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From Smalltalk to Silicon:
Towards a methodology to turn Smalltalk code into FPGA

LE Xuan Sang'?, Loic Lagadec!, Luc Fabresse?, Jannik Laval® and Noury Bouraqadi®

1 ab-STICC, ENSTA Bretagne
2Institut Mines-Telecom, Mines Douai

Due to their ability to combine high performances along with
flexibility, FPGAs (Field Programmable Gate Array) are used
in robotic applications nowadays, especially in case of real-
time applications. The FPGA circuits are often designed and
configured using the Hardware Description Languages (HDLs)
like VHDL or Verilog. However, although these languages pro-
vide abstractions up to the functionality level, they lack many
features of todays modern languages that make them unsuited
for high-level models and systems. In this paper, we present
an overview of a methodology that uses a Dynamic Reflective
Language, such as Smalltalk, for high level hardware/software
co-design on FPGAs.

Index Terms—Smalltalk, Pharo, FPGA, VHDL, Native
Boost, robotic, Dynamic Reflective Language.

I. INTRODUCTION

A fundamental robotic application often consists of three
general states: (1) perception in which the robot senses and
analyses the environment via its sensors. (2) Planification
that helps the robot to take decision based on its sensation.
(3) The Control state is the reaction of the robot where
its planification takes effect on the actuators to answer the
changes of environment. A typically example is given by a
robot with a vision system consisting of a fixed camera, which
takes pictures of a scene, recognises an object, identifies
its location, calculates the trajectory and commands the
actuators to follow the object. The more sensors the robot
has, the better its ability to interact with the environment and
to guarantee a stable behaviour as well as predictable perfor-
mance. However, this will cause two major problems: first,
multi-sensor processing and analysing demand a signifiant
processing power, especially in case of real-time applications
which have a heavy response time constraint. Second, adding
more sensors may change the hardware configuration of the
system and thus can require the replacement of other devices
consequently which will raise the production cost.

On the software side, to improve the productivity, we use
Smalltalk [1], [2], a high level dynamic language, in the
development task. With its simplicity and rich semantic,
the language makes the programmation task significantly
faster and simpler. However, Smalltalk is not very suitable for
mass datas processing (multi-sensor datas), especially in the
context of a real-time application which requires the parallel
processing of multi-data sources.

These hardware/software challenges of flexibility and per-
formance can be overcome by using FPGAs. FPGAs are

integrated circuits which contain a matrix of reconfigurable
gate array (logic block) that, when configured, implement
a circuit [3], [4]. FPGA circuits use hardware for processing
logic and thus may not depend on any operating system.
Because the processing paths are parallel, different operations
do not have to compete for the same processing resources.
That is, the operational speed can be very fast [5]. The
reconfigurability of FPGAs is another interesting point of this
kind of hardware which turns it to a limitless flexible device.
This ability provides designers with a way to make different
hardware configurations on the same chip. This means that,
each program that uses a FPGA chip can download a new
circuit design onto the chip and tailor it specifically for
the needs of that program. With these abilities, FPGA is a
powerful and relatively inexpensive solution which responds
to the demand of high processing power and flexibility to
the unforeseen change of hardware configuration in the robot
application.

To avoid confusion, in this paper, we make a convention
that the term design is used only for the digital hardware
design task (section Il) that implements the FPGA circuits.
For the robotic software development on FPGA (section IIl),
we use the term program/programing instead.

The FPGAs circuits are often designed using a Hardware
Description Language like VHDL or Verilog [6], [4]. The
HDLs have been evolved in recent years. They provide a
simpler approach to digital hardware design. But in compar-
ison with today modern software technique, this evolution is
quietly not enough. These HDLs allow the specification at
the Register Transfer Level (RTL). But at algorithmic level,
their lack of semantics makes behavioural verification and
debugging hard. Moreover, since these languages are specific
for hardware description, they are not adequate for high-level
models or systems which require a hardware/software co-
design. An HDL-based design is often constrained on some
target FPGAs that limits its reusability on the others. This
slows down the production of new designs and makes difficult
to maintain or extend existing designs. A high-level language
like Smalltalk provides all the features that the HDLs miss.
Furthermore, it offres also a valuable ability of debugging,
testing and probing application which is very useful for the be-
havioural verification of the hardware design. A FPGA HDL-
based design has many similarities with software development
and therefore can be modelled by using a high-level language.
There are some works which are targeting on this, such as



[71, 8], [9]. [10], using C++, Java or Python. The well-
known SystemC [11], [12], [13] is a typically example, by
extending the mainstream C+4+, it provides a class library
that enables to describe and simulate software/hardware at
system level. This brings the advantages of oriented-object
software development to the digital hardware design world.

This paper will attach on two sides of the hard-
ware/software co-design problem on FPGA. We first present
an overview of a hardware design methodology that uses
Smalltalk as a hardware description and verification language.
Here we propose a modelling methodology that acts as an
abstraction layer between Smalltalk and VHDL, this layer
produces the VHDL code from Smalltalk code and invokes
the vendor’s synthesis toolchain to actually make the code
available on the FPGA (section II). Secondly, we aim at
a software development approach that allow us, by using
Smalltalk, to program the robotic software that need interact
with the FPGA. This section presents also the FPGA-ARM
System on Module (SoM) or System on Chip (SoC [14])
which gives us the ability to interact directly to the FPGA's
registers via system libraries (section IIl). At the end of the
paper (section IV), we discuss what we have done so far and
the future works based on the methodologies proposed.

II. A GENERAL MODELLING METHODOLOGY TO
DESIGN FPGA CIRCUITS USING SMALLTALK

This section presents the FPGA hardware design side, in
which we use Smalltalk as a high level hardware description
an verification language.

A. Background : FPGA concepts and development
life-cycle

The FPGA circuits, in general term, are often designed
using a HDL language (such as VHDL or Verilog) and
configured by the vendor's toolchain. Figure 1 shows the
development flow of a FPGA HDL-based design [4]. The left
portion represents the design and refinement process in which
the design is transformed from an abstract HDL description
to a device cell-logic configuration before being downloaded
onto the chip. The right portion is the design verification pro-
cess to check that the design is correct (RTL Simulation) and
meets the functionality requirements (functional simulation)
as well as the performance constraints (timing simulation).

The synthesis is known as the logic synthesis, in which
the HDLs is transformed from the RTL constructs to generic
gate level components. The implementation process consists
of three smaller sub-processes : The translate process merges
the designs to a single netlist. The map process maps the
generic gates in the netlist to FPGA's logic cells. Finally the
place and route process defines the physical layout inside the
FPGA and connects the logic blocks together. These two
processes strictly depend on the vendor's tool (Xilinx, Altera
etc.).

B. Smalitalk as a hardware description an verification
language

As mentioned before, the lower steps (marked as 3 and 4
in figure 1) are strongly coupled to the vendor’s tools and
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Figure 1: A HDL-based development flow: (1) Design the
system and derive the HDL files. (2) Write the testbench and
perform a RTL simulation to verify the design. (3) Synthesis
and implement the design using the vendor’s toolchain. (4)
Download the binary file (proprietary format) onto FPGA
memory. The functional simulation and the timing simulation
are optional and thus can be omitted from the development
flow.

therefore are difficult to change. Our proposition is to model
only the top level of the flow, concretely, the HDL design
task and the RTL Simulation task (marked as 1 and 2).
The main objective is to be able to use Smalltalk as a high-
level hardware description and verification language; as well
as to benefit from its integrated development environment to
debug and manage the hardware designs.

The overall architecture of our methodology is shown in
figure 2. First we need to build an Hardware design abstrac-
tion layer that acts as a abstraction layer between Smalltalk
and VHDL. This layer models the basic principles of the
VHDL, and thus can turn Smalltalk to a high-level hardware
description language. It will handle all of ours Smalltalk-based
design entries on the top.

From this abstraction layer, two lower modules will be
developed : (1) one provides the Smalltalk-VHDL conversion
ability which can help to generate an HDL-based design entry
from the Smalltalk’s one. This module will create a path to
the traditional design flow that brings our design to the real
hardware via the vendor's toolchain. (2) The other handles
the RTL Simulation task where we can verify the correct-
ness of our design right inside the Smalltalk environment.
Note that, for the lower simulation levels such as functional
simulation and timing simulation, we need the vendor's tools
consequently.

Since our purpose is to propose a simple and more efficient
way to design the FPGA circuits, the methodology described
above must meet some requirements below:

Correctness of conversion: The Smalltalk-to-VHDL
conversion must ensure the preservability of the algorithm.
Moreover, since the synthesis and implementation are done
automatically behind the scene, the produced VHDL must be
a already-synthesizable VHDL without any further modifica-
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Figure 2: A Smalltalk-based development flow: the modelling
is done on top, at the language and simulation level and then
provides a path to the vendor's tools to make the design
available on the real FPGA.

tion on it.

Reusability and Extensibility: The abstraction layer
must handle the compatibility of the Smalltalk-based de-
sign with different FPGA devices and make it hardware-
independent. This allows the reusability of the design without
(or with a minimal) effort of modification. The design will also
need to be extensible by subclassing, the more it is subclassed,
the more its functionalities are enriched.

Simulation: As we only work at RTL level, the simu-
lation must allow the designer to verify the correctness of
the design at that level. It's ideal that the simulator can
support the waveform by tracing the signal changes in a VCD
(Value Change Dump) file. This kind of file can be viewed
using an external viewer like GTKWave!, or much better, one
developed natively in Smalltalk [15], [16]. The possibility of
using Unit test (SUnit) in the hardware design is also very
appreciated.

Robust interaction with vendor’s tools: There are
different FPGA vendors out there (Xilinx, Altera, etc.), and
every vendor has many FPGA families different (Xilinx: Vir-
tex, Spartan, Artix, etc.). Therefore, in order to configure the
design on any FPGA chip, we need to provide its hardware
description to the vendor's toolchain. The methodology must
propose an efficient way to facilitate and automate this
process [17], [18].

III. SOFTWARE PROGRAMMING ON FPGAs WITH
SMALLTALK

This section describes the approaches to communicate
with the FPGA circuits from our Smalltalk-based robotic
application.

A. Standalone FPGA

A standalone FPGA is a FPGA which can independently
operate side by side with the host system. This FPGA has pre-
configured circuits on it in order to perform a fixed algorithm

Thttp://gtkwave.sourceforge.net

(image filter for example). Figure 3 shows a typically com-
munication flow between the Smalltalk-based software and
the FPGA's circuits via a common hardware interface like
USB,RS232,etc. Here we use a Foreign Function Interface
(FF1) such as NativeBoost[19], [20] to get access to the C
librairies which define the interaction protocol with the FPGA
circuits.

Although this approach is simple and easy to implement,
it presents a potential risk of bottleneck when using these
communication interfaces. In fact, the processing time on
FPGA is fast, but the data transfer between the host system
and the FPGA may be costly and therefore, can drop down
the performance of the overall system.

Host System

Pharo

Smalltalk application

{ FFI/ Language Binding }

C Interface librairies

1
\4

Interface
(USB, FPGA
UART, etc.)

Figure 3: A Smalltalk-based communication flow on a stan-
dalone FPGA: the application on the host system interacts
with the FPGA's circuits via an interface of communication
such as USB,RS232, parallel, etc.

B. Optimisation of software/hardware interaction with
FPGA-ARM SoM/SoC

A FPGA-ARM System on Module (SoM) or System on
Chip (SoC) is an integrated circuit that integrates an ARM-
based hard processor system (consisting of processor, periph-
erals and memory interfaces) with a FPGA chip into a single
module/chip. This integration brings Linux on top of the
system as the software layer and makes the communication
between FPGA and ARM more efficient while simplifying
the development. Software application can talk to FPGA via
its Extension Processing Platform Architecture [21] (usually
provided by vendor) which allows us to interact directly with
the FPGA registers. This will reduce the bottleneck problem.

For this kind of FPGA-systems, we introduce a way to
communicate with the FPGA by accessing to its registers.
As shown in the figure 4, we host the Pharo Smalltalk
on top of the embedded system (there is already a vir-
tual machine for the ARM? architecture), and then build a
Smalltalk abstraction layer to make our Smalltalk code talks
to the FPGA registers via system librairies. At this point, the
Register interaction abstraction layer provides a path to the

2https://ci.inria.fr/pharo-contribution /view/ARM/



system librairies (Drivers/ Extension Processing Plateforme
architecture) and brings their functionalities to the Smalltalk
environment which opens a way to interact directly with
FPGA registers from our Smalltalk application.

Linux Embedded System
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Register interaction abstraction layer
—< FFI/ Language Binding >—
Drivers / Extension Processing Platform

Architecture

X
Y

ARM

FPGA

v

Figure 4: A Smalltalk-based communication flow on a FPGA-
ARM OMS/SoC : we use FFI (Native Boost for example) to
access to system libraries in order to interact with FPGA
circuits registers.

Note that, to program the system by this way, a pre-
configured circuit is required to be available on the FPGA
chip which provides the registers that our software want to
interact with.

IV. EXPERIMENTAL VALIDATION

To make a proof of the challenges presented in section |,
we first build a reference real-time robotic application fully
in Pharo Smalltalk using an actual robot. By analysing this
one, we would like to define the critical parts that have a
negative impact on its performance. These parts will then
be projected (designed) on FPGA to obtain a significant
optimisation. Obviously, the transformed application will be
evaluated quantitatively, and the expected result is that we'll
win an important gain in term of performance when using
FPGA.

For the reference robotic application [22], we chose to
develop a simple object tracking system (by color pattern)
with a wheeled robot [23] available at Institut Mines-Telecom
(as shown in figure 5): the robot uses its camera to scan the
whole environment and sends back an image stream. The
application filters each received image by a color pattern using
a HSV filter and looks for the target object (for example, a
tennis ball). If the object is found, the laser sensor data will be
collected from the robot to mesure the distance to the object.
Based on these parameters, the application will command the
robot to move (forward, backward, rotate, etc) such way that
the robot maintains always a safe (constant) distance with

the object. The application has been entirely developed in
Smalltalk with the help of PhaROS 3, a Pharo package that
allows us to interact with the robot via the ROS * middleware
[24], [25].

Figure 5: The Robulab.

When testing with the camera resolution of 320x240 (32
bit image, lowest resolution), we found that the application
took around 230 ms to completely process each image,
meaning 4 images per second. This speed is obviously far
away from a real time application which demand at least 15-
20 images per second. This is the critical part that need to
be accelerated through using FPGA.

We are currently working on the projection of the image
processing part on FPGA to obtain a hardware version of the
algorithm. A first performance comparison between software
and hardware implementation of the HSV filter [26], [27]
has been performed. The algorithm gets a RGB image as
input, transforms it to HSV color space and then filters it
by a specific color pattern. We've implemented 3 versions of
this algorithm using Pharo Smalltalk, C (with OpenCV) and
FPGA circuits.

() (d)

Figure 6: HSV filtre : (a) Original image; images filtered using
Pharo (b), openCV (c) and FPGA circuits (d)

Figure 6 shows the experimental results of these ones on
an 192x128 image, 32 bit with the color pattern: 75 < H <

3http://car.mines-douai.fr/2014 /02 /pharos-fosdem-2014-slides/
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150, 0.3 < S < 1.0, 0.5 < V < 1.0 (the tennis ball color
range). Although there are a slightly difference between the
filtered images, the object, in general term, is well identified
in all case. On the processing performance side, we found that
to completely filter the image, the Smalltalk, C, and FPGA
implementation took around 73, 1.5 and 2.5 milliseconds
respectively. That is, when passing from Smalltalk code to
FPGA circuits, we obtain a very important gain (about 97%)
in term of performance. However, the C implementation (with
openCV) is shown faster than the FPGA one (around 1
millisecond) which seems surprising theoretically. In fact, in
this experiment, we use a standalone FPGA and the image
is transferred between the host system and the FPGA via an
USB connection [28] for filtering. Here we encounter the bot-
tleneck problem which drops down the circuits performance.
With a FPGA-ARM SoC/SoM, this problem can be optimised
and the FPGA implementation can perform more efficiently.

V. CONCLUSION

This paper presents the state of the art of an approach
to use Smalltalk for software/hardware co-design on FP-
GAs. In this work, we focus mainly on a general modelling
methodology of hardware design at the behavioural (high
abstraction) level that can make the hardware design task
simpler and more efficient. We also propose a theoretical
Smalltalk-based solution to communicate with the FPGA
circuits (Standalone or SoC/SoM FPGA). We finally show
a experimental comparison of performance between software
and hardware implementation of a HSV filter algorithm which
help us figure out some theoretical hypothesises.
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