N
N

N

HAL

open science

Roughness characteristic length scales of
micro-machined surfaces: A multi-scale modelling

Maxence Bigerelle, Alexis Gautier, Alain Tost

» To cite this version:

Maxence Bigerelle, Alexis Gautier, Alain lost.

Roughness characteristic length scales of micro-

machined surfaces: A multi-scale modelling. Sensors and Actuators B: Chemical, 2007, Functional
Materials for Micro and Nanosystems EMRS, Containing Selected papers from the Furopean Materi-
als research Society (E-MRS 2006) Symposium G:, 126 (1), pp.126-137. 10.1016/j.snb.2006.11.006 .
hal-01326529

HAL Id: hal-01326529
https://hal.science/hal-01326529
Submitted on 10 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01326529
https://hal.archives-ouvertes.fr

Roughness characteristic length scales of micro-machined
surfaces: A multi-scale modelling

Maxence Bigerelle®*, Alexis Gautier?, Alain TostP

2 Laboratoire Roberval, CNRS FRE 2833, UTC Centre de Royallieu, BP 2059 Compiegne, France
b Equipe Caractérisation et Propriétés des Périsurfaces, LMPGM, CNRS UMR 8517, ENSAM, 8,
Boulevard Louis XIV, 59046 LILLE CEDEX, France

Abstract

The MEMS structure integrity, their dynamic properties as well as their electrostatic characteristics, strongly depend on the achieved surfaces
roughness produced by the micromachining process. It is therefore, not surprising that numerous works are devoted to propose relations between
roughness and physical or mechanical properties in this field. Yet the issue is full of complexities since roughness parameters depend on the method
used for their evaluation. This article introduces a new approach of the roughness characterization, based on the scaling analysis. Experimental
results obtained on micro machined surfaces show that the range roughness amplitude depends on the scan length and that roughness amplitude
follows three stages. The stage I is due to a smoothing effect of the surface induced by the tip radius of the profilometer, stage Il presents a piecewise
power-law roughness distribution until a critical length that characterises the fractal behaviour of the surface, and stage III is characterised by
extreme values statistics. The fractal parameter, the extreme values estimators and the crossover between stages II and III are shown to be related
to the micromachining process. As a result, an original probabilistic model based on the Generalized Lambda Distribution (GLD) is proposed to
estimate the multi-scale roughness in the stage III. Finally, thanks to a Bootstrap protocol coupled with a Monte-Carlo simulation, the maximal

roughness amplitude probability density function is estimated at a scale higher than the scanning length.

Keywords: Roughness; High precision machining; dimensional tolerance; Extreme values; Fractal; Topography modelling

1. Introduction

In the past three decades, important progresses have been
preceded in the field of high precision machining techniques.
Some of them as ions beams, electrons or laser are usually used
in the microelectronic industry. Surface topography obtained by
high precision machining are of major interest. In the case of
glass etching, the RMS surface roughness is as less than 2 nm
[1] and plays a major role for silicon bulk micromachining [2].
Electrical resistivity and HF permeability are influenced by the
surface topography even for low roughness [3]. For example, to
minimize the air gap in linear actuators, the microactuator’s sur-
face needs a very low roughness [4] that prevents magnetic field
interference [5]. Surface quality is of major interest for nano-
displacement sensors considered as mirror reflection [6] based
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on optical properties (like Fabry-Perot one) that integrates an
emerging field of the MEMS of the digital micro mirror device
[7]. Classically, polishing techniques allow obtaining very high
quality surface in optical domain (mirror finishing) with less
than 1 nm average roughness. Surface roughness plays a pro-
found influence in the case of stiction/adhesion, friction or wear
and consequently on the micro/nanoelectromechanical systems
reliability [8]. The roughness friction coefficient [9] dependence
leads adapting process to diminish the roughness [10,11], par-
ticularly for increasing micro motors service lifetime [12]. High
precision turning (HPT) is now used when very good dimen-
sional or geometrical tolerances (lower than 1 pum) and high
surface quality (roughness less than 50 nm) are required to reach
the specifications imposed by mechanical or optical industries
for revolution parts [13,14]. The main objective of this superfin-
ishing process is to avoid successive operations and thus, to
manufacture a component using only a single machine. All the
machine elements taking part in the kinematics are of great
importance, but the tool, which is the last link in direct con-
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tact with the part, “prints” its mark on the surface and must
be chosen with great care. For ductile materials as aluminium
alloys, poly-crystal diamond (PCD) tools are used, but unfortu-
nately average surface roughness cannot decrease down to less
than 20 nm. As a result, single-crystal diamond (SCD) tools are
used when less than 10 nm roughness amplitude must be reached
[15,16]. Moreover, to characterise the low roughness of such sur-
faces and their structural integrity, high resolution measurement
techniques have to be used. As it was described, MEMS structure
integrity, dynamic properties as well as electrostatic charac-
teristics, strongly depend on the achieved surfaces roughness
produced by the micromachining process. Yet the issue is full of
complexities since roughness parameters depend on the method
used for their evaluation. This paper outlines a new approach
to roughness characterization, based on scaling analysis. A seri-
ous difficulty is that all the micro machined surface topography
cannot be recorded because the limits of the maximal scanning
length: AFM areas rarely exceed 100 pwm x 100 pm, and confo-
cal or interferometric microscopy scanning is imposed by lens
magnitude and camera resolution often limited to 1024 x 1024
pixels that does not allow to both having high definition and high
scanning area. To characterise roughness surfaces, the Peak to
Valley parameter [17,18] that represents the range of the rough-
ness amplitude (called R; or PV) is of major interest in the case
of dimensional tolerance characterisation for MEMS. However,
this parameter depends on the evaluation length [19,20] and as
the scanning area is often lower than the part area, the R; param-
eter of the part cannot be evaluated on the whole surface. As
a consequence, a multi-scale modelling has to be constructing
to extrapolate data from the sampling length to the whole sam-
ple. The original method we proposed allows both predicting
maximal range amplitude versus the length of the part and giv-
ing confidence intervals of the predicted values. Without lack
of generality, we shall apply our methodology on the surface
topography of a pure aluminium part machined by high precision
turning process with a single-crystal diamond tool. In a first part,
the mating process is precised and the roughness measurements
protocol is described. After surface topography multi-scale anal-
yses, a prediction model is proposed and validates at different
scales.

2. High precision turning process

Obtaining good surface quality requires both the lack of
vibrations and thermal drift, and tool straight trajectories that
impose the respect of strict conditions when designing a high
precision machine. It is also imperative to control the machine
environment. The centring of the part is of main importance
to avoid an imbalance of the spindle and thus, a false round
[21]. Moreover, to obtain high dimensions accuracy, the adjust-
ment of the tool compared to the spindle axis must be carried
out with a micrometer precision. The high precision machine
used in this study is a prototype lathe positioned in an air-
conditioned room [22]. The two slides are fixed on a massive
granite block (1.5tonnes), itself resting on four self-levelling
pneumatic isolators. The slide-ways are guided by hydrostatic-
bearings, offering low friction and high stiffness and damping.

The straightness of both slides is better than 0.3 wm over a dis-
placement of 100 mm. Recently, linear motors (ILD-Etel™)
have replaced both the classic brushless motors and the ball
screws. As a result, the dynamic stiffness of the transmission is
increased while the reduced number of machine elements lim-
its parasitic forces. The command transfer function is changed,
because the mass in movement is reduced. Otherwise, displace-
ments are measured by two 4 nm resolution optical encoders
(LIP 101-Heindenhain™) controlled by an accurate Computer
Numerical Control system (CNC) with a powerful numerical
card (PMAC-Deltatau™). Owing to the speed of computing
and integrated functions, the rise time of the close loop is very
short and complex forms can be machined with high precision.
A magnetic-bearing spindle (with active control) is located on
the z-axis slide-way. A magnetic plate is used; if the material is
nonmagnetic, the specimen is stuck on a steel support or held
in a chuck. As it was previously mentioned, single-crystal dia-
mond is a very accurate cutting tool, because its great rigidity, its
very high hardness and its good thermal conductivity. Moreover,
the quality of its edge of cut, make it possible to form very low
thickness chips of some micrometers without cold-working the
material surface. The interest of single-crystal tool, compared to
polycrystalline one, is that its single edge can have a very low
waviness, and that one can easily choose the most favourable
crystallographic plans {110} in term of wear [23,24]. On the
contrary, the polycrystalline cutting edge consists of multiple
small grains, stuck one to another, with a quasi-random orienta-
tion thatinduces higher surface roughness on machined surfaces.
However, tool must be chosen with great care in relation to
the nature of the machining material: the chemical interaction
between diamond tool and carbide-forming elements present in
the material restricts the number of machinable materials to light
alloys (aluminium and copper) and also to non-metal materials
as germanium, silicon and polymers. On the other hand, steels,
titanium alloys and nickel cannot be machined by diamond tool,
because the edge tool would be drastically destroyed by the
chemical wear. A lubrication air pressed system with a fine mist
of lubricant operates during machining. The objective when a
ductile material as aluminium is machined with a SCD tool is
to evacuate the chip to prevent surface damage. The work piece
is an aluminium disk with a 35 mm diameter and a 6 mm thick-
ness. Samples were stuck on a steel support fixed on the magnetic
plate of the spindle. The machining parameters were fixed as fol-
lows: a 1250 rpm spindle speed (cutting speed of 165 m/min), a
4.8 wm/rev advance speed and a 10 pwm finishing depth of cut for
a SCD tool with a 5° rake angle and a 1.5 mm nose radius [25].

3. Roughness analyses
3.1. Roughness measurements

Nine profiles are recorded perpendicularly to the grooves over
a 0.1 wm sampling length, a 4.5 mm scanning length (45,000
amplitude roughness data per profile) and a 100 wm/s scanning
speed. The surface recorder is a high precision tactile profilome-
ter 3D KLA TENCOR™ P10 firstly developed to measure
MEMS surface in electronic devices industry. The experimen-
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Fig. 1. Recorded profile of an aluminium surface tooled with HPT with three
spatial zoom (X7, X35, X175) located at the origin of the whole profile.

tal conditions are: 2 wm for the stylus radius and 5 mg for the
applied load. The instrument has a vertical resolution better than
10 nm, and a lateral resolution of 50 nm on the x axis and 1 pm
on the y axis. Each profile was fitted by a least mean square third
degree polynomial to remove the form and keep only waves and
roughness. Fig. 1 represents a profile recorded on the tooled sur-
faces with three spatial zoom (X7, X35, X175) located at origin
of the profile plot.

3.2. Multi-scale roughness analyses

The functionality of micromachined surfaces is often influ-
enced by their topography at a given scale. The arithmetic
average height (R,) and the total amplitude (Ry) also called the
“Peak to Valley” are very often used to characterize the surface
roughness irregularities but, in most studies, the effect of the
evaluation length is not taken into account. This is all the more
unfortunate since these parameters depend on the observation
scale [20,26]. Such a kind of dependence is integrated in the
fractal concept, which basis is to find invariant scale parameters.
Since its introduction by Mandelbrot [27], several mathematical
methods have been established to measure this fractal dimension
and to characterise the surface roughness independently of the
observation scale [28].

3.2.1. Basic concept

After this preliminary step, the objective of the data treat-
ment was to calculate the roughness amplitude parameter
Rt =Ymax — Ymin as a function of the evaluation length. As far as
R, is concerned, it can be expected that the probability to record
high peaks (i.e., high value of Yjn,«) or deep valleys (i.e., small
value of Ypip) is all the more important as far as the evaluation
length / increases. It is worth noting that the evaluation length
[ is present in the original definition of the arithmetic average
roughness parameter: R, = % fé |y(x)| dx, and consequently it
can be expected that the evaluation length may also affects its
value. For the total evaluation length of our investigated sur-
faces, the value R, =9.7 nm was found. Recall that, for each 2D
profile i (1 <i<9), 45,000 points are recorded with an interval
Ax between two consecutive points equals to Ax=0.2 um. In
our algorithm, the values of Yax and Yin are computed to cal-
culate a local value of R; noticed R (x,]) = Yinax(x,]) — Yinin (x,0)
for a given evaluation length / beginning at the x position of the
evaluation length (x and / varying from O to the value of a trace
lengthi.e., 4.5 mm) on the residual profile i. Then, the evaluation
window of length / is shifted by a quantity x (x € [Ax, L — Ax])
to estimate a new local value Y&lax(x, [+ x), Ylll-m(x, [+ x) and
R!(x, 1+ x) noted, respectively Y, (1), Y. (I) and R(l). This
operation is repeated until the end of the residual profile i is
reached. Then all the local values Y, (1), Y7 (I) and R} (]) are
averaged for all x values to determine ‘averaged / values’ Yiax (1),
Ymin(D) and R((]) corresponding to an observation scale / for the
residual profile i. Fig. 2 represents the mltiscale roughness val-
ues of Ymax(D), Ymin(!) and Ry(!) at different observation scales
[ for the nine recorded profiles. The following primary remarks
can be stated from these graphics:
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Fig. 2. Ymax(1), Ymin() and R;(I) multi-scale roughness values at different obser-
vation scales [ for nine recorded aluminium surface profiles tooled with HPT.



e Apparently, the amplitude of the three roughness parameters
Ymax(D), —Ymin(D) and R((]) increases logarithmically with the
evaluation length /. This scale effect is due to the fact the
amplitude of peaks and valleys decreases with the scale (see
Fig. 1).

e Dispersion of the data increases with the evaluation length /.
As it can be observed, curves are more and more scattered as
the evaluation length increases. This second scale effect con-
stitutes the basic concept of this paper and will be discussed
later. However, its clearly means that the accuracy to predict a
maximal or minimal values depends drastically of the evalu-
ation length and will be less and less precise as the evaluation
length increases.

e It can be observed that the value Ypax(l)>—Ynin() and
the difference increase with the evaluation length [.
Ymax(0.2 wm)=2.3 nm increases to Ymax(4500 wm) =58 nm
and Ypin(0.2 wum)=2.3nm increases to Ypjn(4500 pm)=
42 nm. To explain this result, some precisions must be tackled
about the algorithmic computation of the reference line from
which profile amplitude is estimated (origin of amplitude from
which deviation is computed as shown on Fig. 1). For each
recorded profile R(x), the statistical treatment firstly consists
in fitting by the least square method a third order polynomial
P(x) curve to the raw measured profile to remove the even-
tual form and waviness. Multi-scale roughness parameters are
computed on this residual profile Y(x) = R(x) — P(x). A prop-
erty of the least square method involves that the average on
x of Y(x) is null. As a result, if maximal values appear to be
greater than the minimal one, that clearly means that the prob-
ability density functions of the roughness amplitude is skewed
denoting that peaks are higher than valleys. This skewness
can be explained by two morphological properties of the sur-
faces. Firstly, it is well known than tooled surfaces obtained
by the turning process present a morphological structure that
looks like a U-shaped periodical profile (half-circle function),
which period is specified by the feed rate. Consequently, the
distance between the maximal height amplitude and the ref-
erence line is higher than the distance from minimal valley
to the reference line. Secondly, plasticity and abrasion result-
ing from the interaction between tool and aluminum induced
piled-up region concentrated on profile peaks, leading to an
increase of the maximal peak amplitude.

3.2.2. Multi-scale analysis

For each experimental profile under consideration, the aver-
aged local values R(l) of the nine related residual profiles are all
averaged to obtain a final mean R; value at an evaluation length
1. Fig. 3 shows the variation of R(/) versus the evaluation length
in log—log coordinates. From this graphics, three different stages
emerge: two linear and a logarithmic one. By means of appro-
priate statistical techniques proposed earlier by the authors to
describe the different stages in fatigue crack growth propagation
[29], it can be stated that these three stages limits are:

[ <4 pm (log—log linear stage),
l €[4 pm, 60 pm] (log-log linear stage) and
[>60 pm (log-log logarithmic stage).
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Fig. 3. R,(I) multi-scale mean roughness values at different observation scales /
obtained by averaging the nine recorded aluminium surface profiles tooled with
HPT shown in Fig. 2.

The stage transition can play a dominant role on MEMS
response such the pull-in voltage in micro switches [30]. For
lack of simplicity, the stage II analysis will be firstly introduced.

3.2.3. Stage II: the fractal stage

By analyzing Fig. 3, Ri(/) presents a linear aspect in the
log—log representation in the range /€ [4 um, 60 um] with a
slope equals to 0.32. This clearly means that the scale relation
Ri(1) o< 1°32 holds. To explain this relation, the determination of
the fractal dimension by “Oscillation Method” from Dubuc et
al. [20,26] must be introduced. The t-oscillation of the function
fin x is defined as:

f :la,b] - IR OSC(f x) = |max(f(¢))—min( f(¢))

|x—t|<t |x—t|<T

. (D

by taking the average of OSC.(f,x) over the interval [a,b], one
obtains:

b
VAR,(f a,b) = ﬁ/ OSC,(f x)dx 2)

then the fractal dimension can be written as:

log VAR, (f a, b))

log T )

A(f, a,b) = lim <2—
—0
If the function fis given by the experimental profile f;, then:

R{(l) = OSC(fe,0,D) )

and finally by introducing Eq. (4) in Eq. (2) the following result
is obtained:

Ri(l) = VAR;(fe, 0,1) ®

From Eq. (3), the fractal dimension A(f;,0,L) of the f.
profile is equals to 2 minus the slope called the Holder
exponent, therefore, the fractal dimension in the stage two
is: A(fe,0,4500 wm) =1.68. It is reported that tool machined
surfaces possess fractal aspect [31-37] and additionally in
nanomachining process on aluminium surfaces [38] that is quit



similar to the machining process discussed in this paper. In
this pure fractal stage, it becomes then possible to predict the
values of the maximal roughness amplitude R([) versus the eval-
uation length and their associated confidence intervals thanks
to conventional statistical tools used under the Gauss Markov
hypothesis in the linear regression modelling. However, the
mathematical formalism of stages (I) and (III) is still not justi-
fied in the bibliography and then the predictions of the maximal
roughness amplitude at these given scales cannot be predicted.
Lets now analyse physically the meaning of the stage I and III.
The stage I presents a linear relation in a log—log plot with slope
equal to 0.67 meaning that the fractal dimension is equal to
1.33. Compared to the stage II, the fractal dimension decreases
meaning that the profiles appear smoother when /<4 pwm. This
involves that a new process appears that diminishes the frac-
tal dimension of the profiles for a small scale length. At the
larger scale (/>60 pm, stage III), the linear relation does not
hold meaning that the fractal concept does not applied. As a
consequence, the fractal concept of tooled surface cannot be
extended to large spatial scale. We postulate that the transition
stage [I-stage 11 is linked to a change of the fractal properties of
the profile. It is reported in the bibliography that fractal proper-
ties of profiles may be determined by autocorrelation functions
[39.,40]. For this reason the average autocorrelation function of
all profiles is plotted in Fig. 4. As it can be observed, the autocor-
relation decreases and presenting an oscillation until reaching a
null value (in spatial average) for /> 60 pm. Thanks to a spec-
tral analysis (Fig. 5), the period of this oscillation is equal to
4.6 pm, a value closed to the advance speed (4.8 pm/rev) of
the turning process. However, after the stage II (I>60 um),
auto-correlation values is null meaning that no “memory” of
the profile occurs when two measured amplitude height val-
ues are distant of more than 60 wm. As a consequence, pass
over this critical length, profiles may be analysed as a pure ran-
dom process with appropriate mathematical tools. Stage I1I is of
major interest because it assumes the dimensional tolerance of
the MEMS. Although often mentioned in the bibliography, the
mathematical and physical backgrounds of this stage is never
justified.
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3.2.4. Stage I: the radius stylus tip stage

As seen above, profiles appear smoother for / <4 pm, a value
that corresponds exactly to the diameter of the profilometer tip.
The tactile recording involves a certain amount of smoothing or
degradation of the true surface data. The stylus curvature radius
produces a smoothing effect of the recorded profile since the
stylus cannot record any information at all from crevices that
are narrower than the stylus width. However, as the smooth-
ing effect is a highly non-linear convolution of the profile, it
becomes very difficult to estimate its effect on the original data.
Consequently, it is of major interest to determine the scale at
which the smoothing effect plays a part in the roughness param-
eters calculation. The stylus size effect is greatly discussed in
the bibliography for mechanical profilometers [41-45] and AFM
topography [46—48], however, no universal analytical expression
characterises the smoothing effect whatever the surface topogra-
phy. For this reason, an algorithm that simulates the stylus effect
on surface integration was written and applied on a simulated
fractal profile, free of the stylus integration effect, that looks like
our experimental function (see appendix, simulation of turning
surface). Fig. 6 represents surface profiles simulated by fractal
functions described in Annexe. As it could be observed, the pro-
files obtained are very relevant to model the high finish surfaces
and can be used for multi-scale function analysis. Stylus scan-
ning effects were simulated with 1-5 pm curvature radii. Fig. 7
shows the good agreement between profiles simulated with a
2 um profilometer radius and the experimental one (Fig. 1).
Measuring the range amplitude roughness on the six different
curvature radii simulated profiles, it can be observed on Fig. 8
that the crossover Stage [-Stage II appears towards 4 um for a
tip diameter of 4 wm and increases with the stylus tip diameter.
The simulation confirms the fact that this stage is related to the
smoothing effect of the surface implicated by the tactile covering
(the same effect occurs in AFM measurements [48]).

3.2.5. Stage III: the extreme values stage
As noticed, the plot of R; versus [ in a log log plot (Fig. 3)
presents a logarithmic stage (in a log—log coordinate) for
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[>60 wm that we have presented as a pure stochastic pro-
cess. To the authors’ knowledge, no modelling was proposed
in the bibliography to predict the maximal range amplitude
after this threshold. To account for, we postulate that the sur-
face becomes stationary in a statistical sense (ergodicity) after
the fractal stage, meaning that the mean amplitude of the sur-
face stays constant. However, by including the sampling effect,
the fluctuation occurs and the magnitude of the extremes val-
ues increases with the number of sampling points. The most
successful method of safety or reliability was found in the
application of the statistical extreme value analysis using the
Gumbel distribution [49]. Because some limitations (no interval
confidence intervals for extreme value predictions, properties
of the parent distribution are imposed), an alternative method-

0,020

0,015 | Whole Simulated Fractal Profile with simulation of a 2 um tip radius integration
0010} Zoomxi7s

0,005 A f\

o000 AWM'MMW\/W ‘
a0 W) \\«/\\ N,

-0,020

Height amplitude (pm)

10 15
Evaluation length (um)

Fig. 7. Fig. 6 simulation of stylus integration (2 wm radius) with a X175 spatial
zoom.

0040

£ 0035

3 0030

@ 0025

g 0.020

2 0015 A

) [ a2

g oo} af ﬁﬁ%% Tip

= f i ﬁ Curvature

=3 ﬁ Radius

g ﬁ 2 0um

o 0005 J 1 pm

o © 2pum

S 4 3pm

o ® 4pum
® 5pm

[
o

o S B O oboon = e 2
o @ T 0O ~Oo0 =} o
- N ©

50.0
60.0
70.0
80.0

A
Evaluation Length (um)

Fig. 8. R((/) multi-scale roughness values computed at different observation
scales / from simulated profile with stylus integration processed for different
tactile profilometer stylus radii.

ology to the Gumbel distribution shall be proposed in this
paper.

4. The prediction of the extreme amplitude roughness

The method we shall develop here consists to predict the
extreme values of the surface roughness parameters Ypax(/),
Ymin()) and R((/), and their associated uncertainties, by mea-
surement at a given scale /. The resolution of this problematic is
of major interest in high finish surface control because surfaces
topography are rarely recorded in totality (high time consuming,
limitation of scanning length of profilometers. . .). The method-
ology we proposed as an alternative methodology to the Gumbel
distribution is based on the combination of two statistical meth-
ods: the Generalized Lambda Distribution (GLD) [50] and the
Monte-Carlo method. Contrary to the Gumbel approach that
requires a parent distribution of exponential type to be applied,
both the GLD and the Monte-Carlo methods present the main
advantage to avoid making any assumption about the underlying
distribution. Moreover, the GLDs have been shown to fit well
many of the most important distributions including exponential
type ones. The normal (Gaussian), exponential and Lognormal
distributions belong to this type and are often observed in case of
engineering surface data. It must be outlined that the goodness
of fit by the GLD is particularly noticeable in the tail region of
this kind of distributions; region of interest of this study since it
corresponds to the extreme values of any distribution.

4.1. Modelling the maximal, minimal and range amplitude
distribution

It will now supposed that the roughness measurement is pro-
cessed on a evaluation length that corresponds to the end of the
fractal stage i.e., /= 60 pwm. Fig. 9 represents the histogram of all
Yok (60 um), Y7, (60 wm) and Rf (60 um) local values. Then
the first step consists in modelling these histograms thanks to the
use of the Generalized Lambda Distribution. The GLD family
is specified in terms of its percentile function (called also the



Empirical distributions of minimal, maximal and range roughness amplitude
for an evaluation length of 60 pm
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Fig. 9. Minimal Ypin(/), maximal Yiax({), and range roughness amplitude R; (/)
empirical distributions at /=60 pm evaluation scale.

inverse distribution function) with four parameters (A1, A3, A3
and Ay4):

A4 OM = (1 = M)
Ox(Vi A1, ha, A3, hg) = -2 - y ©

A1 and A; are respectively, the location and the scale parameters,
while A3 and A4 determine respectively, the skewness and the
kurtosis of the GLD. The probability density function fx(x) can
then be easily expressed from the percentile function of the GLD:

A2
Ouay=1 4 a1 — yyM T

fx(x) = (N

The main problem is to estimate the parameters A1,A2, A3 and
A4 in order to have the best fitting of the GLD with the exper-
imental frequency distribution (of extreme roughness values in
this study). In a first time empirical moment are calculated from
n experimental data x;:

n .
&) = 2=t ®)
n
n A2
& = —Z"=1(’Z ) ©)
n . 3
&3 — Zl:l(xAl3/2 O[]) (10)
no,
S —an)?
qy === (11)

It is shown [50] that:

A
ol =+ — (12)
A2
, B-A?
0 =0"=—>— (13)
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C—3AB+2A3
e (14)
Aya,
D —4AC + 6A%B + 34*%
oy = o (15)
Aya;
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A= - ) (16)
I+2x3 1424
1
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T+ 20 "1+ 2% A 423, 1+244) an
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T 1436 1430 3 4
+3B(1 + A3, 1 +21g) (18)
p=_1 + ! 4B(1 433, 1 + As)
T 1 44as 144y 3 4
+68(1 + 23,1+ 244) —4B(1 + A3, 1+ 314) (19)
where
1
B(a, b) = / x (1 — )P ldx. (20)
0

The moments of Y3, (60 um) and Y., (60 wm), estimated
by Egs. (8)—(11), are reported in Table 1. To calculate A1,A2, A3
and A4, it is necessary to solve a four system of Eqs. (12)—(15)
that are highly non linear. As Egs. (18) and (19) depend only of
23 and A4 and as 2303 = (B — A2)"/% and A40* = (B — A%)’,
the system is reduced to a two equations one with more sta-
ble numerical convergence (less numerous local extrema). The
solution consists in finding A3 and X4 by a steepest gradient on
the following functional:

4
Vs k)= (G- @n
i=3
then A; is calculated from Eq. (13) and finally A from Eq. (12).
An algorithm was written in the Statistical Analyses System lan-
guage (SAS™) to determine the GLD and its related probability
density function from the experimental dataset. The numerical
results of the minimization process obtained with our computer

Table 1
Moments of Y}, (60 um) and Y. (60 wm) distributions

a (653 a3 Q4
Y5k (60 pm) 0.0214 0.0414 0.8930 0.3004
Y, (60 wm) 0.02572 0.0582 0.6519 0.2330
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Fig 10. 3D view of the values of the function ¥(X3,14) for the lambda distribution associated with Y.

Y., (60 wm) Lambda distribution obtained after minimization on ¥(13,14).

algorithm are illustrated in Fig. 10. Theses figures present a
3D view of the values of the function ¥(A3,A4) on which the
gradient decreasing method was processed when —2<A3 <1
and —2< A4 < 2 for the lambda distribution associated with Y},
(60 wm) and Y77, - (60 pm). After minimization, the values of the
four parameters for the both Lambda distributions that modeled

Y3ax (60 wm) and Y7, (60 wm); the related empirical distribu—
tions are shown in Table 2. Then the ¥}, (60 um) and Y,
(60 pm) Lambda distribution are plotted on Fig. 10. As it can
be observed, the Lambda distributions fit very well the Y7, .
(60 wm) and Y77, (60 um) empirical distributions. To appreciate
the well accuracy of lambda distribution to model extreme data
roughness, a Ch1 2 criterion is computed. For both the data Y},
(60 wm) and Y. (60 wm), the Chi-2 criterion does not reject the
adequation between experimental and model data at the usual
critical value a=0.05. This means that ¥, (60 wm) and Y.
(60 wm) both obey a Lambda distribution and this model can be
used to predict some probabilistic features.

4.2. Multi-scale prediction of the distribution of the
maximal, minimal and range amplitude roughness

At this stage, an analytical probability density function of
Yiax (60 pum) and Y7, (60 um) of the maximal and minimal
local roughness amplitude is estimated at scale /=60 wm. Sup-
posing that the evaluation length is twice as large as the initial
one (i.e., one wants to estimate Y}, (60 wum)), and that data are
independent at this scale (as presently shown) then the maximal
amplitude for two possible values of x and x'is equals to:

Ymax(120 p“m) = maX( max (60 Mm) max(60 p"m)) (22)
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In an algorithmic point of view, this means that one take
randomly two values of Y, (60 um) and the maximal value of
this pair gives an estimation of the maximal roughness measured
at a 120 wm evaluation length. By repeating a great number of
times this procedure, the probability density function of Y.
(120 wm) can be obtained. Extending this procedure, the val-
ues of Y. (k) are obtained by taking the maximal value from
k values of Y7 . (I). To simulate a possible value taken from

Y .x(D), a random number that follows a Lambda distribution
with parameters (11,A2,A3,14) is generated using the following
equation:

A (1 — )
D) = A+ . I =w™) 23)
2
where u € [0,1] is a uniform random number, and p(u) is the
related simulated value of extreme roughness amplitude. In this
paper, we shall noticed p(u) = lel‘l)aﬁ, where [y is the length
from which extreme roughness is measured and modeled by
the Lambda distribution, and k is a coefficient introduced to pre-
dict the extreme roughness amplitude at the larger evaluation
length /g x k. To illustrate this method, this Monte-Carlo pro-

cedure is applied to predict the PDF of J20F™K and po0»m&

min

for k€ {1,2,5,10,20,30}. Fig. 11 represents these PDF func-

Table 2
Values of the four parameters for the both Lambda distributions that modeled

Yiax (60 pm) and Y7, (60 pum)

A1 A2 A3 N4
max (60 pm) 0.0233 —2.32 —0.010 —0.018
Y<. (60 pm) 0.0199 25.51 0.134 0.199
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obtained from 10000 Monte-Carlo simulations for the 6 magnifications
ke {1,2,5,10,20,30}. The case k=1 corresponds to simulation of the original
Lambda shown on Fig. 10.

tions obtained from 10000 Monte-Carlo simulations. As it can
be observed, the mean of the PDF increases as the magnifi-
cation k increases. From these empirical probability density
functions, usual statistical estimators like the mean and the 90%
confidence interval (i.e., the difference between the 95th and
the 5th percentiles) can then be easily determined to assess
respectively, the central tendency and the dispersion. Since one
problem of practical importance is to determine the extreme
roughness amplitude that will be found in a large scale sam-
ple by using a small evaluation length, the procedure was used
again to assess the effect of the surface size on the evolution
of the mean and the 90% confidence interval of the distribu-
tion of the extreme values of amplitude. Fig. 12 shows the mean
of the maximum extreme roughness amplitude versus the eval-
uation length. Analyzing the roughness at a 60 pm evaluation
length, allows predicting the roughness at all the scales larger
than 2000 wm and moreover the 90% confidence interval also
seems to be a good model since the nine experimental curves
are scattered in this interval. Note that like experimental curves,
confidence interval increases with the evaluation length or more
precisely when the prediction is model farther from the scale at
which Lambda distribution is computed (i.e., from which our
predictive model is constructed). However, when the maximal
range amplitude f??o wmok g computed (Fig. 13) with the same
procedure as described above, a high inaccuracy appears in our
modelling and R60 MK inimizes the real Peak to Valley param-
eter amplitude. We shall briefly explain this fact: the simulation
supposes that predicting a two-fold length amplitude value is
equivalent to choosing two values in the initial density and tak-
ing the maximal one. However, this reasoning does not hold for
R? 1Mk because the minimal value and the maximal value are
not computed at the same scale. Let us illustrate this purpose
by a simple example without lack of generality. Considering the
proﬁle given on Fig. 14, at the larger scale [=7000, max(l) =1,

mln(l) = 0 and then Ro(l) = Y9 (D) — Y2 () =1 (this rela-
tion will always hold whatever the profile into consideration).
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At scale /2, one gets RY(1/2) = 0.1, R¥%®(/2)=0.1 and
RY(1) > max(RV(1/2), R3500(l/2)) = 0.1. However, one always
gets max(l) = max(Y2,,(1/2), Y3%0(1/2)) = 1 and Y%, (I) =
min( mln(l/2) ngl?o(lﬂ)) = 0. This clearly means the well-
known “Peak to Valley” is not an extreme value parameter. To
predict its value, it is possible to use the extreme value theory
on the minimal and maximal amplitude thanks to the general

relation.
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which gives the probability density function of the Peak to Valley
roughness parameters. As it can be observed on Fig. 13, the Peak
to Valley amplitude is well modeled from 60 wm until more
than 2000 wm. The relation Eq. (24) will be essential in many
fields where the “Peak to Valley” parameter is of major interest
(geometrical tolerance, fluid mechanics, wear. . .).

In the preceding case, the prevision of maximal roughness
parameters was calculated by taking at origin the sam-
pling length /=60 um (end of the fractal stage). Now, the
same result will be computed by taking the origin in the

E Multiscale prediction of extreme roughness amplitudes at different origin evaluations
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Stage I, Stage II and another origin points in the Stage III
(1€{2,10,20,60,200,500,1000} pwm). Fig. 15 shows the evolu-
tion of the maximal roughness amplitude parameters predicted
for these different origins. For all the parameters under study, the
prediction always holds with a very good accuracy for /> 60 pm.
This confirms that stage III, as opposed to stages I and II, is an
extreme value stage as claimed in the preceding chapters and
validates our methodology at all the scale.

5. Conclusion

This paper is a contribution to estimate the control toler-
ance in the field of high precision machined surfaces that can
be generalized to other physical or mechanical processes. The
micromachined workpieces may first be modeled by fractal
functions and we provide an analytical modelling of the sur-
face topography. The multi-scale analysis performed in this
paper shows that roughness recorded by mechanical profilome-
ter from high precision turning surfaces present three behaviors.
A smoothing effect related to the recording apparatus tip radius
of curvature (stage I), a fractal range (stage II) characterized
by the fractal dimension and a stage III characterized by the
Extreme values theory. This last stage is modeled by a new and
alternative methodology to the Gumbel approach combining the
Generalized Lambda Distribution and the Monte-Carlo method
in order to estimate accurately the maximal peaks and minimal
valleys. Finally, a method is proposed to predict the mean with
a 90% confidence interval of the maximal valleys, minimum
peaks and the “Peak to Valley” roughness parameters by mea-
suring a roughness profiles at a lower scale. In a future works,
this methodology will be applied to predict the value of others
roughness parameters like Ra, Rq... known to be relevant to
influence a physical response on the surface.

Appendix A. Annexe

This part aims to create a new fractal function that describes
the turning process. We shall assume that the part of the diamond
tool in contact with the aluminium workpiece has approximately,
ahemispherical shape and then the grooves can be seen as inden-
tations having a circular shape, which follows a power law. As
a consequence, the profile is described as a sum of elementary
half-circles. Let us first define an elementary function g(x) of
period 1 on the [0..1] interval as follows:

1—(x—0.5)% xel0,1]

gx) = — (A.D)
We then propose the deterministic fractal circle function:

o
Fep(x) = AY 27" g(2"x) (A.2)

n=0

where H € [0- - -1] and A is a scaling amplitude factor.
Theorem: the fractal dimension of the profile A(Gy) is given
by:

AGp)=2—-H (A.3)



To take into account the stochastic component of experimen-
tal profiles, a stochastic version of the previous function given
by Eq. (a2) must be formulated:

o0
Fscrx) = A 27" g(2"x + ¢,)
n=0

(A4)

where ¥, are positive Gaussian random numbers that physically
represent the stochastic variation of the stress during the turn-
ing process, and ¢, are uniform random numbers that represent
the disorientation of the grooves due to the rotation of the turn-
ing tool. These numbers leave the fractal dimension unchanged.
Only a few terms are needed to discretize the curve because of
the exponential decrease of the period in the g(x) function. For
n=0 the function is defined on [0..1], n=1 on [0..0.5], n=2 on
[0..0.25] and so on. This means that very quickly the period of
the function will reach the sampling length. Consequently the
shape of elementary functions will often appear on the graph
of Fscp(x). To avoid this numerical artefact, we have to add
new terms to the fractal series without modifying the fractal
dimension. We then retain the new function:

o0
Fuscr(x) = A 27" HIPg(2"/Px 4 )
n=0

(AS)

with p an integer higher than unity.

As a consequence, the spectrum of the function related to Eq.
(a5) tends to be more continuous than those described in the
bibliography. It can be noticed that only two parameters have to
be determined for the definition of the Fractal Circle Function
proposed in this paper: the amplitude factor A and the Holder
exponents H. The p value is chosen to be high enough (p=10)
so as to avoid statistical artefacts in the spectrum representation.
H is given by the slope on stage II of the curves shown in Fig. 3.
A is calculated such simulated profiles and experimental ones
lead to the same R, value (average roughness amplitude).
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