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bstract

The MEMS structure integrity, their dynamic properties as well as their electrostatic characteristics, strongly depend on the achieved surfaces 
oughness produced by the micromachining process. It is therefore, not surprising that numerous works are devoted to propose relations between 
oughness and physical or mechanical properties in this field. Yet the issue is full of complexities since roughness parameters depend on the method 
sed for their evaluation. This article introduces a new approach of the roughness characterization, based on the scaling analysis. Experimental 
esults obtained on micro machined surfaces show that the range roughness amplitude depends on the scan length and that roughness amplitude 
ollows three stages. The stage I is due to a smoothing effect of the surface induced by the tip radius of the profilometer, stage II presents a piecewise 
ower-law roughness distribution until a critical length that characterises the fractal behaviour of the surface, and stage III is characterised by 
xtreme values statistics. The fractal parameter, the extreme values estimators and the crossover between stages II and III are shown to be related 

o the micromachining process. As a result, an original probabilistic model based on the Generalized Lambda Distribution (GLD) is proposed to 
stimate the multi-scale roughness in the stage III. Finally, thanks to a Bootstrap protocol coupled with a Monte-Carlo simulation, the maximal 
oughness amplitude probability density function is estimated at a scale higher than the scanning length.

eme v

o
e
[
q
t
f
a
r
l
t
p
s

eywords: Roughness; High precision machining; dimensional tolerance; Extr

. Introduction

In the past three decades, important progresses have been
receded in the field of high precision machining techniques.
ome of them as ions beams, electrons or laser are usually used

n the microelectronic industry. Surface topography obtained by
igh precision machining are of major interest. In the case of
lass etching, the RMS surface roughness is as less than 2 nm
1] and plays a major role for silicon bulk micromachining [2].
lectrical resistivity and HF permeability are influenced by the
urface topography even for low roughness [3]. For example, to
inimize the air gap in linear actuators, the microactuator’s sur-
ace needs a very low roughness [4] that prevents magnetic field
nterference [5]. Surface quality is of major interest for nano-
isplacement sensors considered as mirror reflection [6] based

∗ Corresponding author.
E-mail address: maxence.bigerelle@utc.fr (M. Bigerelle).
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n optical properties (like Fabry-Perot one) that integrates an
merging field of the MEMS of the digital micro mirror device
7]. Classically, polishing techniques allow obtaining very high
uality surface in optical domain (mirror finishing) with less
han 1 nm average roughness. Surface roughness plays a pro-
ound influence in the case of stiction/adhesion, friction or wear
nd consequently on the micro/nanoelectromechanical systems
eliability [8]. The roughness friction coefficient [9] dependence
eads adapting process to diminish the roughness [10,11], par-
icularly for increasing micro motors service lifetime [12]. High
recision turning (HPT) is now used when very good dimen-
ional or geometrical tolerances (lower than 1 �m) and high
urface quality (roughness less than 50 nm) are required to reach
he specifications imposed by mechanical or optical industries
or revolution parts [13,14]. The main objective of this superfin-

shing process is to avoid successive operations and thus, to

anufacture a component using only a single machine. All the
achine elements taking part in the kinematics are of great

mportance, but the tool, which is the last link in direct con-

mailto:maxence.bigerelle@utc.fr
dx.doi.org/10.1016/j.snb.2006.11.006


t
b
a
n
t
u
[
f
t
i
t
p
c
u
t
o
c
l
c
m
p
s
V
n
o
t
t
e
a
t
p
m
i
o
t
t
t
p
y
s

2

v
i
p
e
t
[
m
o
u
c
g
p
b

T
p
h
s
i
i
b
m
(
N
c
a
s
A
t
n
i
m
v
t
t
m
p
w
c
c
s
t
H
t
b
t
a
a
t
b
c
o
d
t
i
n
p
l
4
a

3

3

a

act with the part, “prints” its mark on the surface and must
e chosen with great care. For ductile materials as aluminium
lloys, poly-crystal diamond (PCD) tools are used, but unfortu-
ately average surface roughness cannot decrease down to less
han 20 nm. As a result, single-crystal diamond (SCD) tools are
sed when less than 10 nm roughness amplitude must be reached
15,16]. Moreover, to characterise the low roughness of such sur-
aces and their structural integrity, high resolution measurement
echniques have to be used. As it was described, MEMS structure
ntegrity, dynamic properties as well as electrostatic charac-
eristics, strongly depend on the achieved surfaces roughness
roduced by the micromachining process. Yet the issue is full of
omplexities since roughness parameters depend on the method
sed for their evaluation. This paper outlines a new approach
o roughness characterization, based on scaling analysis. A seri-
us difficulty is that all the micro machined surface topography
annot be recorded because the limits of the maximal scanning
ength: AFM areas rarely exceed 100 �m × 100 �m, and confo-
al or interferometric microscopy scanning is imposed by lens
agnitude and camera resolution often limited to 1024 × 1024

ixels that does not allow to both having high definition and high
canning area. To characterise roughness surfaces, the Peak to
alley parameter [17,18] that represents the range of the rough-
ess amplitude (called Rt or PV) is of major interest in the case
f dimensional tolerance characterisation for MEMS. However,
his parameter depends on the evaluation length [19,20] and as
he scanning area is often lower than the part area, the Rt param-
ter of the part cannot be evaluated on the whole surface. As
consequence, a multi-scale modelling has to be constructing

o extrapolate data from the sampling length to the whole sam-
le. The original method we proposed allows both predicting
aximal range amplitude versus the length of the part and giv-

ng confidence intervals of the predicted values. Without lack
f generality, we shall apply our methodology on the surface
opography of a pure aluminium part machined by high precision
urning process with a single-crystal diamond tool. In a first part,
he mating process is precised and the roughness measurements
rotocol is described. After surface topography multi-scale anal-
ses, a prediction model is proposed and validates at different
cales.

. High precision turning process

Obtaining good surface quality requires both the lack of
ibrations and thermal drift, and tool straight trajectories that
mpose the respect of strict conditions when designing a high
recision machine. It is also imperative to control the machine
nvironment. The centring of the part is of main importance
o avoid an imbalance of the spindle and thus, a false round
21]. Moreover, to obtain high dimensions accuracy, the adjust-
ent of the tool compared to the spindle axis must be carried

ut with a micrometer precision. The high precision machine
sed in this study is a prototype lathe positioned in an air-

onditioned room [22]. The two slides are fixed on a massive
ranite block (1.5 tonnes), itself resting on four self-levelling
neumatic isolators. The slide-ways are guided by hydrostatic-
earings, offering low friction and high stiffness and damping.

a
s
t
M

he straightness of both slides is better than 0.3 �m over a dis-
lacement of 100 mm. Recently, linear motors (ILD-EtelTM)
ave replaced both the classic brushless motors and the ball
crews. As a result, the dynamic stiffness of the transmission is
ncreased while the reduced number of machine elements lim-
ts parasitic forces. The command transfer function is changed,
ecause the mass in movement is reduced. Otherwise, displace-
ents are measured by two 4 nm resolution optical encoders

LIP 101-HeindenhainTM) controlled by an accurate Computer
umerical Control system (CNC) with a powerful numerical

ard (PMAC-DeltatauTM). Owing to the speed of computing
nd integrated functions, the rise time of the close loop is very
hort and complex forms can be machined with high precision.

magnetic-bearing spindle (with active control) is located on
he z-axis slide-way. A magnetic plate is used; if the material is
onmagnetic, the specimen is stuck on a steel support or held
n a chuck. As it was previously mentioned, single-crystal dia-

ond is a very accurate cutting tool, because its great rigidity, its
ery high hardness and its good thermal conductivity. Moreover,
he quality of its edge of cut, make it possible to form very low
hickness chips of some micrometers without cold-working the

aterial surface. The interest of single-crystal tool, compared to
olycrystalline one, is that its single edge can have a very low
aviness, and that one can easily choose the most favourable

rystallographic plans {1 1 0} in term of wear [23,24]. On the
ontrary, the polycrystalline cutting edge consists of multiple
mall grains, stuck one to another, with a quasi-random orienta-
ion that induces higher surface roughness on machined surfaces.
owever, tool must be chosen with great care in relation to

he nature of the machining material: the chemical interaction
etween diamond tool and carbide-forming elements present in
he material restricts the number of machinable materials to light
lloys (aluminium and copper) and also to non-metal materials
s germanium, silicon and polymers. On the other hand, steels,
itanium alloys and nickel cannot be machined by diamond tool,
ecause the edge tool would be drastically destroyed by the
hemical wear. A lubrication air pressed system with a fine mist
f lubricant operates during machining. The objective when a
uctile material as aluminium is machined with a SCD tool is
o evacuate the chip to prevent surface damage. The work piece
s an aluminium disk with a 35 mm diameter and a 6 mm thick-
ess. Samples were stuck on a steel support fixed on the magnetic
late of the spindle. The machining parameters were fixed as fol-
ows: a 1250 rpm spindle speed (cutting speed of 165 m/min), a
.8 �m/rev advance speed and a 10 �m finishing depth of cut for
SCD tool with a 5◦ rake angle and a 1.5 mm nose radius [25].

. Roughness analyses

.1. Roughness measurements

Nine profiles are recorded perpendicularly to the grooves over
0.1 �m sampling length, a 4.5 mm scanning length (45,000
mplitude roughness data per profile) and a 100 �m/s scanning
peed. The surface recorder is a high precision tactile profilome-
er 3D KLA TENCORTM P10 firstly developed to measure

EMS surface in electronic devices industry. The experimen-
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residual profile i. Fig. 2 represents the mltiscale roughness val-
ues of Ymax(l), Ymin(l) and Rt(l) at different observation scales
l for the nine recorded profiles. The following primary remarks
can be stated from these graphics:
ig. 1. Recorded profile of an aluminium surface tooled with HPT with three
patial zoom (X7, X35, X175) located at the origin of the whole profile.

al conditions are: 2 �m for the stylus radius and 5 mg for the
pplied load. The instrument has a vertical resolution better than
0 nm, and a lateral resolution of 50 nm on the x axis and 1 �m
n the y axis. Each profile was fitted by a least mean square third
egree polynomial to remove the form and keep only waves and
oughness. Fig. 1 represents a profile recorded on the tooled sur-
aces with three spatial zoom (X7, X35, X175) located at origin
f the profile plot.

.2. Multi-scale roughness analyses

The functionality of micromachined surfaces is often influ-
nced by their topography at a given scale. The arithmetic
verage height (Ra) and the total amplitude (Rt) also called the
Peak to Valley” are very often used to characterize the surface
oughness irregularities but, in most studies, the effect of the
valuation length is not taken into account. This is all the more
nfortunate since these parameters depend on the observation
cale [20,26]. Such a kind of dependence is integrated in the

ractal concept, which basis is to find invariant scale parameters.
ince its introduction by Mandelbrot [27], several mathematical
ethods have been established to measure this fractal dimension

nd to characterise the surface roughness independently of the
bservation scale [28].

F
v

.2.1. Basic concept
After this preliminary step, the objective of the data treat-

ent was to calculate the roughness amplitude parameter
t = Ymax − Ymin as a function of the evaluation length. As far as
t is concerned, it can be expected that the probability to record
igh peaks (i.e., high value of Ymax) or deep valleys (i.e., small
alue of Ymin) is all the more important as far as the evaluation
ength l increases. It is worth noting that the evaluation length
is present in the original definition of the arithmetic average

oughness parameter: Ra = 1
l

∫ l

0 |y(x)| dx, and consequently it
an be expected that the evaluation length may also affects its
alue. For the total evaluation length of our investigated sur-
aces, the value Ra = 9.7 nm was found. Recall that, for each 2D
rofile i (1 ≤ i ≤ 9), 45,000 points are recorded with an interval
x between two consecutive points equals to �x = 0.2 �m. In

ur algorithm, the values of Ymax and Ymin are computed to cal-
ulate a local value of Rt noticed Rt (x,l) = Ymax(x,l) − Ymin (x,l)
or a given evaluation length l beginning at the x position of the
valuation length (x and l varying from 0 to the value of a trace
ength i.e., 4.5 mm) on the residual profile i. Then, the evaluation
indow of length l is shifted by a quantity x (x ∈ [�x, L − �x])

o estimate a new local value Y1
max(x, l + x), Y1

min(x, l + x) and
1
t (x, l + x) noted, respectively Yx

max(l), Yx
min(l) and Rx

t (l). This
peration is repeated until the end of the residual profile i is
eached. Then all the local values Yx

max(l), Yx
min(l) and Rx

t (l) are
veraged for all x values to determine ‘averaged l values’ Ymax(l),
min(l) and Rt(l) corresponding to an observation scale l for the
ig. 2. Ymax(l), Ymin(l) and Rt(l) multi-scale roughness values at different obser-
ation scales l for nine recorded aluminium surface profiles tooled with HPT.
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Apparently, the amplitude of the three roughness parameters
Ymax(l), −Ymin(l) and Rt(l) increases logarithmically with the
evaluation length l. This scale effect is due to the fact the
amplitude of peaks and valleys decreases with the scale (see
Fig. 1).
Dispersion of the data increases with the evaluation length l.
As it can be observed, curves are more and more scattered as
the evaluation length increases. This second scale effect con-
stitutes the basic concept of this paper and will be discussed
later. However, its clearly means that the accuracy to predict a
maximal or minimal values depends drastically of the evalu-
ation length and will be less and less precise as the evaluation
length increases.
It can be observed that the value Ymax(l) > −Ymin(l) and
the difference increase with the evaluation length l.
Ymax(0.2 �m) = 2.3 nm increases to Ymax(4500 �m) = 58 nm
and Ymin(0.2 �m) = 2.3 nm increases to Ymin(4500 �m) =
42 nm. To explain this result, some precisions must be tackled
about the algorithmic computation of the reference line from
which profile amplitude is estimated (origin of amplitude from
which deviation is computed as shown on Fig. 1). For each
recorded profile R(x), the statistical treatment firstly consists
in fitting by the least square method a third order polynomial
P(x) curve to the raw measured profile to remove the even-
tual form and waviness. Multi-scale roughness parameters are
computed on this residual profile Y(x) = R(x) − P(x). A prop-
erty of the least square method involves that the average on
x of Y(x) is null. As a result, if maximal values appear to be
greater than the minimal one, that clearly means that the prob-
ability density functions of the roughness amplitude is skewed
denoting that peaks are higher than valleys. This skewness
can be explained by two morphological properties of the sur-
faces. Firstly, it is well known than tooled surfaces obtained
by the turning process present a morphological structure that
looks like a U-shaped periodical profile (half-circle function),
which period is specified by the feed rate. Consequently, the
distance between the maximal height amplitude and the ref-
erence line is higher than the distance from minimal valley
to the reference line. Secondly, plasticity and abrasion result-
ing from the interaction between tool and aluminum induced
piled-up region concentrated on profile peaks, leading to an
increase of the maximal peak amplitude.

.2.2. Multi-scale analysis
For each experimental profile under consideration, the aver-

ged local values Rt(l) of the nine related residual profiles are all
veraged to obtain a final mean R̄t value at an evaluation length
. Fig. 3 shows the variation of R̄t(l) versus the evaluation length
n log–log coordinates. From this graphics, three different stages
merge: two linear and a logarithmic one. By means of appro-
riate statistical techniques proposed earlier by the authors to
escribe the different stages in fatigue crack growth propagation

29], it can be stated that these three stages limits are:

l < 4 �m (log–log linear stage),
l ∈ [4 �m, 60 �m] (log–log linear stage) and
l > 60 �m (log–log logarithmic stage).

p
e
i
s
n

ig. 3. Rt(l) multi-scale mean roughness values at different observation scales l
btained by averaging the nine recorded aluminium surface profiles tooled with
PT shown in Fig. 2.

The stage transition can play a dominant role on MEMS
esponse such the pull-in voltage in micro switches [30]. For
ack of simplicity, the stage II analysis will be firstly introduced.

.2.3. Stage II: the fractal stage
By analyzing Fig. 3, Rt(l) presents a linear aspect in the

og–log representation in the range l ∈ [4 �m, 60 �m] with a
lope equals to 0.32. This clearly means that the scale relation
t(l) ∝ l0.32 holds. To explain this relation, the determination of

he fractal dimension by “Oscillation Method” from Dubuc et
l. [20,26] must be introduced. The τ-oscillation of the function
in x is defined as:

: [a, b] → IR OSCτ(f, x) =
∣∣∣∣∣max(f (t))−

|x−t|<τ

min(f (t))
|x−t|<τ

∣∣∣∣∣ , (1)

y taking the average of OSCτ(f,x) over the interval [a,b], one
btains:

ARτ(f, a, b) = 1

b − a

∫ b

a

OSCτ(f, x) dx (2)

hen the fractal dimension can be written as:

(f, a, b) = lim
τ→0

(
2 − log VARτ(f, a, b)

log τ

)
(3)

If the function f is given by the experimental profile fe, then:

x
t (l) = OSCl(fe, 0, l) (4)

nd finally by introducing Eq. (4) in Eq. (2) the following result
s obtained:

t(l) = VARl(fe, 0, l) (5)

From Eq. (3), the fractal dimension �(fe,0,L) of the fe
rofile is equals to 2 minus the slope called the Hölder

xponent, therefore, the fractal dimension in the stage two
s: �(fe,0,4500 �m) = 1.68. It is reported that tool machined
urfaces possess fractal aspect [31–37] and additionally in
anomachining process on aluminium surfaces [38] that is quit
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imilar to the machining process discussed in this paper. In
his pure fractal stage, it becomes then possible to predict the
alues of the maximal roughness amplitude Rt(l) versus the eval-
ation length and their associated confidence intervals thanks
o conventional statistical tools used under the Gauss Markov
ypothesis in the linear regression modelling. However, the
athematical formalism of stages (I) and (III) is still not justi-
ed in the bibliography and then the predictions of the maximal
oughness amplitude at these given scales cannot be predicted.
ets now analyse physically the meaning of the stage I and III.
he stage I presents a linear relation in a log–log plot with slope
qual to 0.67 meaning that the fractal dimension is equal to
.33. Compared to the stage II, the fractal dimension decreases
eaning that the profiles appear smoother when l < 4 �m. This

nvolves that a new process appears that diminishes the frac-
al dimension of the profiles for a small scale length. At the
arger scale (l > 60 �m, stage III), the linear relation does not
old meaning that the fractal concept does not applied. As a
onsequence, the fractal concept of tooled surface cannot be
xtended to large spatial scale. We postulate that the transition
tage II–stage III is linked to a change of the fractal properties of
he profile. It is reported in the bibliography that fractal proper-
ies of profiles may be determined by autocorrelation functions
39,40]. For this reason the average autocorrelation function of
ll profiles is plotted in Fig. 4. As it can be observed, the autocor-
elation decreases and presenting an oscillation until reaching a
ull value (in spatial average) for l > 60 �m. Thanks to a spec-
ral analysis (Fig. 5), the period of this oscillation is equal to
.6 �m, a value closed to the advance speed (4.8 �m/rev) of
he turning process. However, after the stage II (l > 60 �m),
uto-correlation values is null meaning that no “memory” of
he profile occurs when two measured amplitude height val-
es are distant of more than 60 �m. As a consequence, pass
ver this critical length, profiles may be analysed as a pure ran-
om process with appropriate mathematical tools. Stage III is of

ajor interest because it assumes the dimensional tolerance of

he MEMS. Although often mentioned in the bibliography, the
athematical and physical backgrounds of this stage is never

ustified.

ig. 4. Average autocorrelation functions for the nine recorded profiles of an
luminium surface tooled with HPT.
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ig. 5. Average power spectrum of the nine aluminium surface recorded profiles
ooled with HPT.

.2.4. Stage I: the radius stylus tip stage
As seen above, profiles appear smoother for l < 4 �m, a value

hat corresponds exactly to the diameter of the profilometer tip.
he tactile recording involves a certain amount of smoothing or
egradation of the true surface data. The stylus curvature radius
roduces a smoothing effect of the recorded profile since the
tylus cannot record any information at all from crevices that
re narrower than the stylus width. However, as the smooth-
ng effect is a highly non-linear convolution of the profile, it
ecomes very difficult to estimate its effect on the original data.
onsequently, it is of major interest to determine the scale at
hich the smoothing effect plays a part in the roughness param-

ters calculation. The stylus size effect is greatly discussed in
he bibliography for mechanical profilometers [41–45] and AFM
opography [46–48], however, no universal analytical expression
haracterises the smoothing effect whatever the surface topogra-
hy. For this reason, an algorithm that simulates the stylus effect
n surface integration was written and applied on a simulated
ractal profile, free of the stylus integration effect, that looks like
ur experimental function (see appendix, simulation of turning
urface). Fig. 6 represents surface profiles simulated by fractal
unctions described in Annexe. As it could be observed, the pro-
les obtained are very relevant to model the high finish surfaces
nd can be used for multi-scale function analysis. Stylus scan-
ing effects were simulated with 1–5 �m curvature radii. Fig. 7
hows the good agreement between profiles simulated with a
�m profilometer radius and the experimental one (Fig. 1).
easuring the range amplitude roughness on the six different

urvature radii simulated profiles, it can be observed on Fig. 8
hat the crossover Stage I–Stage II appears towards 4 �m for a
ip diameter of 4 �m and increases with the stylus tip diameter.
he simulation confirms the fact that this stage is related to the
moothing effect of the surface implicated by the tactile covering
the same effect occurs in AFM measurements [48]).
.2.5. Stage III: the extreme values stage
As noticed, the plot of Rt versus l in a log log plot (Fig. 3)

resents a logarithmic stage (in a log–log coordinate) for
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ig. 6. Simulated profile of surface tooled with HPT as shown in Fig. 1 with
hree spatial zoom (X7, X35, X175) located at the origin of the whole profile.

> 60 �m that we have presented as a pure stochastic pro-
ess. To the authors’ knowledge, no modelling was proposed
n the bibliography to predict the maximal range amplitude
fter this threshold. To account for, we postulate that the sur-
ace becomes stationary in a statistical sense (ergodicity) after
he fractal stage, meaning that the mean amplitude of the sur-
ace stays constant. However, by including the sampling effect,
he fluctuation occurs and the magnitude of the extremes val-
es increases with the number of sampling points. The most
uccessful method of safety or reliability was found in the
pplication of the statistical extreme value analysis using the

umbel distribution [49]. Because some limitations (no interval

onfidence intervals for extreme value predictions, properties
f the parent distribution are imposed), an alternative method-

ig. 7. Fig. 6 simulation of stylus integration (2 �m radius) with a X175 spatial
oom.

o
t
c

4
d

c
f
Y

t
u
i

ig. 8. Rt(l) multi-scale roughness values computed at different observation
cales l from simulated profile with stylus integration processed for different
actile profilometer stylus radii.

logy to the Gumbel distribution shall be proposed in this
aper.

. The prediction of the extreme amplitude roughness

The method we shall develop here consists to predict the
xtreme values of the surface roughness parameters Ymax(l),
min(l) and Rt(l), and their associated uncertainties, by mea-
urement at a given scale l. The resolution of this problematic is
f major interest in high finish surface control because surfaces
opography are rarely recorded in totality (high time consuming,
imitation of scanning length of profilometers. . .). The method-
logy we proposed as an alternative methodology to the Gumbel
istribution is based on the combination of two statistical meth-
ds: the Generalized Lambda Distribution (GLD) [50] and the
onte-Carlo method. Contrary to the Gumbel approach that

equires a parent distribution of exponential type to be applied,
oth the GLD and the Monte-Carlo methods present the main
dvantage to avoid making any assumption about the underlying
istribution. Moreover, the GLDs have been shown to fit well
any of the most important distributions including exponential

ype ones. The normal (Gaussian), exponential and Lognormal
istributions belong to this type and are often observed in case of
ngineering surface data. It must be outlined that the goodness
f fit by the GLD is particularly noticeable in the tail region of
his kind of distributions; region of interest of this study since it
orresponds to the extreme values of any distribution.

.1. Modelling the maximal, minimal and range amplitude
istribution

It will now supposed that the roughness measurement is pro-
essed on a evaluation length that corresponds to the end of the
ractal stage i.e., l = 60 �m. Fig. 9 represents the histogram of all

x
max (60 �m), Yx

min (60 �m) and Rx
t (60 �m) local values. Then

he first step consists in modelling these histograms thanks to the
se of the Generalized Lambda Distribution. The GLD family
s specified in terms of its percentile function (called also the
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An algorithm was written in the Statistical Analyses System lan-
guage (SASTM) to determine the GLD and its related probability
density function from the experimental dataset. The numerical
results of the minimization process obtained with our computer

Table 1
Moments of Yx

max (60 �m) and Yx
min (60 �m) distributions
ig. 9. Minimal Ymin(l), maximal Ymax(l), and range roughness amplitude Rt(l)
mpirical distributions at l = 60 �m evaluation scale.

nverse distribution function) with four parameters (λ1, λ3, λ3
nd λ4):

X(y; λ1, λ2, λ3, λ4) = λ1 + (yλ3 − (1 − y)λ4 )

λ2
(6)

1 and λ2 are respectively, the location and the scale parameters,
hile λ3 and λ4 determine respectively, the skewness and the
urtosis of the GLD. The probability density function fX(x) can
hen be easily expressed from the percentile function of the GLD:

X(x) = λ2

(λ3yλ3−1 + λ4(1 − y)λ4−1)
(7)

The main problem is to estimate the parameters λ1,λ2, λ3 and
4 in order to have the best fitting of the GLD with the exper-

mental frequency distribution (of extreme roughness values in
his study). In a first time empirical moment are calculated from
experimental data xi:

ˆ 1 =
∑n

i=1xi

n
(8)

ˆ 2 =
∑n

i=1(xi − α̂1)2

n
(9)

ˆ 3 =
∑n

i=1(xi − α̂1)3

3/2 (10)

n α̂2

ˆ 4 =
∑n

i=1(xi − α̂1)4

n α̂2
2

(11)
Y

Y

t is shown [50] that:

1 = λ1 + A

λ2
(12)

2 = σ2 = B − A2

λ2
2

(13)

3 = C − 3AB + 2A3

λ3
2α

3/2
2

(14)

4 = D − 4AC + 6A2B + 3A4

λ4
2α

2
2

(15)

ith

= 1

1 + λ3
− 1

1 + λ4
, (16)

= 1

1 + 2λ3
+ 1

1 + 2λ4
− 2β(1 + λ3, 1 + λ4) (17)

= 1

1 + 3λ3
+ 1

1 + 3λ4
− 3β(1 + 2λ3, 1 + λ4)

+ 3β(1 + λ3, 1 + 2λ4) (18)

= 1

1 + 4λ3
+ 1

1 + 4λ4
− 4β(1 + 3λ3, 1 + λ4)

+ 6β(1 + 2λ3, 1 + 2λ4) − 4β(1 + λ3, 1 + 3λ4) (19)

here

(a, b) =
∫ 1

0
xa−1(1 − x)b−1dx. (20)

The moments of Yx
max (60 �m) and Yx

min (60 �m), estimated
y Eqs. (8)–(11), are reported in Table 1. To calculate λ1,λ2, λ3
nd λ4, it is necessary to solve a four system of Eqs. (12)–(15)
hat are highly non linear. As Eqs. (18) and (19) depend only of

3 and λ4 and as λ3
2σ

3 = (B − A2)
3/2

and λ4
2σ

4 = (B − A2)
2
,

he system is reduced to a two equations one with more sta-
le numerical convergence (less numerous local extrema). The
olution consists in finding λ3 and λ4 by a steepest gradient on
he following functional:

′(λ3, λ4) =
4

i=3

(α̂i − αi)
2 (21)

hen λ2 is calculated from Eq. (13) and finally λ1 from Eq. (12).
α̂1 α̂2 α̂3 α̂4

x
max (60 �m) 0.0214 0.0414 0.8930 0.3004
x
min (60 �m) 0.02572 0.0582 0.6519 0.2330
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dict the extreme roughness amplitude at the larger evaluation
length l0 × k. To illustrate this method, this Monte-Carlo pro-
cedure is applied to predict the PDF of Ŷ

60 �m,k
max and Ŷ

60 �m,k
min

for k ∈ {1,2,5,10,20,30}. Fig. 11 represents these PDF func-

Table 2
Values of the four parameters for the both Lambda distributions that modeled
Yx

max (60 �m) and Yx
min (60 �m)
ig. 10. 3D view of the values of the function Ψ (λ3,λ4) for the lambda distribut
x
min (60 �m) Lambda distribution obtained after minimization on Ψ (λ3,λ4).

lgorithm are illustrated in Fig. 10. Theses figures present a
D view of the values of the function Ψ (λ3,λ4) on which the
radient decreasing method was processed when −2 < λ3 < 1
nd −2 < λ4 < 2 for the lambda distribution associated with Yx

max
60 �m) and Yx

min (60 �m). After minimization, the values of the
our parameters for the both Lambda distributions that modeled
x
max (60 �m) and Yx

min (60 �m); the related empirical distribu-
ions are shown in Table 2. Then the Yx

max (60 �m) and Yx
min

60 �m) Lambda distribution are plotted on Fig. 10. As it can
e observed, the Lambda distributions fit very well the Yx

max
60 �m) and Yx

min (60 �m) empirical distributions. To appreciate
he well accuracy of lambda distribution to model extreme data
oughness, a Chi-2 criterion is computed. For both the data Yx

max
60 �m) and Yx

min (60 �m), the Chi-2 criterion does not reject the
dequation between experimental and model data at the usual
ritical value α = 0.05. This means that Yx

max (60 �m) and Yx
min

60 �m) both obey a Lambda distribution and this model can be
sed to predict some probabilistic features.

.2. Multi-scale prediction of the distribution of the
aximal, minimal and range amplitude roughness

At this stage, an analytical probability density function of
x
max (60 �m) and Yx

min (60 �m) of the maximal and minimal
ocal roughness amplitude is estimated at scale l = 60 �m. Sup-
osing that the evaluation length is twice as large as the initial
ne (i.e., one wants to estimate Yx (60 �m)), and that data are
max
ndependent at this scale (as presently shown) then the maximal
mplitude for two possible values of x and x′is equals to:

max(120 �m) = max(Yx
max(60 �m), Yx′

max(60 �m)) (22)

Y

Y

sociated with Yx
max (60 �m) and Yx

min (60 �m). On the right, Yx
max (60 �m) and

In an algorithmic point of view, this means that one take
andomly two values of Yx

max (60 �m) and the maximal value of
his pair gives an estimation of the maximal roughness measured
t a 120 �m evaluation length. By repeating a great number of
imes this procedure, the probability density function of Yx

max
120 �m) can be obtained. Extending this procedure, the val-
es of Yx

max(k l) are obtained by taking the maximal value from
values of Yx

max(l). To simulate a possible value taken from
x
max(l), a random number that follows a Lambda distribution
ith parameters (λ1,λ2,λ3,λ4) is generated using the following

quation:

(u) = λ1 + (uλ3 − (1 − u)λ4 )

λ2
(23)

here u ∈ [0,1] is a uniform random number, and p(u) is the
elated simulated value of extreme roughness amplitude. In this
aper, we shall noticed p(u) = Ŷ l0,k

max, where l0 is the length
rom which extreme roughness is measured and modeled by
he Lambda distribution, and k is a coefficient introduced to pre-
�1 �2 �3 �4

x
max (60 �m) 0.0233 −2.32 −0.010 −0.018
x
min (60 �m) 0.0199 25.51 0.134 0.199



Fig. 11. Ŷ
60 �m,k
max (top) and Ŷ

60 �m,k

min (bottom) PDF’s functions prediction
obtained from 10000 Monte-Carlo simulations for the 6 magnifications
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Fig. 12. Prevision of the mean of the extreme roughness amplitude parameters
Y

a
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A
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k
p
on the minimal and maximal amplitude thanks to the general
relation.

R̂
60 �m,k
t2 = Ŷ60 �m,k

max − Ŷ
60 �m,k
min (24)
∈ {1,2,5,10,20,30}. The case k = 1 corresponds to simulation of the original
ambda shown on Fig. 10.

ions obtained from 10000 Monte-Carlo simulations. As it can
e observed, the mean of the PDF increases as the magnifi-
ation k increases. From these empirical probability density
unctions, usual statistical estimators like the mean and the 90%
onfidence interval (i.e., the difference between the 95th and
he 5th percentiles) can then be easily determined to assess
espectively, the central tendency and the dispersion. Since one
roblem of practical importance is to determine the extreme
oughness amplitude that will be found in a large scale sam-
le by using a small evaluation length, the procedure was used
gain to assess the effect of the surface size on the evolution
f the mean and the 90% confidence interval of the distribu-
ion of the extreme values of amplitude. Fig. 12 shows the mean
f the maximum extreme roughness amplitude versus the eval-
ation length. Analyzing the roughness at a 60 �m evaluation
ength, allows predicting the roughness at all the scales larger
han 2000 �m and moreover the 90% confidence interval also
eems to be a good model since the nine experimental curves
re scattered in this interval. Note that like experimental curves,
onfidence interval increases with the evaluation length or more
recisely when the prediction is model farther from the scale at
hich Lambda distribution is computed (i.e., from which our
redictive model is constructed). However, when the maximal
ange amplitude R̂

60 �m,k
t is computed (Fig. 13) with the same

rocedure as described above, a high inaccuracy appears in our
odelling and R̂

60 �m,k
t minimizes the real Peak to Valley param-

ter amplitude. We shall briefly explain this fact: the simulation
upposes that predicting a two-fold length amplitude value is
quivalent to choosing two values in the initial density and tak-
ng the maximal one. However, this reasoning does not hold for
ˆ 60 �m,k

t because the minimal value and the maximal value are
ot computed at the same scale. Let us illustrate this purpose
y a simple example without lack of generality. Considering the

rofile given on Fig. 14, at the larger scale l = 7000, Y0

max(l) = 1,
0
min(l) = 0 and then R0

t (l) = Y0
max(l) − Y0

max(l) = 1 (this rela-
ion will always hold whatever the profile into consideration).

F

R

l

ˆ 60 �m,k
max , Ŷ60 �m,k

min (�) vs. the evaluation length (obtained by taking all k values)
nd their associated 5th (©) and 95th (�) quantile confidence intervals. The 9
xperimental curves are plotted (♦).

t scale l/2, one gets R0
t (l/2) = 0.1, R3500

t (l/2) = 0.1 and
0
t (l) > max(R0

t (l/2), R3500
t (l/2)) = 0.1. However, one always

ets Y0
max(l) = max(Y0

max(l/2), Y3500
max (l/2)) = 1 and Y0

min(l) =
in(Y0

min(l/2), Y3500
min (l/2)) = 0. This clearly means the well-

nown “Peak to Valley” is not an extreme value parameter. To
redict its value, it is possible to use the extreme value theory
ig. 13. Mean of the extreme roughness amplitude parameters Ŷ
60 �m,k
max , Ŷ60 �m,k

min
ˆ 60 �m,k

t and R̂
60 �m,k

t2 = Ŷ
60 �m,k
max − Ŷ

60 �m,k

min (lines) prevision vs. the evaluation
ength and the Ymax(l), Ymin(l) and Rt(l) means experimental values.
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Fig. 14. Combination of a heavy side function with a sinusoid.

hich gives the probability density function of the Peak to Valley
oughness parameters. As it can be observed on Fig. 13, the Peak
o Valley amplitude is well modeled from 60 �m until more
han 2000 �m. The relation Eq. (24) will be essential in many
elds where the “Peak to Valley” parameter is of major interest
geometrical tolerance, fluid mechanics, wear. . .).

In the preceding case, the prevision of maximal roughness

arameters was calculated by taking at origin the sam-
ling length l = 60 �m (end of the fractal stage). Now, the
ame result will be computed by taking the origin in the

ig. 15. Multi-scale prediction of extreme roughness amplitudes parameters
ˆ x,k

min, Ŷ
x,k
min, R̂

x,k
t at different origin evaluations x ∈ {2,10,20,60,200,500,1000}.
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tage I, Stage II and another origin points in the Stage III
l ∈ {2,10,20,60,200,500,1000}�m). Fig. 15 shows the evolu-
ion of the maximal roughness amplitude parameters predicted
or these different origins. For all the parameters under study, the
rediction always holds with a very good accuracy for l > 60 �m.
his confirms that stage III, as opposed to stages I and II, is an
xtreme value stage as claimed in the preceding chapters and
alidates our methodology at all the scale.

. Conclusion

This paper is a contribution to estimate the control toler-
nce in the field of high precision machined surfaces that can
e generalized to other physical or mechanical processes. The
icromachined workpieces may first be modeled by fractal

unctions and we provide an analytical modelling of the sur-
ace topography. The multi-scale analysis performed in this
aper shows that roughness recorded by mechanical profilome-
er from high precision turning surfaces present three behaviors.

smoothing effect related to the recording apparatus tip radius
f curvature (stage I), a fractal range (stage II) characterized
y the fractal dimension and a stage III characterized by the
xtreme values theory. This last stage is modeled by a new and
lternative methodology to the Gumbel approach combining the
eneralized Lambda Distribution and the Monte-Carlo method

n order to estimate accurately the maximal peaks and minimal
alleys. Finally, a method is proposed to predict the mean with
90% confidence interval of the maximal valleys, minimum

eaks and the “Peak to Valley” roughness parameters by mea-
uring a roughness profiles at a lower scale. In a future works,
his methodology will be applied to predict the value of others
oughness parameters like Ra, Rq. . . known to be relevant to
nfluence a physical response on the surface.

ppendix A. Annexe

This part aims to create a new fractal function that describes
he turning process. We shall assume that the part of the diamond
ool in contact with the aluminium workpiece has approximately,
hemispherical shape and then the grooves can be seen as inden-

ations having a circular shape, which follows a power law. As
consequence, the profile is described as a sum of elementary
alf-circles. Let us first define an elementary function g(x) of
eriod 1 on the [0..1] interval as follows:

(x) = − 1 − (x − 0.5)2 x ∈ [0, 1] (A.1)

e then propose the deterministic fractal circle function:

CF(x) = A

∞∑
n=0

2−nHg(2nx) (A.2)

here H ∈ [0· · ·1] and A is a scaling amplitude factor.

Theorem: the fractal dimension of the profile �(Gf) is given

y:

(Gf ) = 2 − H (A.3)
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To take into account the stochastic component of experimen-
al profiles, a stochastic version of the previous function given
y Eq. (a2) must be formulated:

SCF(x) = A

∞

n=0

Ψn2−nHg(2nx + ϕn) (A.4)

here Ψn are positive Gaussian random numbers that physically
epresent the stochastic variation of the stress during the turn-
ng process, and ϕn are uniform random numbers that represent
he disorientation of the grooves due to the rotation of the turn-
ng tool. These numbers leave the fractal dimension unchanged.
nly a few terms are needed to discretize the curve because of

he exponential decrease of the period in the g(x) function. For
= 0 the function is defined on [0..1], n = 1 on [0..0.5], n = 2 on

0..0.25] and so on. This means that very quickly the period of
he function will reach the sampling length. Consequently the
hape of elementary functions will often appear on the graph
f FSCF(x). To avoid this numerical artefact, we have to add
ew terms to the fractal series without modifying the fractal
imension. We then retain the new function:

MSCF(x) = A

∞

n=0

Ψn2−nH/pg(2n/px + ϕn) (A.5)

ith p an integer higher than unity.
As a consequence, the spectrum of the function related to Eq.

a5) tends to be more continuous than those described in the
ibliography. It can be noticed that only two parameters have to
e determined for the definition of the Fractal Circle Function
roposed in this paper: the amplitude factor A and the Hölder
xponents H. The p value is chosen to be high enough (p = 10)
o as to avoid statistical artefacts in the spectrum representation.

is given by the slope on stage II of the curves shown in Fig. 3.
is calculated such simulated profiles and experimental ones

ead to the same Ra value (average roughness amplitude).
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behaviour of thin a-C and a-C:H films with different topographic struc-
ture under rotating and oscillating motion for dry lubrication, Surf. Coat.
Tech. 188–189 (2004) 530–533.

10] S. Chandrasekaran, S. Sundararajan, Effect of microfabrication processes
on surface roughness parameters of silicon surfaces, Surf. Coat. Tech.
188–189 (2004) 581–587.

11] S. Sundararajan, B. Bhushan, Micro/nanotribological studies of polysilicon
and SiC films for MEMS applications, Wear 217 (2) (1998) 251–261.

12] W.M. Zhang, G. Meng, Numerical simulation of sliding wear between the
rotor bushing and ground plane in micromotors, Sens. Actuators A Phys
126 (1) (2006) 15–24.

13] M. Bonis, P. Revel, C. Tirvaudey, J.L. Vavrille, Journées de l’AUM, Saint
Etienne, 1998.

14] C. Evans, Precision Engineering: An Evolutionary View, Cranfield Press,
Bedford, UK, 1989.

15] P. Hannah, R. Rohrer, Basics of diamond turning, Tutorial, ASPE, 1990.
16] W. König, M. Weck, N. Spenrath, J. Luderich, Tutorial on Diamond

Machining Technology, 6th IPES/UME 2, Braunschweig, 1991.
17] S.C. Fawcett, R.F. Keltie, Use of a fiber optic displacement probe as a

surface finish sensor, Sens. Actuators A Phys. 24 (1) (1990) 5–14.
18] H.W. Zhou, B.G. Kharas, P.I. Gouma, Microstructure of thick polycrys-

talline silicon films for MEMS application, Sens. Actuators A Phys. 104
(1) (2003) 1–5.

19] M. Hasegawa, J. Liu, K. Okuda, Calculation of the fractal dimension of
machined surface profiles, Wear 192 (1996) 40–45.

20] B. Dubuc, J.F. Quiniou, C. Roques-Carnes, C. Tricot, S.W. Zucker, Evaluat-
ing the fractal dimension of profiles, Phys. Rev. A 39 (3) (1989) 1500–1512.

21] H. Khanfir, M. Bonis, P. Revel, Improving flatness in ultraprecision machin-
ing by attenuating spindle motion errors, Int. J. Mach. Tools Manuf. 45
(7–8) (2005) 841–848.

22] H. Khanfir, PhD dissertation, Univ. Tech. Compiègne, France, 2002.
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