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A novel approach for partitioning and coordinating the collaborative design optimization
of complex systems is described. A partitioning metric has been formulated to select the
best partitioning solutions among the total possibilities of dividing the complex design
optimization problem. Then, an agent-supported approach is used for the coordination
of the collaborative design optimization. The approach has been applied to the case
of a preliminary design of an electric vehicle, to demonstrate how various agents can
effectively communicate with each other to provide support to the collaborative design
optimization of complex systems.
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1. Introduction

The design process of engineered complex systems requires the synergy between

several engineering disciplines. A complex system is defined as a system of a large

number of parts that interrelate in a non-simple manner 1. In the field of engi-

neering design optimization of multidisciplinary systems, such as electric vehicles,

engineers have to deal with a big number of design variables, design constraints and

design objectives, which are interrelated in non-simple manner. For this purpose,

the complex system design should be optimized as a whole to maximize its added

value. However, some issues are facing the design synergy of complex systems. In-

deed, the whole design work has to be distributed on multidisciplinary development

teams to cut down the problem complexity and the computing cost. Design teams

have to collaborate between each other to reduce the design errors and inconsisten-

cies. In addition, several modeling and simulation tools are required to verify and
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validate the design. Furthermore, different abstraction levels of models have to be

considered during the design process phases of the complex system. Consequently,

the complex system design should be divided into partitions easier to manage in a

collaborative and distributed design context.

Dealing with the design integration issues, several previous works proposed ap-

proaches and frameworks to integrate collaborative design optimization (2, 3, 4, 5,
6). Most these works are based on multidisciplinary design optimization (MDO)

techniques 7 and more recently agent-based paradigm 8. However, research activi-

ties are still needed in the area of collaborative distributed design to reduce costs

and development time of complex products.

A new approach is proposed in this paper for partitioning and coordinating the

design of complex systems to facilitate the collaborative optimization of the de-

sign. In this approach, the designer defines the maximum number of partitioning

solutions, next he selects the best solutions using a partitioning metric. Then, an

agent-supported technique is proposed to coordinate the collaborative optimization.

The approach has been applied to the case of a preliminary design of an electric

vehicle to demonstrate how various agents can effectively communicate with each

other to provide support to the collaborative design optimization.

In this paper, Section 2 gives an overview of the work related to our research.

Section 3 describes our approach for partitioning and coordinating the optimization

of complex system design. Section 4 presents an application to a case of preliminary

design of an electric vehicle to illustrate how the design optimization is supported

by the developed agents. Finally, conclusions are given in section 5.

2. Related works

The most employed method to optimize a whole complex system is the MDO ap-

proach. MDO uses optimization methods to solve design problems incorporating a

number of disciplines. Several MDO techniques have been developed in this field

such as concurrent subspace optimization 9, multidisciplinary feasible design 2, col-

laborative optimization CO 3, multi-objective collaborative optimization MOCO
10, analytical target cascading ATC 11 and bi-level integrated system synthesis 12.

Such approaches can be applied to the optimization of large multidisciplinary sys-

tems such as planes or vehicles, but also for optimizing smart complex products

such as power converters 13.

For instance, ATC is an MDO technique based on propagating system targets,

representing requirements or desirable properties, through a hierarchical represen-

tation of the system to achieve a feasible system design satisfying these targets 14.

ATC technique uses, in most of cases, quadratic penalty functions at both system
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level and local sub-problem level to coordinate the overall distributed design. How-

ever, the distributed set of sub-problems must be solved for a given set of weights,

because of the non-separable nature of the quadratic penalty function 7. This makes

coordination difficult for the collaborative design optimization of large complex sys-

tems.

Coordination of design tasks, and therefore design analysis with simulation, can

however be managed using agent technology.

A software agent is a program whose behavior can be characterized with autonomy,

cooperation and learning 15. Synergy between agent paradigm and simulation can

be seen from different viewpoints. For instance, agent simulation concerns the use

of simulation techniques to simulate the behavior of agent systems. Agent-based

simulation is the use of agent techniques, as intelligent piece of software, to gener-

ate simulation models. Whereas, agent-supported simulation deals with the use of

intelligent agents to enrich simulation environments 16.

Several agent-oriented applications were developed last years in different industrial

applications including manufacturing, process control, transportation and telecom-

munication 17.

More recently, agent-based techniques are being used increasingly in practice

for the distributed multidisciplinary design of complex systems. For instance, a

prototyping environment for integrating Web and agent technologies for MDO was

presented by Wan et al. 18. Agents were utilized to encapsulate the functionali-

ties related to the design process and product performance simulation. Likewise,

an agent approach using a negotiation mechanism based on a price schedules de-

composition algorithm, originally developed in economics, was proposed by Lin

et al. 19. The mechanism searches for globally optimal designs, where no partici-

pant is necessary to own full knowledge of the entire design space. Furthermore,

multi-agent design paradigm has also been used to tackle the issue of multi-level

modeling in mechatronic design 20. Analysis models belonging to different abstrac-

tion levels were encapsulated into agents linked with relationships and managed

with design rules. Moreover, a comparative study between multi-agent systems and

multi-disciplinary optimization approaches was proposed in the domain of multi-

disciplinary collaborative building design by Ren et al. 21. In this last study, it was

concluded that agent technology could be adopted for the collaboration process in

MDO to make the process more efficient. However, much work is required to de-

velop sophisticated theory and approaches in order to make agent techniques more

powerful and mature for the distributed multidisciplinary design optimization of

complex systems.

Our work comes in this direction in order to improve the use of agent technolo-

gies in the collaborative design process of complex engineering systems. Indeed,

the multidisciplinary design of complex systems should be optimally partitioned
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in order to develop efficient software agents that facilitate the coordination and

communication between agents during the design optimization process. For this,

we propose a new formal approach for partitioning and coordinating the design of

complex systems.

3. Description of the approach for partitioning and coordinating

the design of complex engineering systems

To obtain the optimal design of a complex system in a distributed collaborative

design context, we propose firstly to divide the optimization problem into partitions

easier to solve, then secondly we coordinate the overall design optimization using

agent technology.

3.1. Optimal partitioning of the design optimization

A solution for maximizing the added value of a complex product is to formulate and

solve an optimization problem. Our approach for partitioning the complex design

is based on the specification of the optimization formulation of the complex system

design by specifying the objectives, the constraints and the design variables.

We consider a problem of a complex design optimization defined with a set of

m objective functions F , n constraints G, r design variables X, s analysis mod-

els A and t partitioning possibilities P , respectively noted as: F = {f1, f2, .., fm};
G = {g1, g2, .., gn}; X = {x1, x2, .., xr}, A = {a1, a2, .., as} and P = {p1, p2, .., pt};
m, n, r, s and t ∈ N.

The optimization problem of the design can be formulated as the following:

min F (X)

w.r.t X (1)

s.t G(X)

The objective of our partitioning approach is to find the optimal decompositions

combining subsets of objectives, constraints, design variables and analysis models.

Analysis models are used to evaluate the objective functions and constraints

which are interrelated with the design variables. Analysis models depend on several

design factors such us the different use cases to be evaluated and the hierarchical

decomposition structure of the complex system into subsystems and components.

They also can be dependent on the degree of coupling between the design variables,

constraints and objective functions related to the different subsystems.
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A Design partitioning configuration is defined with the association of subsets of

objective functions, design constraints, design variables and analysis models. Objec-

tive functions, constraints and design variables can be associated to analysis models

according to some criteria related to the overall computation time, the computation

time of every analysis model and the coupling degree between constraints, objective

functions and design variables. The coupling degree can be measured as the amount

of information to be exchanged between the different variables.

The first step of our partitioning method is to define the maximum partitioning

possibilities. For this, we need to draw a network graph defining all the possible

partitioning solutions. An example of such networks will be treated in the example

of next section.

In the second step, we search the optimal way of partitioning the optimization

problem. For this we define, for every partitioning solution, a metric that we call

partitioning metric defined as:

Pm =
1

Na
.

1

Cc
.

Na∑
j=1

Coj
Cxj

(2)

where: Na is the number of analysis models present in one partitioning solution, Cc

is the degree of complexity of coordination between analysis models in one parti-

tioning solution, Coj is the degree of coupling between design variables within one

analysis model j and Cxj is the degree of complexity to implement one analysis

model j.

The degree of coupling between design variables within one analysis model Coj can

be determined by summing all the local degrees of coupling between each two design

variables that represent the objective functions and constraints. The local degrees

of coupling can be determined based on the experience of the designers using the

analysis models or by using parametric sensitivity analysis of the design variables.

We choose the local degrees of coupling to be between 0 for non-coupled variables

and 1 for strongly coupled variables. The global coupling degree of the partitioning

solution Coj can however be greater than 1.

The degree of complexity to implement one analysis model Cxj can also be deter-

mined based on the experience of designers. We chose values of Cxj to be between 0

for an easy to develop and implement analysis models and 10 for very complicated

ones. However, a judicious choice of the maximum value of Cxj may be the value

that normalizes all the partitioning metrics. So that all the values of the partition-

ing metric are less than one, which makes easier the comparison between partitions.

The degree of complexity to coordinate between analysis models Cc in a given par-

titioning configuration is proportional to the number of analysis models Na used in

the same partition. For this, we choose Cc to be simply equal to Na.

Once all the parameters of the partitioning metric are determined, Pm can easily

be calculated using equation 2. In the case of large complex design problems with a
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big number of design variables, one optimization problem can be formulated based

on maximizing Pm to find the optimal partitioning solutions.

After the partitioning phase, designers develop the analysis models and define

the optimization workflow. However, a coordination between analysis models is

required to reach the overall optimization objectives. For this, we propose an agent-

supported approach to coordinate the optimization process.

3.2. Coordination of the global optimization using agent-supported

approach

The design optimization workflow is mainly made up of optimization activities

controlled by software agents. An optimization activity is the task of calling an

optimizer controlling an analysis model, or a list of coupled analysis models, to

execute an optimization related to one partition according to predefined design

constraints and objectives. We propose to use two types of agents, a coordinating

agent (or coordinator) and several design agents. Both types of agents can exchange

messages between each other and participate in the design optimization process.

The messages exchanged can be the orders to execute optimization or the orders

to change input parameters related to design variables or constraint limits. They

can also be the orders to retrieve results and send them to other agents. Based

on the local optimization results sent by the design agents, the coordinating agent

searches for the global optimal design that satisfies all local optimizations.

The optimization process workflow is not established beforehand, but the coordi-

nating agent adapts the process depending on the evolution of the optimization

process. The coordinating agent organizes therefore the negotiation process with

the design agents to reach a trade-off about the optimal design.

For example, in a hierarchically decomposed engineered system, made of sub-

systems and components, the coordinating agent starts the first optimization to

search the target points to be used by design agents. Then the design agents solve

the local optimizations and send the solutions back to the coordinating agent. The

coordinating agent measures the discrepancy between the solutions coming from

the different design agents and then suggests new targets, by solving a new opti-

mization problem, until reaching the final solutions.

In the case of non-hierarchically decomposed engineered system, e.g. multi-use case

decomposition (decomposition of the optimization problem according to the use

cases of the system), the design agents start parallel optimizations. Then the co-

ordinating agent defines the order of optimizations to be performed by the design

agents to reach the final solutions, according to the solutions found by the design

agents. In this case, the coordinating agent proposes an execution order of opti-

mization by starting with the design agent having the less number of solutions and

progressing to the design agents which have more solutions. Because every design
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agent in the research process will filter the solutions by applying the local design

constraints. Therefore the number of research iterations will rapidly decrease when

the research starts with the design agent having less solutions. Consequently, the

computing time of the overall optimization process will be reduced.

Figure 1 shows a sequence diagram that illustrates how design agents exchange

messages and data during optimization process with three design agents and a co-

ordinator. In order not to overload the diagram with all the operations, we have

Coordinator Design Agent 1 Design Agent 2 Design Agent 3

Optim.Request

Optim_Run()

Retreive_Results()

Optim.Request

Optim_Run()

Retreive_Results()

Optim.Request

Optim_Run()

Retreive_Results()

Return_Results

Filter_Apply()

Return_Results

Filter_Apply()

Return_Results

Find_Trade-off()

Fig. 1. Example of agent activities during optimization process

chosen to show only some of them to facilitate the description.

In this generic example, the coordinating agent starts by sending an optimization

request to the three design agents to perform activities of optimization. This step
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could be accompanied with a sending of target values to be taken into consideration

in the optimizations (not represented on the diagram). Every design agent invokes

the optimization task by running the optimizer that controls the simulation tool

supporting the analysis model. After retrieving results, every design agent sends a

message with the number of solutions found to the coordinating agent. Then the

coordinating agent defines an order of exchange of results to be filtered and keep

only solutions satisfying the three design agents. In the case represented in figure

1, it is supposed that the Design Agent 3 has the smallest number of solutions and

Design Agent 1 has the maximum number of solutions. So Design Agent 3 sends

the results found to Design Agent 2 to be filtered. In the same way filtered results

are sent to Design Agent 1 and finally to the coordinating agent. Based on these

results, the Coordinating agent searches for the common solutions that satisfies

the three design agents (Find-Trade-off). In the case no solutions are found, the

coordinating agent proposes new target values or suggests some decisions about the

modification to bring in the optimization problem, such as modifying the interval

limits of the design variables.

3.3. Implementation of the agent-supported platform

The Java Agent DEvelopment framework (JADE) a has been chosen to implement

the agent-supported approach for the collaborative design optimization. JADE is

an open-source framework for agent-based applications compatible with the Foun-

dation for Intelligent Physical Agents (FIPA) b standards and specifications. JADE

is also a cross-platform and works on multiple operating systems, enabling agent

platforms to be distributed across different machines.

Agents in JADE are managed with containers and platforms. The first container

is called the main container. It holds two specific agents: the Agent Management

System (AMS) and the Directory Facilitator (DF). AMS is a registry directory that

assigns a unique and valid identifier to each registered agent, container and plat-

form; enabling correct location and invocation. The DF is a registry directory often

compared to the ”Yellow Pages” phone book that offers query services.

The communication between agents within the same agent platform or across plat-

forms are coordinated by the Message Transport System (MTS). The coordinating

agent (CA) resides in a facilitator container, and each design agent (DA) is de-

ployed in a separate container. The containers can be distributed separately in the

network environment and recognized by different IP addresses.

Figure 2 gives an overview about the JADE platform for the collaborative design

optimization.

Users can interact with the JADE platform through graphical interfaces, either

ahttp://jade.tilab.com/
bhttp://www.fipa.org/
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AMS 

DA Container 1 

DA Container 2 

DA Container N 

DF MTS 
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. 

System objectives 
System constraints 

Initial values 
Convergence 
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User 
settings 

Converge 

FA Container 

Coordinating agent 

Receive Results Optim. Request Active status 

User 
settings 

DA Container 

Design agent (DA) 

Local objectives 
Local constraints 
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Active status 
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Workflow 
Message 
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Message 
sending 

Results 
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JADE Platform 

Register 

Register 

Register 
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yes 
no 

ACL message 

Read in 

Read in 

Fig. 2. Framework of the agent-supported design optimization

for the setting of the optimization problem parameters or, if needed, during the

optimization process. The optimization workflow settings are divided between an

administrator (or system designer) and the designers interacting with each design

agent. The administrator introduces the system constraints in the coordinating

agent and the designers specify the constraints and objectives relative to each de-

sign agent.

4. Application to a case of preliminary design of an electric vehicle

In this application, we begin by specifying the design optimization problem of an

electric vehicle. Next, we apply our methodology to the partitioning of the design

optimization to define the analysis models required. Then we present the mathemat-

ical formulation of the analysis models to be used for the optimization computing.

After that, we apply the agent-supported method for the coordination of the design

optimization.

4.1. Specification of the design problem

We consider the case of a preliminary design of an electric vehicle. The objective

of this study is to optimize the electric motor and a one-ratio gearbox to fulfill the

performance requirements related to three test cases: the acceleration test, grade-

ability (inclined road) and maximal velocity.
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We define two objective functions f1 and f2 which are both depending on the two

design variables x1 and x2, respectively corresponding to the back-electromotive-

force (EMF) of the electric machine constant and the one-ratio gearbox. We also

define three constraints g1, g2 and g3 which are respectively related to the accel-

eration test, gradeability test and maximal velocity test. The two functions to be

minimized and the three constraints can therefore be expressed as:

• f1: The maximum torque at the input of the gearbox should be minimized

to remain less than 250 N.m.

• f2: The maximum peak of electric power required by the vehicle should be

minimized to remain less than 200 kW .

• g1: The vehicle velocity on a 0% grade road after 10 seconds of start-up

(V10@0%) shall be grater or equal to 100 km/h.

• g2: The vehicle velocity in a road with a maximum grade equal to 30%

after 10 seconds of start-up (V10@30%) shall be grater or equal to 20 km/h.

• g3: The vehicle maximum velocity on a horizontal road (Vmax@0%) shall be

grater or equal to 120 km/h.

4.2. Partitioning of the design optimization problem

To simplify the study we will consider, for optimization computing, one only Mod-

eling/Simulation tool (t1) and one only optimization tool (t2) with one optimizer

(optimizing algorithm o1).

Figure 3 shows, in these conditions, the network graph of maximum partitions.

a3 a2a7

g3

f1

x1

f2

x2

o1

t1

a1 a6 a5

g1

a4

g2

t2

p1p2 p3 p4p5

Fig. 3. The network graph of maximum partitions of the electric vehicle optimization problem
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In order not to overload the graph, the links between the analysis models and objec-

tive functions are not represented in the graph, wherein the two objective functions

are related to all analysis models.

We have 7 possibilities for defining the analysis models (aj for j = 1..7) and 5

partitioning solutions (pt for t = 1..5). For instance, the case of p1 corresponds

to an all-at-one (AAO) case, in which the three constraints and the two objective

functions are evaluated by the same analysis model (a1). The second partition so-

lution p2 is made of two analysis models: a2 (to evaluate g1 and g2) and a7 (to

evaluate g3). The partitioning solution p3 is also made of two analysis models: a3
(to evaluate g1 and g3) and a6 (to evaluate g2). Likewise, the partitioning solution

p4 is made of two analysis models: a4 (to evaluate g2 and g3) and a5 (to evaluate

g1). The last partition p5 is made of three analysis models: a5, a6 and a7 to evaluate

respectively g1, g2 and g3.

Figure 4 shows the five partitioning possibilities and their links with the 7 possible

analysis models.

f1 f2

g3 g1

g2

f1 f2

g3 g1

g2

f1 f2

g3 g1

g2a1

a3

a6

a6

a5a7

p1

p3

p5

f1 f2

g3 g1

g2

a2

a7

p2

f1 f2

g3 g1

g2

a5a4

p4

Fig. 4. Five partitioning solutions

In this figure, three line thicknesses are used to distinguish between coupling degrees

between objective and constraint functions.

Table 1 gives the coupling values between objective functions and constraints.

The two objective functions are strongly coupled with the three constraints, so that

we assigned 1 as coupling value. The constraint g2 has a loose coupling with g1 and

g3, because they are not related to the same grade slope. However, g1 is moderately

coupled with g3, since they are assigned to the same grade slope, but for different

time instants. It should be remarked that coupling values are elaborated depending



June 3, 2016 19:22 WSPC/INSTRUCTION FILE
Agent-Supported˙Simulation˙approach

12 Hammadi et al.

on sensitivity analysis of design variables.

Table 1. Coupling values between
objective functions and constraints

f1 f2 g1 g2 g3
f1 x 1 1 1 1
f2 1 x 1 1 1
g1 1 1 x 0.1 0.5
g2 1 1 0.1 x 0.1
g3 1 1 0.5 0.1 x

The degree of coupling within every analysis model and the degree of complexity

of implementing the analysis models are given in table 2.

Table 2. Degree of coupling and degree of com-
plexity of analysis models

a1 a2 a3 a4 a5 a6 a7
Co 7.7 5.1 5.5 5.1 3 3 3
Cx 10 10 1 10 1 1 1

Results show that the analysis model (a1) has the higher degree of coupling (7.7),

which reflects the high level of integration. A high level of integration is required

when the interaction between the design variables, objective functions and con-

straints has an important influence on the system behavior. However, in the case of

complex systems with hundreds of design variables, it is often impossible to have

only one analysis model for the optimization of all the system.

To search for the optimal partitioning solutions, we calculate the values of the

partitioning metric using equation 2 for the five solutions. These values are given

in table 3.

Table 3. Partitioning metric values

p1 p2 p3 p4 p5
Na 1 2 2 2 3
Cc 1 2 2 2 3
Pm 0.77 0.8775 2.125 0.8775 1

Results in the last table show that the all-at-one solution (P1) has the lowest

Pm = 0.77, which reflects the difficulty to compute V10@0% and V10@30% in the

same analysis model. The solution P1 reflects also the low distributivity level of

design tasks. Likewise, solutions P2 and P4 have low Pm values due to the same

reasons as P1, although both of them have two analysis models. Despite the biggest
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number of analysis models, P5 is not the best solution, because of the complexity

of coordination. P3 is however the best solution, with its best compromise between

decomposition (two analysis models) and integration.

Figure 5 shows the network representation of the best partitioning solution P3.

a3

g3

f1

x1

f2

x2

o1

t1

a6

g1 g2

t2

p3

Fig. 5. Optimal partitioning solution P3

Based on the partitioning study, the mathematical modeling of the analysis models

can now be elaborated.

4.3. Mathematical modeling of analysis models

The acting forces on the electric vehicle are shown in figure 6.

Fa

Fr

Fig. 6. Acting forces on the electric vehicle
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The total resistive force applied on the vehicle is defined with:

Ft = Fa + Fr + Fp. (3)

Fa is the resistive aerodynamic drag force defined with:

Fa =
1

2
.ρ.Cx.S.V

2. (4)

Where ρ is the air density, Cx is the aerodynamic drag coefficient, S is the vehicle

frontal area and V is the vehicle velocity.

Fr is the rolling resistive force defined with:

Fr = fr.M.g.cos α. (5)

Where fr is rolling coefficient, M is the vehicle mass, g is the gravitational accel-

eration constant and α is the grade angle.

Fp is the resistive force due to the grade angle of the road defined with:

Fp = M.g.sin α. (6)

The vehicle velocity is calculated using the dynamic equation:

M.
dV

dt
= F − Ft. (7)

F is the tractive force due to the electric motor that can be calculated with:

F = Cm.
Rg

rw
. (8)

Cm is the resultant torque, Rg is the gearbox ratio and rw is the wheel radius.

The electric motor torque is calculated with the dynamic equations of the electric

motor:

Cm − Cr = Je.
dωm

dt
. (9)

Cm = Km.i. (10)

E −R.i− L.di
dt

= Km.ωm. (11)

Where Cr is the equivalent torque of the resistive forces, Je is the equivalent moment

of inertia of the vehicle, Km is the electric constant of back-electromotive-force

(EMF), i is the electric current, E is the input electric voltage, R the internal

resistance of the electric motor, L is the electric motor inductance and ωm is the

electric motor speed, which is related to the vehicle velocity with:

ωm = V.
Rg

rw
. (12)

After developing the mathematical models of the electric vehicle, the system

has been modeled using Modelica language 22 and solved with the OpenModelicac

chttps://www.openmodelica.org/
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algebraic differential equation solver. Table 4 gives the parameters that have been

used during optimization tests. The default values of the gear ratio (Rg) and EMF

(Km) are respectively 2.0 and 1.6.

Table 4. Electric vehicle parameters

Description value unit
M Vehicle mass 1540 kg
r Air density 1.2 kg.m3

S Vehicle frontal area 1.8 m2

fr Rolling coefficient 0.013 -
Cx Aerodynamic drag coefficient 0.2 -
a Grade angle 0%, 30% -
g Gravitational acceleration constant 9.81 m.s−2

rw Wheel radius 0.28 m
R Internal resistance of the motor 0.2 Ω
L Internal inductance of the motor 0.06 H
Jm Moment of inertia of the motor 0.1 Kg.m2

Rg Gearbox ratio 3 ≤ Rg ≤ 13 –
Km Back-electromotive-force 0.2 ≤ Km ≤ 1 N.m.A−1

The basic analysis models for the different partitioning solutions can therefore be

determined using the Modelica model developed, by modifying the model inputs or

the grade angle parameter.

The objective of the next section is to coordinate the optimization of the electric

constant of back-electromotive-force (Km) of the electric motor and the gearbox

ratio (Rg) using the multi-agent approach.

4.4. Application of the agent-supported approach for the

collaborative optimization

Among the five partitioning possibilities previously identified, the solution P3(Pm =

2.125) is the best one to be considered. This solution requires two design agents

and a coordinator. However, for illustrative reasons, we will deal with the solution

P5(Pm = 1), which requires three design agents and a coordinator. The approach

is the same for both cases but it is more detailed for the latter.

The multi-objective optimizations are performed in this study using the Non-

dominated Sorting Genetic Algorithm-II (NSGA-II) 23 with ModelCenter software
d. Results of optimization are stored in Excel format, therefore the developed agents

are able to process them.

Figure 7 shows the Pareto fronts obtained by optimization in the case of P5.

The order in which the optimizations were performed begins with the acceleration

test, then the maximum velocity test and ends with the gradeability test.

dhttp://www.phoenix-int.com/software/phx-modelcenter.php
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After the multi-objective optimization, controlled by the first design agent respon-

sible for the acceleration performance test-case, the Pareto-front represented with

figure 7-a is generated. For this optimization, the first limits of the design vari-

ables are: 0.2 ≤ Km ≤ 1.0 and 3 ≤ Rg ≤ 13. The optimal solutions obtained in

figure 7-a give new limits which are 0.26 ≤ Km ≤ 0.5 and 5.9 ≤ Rg ≤ 13. These

limits are then used for the second optimization relative to the maximum veloc-

ity (figure 7-b). In the same way, the agent responsible of the second optimization

determines the new design variable limits, which are, in this case, the same as pre-

vious limits (0.26 ≤ Km ≤ 0.5 and 5.9 ≤ Rg ≤ 13). These intervals are then sent to

the design agent controlling the optimization of the gradeability test. The results

of this optimization are shown in figure 7-c. The new design variable limits are

0.298 ≤ Km ≤ 0.404 and 9.54 ≤ Rg ≤ 13.

The new interval limits are sent back to the two first design agents to filter the

results previously obtained. This gives the results shown in figure 7-d for the accel-

eration test-case and figure 7-e for the maximum velocity test-case.

Km

R
g R
g

Km

R
g

Km

a) Acceleration test-case b) Maximum velocity test-case

c) Gradeability test-case

d) Acceleration test-case
(filtered results)

Km
Km

R
g

R
g

e) Maximum velocity test-case
(filtered results)

Fig. 7. Pareto fronts [Rg − Km] for three test cases: a) Acceleration; b) Maximum velocity; c)
Gradeability; d) Acceleration with filtered results in [0.298 ≤ Km ≤ 0.404 and 9.54 ≤ Rg ≤ 13 ];
e) Maximum velocity with filtered results in [0.298 ≤ Km ≤ 0.404 and 9.54 ≤ Rg ≤ 13 ].
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The filtered optimization results are therefore sent to the coordinator. Figure 8-a

shows the superposed optimization results. The coordinator searches for the com-

mon solutions belonging to the three sets of results. The obtained results constitute

the optimal Pareto front of the overall design problem (figure 8-b).

a) b)

Km

R
g

Km

Fig. 8. Optimization results: a) Superposition of filtered results; b) final Pareto front

The obtained Pareto front shows an inverse-linear correlation between the

gearbox ratio Rg and the motor constant Km. The limit optimal solutions are

[Km = 0.301, Rg = 12.62] and [Km = 0.388, Rg = 9.82]. One intermediate optimal

solution is [Km = 0.34, Rg = 11.16]. This gives a large choice to designers to make

decision about the electric machine and the gearbox. However, by adding other

constraints such as cost, the choice could be further limited. These constraints can

easily be added to the multi-agent platform by adding new design agents related

to cost constraints.

The coordinating agent can also be programmed to help in making decision on the

choice of solutions among the Pareto front by adding other design rules to filter the

set of solutions found.

With this relatively simple example, we showed that it is possible to divide

the complex optimization problem into partitions and perform an optimization of

the overall system design by coordination using agents. However, the proposed ap-

proach can be more efficient for more complex design problems necessitating several

design teams with different modeling software tools and multidisciplinary fields.

One novelty in this approach is the introduction of the specification of the

optimization in the upstream design phase; the optimization itself is performed at

the end. Conversely to conventional design methods that leaves the optimization

phase at the end of the design process. This reduces the number of modifications

and adaptations required on analysis models to succeed the optimizations.
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5. Conclusion

Our main contribution in this paper is to propose a novel approach for the design

partitioning and coordination of complex systems. The partitioning phase begins

with defining the maximum number of partitioning possibilities by combining the

elements of the optimization problem in terms of objective functions, design con-

straints, design variables and analysis models.Then, by using a partitioning metric,

the designers select the best partitioning solutions. This step can be automated by

formulating an optimization problem for the selection of optimal configurations by

maximizing the value of the partitioning metric. After that, an agent-supported ap-

proach is proposed for the coordination of the design optimization. This approach

has been implemented using JADE platform and applied to the case of a prelimi-

nary design of an electric vehicle.

The presented approach simplifies the complexity of the design process of com-

plex systems and ameliorates the collaborative design. It also reduces the cost of

the design of complex systems by distributing the work on several posts instead of

using high performance computers. However, it should be mentioned that for simple

design problems, the computing time of optimization problems could be longer with

the agent approach compared to classic MDO method, because of the exchange of

messages. Nevertheless, computing time could be reduced for very complex prob-

lems, using the capacity of agents to adapt the optimization process with the in-

termediate results found during the optimization process. Therefore, the approach

should be reserved for complex systems having real collaborative distributed de-

sign constraints, to guarantee a good compromise between the integration required

for coupled disciplines and decomposition required for the collaborative distributed

design.
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