Heat Sink (Hs) and Copper (Co). Figure 9 shows the results of the sensitivity analysis.

% effect on Junction Temerature

Component thickness effect on junction temperature

Results show that the substrate plate thickness has the most important effect (66%), and the copper plate thickness has the least effect (1%). Other thickness effects are: Solder (25 %) and Heat sink (6%).

The Figure 10 (left) shows the relationship between the junction temperature and the substrate thickness which varies between 0.1 and 1 mm. The junction temperature is varying quasi-linearly between 70 and 130 • C.