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Abstract Consider a set of mobile robots placed

on distinct nodes of a discrete, anonymous, and

bidirectional ring. Asynchronously, each robot

takes a snapshot of the ring, determining the size

of the ring and which nodes are either occupied by

robots or empty. Based on the observed con�gura-

tion, it decides whether to move to one of its adja-

cent nodes or not. In the �rst case, it performs the

computed move, eventually. This model of compu-

tation is known as Look -Compute-Move. The com-

putation depends on the required task. In this pa-

per, we solve both the well-known Gathering and

Exclusive Searching tasks. In the former problem,

all robots must simultaneously occupy the same

node, eventually. In the latter problem, the aim is

to clear all edges of the graph. An edge is cleared

if it is traversed by a robot or if both its endpoints

are occupied. We consider the exclusive searching
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where it must be ensured that two robots never

occupy the same node. Moreover, since the robots

are oblivious, the clearing is perpetual, i.e., the ring

is cleared in�nitely often.

In the literature, most contributions are re-

stricted to a subset of initial con�gurations. Here,

we design two di�erent algorithms and provide a

characterization of the initial con�gurations that

permit the resolution of the problems under very

weak assumptions. More precisely, we provide a

full characterization (except for few pathological

cases) of the initial con�gurations for which gath-

ering can be solved. The algorithm relies on the

necessary assumption of the local-weak multiplic-

ity detection. This means that during the Look

phase a robot detects also whether the node it oc-

cupies is occupied by other robots, without acquir-

ing the exact number.

For the exclusive searching, we characterize all

(except for few pathological cases) aperiodic con-

�gurations from which the problem is feasible. We

also provide some impossibility results for the case

of periodic con�gurations.

1 Introduction

In the �eld of robot-based computing systems, the

study of the minimal settings required to accom-

plish speci�c tasks represents a challenging issue.

We consider k robots initially placed on distinct

nodes of a discrete, anonymous, and bidirectional

ring of n nodes, and we investigate two funda-

mental problems requiring complex coordination:

Gathering (see, e.g., [1,6,9,11,18,32]) and Exclu-

sive Searching (see, e.g., [3,24,25]).



We assume minimal abilities for the robots.

They are oblivious (without memory of the past),

uniform (running the same deterministic algo-

rithm), autonomous (without centralized control),

anonymous (without identities), unoriented (with-

out a common coordinate system, or common com-

pass), asynchronous (without a global clock that

synchronize their actions), and silent (without the

capability to communicate). Neither nodes nor

edges are labeled and no local memory is avail-

able on nodes. Robots are equipped with visi-

bility sensors and motion actuators, and operate

in Look -Compute-Move cycles in order to achieve

a common task (see [22]). The Look-Compute-

Move model considers that in each cycle a robot

takes a snapshot of the current global con�gura-

tion (Look), then, based on the perceived con�g-

uration, makes a decision to stay idle or to move

to one of its adjacent nodes (Compute), and in

the latter case it moves to this node (Move). In

other words, each robot executes an algorithm that

takes as input a snapshot or con�guration, i.e., the

graph topology and the set of nodes occupied by

the robots, and computes the move of the robot.

Cycles are performed asynchronously, i.e., the time

between Look, Compute, and Move operations is

�nite but unbounded, and it is decided by an ad-

versary for each robot. Hence, robots that cannot

communicate may move based on outdated percep-

tions. The adversary (scheduler) that determines

the timing of the Look-Compute-Move cycles is

assumed to be fair: each robot performs its cycle

within �nite time and in�nitely often.

The asynchronous Look-Compute-Move

model, also called CORDA, was �rst de�ned

in continuous environments [8,23,27,33]. The

inaccuracy of the sensors used by robots to

scan the surrounding environment motivates its

discretization. Robots can also model software

agents moving on a computer network. Many

robots coordination problems were considered in

discrete environments. Exploration with stop was

studied in paths [20], trees [19], rings [21], and

general graphs [7]. More recently, the gathering

problem (a.k.a. Rendez-vous) was considered in

rings [12�14,31], grids [2,10,16] and trees [10].

Exclusive perpetual exploration was studied in

rings [4] and grids [5]. The exclusivity property

states that any node must be occupied by at most

one robot. Very recently, exclusive searching was

de�ned and studied in trees [3] and rings [14]. In

all previous works as well as in this paper, initial

con�gurations are assumed to be exclusive, that

is, any node is occupied by at most one robot.

In this paper, we focus on the ring topology.

The relevance of the ring topology is motivated by

its completely symmetric structure. It means that

algorithms for rings are more di�cult to devise as

they cannot exploit any topological structure, as-

suming that all nodes look the same. In fact, our

algorithms are only based on robots' positioning

and not on the graph topology. On rings, di�erent

types of exclusive con�gurations may require dif-

ferent approaches. In particular, periodicity and

symmetry arguments must be carefully handled.

An exclusive con�guration is called periodic if it

is invariable under non-complete rotations. It is

called symmetric if the ring has an axis of symme-

try that re�ects single robots into single robots,

and empty nodes into empty nodes. It is called

rigid if it is aperiodic and asymmetric. We con-

sider the following two problems.

Gathering. The gathering problem consists in

moving all the robots toward the same node and

remain there. On rings, under the Look-Compute-

Move model, gathering is infeasible if the robots

are not empowered by the so-calledmultiplicity de-

tection capability [31]. This capability permits to

robots to perceive during the Look phase whether

a node is occupied by robots or not. In the global-

strong version, a robot is able to perceive the exact

number of robots that occupy a same node. In the

global-weak version, a robot perceives only whether

a node is occupied by one robot or if a multiplicity

occurs, i.e., the node is occupied by an unde�ned

number of robots greater than one. In the local-

strong version, a robot can perceive only whether

a node is occupied or not, but it is able to perceive

the exact number of robots occupying the node

where it resides. Finally, in the local-weak version,

a robot can perceive the multiplicity only on the

node where it resides but not the exact number of

robots composing it. In this paper, we assume that

robots are empowered with the local-weak multi-

plicity detection capability.

For the ring topology under the global-weak

multiplicity detection capability, some impossibil-

ity results were proven [31]. Such results clearly

hold also when assuming the local-weak multiplic-

ity detection. Several algorithms were proposed

for di�erent kinds of exclusive initial con�gura-

tions [13,30,31]. These papers left open some cases

which were closed in [12] where a uni�ed strategy

for all the gatherable con�gurations was provided.
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Con�guration type number of nodes n number of robots k Gathering feasibility

periodic - - NO [31]

symmetric with edge-edge axis - - NO [31]

- - k = 2 NO [31]

symmetric odd k = 4 NO [12,17,30]

rigid - k < bn
2
c YES [26]

aperiodic - odd, k < n− 3 YES [28]

aperiodic odd even, 10 ≤ k ≤ n− 5 YES [29]

rigid - - YES [14]

aperiodic, without edge-edge axis - 3 ≤ k ≤ n− 4, k 6= 4 YES (this paper)

Table 1: Resume of the known results about gathering in a ring under the Look-Compute-Move model

with the local-weak multiplicity detection. All the mentioned con�gurations are exclusive.

With local-weak multiplicity detection capabil-

ity, see Table 1, an algorithm starting from rigid

con�gurations where the number of robots k is

strictly smaller than
⌊
n
2

⌋
was designed in [26].

In [28], the case where k is odd and strictly smaller

than n− 3 was solved. In [29], the authors provide

an algorithm for the case where n is odd, k is even,

and 10 ≤ k ≤ n−5. Recently, the case of rigid con-

�gurations was solved in [14]. The remaining cases

are left open and a uni�ed algorithm for all the

cases is still unknown.

Exclusive Searching. Graph searching was widely

studied in centralized and distributed settings (see

e.g., [24,25]). The aim is to make the robots clear

all the edges of a contaminated graph. An edge is

cleared if it is traversed by a robot or if both its

endpoints are occupied. However, a cleared edge is

re-contaminated if there is a path without robots

from a contaminated edge to it. A graph is searched

if there exists a time when all its edges are simulta-

neously clear. For instance, in a centralized setting,

two robots are su�cient to clear a ring, starting

from a node and moving in opposite directions. In a

distributed setting, the task is much harder due to

symmetries and asynchrony. Following [3,14], we

also consider an additional constraint: the so called

exclusivity property, that is, no two robots can be

concurrently on the same node or cross the same

edge. We consider the exclusivity constraint since

in the Look-Compute-Move model two robots oc-

cupying the same node may act like a single one as

they execute the same deterministic algorithm. It

follows that there are no strategies that can take

advantage from allowing more robots on a single

node. If a strategy is based on the occupancy of

a same node by means of more than one robot,

the adversary can easily break this synchrony. One

of the advantages of studying exclusive searching

in this model is that it provided the �rst �fault-

tolerant� algorithms for this task. Indeed, what-

ever be the starting con�guration (among the ones

we prove to be feasible), the robots are able to per-

petually (in�nitely often) clear the ring. See Ta-

ble 2 for results on the ring topology. Moreover,

as the robots are oblivious, they cannot recognize

which edges are already cleared, therefore they

must repeatedly perform the task. The searching

is called perpetual if it is accomplished in�nitely

many times.

The study of exclusive searching in the discrete

model was introduced in [3] for tree topologies.

Concerning rings, in [14] the case of initial rigid

con�gurations was tackled.

Contribution. We consider the gathering with

local-weak multiplicity detection and the perpet-

ual exclusive searching problems for k robots in an

n-node ring.

For any k < n − 4, k 6= 4, we characterize

the exclusive con�gurations from which the gath-

ering problem is feasible, see Table 1. In particu-

lar, we design an algorithm that solves the prob-

lem starting from any exclusive con�guration with

k < n− 4, k 6= 4, robots empowered by the local-

weak multiplicity detection, except for the infeasi-

ble con�gurations that will be speci�ed later. Sim-

ilarly to the case of k = 4 in [12] and (n, k) = (7, 6)

in [13], the cases left out from our characterization

(k = 4 and k ≥ n−4), if gatherable, would require

speci�c algorithms di�cult to generalize.

We then provide a characterization of any ape-

riodic exclusive con�guration with k 6= 4, and

(n, k) 6∈ {(10, 5), (10, 6)} from which exclusive

searching is feasible, see Table 2. That is, we de-

sign an algorithm that solves the problem starting

from any such aperiodic exclusive con�gurations

except for the infeasible ones. For periodic con-

�gurations, we provide some impossibility results.
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Con�guration type number of nodes n number of robots k Searching feasibility

- 3 ≤ n ≤ 9 k < n NO [14]

- 4 < n k ≤ 3 or n− 2 ≤ k ≤ n− 1 NO [14]

rigid 10 ≤ n, 5 ≤ k ≤ n− 3 and (n, k) 6= (5, 10) YES [14]

axis through empty node - even NO (this paper)

periodic with 1 or 2 empty nodes
- - NO (this paper)

per period

aperiodic, and (only if k even) 10 ≤ n 5 ≤ k ≤ n− 3
YES (this paper)

without axis through empty node and (n, k) /∈ {(5, 10); (6, 10)}

Table 2: Resume of the known results about exclusive searching in a ring under the Look-Compute-Move

model. All the mentioned con�gurations are exclusive.

Designing a uni�ed algorithm for all (periodic or

not) con�gurations seems challenging.

The algorithms for gathering and exclusive

searching (given in Sections 4 and 5, respectively)

exploit a common technique (provided in Sec-

tion 6) that allows to achieve some special con�g-

urations suitable for the subsequent phases. This

result mainly relies on a non-trivial characteriza-

tion of aperiodic con�gurations in a ring that could

be used for further problems.

Outline. In the next section we provide useful def-

initions and the notation used in the paper. In

Section 3, we present an high-level description of

the algorithm that achieves some special con�gu-

rations subsequently exploited by the speci�c al-

gorithms for solving both the gathering and the

exclusive searching tasks. The gathering problem

is considered in Section 4. Exclusive searching is

studied in Section 5. Section 6 is devoted to the for-

mal details and proofs of the algorithm described

in Section 3. This represents the core of our tech-

nical results. We then conclude by Section 7 with

some possible future research directions.

2 Notation and preliminary

In this paper, we consider a bidirectional ring with

n ≥ 3 nodes {v0, · · · , vn−1}, where vi is connected
to vi+1 mod n for any 0 ≤ i < n. Moreover, let k ≥ 1

robots occupy k distinct nodes of the ring.

A con�guration C is de�ned by the k nodes oc-

cupied by robots. In what follows, any con�gura-

tion is seen as a binary sequences where �0� rep-

resents an occupied node while �1� stands for an

empty node. More formally, given a con�guration

C, and for any i ≤ n, let Si = (ri0, · · · , rin−1) ∈
{0, 1}n be the sequence such that rij = 0 if

vi+j mod n is occupied in C and rij = 1 otherwise,

0 ≤ j < n. Intuitively, Si represents the positions

of robots, starting at node vi.

For any X = (x0, · · · , xr−1), let us

denote X = (xr−1, · · · , x0) and Xi =

(xi mod r, . . . , xr−1+i mod r). A representation of C
is any sequence in SC = {Si, (Si)}i<n. Abusing
the notation, we say C = S for any S ∈ SC . A
con�guration is said exclusive if no node is occu-

pied by more than one robot. Note that, for any

exclusive con�guration S = (s0, · · · , sn−1) ∈ SC ,∑
i<n si = n − k. The view from a node/robot vi

is the minimum between Si and Si, this also repre-
sents what we call the snapshot of a con�guration

acquired by a robot during the Look phase.

A supermin of C is any representation of C that
is minimum in the lexicographical order. We de-

note the supermin of C as Cmin. In any supermin

(s0, · · · , sn−1), if k < n then sn−1 = 1. From their

view, all robots can compute the supermin of a

con�guration.

For x ∈ {0, 1}, we denote by xh a sequence of

h ≥ 0 consecutive x. Similarly, given a sequence

X, denote by Xh a sequence of h ≥ 0 consecutive

replications of X. We say that a sequence X is

a palindrome if X = X, it is symmetric if Xi is a

palindrome or Xi = (Xi+1) for some i, and it is pe-

riodic if X = Xi, for some 0 < i < |X| − 1. A con-

�guration is symmetric (periodic, respectively) if

at least one of its representations is symmetric (pe-

riodic, respectively). A con�guration is rigid if it

is neither symmetric nor periodic. It is known that

an aperiodic con�guration admits at most one axis

of symmetry [12]. Moreover, an aperiodic con�gu-

ration has either a unique supermin representation

or two symmetrical supermin representations [12].

A con�guration is said feasible with respect to a

speci�c task if there exists an algorithm solving

the task starting from such a con�guration.

Execution model. Given a task that robots have

to solve, one has to design a distributed algorithm

that each robot applies. Robots operate in Look -

Compute-Move cycles. In one cycle a robot takes a
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snapshot of the current con�guration (Look). We

recall that a snapshot is the view taken from a

robot where it cannot distinguish nor the nodes of

the ring neither the identities of the other robots

but it can distinguish whether each node is occu-

pied by none, one or more robots and its relative

position in the ring. In particular, from a snap-

shot, a robot can infer the size of the ring and the

number of occupied nodes. Based on the perceived

con�guration, the robot applies the designed al-

gorithm hence deciding whether to stay idle or

to move to a neighboring node (Compute). If a

move is computed, the robot performs it, eventu-

ally (Move). Cycles are performed asynchronously,

i.e., the time between Look, Compute, and Move

operations is �nite but unbounded, and it is de-

cided by an adversary for each robot. Whereas,

moves are considered instantaneous, that is, dur-

ing the Look phase robots are always perceived on

the nodes of the ring and not on its edges.

Allowed con�gurations. We now summarize the

known feasible and infeasible exclusive con�gura-

tions for both gathering and exclusive searching.

In [31], it is shown that gathering is infeasible for

k = 2, for any periodic initial con�guration, and

for any initial con�guration with an axis of symme-

try passing through two edges. In [14], it is shown

that, for any exclusive con�guration, it is not pos-

sible to search a ring using k robots if n ≤ 9 or

k ≤ 3, or k ≥ n− 2. Here, we prove that exclusive

searching is not feasible for any even k starting

from any con�guration with an axis of symmetry

passing through an empty node.

The main goal of this paper is to extend the

known feasibility results to a larger class of con�g-

urations. This class is called the class of allowed

con�gurations, and our contribution is to show

that they are feasible.

In what follows, an exclusive con�guration is

allowed for problem P if it is not periodic, if it

does not admit an axis of symmetry (as described

above) for which P is infeasible, and if the num-

ber of robots does not fall in the above de�ned

impossibility ranges. In particular, all rigid con�g-

urations where the number of robots falls outside

of the impossibility ranges are allowed. For gath-

ering, the symmetric allowed con�gurations are all

the aperiodic ones with the axis of symmetry not

passing through two edges and with 3 ≤ k < n−4,

k 6= 4. For exclusive searching, the symmetric al-

lowed con�gurations are all the aperiodic ones with

odd k and those with even k where the axis does

not pass through an empty node, provided that

4 < k < n− 2 and n > 9.

Global and local view. For the ease of presentation,

we prefer to describe the algorithms from a global

perspective rather than a local one. This also helps

the explanation of the correctness proofs. It is

easy to see that each robot has all the informa-

tion to compute whether it has to move or not

according to the acquired con�guration during its

Look phase (i.e. its snapshot). For instance, sup-

pose that from a given con�guration C, with super-

min Cmin = (r0, r1, . . . , rn−1), an algorithm (from

a global perspective) makes the robot at ri move

toward ri+1. Let C′ = (r′0, r
′
1, . . . , r

′
n−1) be the lo-

cal view of a generic robot r. Then, r must check

whether C′ = Cmin
i or C′ = (Cmin

i ). If one of such

cases occurs, then it deduces it is candidate to

move toward r′1 or r′n−1, respectively.

Dealing with symmetry. The core of the technique

in [14] for solving the problems from asymmetric

exclusive con�gurations is Algorithm Asym. This

allows to achieve a particular con�guration called

Ca = (0k−1, 1, 0, 1n−k−1) made of k − 1 consecu-

tive robots, one empty node and one robot (see

Figure 1a).

Lemma 1 ([14]) Let 3 ≤ k < n− 2 robots stand-

ing in an n-node ring and forming a rigid exclu-

sive con�guration, Algorithm Asym eventually ter-

minates achieving con�guration Ca and all inter-

mediate con�gurations obtained are exclusive and

rigid.

Basically, Algorithm Asym ensures that, from any

rigid exclusive con�guration, one robot can be

uniquely detected and is moved to an unoccupied

neighbor by achieving another rigid con�guration

while strictly decreasing the supermin. Here, our

main contribution is Algorithm Align that gener-

alizes Asym by handling all allowed con�gurations

(not only rigid). Di�culties are multiple.

First, in allowed symmetric con�gurations, we

cannot ensure that a unique robot will move. In

such a case, the algorithm may allow a robot r to

move, while r is re�ected by the axis of symmetry

to another robot r′. Since r and r′ are indistin-

guishable and execute the same algorithm, then r′

should perform the same (symmetric) move. How-

ever, due to asynchrony, r may move while the

corresponding move of r′ is postponed (i.e. r′ has

performed the Look phase but not yet the Move

phase). The con�guration reached after the move
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of r has a potential so-called pending move (the one

of r′ that will be executed eventually). To deal with

this problem, our algorithm ensures that all the

reached con�gurations that might have a pending

move can be always detected as asymmetric con�g-

urations with a unique pending move. Therefore,

in such a case, our algorithm forces to perform the

pending move. That is, contrary to [14] where Al-

gorithm Asym ensures to only go through rigid

con�gurations, the subtlety here consists in possi-

bly going from an asymmetric con�guration to a

symmetric one. To detect such con�gurations, we

de�ne the notion of adjacent con�gurations. Let

us consider an algorithm A and a procedure M al-

lowed by A, that is algorithm A performs M for

some con�guration. Possibly, procedure M moves

two (symmetric) robots. An asymmetric con�gura-

tion C is adjacent to a symmetric con�guration C′
with respect to procedure M if C can be obtained

from C′ by applying M to only one of the robots

permitted to move by M and the algorithm per-

forms M on C. In other words, if C is adjacent to

C′ with respect to M, there might exist a pending

move permitted byM in C. Another di�culty is to

ensure that all met con�gurations are allowed for

the considered problem P .

3 High-level description of Algorithm

Align

Our contribution mainly relies on Algorithm

Align. Such an algorithm starts from any con-

�guration that is allowed either for the gathering

or the exclusive searching problems and aims at

reaching one of the con�gurations Ca, Cb, or Cc
having supermin (0k−1, 1, 0, 1n−k−1), (0k, 1n−k),

or, (0
k
2 , 1j , 0

k
2 , 1n−k−j) for k even and j < n−k

2 ,

respectively (see Figure 1). From such con�gura-

tions, we will show how to solve the gathering

(Section 4) and the exclusive searching (Section 5)

problems.

In this section, we describe the main principles

of Algorithm Align. Let 3 ≤ k < n − 2, k 6= 4,

and let us consider any allowed con�guration C for
Problem P .

If C is symmetric, then AlgorithmAlign is exe-

cuted by two symmetric robots. In this case, if only

one of them actually moves, then the obtained con-

�guration C′ might be symmetric or adjacent to

a symmetric con�guration di�erent from C. One
of our main results is the characterization of the

symmetric con�gurations that may lead to these

cases. Therefore, the procedures performed by Al-

(a) Con�guration Ca.

(b) Con�guration Cb.

(c) Con�guration Cc.

Fig. 1: Con�gurations achieved at the end of Al-

gorithm Align.

gorithmAlign in case of symmetric con�gurations

are designed in such a way that C′ is asymmetric

and adjacent only to C. In other words, Align en-

sures that it is possible to univocally determine

from C′ the possible pending move. Then, the pos-

sible pending move is forced to be performed on

C′.
If C is asymmetric and not adjacent to a sym-

metric con�guration, then AlgorithmAsym can be

executed without ambiguity.

If the initial allowed con�guration is symmet-

ric and k is even, Align eventually achieves ei-

ther con�guration Cb or Cc, and the original type

of symmetry is preserved, hence the obtained con-

�guration is still allowed. If the con�guration is

asymmetric and k is even, then any of Ca, Cb, and
Cc can be reached, if they are allowed. If k is odd,

then the con�guration reached is either Ca or Cb,
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if this latter is allowed. The general strategy of the

algorithm is the following.

� If the con�guration is symmetric, then Align

preserves the symmetry by performing a pro-

cedure that moves two symmetric robots in a

way that, if only one of such robots actually

moves, then the obtained con�guration is guar-

anteed to be asymmetric and not adjacent to

another symmetric con�guration with respect

to any other procedure that can be possibly

performed by Align. When k is odd, the sym-

metry is preserved until it can be safely broken

by moving the unique robot lying on the axis

of symmetry in an arbitrary direction.

� If the con�guration is asymmetric, then always

only one robot is permitted to move by Align.

First, the algorithm checks whether the asym-

metric con�guration is adjacent to some al-

lowed symmetric con�guration with respect to

some procedure possibly performed by Align.

In this case, Align forces the only possible

pending move. We recall that the procedures

performed on a symmetric con�guration are de-

signed in a way that the con�guration obtained

is not adjacent to any other symmetric con�g-

uration di�erent from the correct one. There-

fore, from an asymmetric con�guration adja-

cent to an allowed symmetric one with respect

to the procedures of Align, the robot that has

to move can be univocally determined and the

original symmetry preserved. Note that, such

behavior is performed even if the initial con�g-

uration is asymmetric. In this case, the con�g-

uration obtained after the move is symmetric

and allowed, and the algorithm proceeds like

in the case that the initial con�guration was

symmetric. In fact, as the robots are oblivious,

they cannot distinguish the two cases.

� If an asymmetric con�guration is not adjacent

to any symmetric con�guration with respect to

any procedure of Align, then algorithm Asym

in [14] is performed. Such algorithm, ensures

that only one move is performed and the ob-

tained con�guration is always rigid, thus it is

allowed.

We prove that the procedures performed by Align

always reduce the supermin (in lexicographical or-

dering) and that only allowed con�gurations are

reached.

Our main result is stated in the next theorem

whose proof is postponed in Section 6 for the sake

of readability.

Theorem 1 Let 3 ≤ k < n − 2, k 6= 4, robots

standing in an n-node ring forming an exclusive

allowed con�guration, Algorithm Align eventually

terminates achieving one exclusive allowed con�g-

uration among Ca, Cb, or Cc.

Before providing all the details concerning Al-

gorithm Align, the next two sections are devoted

to the resolution of the gathering and the exclusive

searching problems, respectively. The provided al-

gorithms exploit the above theorem.

4 Gathering in a ring

In this section, we provide the full strategy for

achieving the gathering under to Look-Compute-

Move model and assuming the local-weak multi-

plicity detection. The idea is to allow to move al-

ways one single robot from each con�guration so

as to be sure which con�guration will be reached

next. The only exception to this ideal behavior

comes from symmetric con�gurations where it is

not possible to determine a priori whether one or

two symmetric robots move concurrently. As de-

scribed before, our algorithm ensures that all the

reached con�gurations that might have a pending

move can be always detected as asymmetric con-

�gurations with a unique pending move.

As de�ned in Section 2, the allowed con�g-

urations tackled by our gathering algorithm are

all rigid con�gurations with a number of robots

k > 2, and all symmetric con�gurations with

3 ≤ k < n − 4, k 6= 4, not periodic and not ad-

mitting an axis of symmetry passing through two

edges. Note that, as recalled in Table 1, our algo-

rithm leaves open very few types of con�gurations.

They are the con�gurations with only 4 robots dif-

ferent from those proven to be ungatherable in [12,

17], and con�gurations with n− 4 ≤ k ≤ n− 1 for

which a gathering algorithm (if exists) would be

very di�cult to generalize to other con�gurations.

Finally, con�gurations with k = n are periodic and

hence ungatherable [31] as well as con�gurations

with k = 2 [31], while con�gurations with k = 1

do not require any algorithm.

We make use of procedure Align to

reach one of its output con�gurations: Ca =

(0k−1, 1, 0, 1n−k−1) with k even, Cb = (0k, 1n−k),

with k or n odd, Cc = (0
k
2 , 1j , 0

k
2 , 1n−k−j), with k

even and j or n odd. Actually, procedure Align

is invoked until either the obtained con�gura-

tion is one of the three above, or if it is one

of the con�gurations generated by Algorithm
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Gathering that we are going to describe. To

this respect, we de�ne two further types of

con�gurations: Cd = (0k−1, 1, 1, 0, 1n−k−2), and

Ce = (0
p
2−1, 1, 0, 1, 0

p
2−1, 1n−p−1) with p even

(and hence k = p− 1 odd).

Since to solve gathering we need to create a

multiplicity, we need to handle con�gurations con-

taining multiplicities. As we assume local-weak

multiplicity detection, we remind that robots per-

ceive a multiplicity only if they are part of it.

So, they cannot deduce the actual total number

of robots. Hence in this section k represents the

number of occupied nodes and not the number of

robots.

Moreover, we need to de�ne three moves that

Algorithm Gathering applies:

� compact0(C): Applied when C is of the form
(0

k
2−i, 1, 0i, 1j , 0i, 1, 0

k
2−i, 1n−k−j−2), 0 ≤ i <

k
2 .

� If n is even and j > n−k−4
2 or n is odd and

j is even then

• if i = 0 then a robot at node v0 moves

to node vn−1;

• otherwise a robot at node v k
2−i+1

moves to node v k
2−i

;

� otherwise a robot at node v k
2−i−1

moves to

node v k
2−i

.

� compact1(C): Applied when C is of the form
(0

k−i
2 , 1, 0i, 1, 0

k−i
2 , 1n−k−2), 1 ≤ i < k, both k

and i odd. A robot at node v k−i
2 −1

moves to

node v k−i
2
;

� compact2(C): Applied when in C there are

only two nodes occupied (and exactly one is

occupied by a multiplicity). The robot not be-

longing to the multiplicity moves to the other

node occupied.

Theorem 2 Let 3 ≤ k < n − 4, k 6= 4 robots,

forming an allowed con�guration in an n-node

ring, Algorithm Gathering achieves the gather-

ing.

Proof Algorithm Gathering is structured in a

way that procedure Align is invoked only at the

end (line 23), that is once it is sure that the cur-

rent con�guration does not belong to those directly

managed for gathering.

If the initial con�guration has both k and n

even, then Align either reaches con�guration Ca,
or Cc with j odd. In the former case, Gather-

ing leads to Cd = (0k−1, 1, 1, 0, 1n−k−2) (lines 3-

4). As k < n − 4, then Cd is asymmetric and it is

not adjacent to any possible symmetric con�gura-

tion with respect to any procedure of Gathering.

From Cd, Gathering makes v0 move toward v1
(lines 5-6), hence creating a multiplicity, and still

obtaining a con�guration of type Cd. This process
is repeated until only two nodes remain occupied.

At this point, only one of the two occupied nodes

contains a multiplicity, while the other contains

one single robot. The single robot will be the only

one permitted to move toward the other occupied

node by means of Procedure compact2 (lines 1-2)

until the gathering is accomplished.

In the latter case, that is, from Cc with j odd,
Gathering leads to con�guration Cc with j = 1.

This is achieved by alternately iterating procedure

compact0 (lines 7-8) with the call to procedure

Align. As C is symmetric, compact0 permits two

robots to move. If both robots move synchronously,

the resulting con�guration is of the form C′ =

(0
k
2−i−1, 1, 0i+1, 1j , 0i+1, 1, 0

k
2−i−1, 1n−k−j−2). If

only one robot moves, the obtained con�guration

(0
k
2−i−1, 1, 0i+1, 1j , 0i, 1, 0

k
2−i, 1n−k−j−2) is asym-

metric and not adjacent to any other symmetric

con�guration with a smaller supermin, and hence

C′ can be easily obtained (lines 9-10).

Once Cc with j = 1 is reached, again compact0
is applied (lines 7-8). In fact, from the de�nition of

compact0 by considering i = 0 and j = n−k− 3,

the two robots neighboring the empty node located

in between the two sequences of aligned robots are

allowed to move toward such an empty node to

form a multiplicity. If both the permitted robots

move, a symmetric con�guration of type Ce, with
v k

2
being a multiplicity, is reached. This will be

discussed later in the case of symmetric con�gu-

rations with odd k. If only one robot moves, con-

�guration (0
k
2−1, 1, 0

k
2+1, 1n−k−1) is reached. As k

is even and 4 < k < n − 4, it follows that such a

con�guration is asymmetric and can only be trans-

formed into one of type Ce (by decreasing k) again

by lines 9-10.

If k is even and n is odd, we can consider that

Align has reached either a con�guration of type

Cb or Cc with either j or n− k − j odd. In fact, if

a con�guration of type Ca with k even and n odd

is given as input to algorithm Gathering, it is

treated (at lines 13-14) as though it has been ob-

tained from one of type Cb (lines 11-12), where only
one of the two robots allowed to move by means of

compact0 has performed its movement. In fact,

from the de�nition of compact0 by considering

i = 0 and j = n − k − 2 (that is j is odd), the

two robots neighboring empty nodes in a con�gu-

ration of type Cb are allowed to move toward the

empty nodes. For managing con�gurations of type

8



Algorithm: Gathering
Input: Allowed con�guration C with Cmin = (v0, v1, . . . , vn−1)

1 if k = 2 then
2 compact2(C) and exit;

3 if k is even and n is even and C is of type Ca then
4 The robot at vk moves to vk+1 and exit;

5 if C is of type Cd then
6 The robot at v0 moves to v1, and exit;

7 if k is even and n is even and C is of type Cc with j odd then
8 compact0(C) and exit;

9 if k is even and n is even and C could have been obtained from a con�guration of type Cc with j odd by applying
compact0 then

10 Move the unique robot that can re-establish the assumed symmetry while decreasing either the current
supermin or k and exit;

11 if k is even and n is odd and C is of type Cb or Cc with either j or n− j − k odd then
12 compact0(C) and exit;

13 if k is even and n is odd and C could have been obtained from a con�guration of type Cb or Cc, by applying
compact0 then

14 Move the unique robot that can re-establish the assumed symmetry while decreasing either the current
supermin or k and exit;

15 if k is odd and C is of type Cb then
16 The robots at v k−1

2
−1 and v k−1

2
+1 move toward v k−1

2

, and exit;

17 if k is odd and C could have been obtained from a con�guration of type Cb then
18 Move the symmetrical robot to reach a con�guration of type Ce, and exit;

19 if C is of type Ce then
20 compact1(C) and exit;

21 if k is even and C could have been obtained from a con�guration of type Ce by applying compact1 then
22 Move the symmetrical robot to obtain a con�guration of type Ce while decreasing k and exit;

23 Apply Align;

Fig. 2: Algorithm Gathering.

Cb or Cc, Gathering behaves as above but creat-

ing the multiplicity at the central node of the only

odd sequence of consecutive empty nodes among j

and n−k−j (lines 11-14). Eventually,Gathering
achieves a con�guration of type Ce. Again, this will
be discussed later in the case of symmetric con�g-

urations with odd k. Note that, this case is similar

to the technique presented in [29] where the solved

con�gurations are only those with k even and n

odd.

If k is odd, either the con�guration is of type

Cb or it will be of type Cb within two applications

of Align. To see why, note that in the case of

odd k, Align will lead to Cb or Ca with odd k.

If Ca with odd k is the input to algorithm Gath-

ering, then it is managed by Align and leads to

a con�guration of type Cb since Align always re-

duces the supermin. For managing con�gurations

of type Cb, the used technique is similar to that

presented in [28] where the solved con�gurations

are only those with k odd. From Cb, Gathering
permits robots at v k−1

2 −1
and v k−1

2 +1 to move to-

ward v k−1
2

(lines 15-16). If only one robot actually

moves, con�guration (0
k′
2 −1, 1, 0

k′
2 +1, 1n−k

′−1) is

achieved with k′ = k − 1. By the parity of k′, a

con�guration of type Ce is achieved subsequently

(lines 17-18). If both robots move synchronously,

again a con�guration of type Ce is reached. From
here, Gathering performs Procedure compact1
(lines 19-20). As con�gurations of type Ce are sym-

metric, compact1 permits two robots to move. If

both move synchronously, the resulting con�gura-

tion is similar to one of type Ce but with a larger

middle interval of 0's. If only one robot moves, as

before, the obtained con�guration is asymmetric

and not adjacent to any other symmetric con�gu-

ration, and the possible pending move can be easily

forced (lines 21-22). From there, procedure Align

is invoked until a new con�guration of type Cb will
be reached, but with a smaller k with respect to

the previous one.

Eventually, this process terminates with only

one occupied node without pending moves, that

is, gathering is achieved. ut
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5 Exclusive searching in a ring

In this section, we present an algorithm that allows

a team of robots to exclusively search a ring start-

ing from any allowed con�guration, see Table 2.

We also give some partial impossibility results in

the case of periodic starting con�guration.

As de�ned in Section 2, the allowed con�gu-

rations tackled by our searching algorithm are all

rigid exclusive con�gurations where 4 < k ≤ n− 3

where n > 9 and (n, k) 6= (10, 5). Moreover, the

symmetric allowed con�gurations are the exclusive

con�guration with a single axis of symmetry, 4 <

k < n− 2 and n > 9 and (n; k) /∈ {(10, 5), (10, 6)},
and, if the axis does pass through an empty node,

then k must be odd.

First, we recall some known results concern-

ing the exclusive searching of a ring in the Look-

Compute-Move model. Let us start with some im-

possibility results. If k is even and there exists

an axis of symmetry passing through an empty

node, exclusive searching is clearly infeasible be-

cause a synchronous execution of any algorithm

either cause a multiplicity in the node lying on the

axis or does not allow to search the edges incident

to such a node. In [14], it is shown that, for any

starting con�guration, it is not possible to search

an n-node ring using k robots if n ≤ 9, k ≤ 3, or

k ≥ n− 2.

On the other hand, there exists an algorithm

that allows 5 ≤ k ≤ n − 3 robots to search exclu-

sively a ring with n ≥ 10 nodes (except for (k, n) =

(5, 10)), for rigid initial con�gurations [14]. Here,

we improve over this algorithm by addressing also

allowed aperiodic symmetric con�gurations.

The main result of this section is the design of

Algorithm Search-Ring.

Theorem 3 Algorithm Search-Ring exclusively

(and perpetually) searches the ring starting from

any allowed con�guration.

We �rst describe the general behavior of Al-

gorithm Search-Ring whose pseudo-code is de-

scribed in Figure 6. Before actually searching the

ring, Algorithm Search-Ring needs the robots

to achieve particular con�guration. For this pur-

pose, Algorithm Search-Ring �rst applies one of

the sub-procedures Compact-Align and Break-

Symmetry, that are described in Figures 3 and 4

respectively. Each of these sub-procedures uses Al-

gorithm Align presented in Section 6. Procedure

Compact-Align is used only if k and n are even,

and Procedure Break-Symmetry may be used if

k is odd.

5.1 Algorithm Compact-Align

We now de�ne an algorithm that complements Al-

gorithm Align given in Section 6. In detail, Al-

gorithm Compact-Align is applied when k and

n are even, until one of the con�gurations Ca (all

robots but one occupy consecutive nodes) or Cb
(all robots occupy consecutive nodes) is achieved.

Set R of con�gurations. Let us �rst de�ne some

sets of particular con�gurations. Roughly, in these

con�gurations, robots are divided into two pairs of

segments of consecutive nodes and, for each pair,

the two segments of the pair are separated by one

unique empty node. More formally, let n and k be

even. For any 0 ≤ a < b with a and b = n −
k − a − 2 even (in particular b > 1), let us de�ne

R = R1 ∪ R2 as the set of all con�gurations C =

(u0, · · · , un−1) with the following form:

� R1(a, b, c) = (0k/2−c, 1, 0c, 1a, 0c, 1, 0k/2−c, 1b),

where 0 ≤ c < k/2. Note that R1(a, b, 0) ∈ Cc .
Moreover, any con�guration R1(a, b, c) is sym-

metric with one unique axis (because a < b)

and this axis does not pass through an empty

node (because a and b are even). Moreover,

uk/2−c−1 and un−1−b can be identi�ed because

a < b and b > 1. Let R1 be the set of all such

con�gurations R1(a, b, c) with 0 ≤ a < b, a and

b = n− k − a− 2 even, and 0 ≤ c < k/2.

� R2(a, b, c) = (0k/2−c−1, 1, 0c+1, 1a, 0c, 1,

0k/2−c, 1b), where 0 ≤ c < k/2. Such a con�gu-

ration is asymmetric and un−b−(k/2−c) can be

identi�ed. Note also thatR2(0, b, k/2−1) ∈ Ca.
Let R2 be the set of all such con�gurations

R2(a, b, c) with 0 ≤ a < b, a and b = n−k−a−2
even, and 0 ≤ c < k/2.

Recall that any allowed con�guration in Cc has the
following form: (0

k
2 , 1j , 0

k
2 , 1n−k−j) = R1(j−2, n−

k − j, 0), with 0 < j < n−k
2 and j even.

Algorithm Compact-Align. Algorithm

Compact-Align �rst applies Align. Then,

either a con�guration Ca or Cb is achieved, in

which case we are done, or a con�guration in

the set R is achieved. Since every allowed con-

�guration in Cc (the robots are divided into two

segments of consecutive nodes) belongs to R, the
speci�cations of Align (it achieves either Ca or Cb
or Cc and it may reach Cc only if k and n are even)

ensure that such a con�guration is eventually

reached. Finally, from any con�guration in R,
Algorithm Compact-Align allows the robots to

achieve either Ca or Cb.
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If C ∈ R1(a, b, c) for some a, b, and c, then

Compact-Align moves the robot at uk/2−c−1 to

uk/2−c. Otherwise, if C ∈ R2(a, b, c) for some a, b,

and c, then it moves the robot at un−b−(k/2−c) to

un−b−(k/2−c−1), otherwise it applies Align.

Since a and b are even, then b ≥ a + 2, and

therefore we can check that any con�guration C in
R is not adjacent to any other allowed symmetric

con�guration. Indeed, if C is adjacent to an allowed
and symmetric con�guration, then the axis must

pass through the unique long segment of at least

b − 1 consecutive 1's, and it is easy to check that

such a con�guration would not be allowed because

b is even. Therefore, there is no con�ict between

the procedures described above if C ∈ R and the

ones permitted by Align when C /∈ R.

5.2 Algorithm Break-Symmetry

In the following, we give an algorithm that allows

an odd number k of robots to eventually reach

an asymmetric con�guration. More precisely, the

algorithm �rst applies Algorithm Align. Then,

when all k robots are occupying consecutive nodes,

they move to reach a symmetric con�guration

where one robot is on the axis and has its two

neighbors that are empty. The robot on the axis

moves to one of its neighbors, breaking the sym-

metry.

Let B = B1 ∪ B2 be the set of all con�gura-

tions C = (u0, · · · , un−1) with the following form.

Roughly, robots are divided into three segments of

consecutive nodes such that the central segment is

separated from each other segment by one empty

node. Moreover, the lengths of the two non-central

segments di�er by at most one. More formally:

� B1(`) = (0`, 1, 0k−2`, 1, 0`, 1n−k−2), where 0 ≤
` ≤ bk/2c. Moreover, any con�guration B1(`)
is symmetric with one unique axis and nodes

u`+1 and uk−`+1 can be univocally identi�ed.

Let B1 =
⋃

0≤`≤bk/2c{B1(`)}.
� B2(`) = (0`−1, 1, 0k−2`+1, 1, 0`, 1n−k−2), where

0 < ` ≤ bk/2c. Such a con�guration is asym-

metric and u` can be univocally identi�ed. Let

B2 =
⋃

0<`≤bk/2c{B2(`)}.
When a con�guration C is in B1(`) for some `,

then Break-Symmetry moves the robot at u`+1

to u`. When C is in B1(`) for some `, then Break-

Symmetry moves robot at u` to u`−1. Eventually,

con�guration C = (0bk/2c, 1, 0, 1, 0bk/2c, 1n−k−2) is

reached. At this point the robot at ubk/2c+1 moves

to ubk/2c (or arbitrarily to ubk/2c+2). At this point

the obtained con�guration is asymmetric and ap-

plying Algorithm Align leads to con�guration

Ca = (0k−1, 1, 0, 1n−k−1). Finally, the robot at uk
moves to uk+1. The obtained con�guration is suit-

able to be used in the algorithm of [14] for graph

searching. As any asymmetric con�guration in B2
is not adjacent to any symmetric con�guration not

in B1, there are no con�icts between the procedures
of Align, those of the algorithm in [14] and those

of Break-Symmetry.

5.3 General description of Algorithm

Search-Ring

Finally, we are ready to describe the general behav-

ior of Algorithm Search-Ring in more details.

The algorithm �rst checks whether k = n − 3

or if n is odd and k is even. In the a�rmative

case, any allowed con�guration must be asymmet-

ric, and therefore the algorithm of [14] can be ap-

plied and the ring is searched.

In the other cases, the algorithm proceeds in

two phases. Phase 1 consists in achieving a con�g-

uration from which the search will be performed.

Phase 2 consists in actually searching the ring.

If k is odd, Phase 1 consists in using Algorithm

Break-Symmetry to break the potential symme-

try (Line 8 of Algorithm Search-Ring) and then,

Phase 2 executes the algorithm of [14] (Line 6 of

Algorithm Search-Ring). Each of these con�g-

urations used during the searching phase of the

algorithm of [14] are asymmetric and are not ad-

jacent to any symmetric con�guration reached by

Algorithm Break-Symmetry. Therefore, there is

no ambiguity (no pending move) when a robot rec-

ognizes such a con�guration.

If n and k are even, we may be in allowed sym-

metric con�gurations and therefore the Search-

Ring proceeds in two phases. Phase 1 (Line 23 of

Algorithm Search-Ring) consists in applying Al-

gorithm Compact-Align until one of the con�gu-

rations in A (see the de�nition below) is achieved.

This is guaranteed by the fact that both Ca and

Cb belong to A. Then, the algorithm proceeds to

Phase 2 (Lines 10-20 of Algorithm Search-Ring)

which actually performs the searching.

Set A of con�gurations. We now de�ne the set A
of con�gurations required to de�ne the algorithm

for Phase 2. These con�gurations are depicted in

Figure 5. We consider the following hypothesis: n−
k is even, n − k ≥ 4, k ≥ 6, n ≥ 10 and, if k =

6 then n ≥ 11. The set A is de�ned as the set
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Procedure: Compact-Align
Input: Allowed con�guration C = (u0, · · · , un−1), with an even number of robots.

1 if C ∈ R then

2 if C = (0k/2−c, 1, 0c, 1a, 0c, 1, 0k/2−c, 1b) then // C ∈ R1

3 Robot at uk/2−c−1 moves to uk/2−c; // Two symmetrical moves

4 if C = (0k/2−c−1, 1, 0c+1, 1a, 0c, 1, 0k/2−c, 1b) then // C ∈ R2

5 Robot at un−b−(k/2−c) moves to un−b−(k/2−c−1); // unique move performed

6 else
7 Apply Align;

Fig. 3: Algorithm Compact-Align.

Procedure: Break-Symmetry
Input: Exclusive con�guration C = (u0, · · · , un−1), with

∑
i ui = k robots, such that k is odd and C has at most

one axis of symmetry and, if any, this axis does not pass through an empty node.

1 if C ∈ B then

2 if C = (0bk/2c, 1, 0, 1, 0bk/2c, 1n−k−2) then // C = B1(bk/2c)
3 Robot at ubk/2c+1 moves to ubk/2c (or symmetrically to ubk/2c+2); // symmetry is broken

4 if C = (0`, 1, 0k−2`, 1, 0`, 1n−k−2) where 0 ≤ ` < bk/2c then // C ∈ B1
5 Robot at u`+1 moves to u`; // Two symmetrical moves

6 if C = (0`−1, 1, 0k−2`+1, 1, 0`, 1n−k−2) where 0 < ` ≤ bk/2c then // C ∈ B2
7 Robot at u` moves to u`−1; // unique move performed

8 else
9 Apply Align;

Fig. 4: Algorithm Break-Symmetry.

of all con�gurations C = (u0, · · · , un−1) with the

following forms:

A-a(`) = (0k−2, 1`, 0, 1n−2`−k, 0, 1`), 0 ≤ ` ≤ (n−
k)/2. Note that A-a(0) = Cb.
In this case, C is symmetric with a unique axis

because k − 2 > 1. This axis does not pass

through an empty node because n− k is even.

Clearly, nodes uk−2+` and un−1−` can be iden-

ti�ed as occupied and adjacent to one (case

` = 0) or two (case 0 < ` < (n − k)/2) empty

nodes, or (case ` = (n − k)/2) they form the

unique (because k ≥ 5) segment of exactly two

consecutive occupied nodes.

A-b(`) = (0k−2, 1`, 0, 1n−2`−k−1, 0, 1`+1), 0 ≤ ` <

(n− k)/2.
In this case, C is asymmetric for any 0 ≤ ` ≤
(n − k)/2. In particular, if ` = 0, it is asym-

metric because n−k ≥ 4. Then, uk−2+` can be

identi�ed.

A-c = (0k−3, 1, 0, 1(n−k)/2−1, 0, 0, 1(n−k)/2).

In this case, C is asymmetric, because k ≥ 6

and n− k ≥ 4. Then, u0 can be identi�ed.

A-d(`) = (0k−4, 1, 0, 1(n−k)/2−1−`, 0, 12`, 0,

1(n−k)/2−`−1, 0, 1), 0 ≤ ` ≤ (n− k)/2− 1.

In this case, C is symmetric with one unique

axis not passing through an empty node. In-

deed, it is easy to check if k 6= 6. If k = 6 and

` = 0, it is true because n > 10.

If ` > 0, u(n+k)/2−3−` and u(n+k)/2−2+` can

be identi�ed since (u0, · · · , uk−5) is the single

segment with at least two occupied nodes.

If ` = 0, u(n+k)/2−3 and u(n+k)/2−2 can be

identi�ed as the single segment of two occu-

pied nodes (if k > 6) and as the single seg-

ment of two occupied nodes adjacent to seg-

ments of more than one empty node (if k = 6

and n > 10).

A-e(`) = (0k−4, 1, 0, 1(n−k)/2−1−`, 0, 12`+1, 0,

1(n−k)/2−`−2, 0, 1), 0 ≤ ` ≤ (n− k)/2− 2.

In this case, C is asymmetric (this is true in

particular, when ` = 0, because if k = 6 then

n > 10) Then, u(n+k)/2−3−` can be identi�ed.

A-f = (0k−3, 1, 0, 0, 1n−k−2, 0, 1)

In this case, C is asymmetric because k ≥ 5 and

n− k ≥ 4. Then, uk−2 can be identi�ed.

Phase 2 of Algorithm Search-Ring: searching the

ring. If k = n−3 or n or k is odd, the searching is

done using the Algorithm of [14] and the correct-

ness follows.

Hence, we only need to consider the case when

k and n are even. In such case, Phase 2 of Al-

gorithm Search-Ring proceeds as follows. All
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u0

u0

(a) A-a(`) for ` = 3.

u0

(b) A-b(`) for ` = 3.

u0

(c) A-c.

u0
u0

(d) A-d(`) for ` = 2.

u0

(e) A-e(`) for ` = 2.

u0

(f) A-f

Fig. 5: Con�gurations reached by Phase 2 of Algorithm Search-Ring when k and n are even. In this

example, n = 22 and k = 8. Robots are depicted in black and the arrows represent the pending moves.

In the symmetric cases, two nodes can be identi�ed as u0.

robots are aligned on consecutive nodes (con�gu-

ration A-a(0) = Cb). Then, each of the two robots

X and Y at the ends of this segment moves (one

clockwise and the other anti-clockwise) to meet

on the two adjacent nodes opposite to the occu-

pied segment (alternating between con�gurations

A-a(`) and A-b(`) for ` = 0 · · · (n−k)/2, and stop-

ping at A-a((n − k)/2)). Then, the two robots

X ′ and Y ′ occupying the ends of the �long� oc-

cupied segment move to their empty neighbor (A-
c and A-d(0)). These moves are two indicate to

X and Y that it is time to go back toward the

�long� segment, and that is what happens (alter-

nating between con�gurations A-d(`) and A-e(`)
for ` = 0 · · · (n − k)/2 − 2, and stopping at A-
d((n − k)/2 − 1)). Finally, when X is adjacent to

X ′ and Y is adjacent to Y ′, X ′ and Y ′ move to

their empty neighbor (passing through the con�g-

uration A-f) such that they re-integrate the seg-

ment. Then, Con�guration A-a(1) is achieved and

the process is repeated perpetually.

It is easy to check that such a sequence of

performed moves actually searches the ring. In-

deed, after having reached the con�guration A-
d((n − k)/2 − 1), con�gurations A-f and then A-
a(1) are reached, ensuring that all edges between

the two isolated robots (on the side of the �long�

segment of robots) are clear. Then, the two iso-

lated robots goes along the ring until they occupy

adjacent nodes. At this step, all edges are clear.

Moreover, by de�nition of the con�gurations met

during the process (con�gurations in A), there is

no ambiguity. In Figure 6, O denotes the set of

con�gurations used during the searching phase of

the Algorithm of [14].

The distinct con�gurations that can be

achieved in Phase 2 are the ones in A and can be

characterized succinctly such that they are pair-

wise distinguishable without ambiguity. Moreover,

each of those con�gurations is either asymmetric

and only one (identi�able) robot can move, or it

is symmetric with one unique axis of symmetry

and two (identi�able) symmetric robots move. In

the latter case, when only one of these symmetric

robots moves, then we reach an asymmetric con�g-

uration where the only robot permitted to move is

the other one (i.e., the possible pending move and

the permitted move coincide). Therefore there is

never ambiguity in the choice of the robot(s) that

must move.

The validity of algorithms for Phase 2 and the

fact that they actually search the ring are easy to

obtain. Therefore, to prove the correctness of Algo-

rithm Search-Ring, it will be su�cient to prove
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Procedure: Search-Ring
Input: Exclusive con�guration C = (u0, · · · , un−1), with

∑
i ui = k robots, k ≥ 6 and n ≥ 10 and

(k, n) 6= (6, 10) and n− k ≥ 3, and such that C has at most one axis of symmetry and, if any and if k is
even, this axis does not pass through an empty node.

1 if k = n− 3 or (n is odd and k even) then
2 Apply Algorithm of [14]
3 else
4 if k is odd then
5 if C ∈ O then // C is asymmetric

6 Apply Algorithm of [14]
7 else
8 Apply Break-Symmetry(C)
9 else
10 if C ∈ A then

11 if C = (0k−2, 1`, 0, 1n−2`−k, 0, 1`) with 0 ≤ ` ≤ (n− k)/2
12 OR C = (0k−2, 1`, 0, 1n−2`−k−1, 0, 1`+1) with 0 ≤ ` < (n− k)/2 then // C ∈ A-a OR C ∈ A-b
13 The robot at uk−2+` moves to uk−2+`+1; // two symmetrical moves if C ∈ A-a
14 if C = (0k−2, 1(n−k)/2, 0, 0, 1(n−k)/2)

15 OR C = (0k−3, 1, 0, 1(n−k)/2−1, 0, 0, 1(n−k)/2) then // C = A-a((n− k)/2) OR C = A-c
16 The robot at u0 move to un−1; // two symmetrical moves if C ∈ A-a
17 if C = (0k−4, 1, 0, 1(n−k)/2−1−`, 0, 12`, 0, 1(n−k)/2−`−1, 0, 1) with 0 ≤ ` ≤ (n− k)/2− 1

18 OR C = (0k−4, 1, 0, 1(n−k)/2−1−`, 0, 12`+1, 0, 1(n−k)/2−`−2, 0, 1) with 0 ≤ ` ≤ (n− k)/2− 2
then // C ∈ A-d OR C ∈ A-e

19 The robot at u(n+k)/2−3−` moves to u(n+k)/2−4−`; // two symmetrical moves if C ∈ A-d
20 if C = (0k−4, 1, 0, 0, 1n−k−2, 0, 0, 1)

21 OR C = (0k−3, 1, 0, 1n−k−2, 0, 0, 1) then // C = A-d((n− k)/2− 1) OR C = A-f
22 The robot at un−2 move to un−1; // two symmetrical moves if C ∈ A-d
23 else
24 Apply Compact-Align;

Fig. 6: Algorithm Search-Ring.

that Phase 1 and Phase 2 are not in con�ict (i.e.,

that robots can decide which phase to proceed). It

is enough to note that any con�guration in A is

not adjacent to any symmetric con�guration not

in A.

5.4 Impossibility for periodic con�gurations

To conclude this section, we give partial results

on periodic con�gurations. More precisely, we de-

scribe some periodic con�gurations for which we

prove the graph searching problem to be infeasible.

Since these con�gurations have not the forbidden

symmetry (one empty node on an axis of symme-

try and k even), it shows that periodicity actually

introduces new impossibility results.

A period S of a periodic con�guration C is a

sequence, with minimum length, such that C = Sq

for some q > 1. We say that such a con�guration

C is q-periodic. Note that, any period of a peri-

odic con�guration has the same number of empty

nodes. For any i > 0, let Pi be the set of all peri-
odic con�gurations with exactly i empty nodes in

any period.

Theorem 4 For any con�guration C ∈ P1 ∪ P2,

there is no algorithm that solves the graph search-

ing problem starting from C.

Proof Let q > 1 and C be q-periodic. Let p ≥ 1 be

the number of robots in each period of C. The ring
has size n = q(p + i), where i ≥ 1 is the number

of empty nodes in a period, and there are k = pq

robots.

First, let us assume that C = (0p, 1)q ∈ P1.

If q or p is even, then k is even and there is an

axis of symmetry passing through an empty node.

Hence, by previous results, no algorithm can solve

the graph searching problem starting from C. Let
us assume that p and q are odd. Because k is odd

and q > 1, we are not in the previous impossi-

ble cases. However, any two robots adjacent to

the same empty node have exactly the same view.

Therefore, any move in this con�guration will lead

to a multiplicity. Thus, it is impossible to solve the

exclusive searching problem starting from C.
Now, let us assume that C ∈ P2., i.e., C ∈

{Qj = (1, 0p−j , 1, 0j)q | 0 ≤ j ≤ bp/2c}. Note that
each period consists of two segments of consecu-

tive robots (but for j = 0 where there is only one
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segment). The intuition is that any algorithm has

only one possible action for any �xed j ≤ bp/2c.
Either the two robots occupying the ends of the left

segment (the one between the second node and the

p−j+1th node of the period) have to move, or the

two robots at the end of the right segment have to

move. Indeed, if none of these moves is ever per-

formed, the ring cannot be searched. On the other

hand, if the algorithm allows the four robots to

move, it results in multiplicities. Hence, for any

j ≤ bp/2c, the algorithm must be of the left type

or of the right type. Roughly, in what follows, we

show that if the allowed moves are all of the same

type, then the algorithm achieves a con�guration

in P1 and fails by previous paragraph. Otherwise,

there is some j such that the algorithm performs

the left move for j and the right move for j+1. In

this case, the adversary can schedule the moves in

order to force a multiplicity.

Let us prove the result more formally.

Let 0 ≤ j ≤ bp/2c. We note (u0, · · · , un−1)
the nodes of the ring such that the representa-

tion from u0 is C = (1, 0p−j , 1, 0j)q. Let us con-

sider any algorithm A for solving the exclusive

searching problem. We say that A is j-left if,

in con�guration (1, 0p−j , 1, 0j)q, the robots that

must move are those at u`, where ` = 1 mod q

and ` = p − j mod q. A is j-right if, in con-

�guration (1, 0p−j , 1, 0j)q, the robots that must

move are those at u`, where ` = p + 1 mod q and

` = p+ 2− j mod q. Because of the periodicity, A
must be either j-left or j-right. Moreover, it can-

not be both since otherwise a multiplicity would

occur. Clearly, A is 0-left.

Let us assume the starting con�guration is

Qj = (1, 0p−j , 1, 0j)q for some 0 ≤ j ≤ bp/2c.
Assume �rst that A is j-right. In con�guration

Qj = (1, 0p−j , 1, 0j)q, the adversary wakes up

and makes the p − j + 1th robot of each period

(1, 0p−j , 1, 0j) move. Therefore, following A, the
con�guration Qj−1 = (1, 0p−j+1, 1, 0j−1)q is even-

tually reached. Since, A is 0-left, the algorithm

eventually reaches a con�guration Qj∗ such that

A is j∗-left. Hence, let us now assume that A is

j-left.

Let h be the smallest integer such that j < h ≤
bp/2c and A is h-right. If no such h exists, we set

h = bp/2c+1. For any j ≤ s < h, A is s-left and, in

con�guration Qs = (1, 0p−s, 1, 0s)q, the adversary

wakes up and makes the �rst robot of each pe-

riod (1, 0p−s, 1, 0s) move. Therefore, following A,
the con�guration Qh−1 = (1, 0p−h+1, 1, 0h−1)q is

eventually reached. If p is even and h = bp/2c,

the adversary proceeds similarly to reach Qh ∈ P1

and the algorithm fails by previous result. Oth-

erwise, the adversary wakes up and makes all

robots to compute. However, only the �rst robot

of each period moves. Therefore, the con�guration

Qh = (1, 0p−h, 1, 0h)q is reached where the p− hth
robot of each period is going to move (there are

q pending moves). Since A is h-right (the case

h = bp/2c + 1 works similarly by symmetry), the

adversary wakes up and makes the p−h+1th robot

of each period move. Finally, all pending moves are

done, resulting in multiplicities.

Note that the impossibility does not rely on the

task to be executed but on the exclusivity property

that must be satis�ed. ut

6 Details on Algorithm Align

In this section, we provide the details to formally

describe algorithm Align that, starting from any

allowed con�guration, reaches one of the exclusive

con�gurations Ca, Cb, and Cc previously de�ned.

In Section 6.1 we present the algorithm and

describe its general behavior, and in Section 6.3

we analyze some particular special cases which are

omitted in the general discussion for the sake of

simplicity. In Section 6.2, we give two examples

of the execution. In Section 6.4, we provide the

pseudo-code of the algorithm. For the ease of read-

ing, Section 6.5 is devoted to the proofs of some

lemmata stated in Section 6.1 along with the cor-

rectness proof of the algorithm.

6.1 Algorithm Align

Algorithm Align is based on four procedures de-

scribed below. Let C be any allowed con�gura-

tion and let Cmin = (v0, v1, . . . , vn−1) be its su-

permin. Abusing notation, we denote by vi both

the (i + 1)-th node and the (i + 1)-th value of se-

quence Cmin. Let `1 be the smallest integer such

that `1 > 0, v`1 = 0 and v`1−1 = 1 (i.e. v`1 is the

�rst node of the second sequence of consecutive oc-

cupied nodes); let `2 be the smallest integer such

that `2 > `1, v`2 = 0 and v`2−1 = 1 (i.e. v`2 is the

�rst node of the third sequence of consecutive oc-

cupied nodes); let `−1 be the largest integer such

that `−1 < n and v`−1
= 0 (i.e. v`−1

is the last

occupied node). The four procedures permitted by

Align are the following (see Figure 7):

� reduce0(C): The robot at node v0 moves to

node v1;
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v`−1
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v0

v`2

(d) reduce−1.

Fig. 7: Procedures permitted by Align.

� reduce1(C): The robot at node v`1 moves to

node v`1−1;

� reduce2(C): The robot at node v`2 moves to

node v`2−1;

� reduce−1(C): The robot at node v`−1
moves

to node v`−1+1.

Note that in some con�gurations `1 and `2
might be not de�ned. However, we will show that

in these cases our algorithm does not perform pro-

cedures reduce1 and reduce2, respectively.

The pseudo-code of Algorithm Align is given

in Figure 10 and works in two phases. The �rst

phase (Algorithm Align-One in Figure 11) copes

with con�gurations without any consecutive occu-

pied nodes (i.e. v1 = 1) and aims at reaching con-

�gurations with at least two consecutive occupied

nodes (i.e. v1 = 0), once one such con�guration

is reached, the second phase starts and its general

aim is to increase the number of consecutive occu-

pied nodes until Ca, Cb, or Cc are reached. The sec-
ond phase is given in Algorithm Align-Two-Sym

in Figure 12, if the con�guration is symmetric, and

Align-Two-Asym in Figure 13, otherwise.

Algorithm Align-One. If v1 = 1 (i.e. there are

no two adjacent robots) and the con�guration C is
symmetric, the general strategy is to reduce the su-

permin by performing reduce0 (see line 5 of Pro-

cedure Align-One). If the two symmetric robots

that should move perform their Look-Compute-

Move cycles synchronously, then the obtained con-

�guration C′ is symmetric, the axis of symmetry of

C is preserved, and the supermin is reduced. Hence,

C′ is allowed.
If only one of the two symmetric robots that

should move actually performs the move (due

to the asynchronous execution of their respective

Look-Compute-Move cycles), then the following

lemma ensures that the con�guration C′ obtained
is asymmetric and not adjacent to any symmet-

ric con�guration other than C with respect to any

possible procedure that allows at most two robots

to move.

Lemma 2 ([12]) Let C be an allowed con�gura-

tion and let C′ be the one obtained from C after a

reduce0 performed by a single robot. Then, C′ is
asymmetric and at least two robots have to move

to obtain C′ from an aperiodic symmetric con�gu-

ration di�erent from C.
It follows that robots can recognize whether C′

has been obtained by performing reduce0 from

C by performing such a procedure on C′ back-
wards. In fact, if the con�guration is asymmet-

ric, then Align-One �rst checks whether it has

been obtained from a symmetric con�guration (By

Lemma 2, such a con�guration is unique), and

in the a�rmative case, it performs the possi-

ble pending move. In detail, let C = (0, 1, X, 1)
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be the supermin view of an asymmetric con�g-

uration (line 7). Performing reduce0 backwards

from C means computing the con�guration C′ =
(1, 1, X, 0) (line 8) since the move from C′ to C
corresponds to reduce0. If C′ is symmetric and

allowed (line 9), then a reduce0 move is possi-

bly pending and hence it is forced to be performed

(line 11).

However, it is not always possible to perform

reduce0 on a symmetric con�guration C. Indeed,
in case that Cmin = (0, 1, 0, R), for some R = R,

then performing reduce0 would imply that two

robots occupy the same node (a multiplicity oc-

curs but we want to avoid it in this phase). In

fact, note that in this case the node symmetric to

v0 is v2 and performing reduce0 consists in mov-

ing both robots from v0 and v2 to v1. In this case,

we perform reduce−1 (line 3). In the next lemma

(for j = 1) we show that such a procedure per-

formed by only one robot from a con�guration C
such that Cmin = (0, 1, 0, R), with R = R, does not

create a con�guration with two consecutive occu-

pied nodes, does not create a symmetric con�gura-

tion and the con�guration obtained is not adjacent

to a con�guration di�erent from C with respect to

any possible procedures performed by Align.1

Lemma 3 Let C be a symmetric and allowed con-

�guration with supermin Cmin = (0, 1j , 0, R), for

R = R and j ≥ 1, and let C′ be the con�guration

obtained by applying reduce−1 on only one robot

on C. Then C′ has no consecutive occupied nodes

and either Cmin = (0, 1j , 0, 1j+1, 0, 1j+1) or C′ is
asymmetric and it is not adjacent with respect to

reduce0 and reduce−1 to any symmetric con�g-

uration di�erent from C.

It follows that we can again preserve the sym-

metry by forcing to perform the symmetric move.

Note that also in this case, performing reduce−1
results in reducing the supermin.

In order to recognize whether a reduce−1
move is possibly pending, we use a technique

similar to that used to recognize a possible

pending reduce0 move. In detail, Let C =

(0, 1, 0, R) be the supermin view of a symmet-

ric con�guration with R = R. We can assume

that R = (1j , 0, R′, 0, 1j) with R′ = R′ and

j > 1. After performing a reduce−1 on only

one robot, the obtained con�guration is C′ =

(0, 1, 0, 1j , 0, R′, 1, 0, 1j−1). Two cases may occur:

C′min = (0, 1, 0, 1j−1, 0, 1, R′, 0, 1j); or, if j = 2,

1 Con�guration C = (0, 1, 0, 1, 1, 0, 1, 1) is the only ex-
ception, see Section 6.3.

C′min = (0, 1, 0, 1, 0, 1, 1, 0, R′, 1). In the �rst case,

we can compute C from C′ by moving the robot in

position j+2 to position j+3 (lines 17�21), in the

second case by moving the robot in position 0 to

position n− 1 (lines 13�15).

If the con�guration is asymmetric and it cannot

be obtained by performing reduce0 or reduce−1
from any possible allowed symmetric con�gura-

tion, then we execute Algorithm Asym in [14]

(line 22). Lemma 1 ensures that such algorithm

always leads to rigid con�gurations.

Algorithm Asym ensures that each procedure

permits only one robot to change its position, and

then no pending moves are possible. If by apply-

ing Asym, we produce an asymmetric con�gura-

tion which is adjacent to a symmetric con�guration

with respect to some of the procedures permitted

by Align, then we force to perform the possible

pending move. Moreover, it has been shown that

algorithm Asym reduces the supermin after each

move [14].

Note that, in some symmetric con�gurations

there exists a robot r that occupies a node lying

on the axis of symmetry. In these cases, reduce0
or reduce−1 may consist in moving r (in any ar-

bitrary direction). We cannot move the robot sym-

metric to r as it does not exist, but we can safely

perform Asym as there are no pending moves. To

avoid to force the pending move in this case, we

test whether the robot that moved from C to C′ is
not the one on the axis of symmetry of C (see test
at lines 10, 14, and 20).

Eventually, Align-One leads to a con�gura-

tion with two consecutive occupied nodes. In de-

tail, we can obtain one of the following four con-

�gurations: (i) an asymmetric con�guration with

two consecutive occupied nodes which is not adja-

cent to any symmetric con�guration with respect

to a procedure permitted by Align-One; (ii) an

asymmetric con�guration with two consecutive oc-

cupied nodes which is adjacent to a symmetric con-

�guration with respect to some procedure permit-

ted by Align-One; (iii) a symmetric con�guration

with two or three consecutive occupied nodes with

the axis of symmetry passing in their middle; (iv) a

symmetric con�guration with two symmetric pairs

of consecutive occupied nodes.

Algorithm Align-Two-Sym. Once a con�gura-

tion with two consecutive occupied nodes is

achieved, the second phase of Algorithm Align

starts. Now it is not possible to perform reduce0

as it would cause a multiplicity. Hence, one proce-
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dure among reduce1, reduce2 or reduce−1 is

performed.

In symmetric con�gurations there are cases

when we cannot perform reduce1 or reduce2.

For instance, reduce1 cannot be applied if Cmin =

(0i, 1j , 0i, R), with R = R. In fact, in this case,

Cmin = (Cmin
2i+j) and performing reduce1 corre-

sponds to moving the robot at vi+j which is sym-

metric to that at vi−1. Therefore, such a move

would increase the supermin. Similar instances

where it is not possible to perform reduce2 can

occur. For example if Cmin = (0i, 1j , 0x, 1j , 0i, R),

then performing reduce2 corresponds to moving

the robot at vi+2j+x which is symmetric to that at

vi−1. Moreover, since we are coping with symmet-

ric con�gurations, it can happen that the asyn-

chronous execution of the two symmetric robots

that should perform one of the three procedures

generates a symmetric con�guration with a dif-

ferent axis of symmetry or a con�guration that

is adjacent to a di�erent symmetric con�guration

with respect to some other procedure permitted

by Align. Algorithm Align-Two-Sym appropri-

ately performs reduce1, reduce2 or reduce−1
in a way that the conditions described above can-

not occur.

To give more detail on the behavior of the algo-

rithm in the case of symmetric con�gurations, we

de�ne the following three sets. Let S1 be the set of

symmetric con�gurations with supermin (0i, 1, R),

where i ≥ 2 and R contains a sequence 0i. Let

S2 be the set of con�gurations C ∈ S1 such that

Cmin = (0i, 1j , 0i, Z) for some Z = Z and j > 0.

Let S3 be the set of con�gurations C ∈ S1 such that

Cmin = (0i, 1j
′
, 0x, 1j , 0x, 1j

′
, 0i, Z) for some Z =

Z, j, j′ > 0 and 1 ≤ x ≤ i, or con�gurations C ∈ S1

such that Cmin = (0i, 1j
′
, 0x, 1j

′
, 0i, Z) for some

Z = Z, j′ > 0 and 1 ≤ x ≤ i, or con�gurations

C ∈ S1 such that Cmin = (0i, 1j , 0i−1, 1, 0, R, 1),

R = R, j > 0. Finally, set S4 is a set of symmetric

con�gurations such that S4 6⊆ S1 \ S3 that is used

to handle some special cases and will be de�ned in

Section 6.3.

The sets S2 and S3 contain the con�gurations

where it is not possible to perform reduce1 or

reduce2, respectively, as it will increase the su-

permin.

In Lemmata 4�7, given in Section 6.5, we iden-

tify the procedures that can be safely performed

on the con�gurations in such sets. We report the

statements of such lemmata in what follows.

Lemma 4 Let C be a symmetric and allowed con-

�guration with i > 1 consecutive occupied nodes

and let C′ be the con�guration obtained by ap-

plying reduce1 on only one robot on C. If C′
is symmetric, then C ∈ S1 \ S3 or Cmin =

(0i, 1, 0i, 1, (0i, 1, 0i, 1, 0i−1, 1)`), for some ` ≥ 1,

or Cmin = (0i, 1, 0x, 1, (0i, 1, 0x−1, 1)`), for some

` ≥ 1 and 1 ≤ x ≤ i.

Lemma 5 Let C be a symmetric and allowed con-

�guration with i > 1 consecutive occupied nodes

and let C′ be the con�guration obtained by applying

reduce1 on only one robot on C. If C′ is adjacent
with respect to reduce1 to a symmetric con�gu-

ration C′′ di�erent from C, then C ∈ S1 \ S3, or

C′′ ∈ S1 \ S3 or C, C′′ ∈ S4.

Lemma 6 Let C be a con�guration in S1 \ S3

and let C′ be the con�guration obtained by apply-

ing reduce2 on only one robot on C. Then C′ is
asymmetric and it is not adjacent with respect to

reduce1 or reduce2 to any symmetric con�gu-

ration di�erent from C.

Lemma 7 Let C be a con�guration in S2, or

such that Cmin = (0i, 1, 0i, 1, (0i, 1, 0i, 1, 0i−1, 1)`),

for some ` ≥ 1, or such that Cmin =

(0i, 1, 0x, 1, (0i, 1, 0x−1, 1)`), for some ` ≥ 2

and 1 ≤ x ≤ i, or such that Cmin =

(0i, 1, 0x, 1, 0i, 1, 0y, 1), for some 1 < y < x ≤ i,

and let C′ be the con�guration obtained by apply-

ing reduce−1 on only one robot on C. Then C′
is asymmetric and it is not adjacent with respect

to reduce1, reduce2, or reduce−1 to any sym-

metric con�guration di�erent from C.

Based on these results, Algorithm Align-

Two-Sym works as follows. If C is in S2,

then reduce1 cannot be performed. However,

by Lemma 7, we can safely perform reduce−1
(lines 1 and 6 of Procedure Align-Two-Sym).

If C 6∈ S2, then Align-Two-Sym �rst com-

putes the con�guration C′ that would be ob-

tained from C by applying reduce1 on only

one robot (line 8). If C′ is symmetric, then we

know by Lemma 4 that C ∈ S1 \ S3 or Cmin =

(0i, 1, 0i, 1, (0i, 1, 0i, 1, 0i−1, 1)`), for some ` ≥ 1, or

Cmin = (0i, 1, 0x, 1, (0i, 1, 0x−1, 1)`), for some ` ≥ 1

and 1 ≤ x ≤ i. In the �rst case, we can safely per-

form reduce2 (line 10) as the obtained con�gura-

tion is neither symmetric nor adjacent to any other

symmetric con�guration (see Lemma 6, and the

�rst example in Section 6.2). In the last two cases,

we cannot perform reduce2 but, by Lemma 7, we

can safely perform reduce−1 (lines 2, 3, and 6).2

2 Except for the case of Cmin =
(0i, 1, 0x, 1, (0i, 1, 0x−1, 1)`) for ` = 1 and x = 1
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If C′ is asymmetric, then Align-Two-Sym

checks whether it can be obtained by applying

reduce1 from a symmetric con�guration C′′ dif-
ferent from C. To this aim, it computes all the

con�gurations that can possibly generate C′. As
reduce1 reduces the supermin, then by perform-

ing it, the starting node of the supermin in the ob-

tained con�guration is either the same of the previ-

ous one or it is one of the endpoints of a sequence of

consecutive occupied nodes which is generated by

the procedure itself. It follows that C′′ can be com-

puted by increasing the supermin of C′ by moving

one of the robots in the endpoints of the sequence

of consecutive occupied nodes at the beginning of

the supermin sequence or the possible robot in po-

sition v`1 . In other words, if C′ = (0i, 1j , 0, R, 1)

for i ≥ 2 and j ≥ 1 (line 12), then C′′ can be

only one of the following con�gurations: Cα :=

(0i−1, 1, 0, 1j−1, R, 1), Cβ := (0i−1, 1j , R, 0, 1), and,

if R = (1, R′), Cγ := (0i, 1j+1, 0, R′, 1) (lines 13�

15). If at least two among Cα, Cβ , and Cγ are sym-

metric and the procedure from both of them to

C′ corresponds to reduce1 (i.e. two symmetric

con�gurations are adjacent to C′ with respect to

reduce1), then by Lemma 5 follows that at least

one of them belongs to S1 \ S3 or both belong

to S4. In the former case we can safely perform

reduce2 on the con�guration belonging to S1 \S3

(line 17) and reduce1 (line 22) on the other one

(see Lemma 6 and second example in Section 6.2).

The latter case will be explained in detail in Sec-

tion 6.3. In any other symmetric con�guration,

Align-Two-Sym applies reduce1 (line 22).

Algorithm Align-Two-Asym. This algorithm

works similarly to Align-One when the con�g-

uration is asymmetric. First, it checks whether the

given con�guration C has been obtained from a

symmetric and allowed con�guration C′ by per-

forming only one of the two symmetric moves.

In the a�rmative case, it performs the possi-

ble pending move, otherwise it performs Algo-

rithm Asym. Given the procedures performed by

Align-One and Align-Two-Sym, a con�gura-

tion C with Cmin = (0i, 1j , 0x, 1j
′
, R, 1), j ≥ 1,

x ≥ 1, and j′ ≥ 0 can be adjacent to a sym-

metric con�guration C′ with respect to one such

procedure only if C′ is one of the following con-

�gurations: Cα := (0i−1, 1, 0, 1j−1, 0x, 1j
′
, 0, R, 1),

Cβ := (0i−1, 1j , 0x, 1j
′
, 0, R, 0, 1), if j′ > 0, Cγ :=

(i.e. Cmin = (0i, 1, 0, 1, 0i, 1, 1)) where reduce1 is per-
formed. This case will be discussed in Section 6.3, along
with the case Cmin = (0i, 1, 0x, 1, 0i, 1, 0y, 1), y < x.

(0i, 1j , 0x−1, 1, 0, 1j
′−1, R, 1), or, if R = (0, 1, R′),

Cδ := (0i, 1j , 0x, 1j
′+1, 0, R′, 1) (see lines 2�5 of

Align-Two-Asym). Note that, at most one of

the above con�gurations can be symmetric. Let Cy,
y ∈ {α, β, γ, δ}, be such a con�guration, if by ap-

plying Align-Two-Sym (or Align-One if Cy has
no consecutive occupied nodes) on a single robot

of Cy we obtain C, then C has been possibly ob-

tained from Cy and then Align-Two-Asym per-

forms the possible pending move (see lines 7�14

and the �rst example in Section 6.2). If none of Cy,
y ∈ {α, β, γ, δ}, is symmetric, then C has not been
obtained from any symmetric con�gurations and

then Align-Two-Asym performs Asym (line 15).

As in the case of Align-One, if the robot leading

from Cy to C is that on the axis of symmetry of

Cy, then Algorithm Asym is performed.

We are now ready to provide the proof of Theo-

rem 1 which represents the correctness proof for al-

gorithmAlign. Such a proof relies on Lemmata 3�

7 and Lemmata 15�18, proven in Section 6.5. For

the sake of readability, we also recall the statement

of the theorem.

Theorem 5 (Theorem 1) Let 3 ≤ k < n − 2,

k 6= 4, robots standing in an n-node ring form-

ing an exclusive allowed con�guration, Algorithm

Align eventually terminates achieving one exclu-

sive allowed con�guration among Ca, Cb, or Cc.

Proof We model all the possible executions of

Align as a directed graph where each con�gura-

tion is represented as a node and there exists an

arc (u, v) if there exist a procedure and a time

schedule of the algorithm that starting from the

con�guration represented by u lead to that rep-

resented by v, even with possible pending moves.

An execution of Align is represented by a path

in this graph. In what follows, we show that such

paths are acyclic, are made of nodes representing

allowed con�gurations, and they always lead to a

node representing one of the con�gurations Ca, Cb,
or Cc.

We can partition the nodes into three sets

representing: the symmetric con�gurations; the

asymmetric con�gurations which are adjacent to

some symmetric con�gurations with respect to one

of the procedures permitted by Align; and the

remaining asymmetric con�gurations. We denote

such sets as S, AS1 and AS2, respectively. Lem-

mata 1, 2, 3�7, and 15�17 imply the following

properties.

� A node in S representing a con�guration C has
either one or two outgoing arcs (but for nodes

19



corresponding to Cb and Cc that have no out-

going arcs, see last item). If it has exactly two

outgoing arcs, then one of them is directed to

the node v′ representing the con�guration C′
obtained if both the symmetric robots permit-

ted to move by Align perform their moves

synchronously. The other arc is directed to the

node v′′ representing the con�guration C′′ ob-
tained if only one of the two symmetric robots

permitted to move by Align actually moves.

In other words, the former arc models the case

where both the two symmetric robots permit-

ted to move perform the entire cycle Look-

Compute-Move, while the latter arc models the

case where only one of them performs entirely

such cycle. Note that, v′ belongs to S, while

v′′ belongs to AS1. Moreover, if C is allowed,

then also C′ is such. If the node has exactly one
outgoing arc then the robot r moved by Align

lies on the axis of symmetry. In this case, any

procedure performed by Align moves r in an

arbitrary direction. Then, the arc is directed to

a node in AS1.

� A node in AS1 representing a con�guration C′′
has exactly one incoming arc from a node in

S, it can have some incoming arcs from nodes

in AS2, and it has exactly one outgoing arc,

directed to a node in S or in AS2. If the out-

going arc is directed to a node in S, then one

of the incoming arcs comes from a node u in

S and models the case when only one of the

two symmetric robots permitted to move by

Align from the con�guration C represented by

u actually moves. From Lemmata 3�15, there

exists only one such node. The outgoing arc

leads to the node in S representing con�gura-

tion C′ which can be obtained by moving syn-

chronously both the symmetric robots permit-

ted to move by Align from C. Note that both
C and C′′ are allowed con�gurations (see line 7

of Procedure Align-Two-Asym). If the out-

going arc is directed to a node in AS2, then C′′
has been obtained from a con�guration, corre-

sponding to a node in S, such that the robot

moved by Align lies on the axis of symmetry.

In this case, Align performs Asym from C′′
obtaining a con�guration in AS2.

� A node in AS2 has exactly one outgoing arc,

directed either to another node in AS2 or to

a node in AS1 but it cannot be directed to a

node in S (by Lemma 1). It can have some arcs

coming from nodes in AS1 or AS2. If the node

corresponding to Ca belongs to AS2 it has no

outgoing arcs, see next item.

� Node corresponding to con�gurations Cb and

Cc belong to S but they have no outgoing arcs

as the algorithm stops when one such con�gu-

ration is achieved. Con�guration Ca can belong

to AS1 or to AS2, depending on whether Cb is
allowed or not. In the former case, there is an

arc between the node corresponding to Ca to

that corresponding to Cb, in the latter case the

node corresponding to Ca has no outgoing edge
and the algorithm stops such con�guration is

achieved.

It follows that any execution path performed

by the algorithm is made of nodes representing

allowed con�gurations. In fact, the arcs outgoing

nodes in S represent moves that preserve the axis

of symmetry and the number of robots. There-

fore, if an allowed symmetric con�guration C corre-
sponds to a node v and there is an arc (v, v′), then

the symmetric con�guration C′ corresponding to

node v′ is allowed. Furthermore, con�gurations in

AS1 and AS2 are always allowed and there is an

arch from a node in AS1 to a node in S only if

this latter corresponds to an allowed con�guration

(see line 7 of Procedure Align-Two-Asym).

Moreover each allowed con�guration (but Cb,
Cc, and, in some cases, Ca) has an outgoing arc that
is traversed by the execution path of the algorithm.

Since nodes in AS1 have only one outgoing

arc, without loss of generality we can consider a

condensed graph build in the following way: re-

place each arc (u, v), such that v ∈ AS1 and the

unique out-neighbor z of v belongs to S with arc

(u, z). Any execution path in the original graph has

a unique correspondent in the condensed graph,

while an execution path in the condensed graph

only omits the arcs corresponding to forced pend-

ing moves. By Lemma 18 and since Asym always

reduces the supermin, it follows that each arc in

the condensed graph corresponds to a reduction

of the supermin. This implies that the condensed

graph is acyclic, as we can de�ne a topological or-

dering of the nodes as a linear extension of the

partial ordering given by the supermin of the cor-

responding con�gurations. The statement is then

proven by observing that con�gurations in Ca, Cb,
or Cc are those with the minimum possible super-

min and hence are the only possible sinks of the

graph. ut
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6.2 Examples of execution

First example. The example in Figure 8 shows

a case where applying reduce1 on a symmetric

con�guration results in a symmetric con�guration

with a di�erent axis of symmetry. Let us con-

sider the con�guration C in Figure 8a such that

Cmin = (0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1).

As v1 = 0 and C is symmetric, then Algorithm

Align-Two-Sym is performed. It �rst computes

con�guration C′ in Figure 8b which is the one that

would be obtained from C by applying reduce1 on
only one robot. As such a con�guration is symmet-

ric, reduce2 is applied. If only one robot moves,

then the con�guration C′′ in Figure 8c is obtained.

Such con�guration is asymmetric and it could have

a possible pending move.

From con�guration C′′, Algorithm Align-

Two-Asym is applied. Such a procedure computes

the unique symmetric con�guration which C′′ is
adjacent to. To this aim, it computes the four pos-

sible con�gurations that can generate C′′ by apply-
ing Align. Such con�gurations are:

� Cα given in Figure 8d;

� Cβ which is equivalent to C;
� Cγ given in Figure 8e;

� Cδ given in Figure 8f.

Among such con�gurations, only one is symmetric

which is Cβ = C. Therefore, Align-Two-Asym
is able to identify the robot that has to move in

order to perform the possible pending move. In

this speci�c case, the robot that moved from C to

C′′, is the one on the axis of symmetry. It follows

that there are no pending moves and Align-Two-

Asym proceeds by applying Asym.

Second example. The example in Figure 9 shows a

case where applying reduce1 on a symmetric con-

�guration results in an asymmetric con�guration

which is adjacent to another symmetric con�gura-

tion, di�erent from the original one, with respect

to reduce1. Let us consider the con�guration of

Figure 9a. As v1 = 0 and C is symmetric, then

Algorithm Align-Two-Sym is performed. It �rst

computes con�guration C′ in Figure 9b which is

the one that would be obtained from C by apply-

ing reduce1 on only one robot. As such con�gura-

tion is asymmetric, the procedure checks whether

it can be obtained by applying reduce1 from a

symmetric con�guration di�erent from C. To this

aim it computes:

� Cα which is equivalent to C;
� Cβ given in Figure 9d;

� Cγ given in Figure 9e.

Both con�gurations Cα and Cγ are symmetric, and

con�guration C′ can be obtained from both of them

by applying reduce1. By Lemma 5, it follows that

one of them belongs to S1 \ S3 or both of them

belong to S4. In fact, Cα ∈ S1 \ S3. Therefore, Al-

gorithm Align-Two-Sym exploits Lemma 6 and

applies reduce2 on C. The obtained con�guration

C′′ is given in Figure 9c. It can be checked that this

con�guration is asymmetric and it is not adjacent

to any symmetric con�guration di�erent from C
with respect to any procedure permitted by Align

(as proved in Lemma 6 for the general case).

6.3 Further details on particular cases

In this section we give more details on particular

con�gurations handled by Align. First, we focus

on the case of Align-One, and then on Align-

Two-Sym.

Algorithm Align-One. Let us consider con�gu-

ration C = (0, 1, 0, 1, 1, 0, 1, 1). In this case, Align

performs procedure reduce−1 which moves the

robot in v5 (lying on the axis of symmetry)

toward an arbitrary directions. Such a proce-

dure leads to the symmetric con�guration C′ =
(0, 1, 0, 1, 0, 1, 1, 1). From C′, procedure reduce0 is
performed which leads to con�guration Cb, eventu-
ally. In fact, if both the two symmetric robots that

should perform reduce0 move synchronously, the

con�guration obtained is (0, 0, 0, 1, 1, 1, 1, 1). Oth-

erwise, if only one of them actually moves, the con-

�guration obtained is C′′ = (0, 0, 1, 0, 1, 1, 1, 1). As

C′′ is asymmetric, Algorithm Align-Two-Asym

is performed. Such algorithm computes Cα =

(0, 1, 0, 0, 1, 1, 1, 1), Cβ = (0, 1, 0, 1, 1, 1, 0, 1), and

Cγ = (0, 0, 1, 1, 0, 1, 1, 1) and identi�es Cβ as the

only symmetric con�guration among them. In-

deed, Cβ corresponds to C′. Therefore, the al-

gorithm performs the pending move and obtains

(0, 0, 0, 1, 1, 1, 1, 1).

Algorithm Align-Two-Sym. Con�gurations that

generate adjacent con�gurations with respect to

reduce1. We �rst de�ne the following two sets:

� S4a are all the con�gurations C such that one

of the following holds:

1. Cmin = (0i, 1, 1, 0x, 1, 1), for some i ≥ 3 and

x < i;

2. Cmin = (0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1);

3. Cmin = (0i, 1, 1, 1, 0, 1, 0i−1,

(1, 1, 0, 1, 1, 0i−1)`, 1, 0, 1, 1, 1), for some

i ≥ 3 and ` ≥ 0;
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reduce1 reduce1

reduce2

(a) Con�guration C. (b) Con�guration C′ computed from C
by applying reduce1.

(c) Con�guration C′′ computed from C
by applying reduce2.

(d) Con�guration Cα computed from
C′′ in Algorithm Align-Two-Asym.

(e) Con�guration Cγ computed from
C′′ in Algorithm Align-Two-Asym.

(f) Con�guration Cδ computed from
C′′ in Algorithm Align-Two-Asym.

Fig. 8: First example

reduce1 reduce1

reduce2

(a) Con�guration C. (b) Con�guration C′ computed from C
by applying reduce1.

(c) Con�guration C′′ computed from C
by applying reduce2.

(d) Con�guration Cβ computed from C′
in Algorithm Align-Two-Sym.

(e) Con�guration Cγ computed from C′
in Algorithm Align-Two-Sym.

Fig. 9: Second example
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4. Cmin = (0, 0, 0, 1, 1, 0, (0, 1)`, 0, 0, 1, 1), for

some ` ≥ 1;

5. Cmin = (0i, 1, 1, 0i−1, (1, 0, 1, 0i−2)`,

1, 0, 1, 0i−1, 1, 1), for some i ≥ 3 and ` ≥ 0;

6. Cmin = (0i, 1, 0i, 1, 0i, 1, 0i, 1, 0i−1, 1, 0i,

(1, 0i−1, 1, 0i, 1, 0i, 1, 0i−1, 1, 0i)`, 1, 0i−1, 1),

for some i ≥ 2 and ` ≥ 1.

� S4b are all the con�gurations C such that one

of the following holds:

1. Cmin = (0i−1, 1, 0, 1, 0x−1, 1, 0, 1), for some

i ≥ 3 and x < i;

2. Cmin = (0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1);

3. Cmin = (0i−1, 1, 0, 1, 1, 0, 1, 0i−1,

(1, 1, 0, 1, 1, 0i−1)`, 1, 1, 0, 1, 1), for some

i ≥ 3 and ` ≥ 0;

4. Cmin = (0, 0, 1, 0, 1, 0, (0, 1)`, 0, 1), for some

` ≥ 2;

5. Cmin = (0i−1, 1, 0, 1, 0i−1, (1, 0, 1, 0i−2)`+1,

1, 0, 1), for some i ≥ 3 and ` ≥ 0;

6. Cmin = (0i, 1, 0i, 1, 0i, (1, 0i−1, 1, 0i, 1, 0i,

1, 0i−1, 1, 0i)`, 1, 0i−1, 1, 0i, 1, 0i, 1, 0i−1, 1),

for some i ≥ 2 and ` ≥ 1.

Set S4 is given by the union of S4a and S4b. Ob-

serve that S4 6⊆ S1 \ S3, that is, if C ∈ S4 either

C ∈ S3 or C 6∈ S1. In particular, con�gurations 1�5

of S4a and con�guration 1 of S4b do not belong to

S1, while con�guration 6 of S4a and con�gurations

2�6 of S4b belong to S3.

In Lemma 5 we show that the set S4 con-

tains the only con�gurations not in S1 \ S3 such

that by applying reduce1 on only one of the two

symmetric robots that are allowed to move, we

obtain a con�guration that is adjacent with re-

spect to reduce1 to another symmetric con�gu-

ration. The set of the con�gurations obtained by

applying reduce1 on S4 is called S′4. In partic-

ular, for any con�guration C in S4a, there exists

a unique con�guration C′′ in S4b such that the

con�guration obtained by applying reduce1 on

C and that obtained by applying reduce1 on C′′
are identical. For example, if we consider con�g-

urations Cmin = (0i, 1, 1, 0x, 1, 1), and C′′min
=

(0i−1, 1, 0, 1, 0x−1, 1, 0, 1), for some i ≥ 3 and x <

i, then by applying reduce1 we obtain C′min
=

(0i, 1, 0, 1, 0x−1, 1, 1) from both C and C′′.
We observe that in symmetric con�gurations

in S3 we cannot perform reduce2, while in those

not in S1 procedures reduce1 and reduce−1 co-

incide. Therefore the general strategy is to ap-

ply reduce1 on con�guration in S4a, reduce2 on

con�gurations in S4b \ S1, and reduce−1 on con-

�gurations in S4b∩S3. In detail, we distinguish the

following three cases.

� Let us consider the symmetric con�gura-

tions Cs1 = (0i, 1, 1, 0x, 1, 1) and Cs2 =

(0i−1, 1, 0, 1, 0x−1, 1, 0, 1) with i ≥ 3 and x < i.

Note that in both these cases reduce1 and

reduce−1 coincide. Moreover, in Cs1 the only

procedure that reduces the supermin and does

not create a multiplicity is reduce1. How-

ever, performing reduce1 from Cs2 and Cs1
leads to the same con�guration C′. For these

reasons Align-Two-Sym performs reduce1
from Cs1 and, if x > 1, reduce2 from Cs2
(lines 16�17 of procedure Align-Two-Sym).

This latter procedure cannot create a symmet-

ric con�guration nor a con�guration adjacent

to any symmetric con�guration di�erent from

Cs2 with respect to any procedure permitted

by Align (see Lemma 15 in Section 6.5). If

x = 1, then reduce2 cannot be performed on

Cs2 . However, even if C′ is adjacent to Cs1 , it is
equal to Ca and therefore in this case algorithm

Align performs reduce1 also from Cs2 . Then,
from C′ = Ca algorithm Align either stops or

achieves Cb, if it is allowed.
� Let us consider con�gurations Cs3 =

(0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1) and

Cs4 = (0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1).

By applying reduce1 on them we obtain

C′ = (0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1). Note

that in this case the only move that can

be performed on Cs3 is reduce1 as any

other procedure might create a multiplic-

ity. Similarly, performing reduce2 on Cs4
might create a multiplicity, while performing

reduce−1 might create a periodic con�g-

uration. Therefore in this case we perform

reduce1 on Cs3 and we move the robot

in v2 to v3 in Cs4 . In Lemma 16 given in

Section 6.5, we show that this latter pro-

cedure creates a con�guration C′′′ which is

asymmetric and such that the only symmetric

con�guration which is adjacent to C′′′ with

respect to any procedure permitted by Align

is C′′ = (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1)

which is the one that is obtained from Cs4
if both the symmetric robots (at nodes v2
and v10) move synchronously. Moreover,

we observe that the obtained con�guration

C′′′ = (0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1) has a

supermin that is smaller than that of Cs4 since

C′′′min = (0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1).

� In any other con�guration in S4 we per-

form reduce1 on con�gurations in S4a and

reduce−1 on con�guration in S4b. Note that
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all such con�gurations in S4b are also contained

in S3. In Lemma 17, we show that applying

reduce−1 on such con�gurations cannot cre-

ate a symmetric con�guration nor a con�gura-

tion adjacent to any symmetric con�guration

di�erent from the original con�guration with

respect to any procedure permitted by Align.

Algorithm Align-Two-Sym. Con�gurations that

generate symmetric con�gurations by perform-

ing reduce1. Finally, let us consider the case

of Cmin = (0i, 1, 0x, 1, (0i, 1, 0x−1, 1)`), for some

1 ≤ x ≤ i and ` = 1, that is

Cmin = (0i, 1, 0x, 1, 0i, 1, 0x−1, 1). We distinguish

two cases: x = 1 and x ≥ 1. In the �rst

case, Cmin = (0i, 1, 0, 1, 0i, 1, 1) and the only

possible procedure that reduces the supermin is

reduce1. However, as shown in Lemma 4, such a

move produces a symmetric con�guration, namely

C′min
= (0i+1, 1, 1, 0i, 1, 1). Note that, the robot

moved from C to C′ is the one on the axis of

symmetry and hence there is no pending move.

Moreover, C′ is equivalent to con�guration Cs1
therefore, from this point on, the Align pro-

ceeds as in the previous case. If x ≥ 1, then

by performing reduce−1, we obtain con�gura-

tion C′min
= (0i+1, 1, 0x, 1, 0i, 1, 0x−2, 1) which is

asymmetric. However, C′min
can be obtained by

performing reduce1 from con�guration C′′min =

(0i, 1, 0x+1, 1, 0i, 1, 0x−2, 1). Therefore, algorithm

Align performs move reduce−1 to any con�gura-

tion C′′′ such that C′′′min = (0i, 1, 0x, 1, 0i, 1, 0y, 1),

for some 1 < y < x ≤ i. This latter procedure can-
not create a symmetric con�guration nor a con�g-

uration adjacent to any symmetric con�guration

di�erent from C′′′ with respect to any procedure

permitted by Align (see Lemma 7).

6.4 Pseudo-code

In Figures 10�13 we report the pseudo-code of al-

gorithm Align.

6.5 Correctness

In this section we prove the lemmata exploited in

Theorem 1 .We �rst give two technical lemmas.

Lemma 8 If (0, R) = (R, 0) and (0, R) = (R, 0),

then R ∈ (0k), k ∈ N.

Proof R may be ∅. Clearly, R = (0) if |R| = 1.

Assume |R| > 1.

By induction on 0 ≤ j ≤ bn2 c, we

show that R = (0j , X, 0j). Assume that

R = (0j , a,X, b, 0j), then, by symmetries,

(0, 0j , a,X, b, 0j) = (0j , b,X, a, 0j , 0) and

(0, 0j , b,X, a, 0j) = (0j , a,X, b, 0j , 0), hence

a = b = 0 and thus, R = (0j+1, X, 0j+1). Then,

X = ∅, or |X| = 1, in which case the only pos-

sibility is X = (0), or X = (0j+1, a′, X ′, b′, 0j+1)

and the result holds by induction. ut

Lemma 9 Let X and Y be two sequences such

that (Y,X) = (X,Y ) and X = X. Then, Y =

(U, V ) and X = (Y i, U), for some U = U , V = V ,

and i ≥ 0.

Proof Clearly, any pair of sequences X, Y satisfy-

ing the properties of the lemma is a valid solution.

We prove that any solution has the desired form

by induction on the length of X.

Assume �rst that there is a solution to (Y,X) =

(X,Y ) with |X| ≤ |Y |. Then, X is a pre�x of Y

because (Y,X) = (X,Y ). Therefore, Y = (X,V ).

Plugging it into the equation, we get (X,V,X) =

(X,V ,X). Therefore, V = V . Hence, X and Y

have the desired form.

Now, consider a solution such that |X| > |Y |.
Then, Y is a pre�x of X because (Y,X) = (X,Y ).

Therefore, X = (Y,X ′). Plugging it into the

equation, we get (Y, Y,X ′) = (Y,X ′, Y ). More-

over, because X = X, we get that (Y,X ′, Y ) =

(Y,X ′, Y ). All together, we get that X = (Y,X ′)

with (Y,X ′) = (X ′, Y ) and X ′ = X ′.

Therefore, by induction, we get that, there is

i ≥ 0 such that X ′ = (Y i, U) with Y = (U, V ) and

U = U and V = V . Hence, X = (Y i+1, U) and the

lemma holds. ut

Lemma 10 (Lemma 3) Let C be a symmetric

and allowed con�guration with supermin Cmin =

(0, 1j , 0, R), for R = R and j ≥ 1, and

let C′ be the con�guration obtained by applying

reduce−1 on only one robot on C. Then C′ has
no consecutive occupied nodes and either Cmin =

(0, 1j , 0, 1j+1, 0, 1j+1) or C′ is asymmetric and

it is not adjacent with respect to reduce0 and

reduce−1 to any symmetric con�guration di�er-

ent from C.

Proof We �rst prove that C′ has no consecutive

occupied nodes. By contradiction, let us assume

that C′min = (0, 0, X) for some X. Since C has no

consecutive occupied nodes, then such a sequence

in C′ has been created by the reduce−1 move.

This implies that Cmin = (0, 1j , 0, 1, 0, R′, 0, 1), i.e.
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Algorithm: Align
Input: Allowed con�guration C with Cmin = (v0, v1, . . . , vn−1)

1 if v1 = 1 then
2 Align-One(C);
3 else
4 if C is symmetric then
5 Align-Two-Sym(C);
6 else
7 Align-Two-Asym(C);

Fig. 10: Algorithm Align.

Algorithm: Align-One
Input: Allowed con�guration C with Cmin = (v0, v1, . . . , vn−1)

1 if C is symmetric then

2 if Cmin = (0, 1, 0, R), with R = R then
3 reduce−1(C);
4 else
5 reduce0(C);
6 else
7 Let Cmin = (0, 1, X, 1);
8 Let C′ = (1, 1, X, 0);

9 if C′ is symmetric and allowed and C′min = (0, 1, 1, X) then
10 if The robot that moved from C′ to C is not the one on the axis of symmetry of C′ then
11 Perform reduce0 on the robot symmetrical to the one that moved from C′ to C and exit;

12 else

13 if C′ is symmetric and allowed, C′min = (0, 1, 0, 1, 1, 0, R′, 0, 1, 1), and R′ = R′ then
14 if The robot that moved from C′ to C is not the one on the axis of symmetry of C′ then
15 Perform reduce−1 on the robot symmetrical to the one that moved from C′ to C and exit;

16 else
17 if Cmin = (0, 1, 0, 1j−1, 0, 1, R′, 0, 1j) for some j > 1 then
18 Let C′ = (0, 1, 0, 1j , 0, R′, 0, 1j);

19 if C′ is symmetric and allowed, C′min = (0, 1, 0, 1j , 0, R′, 0, 1j), and R′ = R′ then
20 if The robot that moved from C′ to C is not the one on the axis of symmetry of C′ then
21 Perform reduce−1 on the robot symmetrical to the one that moved from C′ to C and exit;

22 Asym(C);
Fig. 11: First phase of Algorithm Align.

R = (1, 0, R′, 0, 1), for some R′. This is a contra-

diction as Cmin
n−2 < Cmin.

We now prove the second part of the state-

ment. Since R is a palindrome, there cannot ex-

ist a supermin starting in R, as otherwise C is

periodic. Therefore, R = (1j
′
, 0, 1j

′
) or R =

(1j
′
, 0, R′, 0, 1j

′
), for some j′ > j and R′ = R′.

In the �rst case C′ = (0, 1j , 0, 1j
′+1, 0, 1j

′−1) is

symmetric or adjacent with respect to reduce0

and reduce−1 to any symmetric con�guration

di�erent from C only if j′ = j + 1, that

is Cmin = (0, 1j , 0, 1j+1, 0, 1j+1). In the lat-

ter case, the con�guration obtained by apply-

ing reduce−1 on only one robot on C is C′ =

(0, 1j , 0, 1j
′
, 0, R′, 1, 0, 1j

′−1). We distinguish the

following two cases.

� j′ − 1 > j. In this case, C′min
=

(0, 1j , 0, 1j
′−1, 0, 1, R′, 0, 1j

′
). If C′ is

symmetric, then it contains a sequence

(0, 1j , 0, 1j
′−1, 0) di�erent from that at nodes

v0�vj+j′+1 and not overlapping with it

since j′ − 1 > j. Such a sequence must exist

also in C but this is a contradiction to the

superminimality of Cmin as such a sequence is

smaller than (0, 1j , 0, 1j
′
, 0). It follows that C′

is asymmetric.

Con�guration C′ can be obtained by

applying reduce0 or reduce−1 on

a con�guration C′′ only if (i) C′′ =

(0, 1j+1, 0, 1j
′−1, 0, 1, R′, 0, 1j

′−1), or (ii) C′′ =
C, or (iii) C′′ = (0, 1j+1, 0, 1j

′−2, 0, 1, R′, 0, 1j
′
).

In fact, in case (i) C′ is obtained

by performing reduce0 on C′′ where
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Algorithm: Align-Two-Sym
Input: Allowed con�guration C with Cmin = (v0, v1, . . . , vn−1)

1 if C ∈ S2 or

2 Cmin = (0i, 1, 0i, 1, (0i, 1, 0i, 1, 0i−1, 1)`), for some ` ≥ 1, OR

3 Cmin = (0i, 1, 0x, 1, (0i, 1, 0x−1, 1)`), for some ` ≥ 2 and 1 ≤ x ≤ i, OR
4 Cmin = (0i, 1, 0x, 1, 0i, 1, 0y, 1), for some 1 ≤ y < x ≤ i, OR
5 C ∈ S4b ∩ S3 \ {(0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1)} then
6 reduce−1(C);
7 else
8 Let C′ be the con�guration obtained by applying reduce1(C) to one robot of C;
9 if C′ is symmetric then
10 reduce2(C);
11 else
12 Let C′ = (0i, 1j , 0, R, 1), for i ≥ 2 and j ≥ 1;
13 Cα := (0i−1, 1, 0, 1j−1, 0, R, 1);

14 Cβ := (0i−1, 1j , 0, R, 0, 1);
15 if R = (1, R′) then Cγ := (0i, 1j+1, 0, R′, 1);

16 if At least two among Cα, Cβ , and Cγ are symmetric, the procedure from both of them corresponds to
reduce1, and (C ∈ S1 \ S3 or C = (0i, 1, 0, 1, 0x, 1, 0, 1), x > 0) then

17 reduce2(C);
18 else
19 if Cmin = (0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1) then
20 Move the robot in v2 to v3;
21 else
22 reduce1(C);

Fig. 12: Second phase of Algorithm Align for symmetric con�gurations.

Algorithm: Align-Two-Asym
Input: Allowed con�guration C with Cmin = (v0, v1, . . . , vn−1)

1 Let C = (0i, 1j , 0x, 1j
′
, R, 1) with j ≥ 1, x ≥ 1, and j′ ≥ 0;

2 Cα := (0i−1, 1, 0, 1j−1, 0x, 1j
′
, R, 1);

3 Cβ := (0i−1, 1j , 0x, 1j
′
, R, 0, 1);

4 if j′ > 0 then Cγ := (0i, 1j , 0x−1, 1, 0, 1j
′−1, R, 1);

5 if R = (0, 1, R′) then Cδ := (0i, 1j , 0x, 1j
′+1, 0, R′, 1);

6 for y ∈ {α, β, γ, δ} do
7 if Cy is symmetric and allowed then
8 if Cy has no consecutive occupied nodes then
9 Let C′ be the con�guration obtained by executing Align-One on Cy ;
10 else
11 Let C′ be the con�guration obtained by executing Align-Two-Sym on Cy ;
12 if C = C′ then
13 if The robot that moved from Cy to C is not the one on the axis of symmetry of Cy then
14 Perform the move symmetrical to the one that is performed from C′ to C and exit;

15 Asym(C);

Fig. 13: Second phase of Algorithm Align for asymmetric con�gurations.

C′′min
= (0, 1j+1, 0, 1j

′−1, 0, 1, R′, 0, 1j
′−1),

or by performing reduce−1 on C′′ where

C′′min
= (0, 1j

′−1, 0, 1, R′, 0, 1j
′−1, 0, 1j+1);

in case (ii) C′ is obtained by performing

reduce−1 on C′′ where C′′min
= Cmin;

and in case (iii), C′ is obtained by

performing reduce−1 on C′′ where

C′′min
= (0, 1j

′
, 0, R′, 1, 0, 1j

′−2, 0, 1j+1).

In the �rst case of (i), as the supermin

of C′′ is (0, 1j+1, 0, 1j
′−1, 0, 1, R′, 0, 1j

′−1), we

have that (0, 1j+1, 0, 1j
′−1, 0, 1, R′, 0, 1j

′−1) ≤
(0, 1j+1, 0, 1j

′−1, 0, R′, 1, 0, 1j
′−1) which implies

that (1, R′) ≤ (R′, 1). These last inequalities

can be satis�ed only if R = (1j
′′
) for some

j′′ > j, which implies that k = 4, a con-

tradiction. In the second case of (i), since a

reduce−1 move has been performed, then we
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must have that the axis passes through the

middle of the �rst sequence of j′−1 consecutive
empty nodes and that (1, R′, 0, 1j

′−1, 0, 1j+1)

is a palindrome, that is (R′, 0, 1j
′−1, 0, 1j) =

(1j , 0, 1j
′−1, 0, R′). By Lemma 9, it follows that

R′ = ((1j , 0, 1j
′−1, 0)`, 1j) for some ` ≥ 0.

However, in this case we have that Cmin =

(0, 1j , 0, 1j
′
, 0, (1j , 0, 1j

′−1, 0)`, 1j , 0, 1j
′
) which

is a contradiction as: for ` > 0, Cmin
j+j′+2 < Cmin,

and, for ` = 0, C is periodic.
The case (ii) corresponds to the procedure that

has been actually performed.

In case (iii), we have that the axis passes

through the middle of the �rst sequence of

j′ consecutive empty nodes and that the

sequence (R′, 1, 0, 1j
′−2, 0, 1j+1) is a palin-

drome, that is (R′, 1, 0, 1j
′−2, 0, 1j+1) =

(1j+1, 0, 1j
′−2, 0, 1, R′). By Lemma 9, this can

occur only if j = 0 as otherwise the sequence

(1j+1, 0, 1j
′−2, 0, 1) cannot be split into two

palindromic sub-sequences. We obtained a con-

tradiction as j ≥ 1.

� j′−1 = j. We �rst prove that C′ is asymmetric.

In this case C′ = (0, 1j , 0, 1j+1, 0, R′, 1, 0, 1j)

and either C′min
= (0, 1j , 0, 1j , 0, 1j+1, 0, R′, 1)

or C′min
= (0, 1j , 0, 1j , 0, 1, R′, 0, 1j+1). In

any case R′ cannot contain a sequence

(0, 1j , 0, 1j) as otherwise the superminimality

of Cmin is contradicted. Therefore, if C′min
=

(0, 1j , 0, 1j , 0, 1j+1, 0, R′, 1), the axis of symme-

try can only pass through the �rst sequence

of j consecutive empty nodes or in the robot

separating the two sequences of j consecutive

empty nodes. In the �rst case, R′ must start

with a (1j−1, 0) but this is a contradiction

to the superminimality of Cmin. In the sec-

ond case, we must have that (1j+1, 0, R′, 1) =

(1, R′, 0, 1j+1) that is (1j , 0, R′) = (R′, 0, 1j).

By Lemma 9, this implies that R′ =

((1j , 0)`, 1j) for some ` ≥ 0. It follows that

Cmin = (0, 1j , 0, 1j+1, 0, (1j , 0)`, 1j , 0, 1j+1).

However, this implies that: if ` = 0, then C
is periodic, and if ` > 0, then Cmin

2j+3 < Cmin. In

any case, we obtain a contradiction.

If C′min
= (0, 1j , 0, 1j , 0, 1, R′, 0, 1j+1), the

axis of symmetry can only pass through the

robot separating the two sequences of j con-

secutive empty nodes. Note that, in this

case, C′min
= (0, 1j , 0, 1j , 0, 1, R′, 0, 1j+1) =

(0, 1j , 0, 1j , 0, 1j+1, 0, R′, 1) and hence the same

arguments as before can be applied.

Con�guration C′ can be obtained by

applying reduce0 or reduce−1 on a

con�guration C′′ di�erent from C only

if C′′ = (0, 1j+1, 0, 1j , 0, 1, R′, 0, 1j). In

fact, C′ can be obtained by apply-

ing reduce0 or reduce−1 to C′′ if

C′′min
= (0, 1j+1, 0, 1j , 0, 1, R′, 0, 1j) or

C′′min
= (0, 1j , 0, 1, R′, 0, 1j , 0, 1j+1), respec-

tively. The �rst case is impossible as C′′min
is

not minimum. In the second case, we must have

that (1, R′, 0, 1j , 0, 1j+1) = (1j+1, 0, 1j , 0, R′, 1)

and hence (R′, 0, 1j , 0, 1j) = (1j , 0, 1j , 0, R′).

By Lemma 9, this implies that

R′ = ((1j , 0, 1j , 0)`, 1j) or R′ =

((1j , 0, 1j , 0)`, 1j , 0, 1j). In any case, we

obtain that k = 4, or C is periodic, or C′min
is

not minimum. ut

Lemma 11 (Lemma 4) Let C be a symmetric

and allowed con�guration with supermin Cmin =

(0i, 1, R), i > 1, and let C′ be the con�guration

obtained by applying reduce1 on only one robot

on C. If C′ is symmetric, then C ∈ S1\S3 or Cmin =

(0i, 1, 0i, 1, (0i, 1, 0i, 1, 0i−1, 1)`), for some ` ≥ 1,

or Cmin = (0i, 1, 0x, 1, (0i, 1, 0x−1, 1)`), for some

` ≥ 1 and 1 ≤ x ≤ i.

Proof We �rst show that C ∈ S1 and then

that the only con�guration in S3 that leads

to a symmetric C′ is such that Cmin =

(0i, 1, 0i, 1, (0i, 1, 0i, 1, 0i−1, 1)`), for some ` ≥ 1, or

Cmin = (0i, 1, 0x, 1, (0i, 1, 0x−1, 1)`), for some ` ≥ 1

and 1 ≤ x ≤ i.
Let Cmin = (0i, 1j , 0, R′) for j ≥ 1, then

S = (0i, 1j−1, 0, 1, R′) is a representation of C′. We

show that if j > 1, then C′min
= (0i, 1j−1, 0, 1, R′)

is the unique supermin of C′, i.e. the con�gura-

tion is asymmetric. Note that S < Cmin and that

Sh > Cmin
h ≥ Cmin for each h 6= `1. Moreover,

S`1 > S. Therefore, Sh cannot be a supermin of

C′ for each h. To obtain a contradiction, let j′ be

an integer such that Sj′ < S. Then Cmin
j′ < Cmin, a

contradiction.

It follows that if C′ is symmetric, then Cmin =

(0i, 1, 0, R′) and the supermin of C ′ is (0i+1, 1, R′),

or (0i+1, R′, 1) or both. In this case, C′ has an

axis of symmetry passing through the middle

of the unique sequence of i + 1 consecutive oc-

cupied nodes. This implies that (0i+1, 1, R′) =

(0i+1, R′, 1). Let us assume that the axis of sym-

metry of C passes through the middle of the initial

sequence of i consecutive occupied nodes. Then,

the sequence (1, 0, R′) is a palindrome and then

R′ = (R′′, 0, 1) with R′′ = R′′. Since, by the sym-

metry of C′, (1, R′) = (R′, 1), then (1, R′′, 0, 1) =

(1, 0, R′′, 1) and therefore (R′′, 0) = (0, R′′). By
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Lemma 8, R′′ = (0j
′
) for some j′ and then Cmin =

(0i, 1, 0j
′+2, 1) which is a contradiction as it implies

that k = n − 2. Therefore, the axis of symmetry

of C does not pass through the middle of the ini-

tial sequence of i consecutive occupied nodes and

therefore there is another such sequence. There-

fore, C ∈ S1.

We now consider the possibility that C ∈ S3.

Since C′ is asymmetric if Cmin = (0i, 1j , 0, R′)

for any R′ and j > 1, we now show that it

is asymmetric if Cmin = (0i, 1, 0i−1, 1, 0, R, 1),

for some R = R. Let us assume that Cmin =

(0i, 1, 0i−1, 1, 0, R, 1) with R = R, then C′ =

(0i+1, 1, 0i−2, 1, 0, R, 1). Since there is only one se-

quence of i+1 consecutive occupied nodes, then C′
can only have an axis of symmetry passing through

the initial sequence of consecutive occupied nodes,

and hence C′min
= (0i+1, 1, 0i−2, 1, 0, R, 1) and the

sequence (1, 0i−2, 1, 0, R, 1) is a palindrome. By

Lemma 9, C′ is symmetric if and only if R =

((0i−2, 1, 0)`, 0i−3), with i ≥ 3, that is Cmin =

(0i, 1, 0i−1, 1, 0, (0i−2, 1, 0)`, 0i−3, 1) and then C is

asymmetric.

Let us now assume that Cmin =

(0i, 1j
′
, 0x, 1j , 0x, 1j

′
, 0i, Z) with Z = Z, j, j′ > 0,

and 1 ≤ x ≤ i. We can assume that j′ = 1 as oth-

erwise C′ is asymmetric. After applying reduce1,

we have C′min
= (0i+1, 1, 0x−1, 1j , 0x, 1, 0i, Z)

with (1, 0x−1, 1j , 0x, 1, 0i, Z) palindromic, that is

(1, 0x−1, 1j , 0x, 1, 0i, Z) = (Z, 0i, 1, 0x, 1j , 0x−1, 1).

By Lemma 9 it follows that Z =

((1, 0i, 1j , 0i+1, 1, 0i)`, 1), for some ` ≥ 0 and

x − 1 = i; or Z = ((1, 0i−1, 1, 0i, 1, 0i)`, 1, 0i−1, 1),

for some ` ≥ 0, x = i, and j = 1; or

Z = ((1j+1, 0, 1, 0i)`, 1j+1), for some ` ≥ 0,

x = 1, and i = 1. In the �rst case we ob-

tain a contradiction with the hypothesis that

x ≤ i; in the second case, we have that Cmin =

(0i, 1, 0i, 1, 0i, 1, 0i, (1, 0i−1, 1, 0i, 1, 0i)`, 1, 0i−1, 1)

= (0i, 1, 0i, 1, (0i, 1, 0i, 1, 0i−1, 1)`+1), for ` ≥ 0; in

the third case we obtain a contradiction with the

hypothesis that i > 1.

Finally, let us now assume that Cmin =

(0i, 1j
′
, 0x, 1j

′
, 0i, Z) for some Z = Z, j′ > 0

and 1 ≤ x ≤ i. Also in this case, we can as-

sume that j′ = 1 as otherwise C′ is asymmet-

ric. After applying reduce1, we have C′min
=

(0i+1, 1, 0x−1, 1, 0i, Z) with (1, 0x−1, 1, 0i, Z) palin-

dromic. By Lemma 9 it follows that Z =

((1, 0x−1, 1, 0i)`, 1), for some ` ≥ 0 and x −
1 = i; or Z = ((1, 0x−1, 1, 0i)`, 1, 0x−1, 1),

for some ` ≥ 0. In the �rst case we ob-

tain a contradiction with the hypothesis that

x ≤ i; in the second case, we have that

Cmin = (0i, 1, 0x, 1, 0i, (1, 0x−1, 1, 0i)`, 1, 0x−1, 1) =

(0i, 1, 0x, 1, (0i, 1, 0x−1, 1)`+1), for ` ≥ 0. ut

Lemma 12 (Lemma 5) Let C be a symmetric

and allowed con�guration with i > 1 consecutive

occupied nodes and let C′ be the con�guration ob-

tained by applying reduce1 on only one robot on

C. If C′ is adjacent with respect to reduce1 to a

symmetric con�guration C′′ di�erent from C, then
C ∈ S1 \ S3, or C′′ ∈ S1 \ S3 or C, C′′ ∈ S4.

Proof Let C and C′′ be two di�erent symmetric

con�gurations and let C′ and C′′′ be the con�gu-

ration obtained by applying reduce1 on only one

robot from C and C′′, respectively. We show that

if C′ = C′′′, then C ∈ S1 \ S3, or C′′ ∈ S1 \ S3 or

C′ ∈ S′4. We show the following equivalent state-

ment: if C′ = C′′′ and neither C nor C′′ belong to

S1\S3, then C′ ∈ S′4. The premise is satis�ed when

one of the following cases holds:

A. C 6∈ S1 and C′′ 6∈ S1;

B. C 6∈ S1 and C′′ ∈ S3;

C. C ∈ S3 and C′′ 6∈ S1;

D. C ∈ S3 and C′′ ∈ S3.

We observe that case B is equivalent to case C and

analyze the three cases separately.

A. If a symmetric con�guration C with i ≥ 2

consecutive occupied nodes does not belong to

S1, then Cmin = (0i, 1j , 0, R, 0, 1j) for some

j > 0 and R = R (that is the axis of symme-

try passes through the middle of the sequence

of i occupied nodes and the middle of R) or

Cmin = (0i, 1j , 0, 1j) for some j > 1.

We �rst analyze the case when both the con�g-

urations C and C′′ belong to the �rst type. In

this case Cmin = (0i, 1j , 0, R, 0, 1j) and C′′min =

(0i
′
, 1j
′
, 0, R′, 0, 1j

′
), for some j, j′ > 0, R = R,

and R′ = R′. The con�gurations obtained af-

ter applying reduce1 on only one robot from

C and C′′ are C′ = (0i, 1j−1, 0, 1, R, 0, 1j) and

C′′′ = (0i
′
, 1j
′−1, 0, 1, R′, 0, 1j

′
), respectively.

Four cases arise:

� j > 1 and j′ > 1. In this case

C′min = (0i, 1j−1, 0, 1, R, 0, 1j) and

C′′′min = (0i
′
, 1j
′−1, 0, 1, R′, 0, 1j

′
). There-

fore, if C′ = C′′′, then i = i′, j = j′, and

R = R′, which implies that C = C′′, a

contradiction.

� j = 1 and j′ > 1. In this

case C′ = (0i+1, 1, R, 0, 1) and

C′min = (0i+1, 1, 0, R, 1), while

C′′′min = (0i
′
, 1j
′−1, 0, 1, R′, 0, 1j

′
). There-

fore, if C′ = C′′′, then i′ = i+ 1, j′ − 1 = 1,
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and R = (1, R′, 0, 1). Since R = R, then

(R′, 0) = (0, R′) which, by Lemma 8, im-

plies that R′ = (0y), for some y ≥ 0. Sum-

marizing, Cmin = (0i, 1, 0, 1, 0y+1, 1, 0, 1),

C′′min = (0i+1, 1, 1, 0y+2, 1, 1), and

C′ = C′′′ = (0i+1, 1, 0, 1, 0y+1, 1, 1), for

some 0 ≤ y ≤ i − 2, that is, C ∈ S4b,

C′′ ∈ S4a, and C′ ∈ S′4.
� j > 1 and j′ = 1. This case is equivalent to

the previous one.

� j = 1 and j′ = 1. In this case

C′min = (0i+1, 1, 0, R, 1) and C′′′min =

(0i
′+1, 1, 0, R′, 1). Therefore, if C′ = C′′′,

then i = i′ and R = R′, which implies that

C = C′′, a contradiction.

If Cmin = (0i, 1j , 0, 1j) and C′′min =

(0i
′
, 1j
′
, 0, 1j

′
) for some j, j′ > 1, then

C′min = (0i, 1j−1, 0, 1j+1) and C′′′min =

(0i
′
, 1j
′−1, 0, 1j

′+1). Therefore, if C′ = C′′′, then
i = i′ and j = j′, which implies that C = C′′, a
contradiction.

If Cmin = (0i, 1j , 0, 1j) and C′′min =

(0i
′
, 1j
′
, 0, R′, 0, 1j

′
), for some j > 1, j′ > 0,

and R′ = R′, then two cases arise.

� j′ > 1. In this case, C′min =

(0i, 1j−1, 0, 1j+1) and C′′′min =

(0i
′
, 1j
′−1, 0, 1, R′, 0, 1j

′
). Therefore, if

C′ = C′′′, then i = i′, j = j′ and

(1, R′, 0, 1j) = (1j+1), a contradiction.

� j′ = 1. In this case, C′min =

(0i, 1j−1, 0, 1j+1), C′′′ = (0i
′+1, 1, R′, 0, 1),

and C′′′min = (0i
′+1, 1, 0, R′, 1). There-

fore, if C′ = C′′′, then i = i′ + 1 and

(1j−1, 0, 1j+1) = (1, 0, R′, 1). This im-

plies that j − 1 = 1 and R′ = (1j).

In conclusion, Cmin = (0i, 1, 1, 0, 1, 1),

C′′min = (0i−1, 1, 0, 1, 1, 0, 1), and

C′ = C′′′ = (0i, 1, 0, 1, 1, 1), that is,

C ∈ S4a, C′′ ∈ S4b, and C′ ∈ S′4.
B. In this case Cmin = (0i

′
, 1j
′′
, 0, R, 0, 1j

′′
), for

some j′′ > 0 and R = R (we exclude the case

Cmin = (0i, 1j , 0, 1j) since it always generates a

contradiction). For C′′ we have four cases
(a) C′′min = (0i, 1j

′
, 0x, 1j , 0x, 1j

′
, 0i, Z) for

some Z = Z, j, j′ > 0 and 1 ≤ x ≤ i;
(b) C′′min = (0i, 1j

′
, 0x, 1j

′
, 0i, Z) for some Z =

Z, j′ > 0 and 1 ≤ x ≤ i;
(c) C′′min

= (0i, 1j , 0i−1, 1, 0, R, 1), R = R, j >

0.

We give full details on the �rst case, the other

cases can be shown by similar arguments and

therefore, we only state the conditions that do

not lead to a contradiction.

(a) In this case C′ =

(0i
′
, 1j
′′−1, 0, 1, R, 0, 1j

′′
) and C′′′ =

(0i, 1j
′−1, 0, 1, 0x−1, 1j , 0x, 1j

′
, 0i, Z) and

four cases may arise:

� j′′ = 1 and j′ > 1. In this case,

C′min = (0i
′+1, 1, 0, R, 1) and C′′′min =

(0i, 1j
′−1, 0, 1, 0x−1, 1j , 0x, 1j

′
, 0i, Z). If

C′ = C′′′, then i = i′ + 1, j′ = 2,

and R = (1, 0x−1, 1j , 0x, 1, 1, 0i, 1, Z ′),

where Z ′ is such that Z = (1, Z ′, 1) and

Z ′ = Z ′. By plugging R into C we ob-

tain a contradiction because C cannot

contain a sequence of i = i′+1 consec-

utive occupied nodes.

� j′′ = 1 and j′ = 1. In this case,

C′min = (0i
′+1, 1, 0, R, 1) and

C′′′ = (0i+1, 1, 0x−1, 1j , 0x, 1, 0i, Z).

The supermin of C′′′ is C′′′min =

(0i+1, 1, 0x−1, 1j , 0x, 1, 0i, Z) or

C′′′min = (0i+1, Z, 0i, 1, 0x, 1j , 0x−1, 1).

In both cases , if C′ = C′′′, then

i = i′. In the former case, we have

that (R, 1) = (0x−2, 1j , 0x, 1, 0i, Z)

which is a contradiction since C 6∈ S1

and therefore it cannot contain a

sequence of i = i′ consecutive occupied

nodes. In the latter case, we have that

(1, 0, R) = (Z, 0i, 1, 0x, 1j , 0x−1) and

either R contains a sequence of i = i′

consecutive occupied nodes or Z = (1)

and R = (0i−1, 1, 0x, 1j , 0x−1). How-

ever, R is a palindrome only if x = i,

and again it contains a a sequence of

i = i′ consecutive occupied nodes.

� j′′ > 1 and j′ > 1. In this case, C′ =
(0i
′
, 1j
′′−1, 0, 1, R, 0, 1j

′′
) and C′′′ =

(0i, 1j
′−1, 0, 1, 0x−1, 1j , 0x, 1j

′
, 0i, Z). If

C′ = C′′′, then i = i′, j′′ = j′, and

(R, 0, 1j
′′
) = (0x−1, 1j , 0x, 1j

′
, 0i, Z). In

any case we obtain that R contains a

sequence of i = i′ consecutive occupied

nodes, a contradiction.

� j′′ > 1 and j′ = 1. In this case,

C′min = (0i
′
, 1j
′′−1, 0, 1, R, 0, 1j

′′
) and

C′′′ = (0i+1, 1, 0x−1, 1j , 0x, 1, 0i, Z).

The supermin of C′′′ is C′′′min =

(0i+1, 1, 0x−1, 1j , 0x, 1, 0i, Z) or

C′′′min = (0i+1, Z, 0i, 1, 0x, 1j , 0x−1, 1),

in both cases, i′ = i+ 1.

� If C′′′min =

(0i+1, 1, 0x−1, 1j , 0x, 1, 0i, Z),

then we must have

(1j
′′−1, 0, 1, R, 0, 1j

′′
) =
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(1, 0x−1, 1j , 0x, 1, 0i, Z). The

following cases arise. (1)

x − 1 = 0, j′′ − 1 = j + 1 and

(R, 0, 1j
′′
) = (0i, Z), which implies

that Cmin = (0i+1, 1j
′′
, 0i+1, Z)

which is a contradiction as it con-

tains a sequence of i+1 = i′ consec-

utive occupied nodes and therefore

it belongs to S1. (2) j
′′ − 1 = 1,

x − 1 = 1, which implies that

(R, 0, 1, 1) = (1j−1, 0, 0, 1, 0i, Z).

We obtain the following sub-cases.

(2a) Z = (1, 1), which implies

that R = (1j−1, 0, 0, 1, 0i−1)

and, since R = R, that j = 1

and i = 3. Therefore, Cmin =

(0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1),

C′′min =

(0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1),

and C′ = C′′′ =

(0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1),

that is, C ∈ S4a, C′′ ∈ S4b,

and C′ ∈ S′4. (2b) Z =

(1, 1, 0, 1, 1), which implies

that R = (1j−1, 0, 0, 1, 0i, 1, 1)

and, since R = R, that j = 3

and i = 2. Therefore, C′′min =

(0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1,

0, 1, 1) which is a contradic-

tion as C′′min
8 < C′′min. (2c)

Z = (1, 1, 0, Z ′, 0, 1, 1) with

Z ′ = Z ′, which implies that

R = (1j−1, 0, 0, 1, 0i, 1, 1, 0, Z ′).

We exploit Lemma 9 to compute

a closed sequence for R and Z ′.
The only way to divide the se-

quence (1j−1, 0, 0, 1, 0i, 1, 1, 0) into

two palindromic subsequences U

and V is U = (0, 0, 1, 0, 0) and

V = (0, 1, 1, 0), where i = 3 and

j = 1. We obtain that Z ′ =

((0, 0, 1, 0, 0, 0, 1, 1, 0)`, 0, 0, 1, 0, 0)

for some ` ≥ 0 and C′′min =

(0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1,

0, (0, 0, 1, 0, 0, 0, 1, 1, 0)`, 0, 0, 1, 0, 0,

0, 1, 1) which is a contradiction as

C′′min
15 < C′′min.

� If C′′′min =

(0i+1, Z, 0i, 1, 0x, 1j , 0x−1, 1),

then we must have that

(1j
′′−1, 0, 1, R, 0, 1j

′′
) =

(Z, 0i, 1, 0x, 1j , 0x−1, 1). Since

j′′ > 1, then x − 1 = 0

and j + 1 = j′′. Hence,

(1j , 0, 1, R) = (Z, 0i, 1), two

cases may arise. (1) R = (1, 0i, 1)

and Z = (1j , 0, 1, 1). Since Z = Z,

then j = 2. Therefore, Cmin =

(0i+1, 1, 1, 1, 0, 1, 0i, 1, 0, 1, 1, 1),

C′′min =

(0i, 1, 0, 1, 1, 0, 1, 0i, 1, 1, 0, 1, 1),

and C′ = C′′′ =

(0i+1, 1, 1, 0, 1, 1, 0i, 1, 0, 1, 1, 1),

that is, C ∈ S4a, C′′ ∈ S4b, and

C′ ∈ S′4. (2) R = (1, 0i, R′, 0i, 1)

for some R′ = R′ and

Z = (1j , 0, 1, 1, 0i, R′). Again

we exploit Lemma 9 to compute

a closed sequence for R and

Z. The only way to divide the

sequence (1j , 0, 1, 1, 0i) into two

palindromic subsequences U and V

is U = (1, 1, 0, 1, 1) and V = (0i),

where j = 2. We obtain that R′ =

((1, 1, 0, 1, 1, 0i)`, 1, 1, 0, 1, 1), R =

(1, 0i, (1, 1, 0, 1, 1, 0i)`, 1, 1, 0, 1, 1, 0i,

1) = (1, 0i, (1, 1, 0, 1, 1, 0i)`+1, 1),

and Z = ((1, 1, 0, 1, 1, 0i)`+1, 1, 1,

0, 1, 1), for some ` ≥ 0.

Therefore, Cmin = (0i+1, 1, 1,

1, 0, 1, 0i, (1, 1, 0, 1, 1, 0i)`+1, 1, 0, 1,

1, 1), C′′min = (0i, 1, 0, 1, 1, 0, 1, 0i,

(1, 1, 0, 1, 1, 0i)`+1, 1, 1, 0, 1, 1),

and C′ = C′′′ = (0i+1, 1, 1, 0, 1, 1,

0i, (1, 1, 0, 1, 1, 0i)`+1, 1, 0, 1, 1, 1),

that is, C ∈ S4a, C′′ ∈ S4b, and

C′ ∈ S′4.
(b) In this case C′ = (0i

′
, 1j
′′−1, 0, 1, R, 0, 1j

′′
)

and C′′′ = (0i, 1j
′−1, 0, 1, 0x−1, 1j

′
, 0i, Z).

By using arguments similar to those used in

the previous case, we obtain that if C′ = C′′′,
then one of the following cases is possible.

� i′ = 3, j′′ = 2, R = (0, (1, 0, 1, 0)`, 1, 0),

i = 2, j′ = 1, x = 1, and

Z = ((1, 0, 1, 0)`+1, 1), for some

` ≥ 0. Therefore, Cmin =

(0, 0, 0, 1, 1, 0, 0, (1, 0, 1, 0)`, 1, 0, 0, 1, 1)

= (0, 0, 0, 1, 1, 0, (0, 1)2`+1, 0, 0, 1, 1),

C′′min = (0, 0, 1, 0, 1, 0, 0, (1, 0, 1, 0)`+1,

1) = (0, 0, 1, 0, 1, 0, (0, 1)2`+2, 0, 1),

and C′ = C′′′ = (0, 0, 0, 1, 0, 1, 0,

(1, 0, 1, 0)`, 1, 0, 0, 1, 1) =

(0, 0, 0, 1, 0, 1, (0, 1)2`+1, 0, 0, 1, 1),

that is, C ∈ S4a, C′′ ∈ S4b, and C′ ∈ S′4.
� i′ = i + 1, j′′ = 2, R =

(0i−1, (1, 0, 1, 0i−1)`, 1, 0, 1, 0i−1),
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j′ = 1, x = 1, and Z =

((1, 0, 1, 0i−1)`+1, 1, 0, 1), for

some ` ≥ 0. Therefore, Cmin =

(0i+1, 1, 1, 0i, (1, 0, 1, 0i−1)`, 1, 0, 1, 0i, 1,

1), C′′min =

(0i, 1, 0, 1, 0i, (1, 0, 1, 0i−1)`+1, 1, 0, 1),

and C′ = C′′′ =

(0i+1, 1, 0, 1, 0i−1, (1, 0, 1, 0i−1)`,

1, 0, 1, 0i, 1, 1), that is, C ∈ S4a,

C′′ ∈ S4b, and C′ ∈ S′4.
(c) In this case C′ = (0i

′
, 1j
′′−1, 0, 1, R, 0, 1j

′′
)

and C′′′ = (0i, 1j−1, 0, 1, 0i−2, 1, 0, R′, 1).

By using arguments similar to those used

in the previous case, we obtain that if

C′ = C′′′, then i = 2, i′ = 3, j =

1, j′′ = 2, R = ((0, 1)`, 0), R′ =

((0, 1)`+1, 0), for some ` ≥ 0. There-

fore, Cmin = (0, 0, 0, 1, 1, 0, (0, 1)`, 0, 0, 1, 1),

C′′min = (0, 0, 1, 0, 1, 0, (0, 1)`+1, 0, 1), and

C′ = C′′′ = (0, 0, 0, 1, 0, 1, (0, 1)`, 0, 0, 1, 1),

that is, C ∈ S4a, C′′ ∈ S4b, and C′ ∈ S′4.
C. This case is symmetrical to the previous one.

D. Let us de�ne the following three con�gura-

tions Cr = (0i, 1j
′
, 0x, 1j , 0x, 1j

′
, 0i, Z) for some

Z = Z, j, j′ > 0 and 1 ≤ x ≤ i; Cs =

(0i, 1j
′
, 0x, 1j

′
, 0i, Z) for some Z = Z, j′ > 0

and 1 ≤ x ≤ i; and Ct = (0i, 1j , 0i−1, 1, 0, R, 1),

R = R, j > 0. The following cases arise:

(a) C = Cr and C′′ = Cr;
(b) C = Cr and C′′ = Cs;
(c) C = Cr and C′′ = Ct;
(d) C = Cs and C′′ = Cs;
(e) C = Cs and C′′ = Ct;
(f) C = Ct and C′′ = Ct.
Since the arguments used to analyze these

cases are similar to those already used, we

only give the conditions that do not lead to

a contradiction. In particular, the only case

that do not lead to a contradiction is case

(b) when C = (0i, 1, 0i, 1, 0i, 1, 0i, 1, 0i−1, 1, 0i,

(1, 0i−1, 1, 0i, 1, 0i, 1, 0i−1, 1, 0i)`, 1, 0i−1, 1),

C′′ = (0i, 1, 0i, 1, 0i, (1, 0i−1, 1, 0i, 1, 0i, 1, 0i−1,

1, 0i)`, 1, 0i−1, 1, 0i, 1, 0i, 1, 0i−1, 1), for some

` > 0, that is, C ∈ S4a, C′′ ∈ S4b, and C′ ∈ S′4.
ut

Lemma 13 (Lemma 6) Let C be a con�guration

in S1 \ S3 with supermin Cmin = (0i, 1, R), i > 1,

and let C′ be the con�guration obtained by apply-

ing reduce2 on only one robot on C. Then C′ is
asymmetric and it is not adjacent with respect to

reduce1 or reduce2 to any symmetric con�gu-

ration di�erent from C.

Proof We �rst show that C′ is asymmetric and that

cannot it be obtained by applying reduce1 on a

con�guration di�erent from C
Note that if C′min

= (0i, 1j , 0, X, 1), for some

j ≥ 1, then it can be obtained by perform-

ing reduce1 on a con�guration C′′ such that

(i) C′′ = (0i−1, 1, 0, 1j−1, 0, X, 1), or (ii) C′′ =

(0i−1, 1j , 0, X, 0, 1), or (iii) C′′ = (0i, 1j+1, 0, X ′, 1),

where this last case can occur only if X = (1, X ′)

for some X ′.

We obtain the following cases.

� Cmin = (0i, 1, 0i, 1, 0, R′). In this case, C′ has
a representation C′ = (0i, 1, 0i+1, 1, R′) and,

since there is only one sequence of i + 1 con-

secutive occupied nodes, the axis of symme-

try of C′ passes through such a sequence and

C′min
= (0i+1, 1, R′, 0i, 1) = (0i+1, 1, 0i, R′, 1).

However, this implies that R′ starts with 0i

which is a contradiction to the superminimality

of Cmin as in this case Cmin contains a sequence

of i + 1 consecutive occupied nodes. This also

implies that C′min
= (0i+1, 1, 0i, R′, 1).

If C ′ can been obtained by applying reduce1
on a con�guration C′′ di�erent from C, then
(i) C′′ = (0i, 1, 0i+1, R′, 1), or (ii) C′′ =

(0i, 1, 0i, R′, 0, 1). The case (iii) cannot occur

as in this case X starts with 0. In both cases

the step from C′′ to C′ does not correspond to

reduce1, a contradiction.

� Cmin = (0i, 1, 0i, 1j , 0, R′), j > 1. In this case,

C′min
= (0i, 1, 0i, 1j−1, 0, 1, R′). Moreover, such

sequence is the only supermin sequence as oth-

erwise we obtain a contradiction to the su-

perminimality of Cmin. Therefore, C′ is asym-

metric. If C′ has been obtained by applying

reduce1 on a con�guration C′′ di�erent from
C, then (i) C′′ = (0i−1, 1, 0i+1, 1j−1, 0, 1, R′),

or (ii) C′′ = (0i−1, 1, 0i, 1j−1, 0, 1, R′′, 0, 1) with

R′′ = (R′, 1). The case (iii) cannot occur as in

this case X starts with 0. In both cases (i) and

(ii) the step from C′′ to C′ does not correspond
to reduce1, a contradiction.

� Cmin = (0i, 1j , 0x, 1j
′
, 0, R′), x ≤ i, j > 0, and

j′ > 0. We exclude the case x = i and j = 1

because it has been already analyzed. In this

case, C′ = (0i, 1j , 0x, 1j
′−1, 0, 1, R′).

If x < i − 1 or j′ > 1, then C′min
=

(0i, 1j , 0x, 1j
′−1, 0, 1, R′). Moreover, such se-

quence is the only supermin sequence as other-

wise we obtain a contradiction to the supermin-

imality of Cmin. Therefore, C′ is asymmetric. If

C′ has been obtained by applying reduce1 on a
con�guration C′′ di�erent from C, then (i) C′′ =
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(0i−1, 1, 0, 1j−1, 0x, 1j
′−1, 0, 1, R′), (ii) C′′ =

(0i−1, 1j , 0x, 1j
′−1, 0, 1, R′′, 0, 1) with R′ =

(R′′, 1), or (iii) C′′ = (0i, 1j+1, 0, 1j
′−2, 0, 1, R′)

where x = 1 and j′ > 1 as otherwise

such case cannot occur. Since C ∈ S1, in

cases (i) and (ii) R′ contains a sequence of

i consecutive occupied nodes and hence the

step from C′′ to C′ does not correspond to

reduce1, a contradiction. In case (iii) C′′min 6=
(0i, 1j+1, 0, 1j

′−2, 0, 1, R′) as the superminimal-

ity of C implies that either R′ contains a se-

quence (0, 1j , 0i) or it �nishes by (0, 1j). There-

fore also in this case, the step from C′′ to C′ does
not correspond to reduce1.

If x = i − 1 and j′ = 1, then Cmin =

(0i, 1j , 0i−1, 1, 0, R′) then C ∈ S3 since R
′ must

�nish by 1.

If x = i, j′ = 1, and j > 1, then

Cmin = (0i, 1j , 0i, 1, 0, R′) is a contradiction as

(Cmin)i+j < Cmin.

We conclude the proof by showing that C′ can-
not be obtained by applying reduce2 on a con�g-

uration di�erent from C.
Let us assume that Cmin =

(0i, 1j , 0x, 1j
′
, 0y, 1, X). After perform-

ing reduce2 on C we have C′ =

(0i, 1j , 0x, 1j
′−1, 0, 1, 0y−1, 1, X). Let us as-

sume that C′ can be obtained by performing

reduce2 on symmetric con�guration C′′ di�erent
from C. The following cases may arise.

� X = (X ′, 0i, 1j
′′
) and the supermin of C′′ starts

from the sequence of i consecutive occupied

nodes in X. In this case we have that either

C′′ = (0i−1, 1, 0, 1j−1, 0x, 1j
′−1, 0, 1, 0y−1, 1, X ′,

0i, 1j
′′
) or x = 1 and C′′ =

(0i, 1j+1, 0, 1j
′−2, 0, 1, 0y−1, 1, X ′, 0i, 1j

′′
).

The supermin of C′′ is either C′′min
= (0i,

1j
′′
, 0i−1, 1, 0, 1j−1, 0x, 1j

′−1, 0, 1, 0y−1, 1, X ′)

or C′′min
= (0i, 1j

′′
, 0i, 1j+1, 0, 1j

′−2, 0, 1, 0y−1,

1, X ′), respectively. In any case, we must

have that j′′ > j otherwise we obtain a

contradiction to the superminimality of Cmin.

It follows that the axis of symmetry of C
does not pass through the middle of the

initial sequence of i consecutive occupied

nodes. Therefore, by symmetry X ′ contains a

sequence (0i, 1j , 0) which is a contradiction to

the superminimality of C′′min
.

� The supermin of C′′ starts from the

same node as C′. In this case C′′min
=

(0i, 1j , 0x−1, 1, 0, 1j
′−2, 0, 1, 0y−1, 1, X) but,

since C is symmetric, there must exist in C a

sequence which starts by (0i, 1j , 0x) di�erent

from that at nodes v0�vi+j+x−1. As C 6∈ S3,

such a sequence must belong to X (or X) and

therefore it is still in C′′ and induces a view

which is smaller than C′′min
, a contradiction.

� The supermin of C′′ starts from the sequence

of consecutive occupied nodes corresponding to

position i+ j of C. Three cases may arise.

� x = i, y = 2 and j′ − 1 < j. In

this case C′′ = (0i, 1j , 0i, 1j
′−1, 0, 1, 1, 0, X)

and C′′min
= (0i, 1j

′−1, 0, 1, 1, 0, X, 0i, 1j).

As j′ ≥ j by the superminimality of

Cmin, then j′ = j and hence C′′min
=

(0i, 1j−1, 0, 1, 1, 0, X, 0i, 1j). It follows that

either X contains a sequence (0i, 1j−1, 0) or

that X starts by 0i−1 and j = 3. In the �rst

case we obtain a contradiction with the su-

perminimality of Cmin, in the second case

the step from C′′ to C′ does not correspond
to reduce2, a contradiction.

� x = i − 1, j′ = 1, and j > 1. In

this case, C′ = (0i, 1j , 0i, 1, 0y−1, 1, X) with

C′min
= (0i, 1, 0y−1, 1, X, 0i, 1j). We as-

sume that X = (1j
′′−1, 0, X ′), for some

j′′ ≥ 1, which implies that C′′min
=

(0i, 1, 0y−1, 1j
′′−1, 0, 1, X ′, 0i, 1j). If j′′ > 1,

in order to be symmetric, C′′min
must con-

tain another sequence starting by (0i, 1, 0)

but this implies a contradiction to the su-

perminimality of Cmin. If j′′ = 1, then

C′′min
= (0i, 1, 0y, 1, X ′, 0i, 1j). Note that in

this case y < i as otherwise the supermin-

imality of Cmin is contradicted. Therefore

also in this case, C′′min
must contain an-

other sequence starting by (0i, 1, 0) and the

same arguments as for j′′ > 0 hold.

� x = i, j′ = 1, and j > 1. In this

case, C′ = (0i, 1j , 0i+1, 1, 0y−1, 1, X) and

C′min
= (0i+1, 1, 0y−1, 1, X, 0i, 1j). Again,

we assume that X = (1j
′′−1, 0, X ′)

and this implies that C′′min
=

(0i+1, 1, 0y−1, 1j
′′−1, 0, 1, X ′, 0i, 1j) which

cannot be symmetric as there is only one

sequence of i + 1 consecutive occupied

nodes and j > 1. ut

Lemma 14 (Lemma 7) Let C be a con-

�guration in S2, or such that Cmin =

(0i, 1, 0i, 1, (0i, 1, 0i, 1, 0i−1, 1)`), for some ` ≥ 1,

or such that Cmin = (0i, 1, 0x, 1, (0i, 1, 0x−1, 1)`),

for some ` ≥ 2 and 1 ≤ x ≤ i, or such

that Cmin = (0i, 1, 0x, 1, 0i, 1, 0y, 1), for some

1 < y < x ≤ i, and let C′ be the con�guration

obtained by applying reduce−1 on only one robot

on C. Then C′ is asymmetric and it is not adjacent
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with respect to reduce1, reduce2, or reduce−1
to any symmetric con�guration di�erent from C.

Proof If Cmin = (0i, 1, 0i, 1, (0i, 1, 0i, 1, 0i−1, 1)`)

for some ` ≥ 1, then C′min
=

(0i+1, 1, 0i, 1, (0i, 1, 0i, 1, 0i−1, 1)`−1, 0i, 1, 0i, 1,

0i−2, 1). Therefore, C′min
is asymmetric and

can be obtained by applying reduce1,

or reduce2, or reduce−1 on a con�gu-

ration C′′ di�erent from C only if C′′ =

(0i, 1, 0i+1, 1, (0i, 1, 0i, 1, 0i−1, 1)`−1, 0i, 1, 0i, 1,

0i−2, 1), or C′′ = (0i+1, 1, 0i−1, 1, 0i+1, 1, 0i,

1, 0i−1, 1, (0i, 1, 0i, 1, 0i−1, 1)`−2, 0i, 1, 0i, 1, 0i−2, 1)

(if ` ≥ 2), or C′′ =

(0i+1, 1, 0i−1, 1, 0i+1, 1, 0i, 1, 0i−2, 1) (if ` = 1). In

any case C′′ is asymmetric.

If Cmin = (0i, 1, 0x, 1, (0i, 1, 0x−1, 1)`) for some

` ≥ 2 and 1 ≤ x ≤ i, then we distinguish the

following cases:

� x = 1. In this case Cmin =

(0i, 1, 0, 1, (0i, 1, 1)`) and C′min
=

(0i, 1, 0, 1, (0i, 1, 1)`−1, 0i−1, 1, 0, 1) which

is always asymmetric for ` ≥ 2, and

can be obtained by applying reduce1,

or reduce2, or reduce−1 on a con-

�guration C′′ di�erent from C only if

C′′ = (0i−1, 1, 0, 0, 1, (0i, 1, 1)`−1, 0i−1, 1, 0, 1),

or C′′ = (0i, 1, 1, 0, (0i, 1, 1)`−1, 0i−1, 1, 0, 1), or

C′′ = (0i, 1, 0, 1, 0i−1, 1, 0, 1, (0i, 1, 1)`−2, 0i−1,

1, 0, 1). In the �rst two cases C′′ is asymmetric.

In the third case, if ` > 2, then C′′ is asymmet-

ric, otherwise the step from C′′ to C′ does not
correspond to the any of reduce1, reduce2,

and reduce−1.

� x ≥ 2. In this case C′min =

(0i+1, 1, 0x, 1, (0i, 1, 0x−1, 1)`−1, 0i, 1, 0x−2, 1)

which is asymmetric and can be obtained

by applying reduce1, or reduce2,

or reduce−1 on a con�guration C′′
di�erent from C only if C′′min =

(0i, 1, 0x+1, 1, (0i, 1, 0x−1, 1)`−1, 0i, 1, 0x−2, 1)

or C′′min = (0i+1, 1, 0x−1, 1, 0i+1, 1, 0x−1, 1,

(0i, 1, 0x−1, 1)`−2, 0i, 1, 0x−2, 1). In any case C′′
is asymmetric.

If Cmin = (0i, 1, 0x, 1, 0i, 1, 0y, 1), for

some 1 < y < x ≤ i, then C′min
=

(0i+1, 1, 0x, 1, 0i, 1, 0y−1, 1) which is asym-

metric and can be obtained by applying

reduce1, or reduce2, or reduce−1 on

a con�guration C′′ di�erent from C only

if C′′min
= (0i, 1, 0x+1, 1, 0i, 1, 0y−1, 1) or

C′′min
= (0i+1, 1, 0x−1, 1, 0i+1, 1, 0y−1, 1). In

any case the move performed by Align-Two-

Sym from C′′ is reduce−1 while the step from C′′
to C′ does not correspond to reduce−1.

If Cmin ∈ S2, then Cmin = (0i, 1j , 0i, Z) with

i > 1, Z = Z and j ≥ 1. Let us assume with-

out loss of generality that Z = (1j
′
, 0, Z ′, 0, 1j

′
)

with Z ′ = Z ′ and j′ ≥ j. Then, Cmin =

(0i, 1j , 0i, 1j
′
, 0, Z ′, 0, 1j

′
). We distinguish the fol-

lowing cases

� j′ = 1. In this case j = 1 and hence

Cmin = (0i, 1, 0i, 1, 0, Z ′, 0, 1) and C′min
=

(0i+1, 1, 0i, 1, 0, Z ′, 1). Since in such con�gura-

tion there is only one sequence of i+1 consecu-

tive occupied nodes, then C′ can be symmetric

only if (0i, 1, 0, Z ′) = (Z ′, 0, 1, 0i). As Z ′ = Z ′

we can apply Lemma 9 (with Y = (0i, 1, 0)

and X = Z ′) and the only possibility is that

Z ′ = (0, 1, 0)` and i = 1, a contradiction as

i > 1.

If C′ can be obtained by applying

reduce1, or reduce2, or reduce−1
on a con�guration C′′ di�erent from

C, then C′′ = (0i, 1, 0i+1, 1, 0, Z ′, 1),

or C′′ = (0i+1, 1, 0i−1, 1, 0, 0, Z ′, 1), or

C′′ = (0i+1, 1, 0i, 1, 1, Z ′′, 1, 1) where

Z ′ = (1, Z ′′, 1). In the �rst case, the step

from C′′ to C′ does not correspond to any

of reduce1, or reduce2, or reduce−1.

In the second case C′′ is symmetric only if

Z ′ = ((0, 0, 1, 0, 0)`) and i = 3, in which case

Cmin = (0, 0, 0, 1, 0, 0, 0, 1, 0, (0, 0, 1, 0, 0)`, 0, 1)

which is periodic. In the third case C′′ is

asymmetric.

� j′ > 1. In this case C′ =

(0i, 1j , 0i, 1j
′
, 0, Z ′, 1, 0, 1j

′−1).

If j′ = j, then C′min
=

(0i, 1j−1, 0, 1, Z ′, 0, 1j , 0i, 1j). It follows that C′
is asymmetric and that it can be obtained by

applying reduce1, or reduce2, or reduce−1
on a con�guration C′′ di�erent from C only if:

C′′ = (0i−1, 1, 0, 1j−2, 0, 1, Z ′, 0, 1j , 0i, 1j) or

C′′ = (0i−1, 1j−1, 0, 1, Z ′, 0, 1j , 0i, 1j−1, 0, 1).

In the �rst case C′′ is asymmetric, in the

second case the step from C′′ to C′ does not

correspond to any of reduce1, or reduce2,

or reduce−1.

If j′ > j, then C′min
=

(0i, 1j , 0i, 1j
′−1, 0, 1, Z ′, 0, 1j

′
) and C′ is

asymmetric as another supermin would imply

a contradiction to the superminimality of C.
C′ can be obtained by applying reduce1,

or reduce2, or reduce−1 on a con�gu-

ration C′′ di�erent from C only if: C′′ =

(0i−1, 1, 0, 1j−1, 0i, 1j
′−1, 0, 1, Z ′, 0, 1j

′
), or
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C′′ = (0i−1, 1j , 0i, 1j
′−1, 0, 1, Z ′, 0, 1j

′−1, 0, 1),

or C′′min
= (0i, 1j , 0i−1, 1, 0, 1j

′−2, 0, 1, Z ′, 0,

1j
′
). In any case the step from C′′ to C′

does not correspond to any of reduce1, or

reduce2, or reduce−1.

Here we show that the move from C′′ to C′ does
not correspond to reduce2 in the case when

C′′ = (0i−1, 1j , 0i, 1j
′−1, 0, 1, Z ′, 0, 1j

′−1, 0, 1)

and C′′min
=

(0i, 1j , 0i−1, 1, 0, 1j
′−1, 0, Z ′, 1, 0, 1j

′−1). Ac-

cording to the algorithm, in order to apply

reduce2 to C′′ it must hold that C′′ is

symmetric and one of the following hold:

� Applying reduce1 to C′′ we obtain a sym-

metric con�guration. The con�guration ob-

tained by applying reduce1 to C′′ is C′′′ =
(0i, 1j−1, 0, 1, 0i−2, 1, 0, 1j

′−1, 0, Z ′, 1, 0,

1j
′−1) and it is asymmetric since

(0i, 1j−1) < (0i, 1j) and such sequence

must be contained in Z ′, a contradiction to

the superminimality of Cmin.

� At least two among Cα, Cβ , and Cγ of

lines 13�15 of Procedure Align-Two-Sym

are symmetric, the procedure from both

of them to the con�guration C′′′ =

(0i, 1j−1, 0, 1, 0i−2, 1, 0, 1j
′−1, 0, Z ′, 1, 0,

1j
′−1) obtained by applying reduce1

to C′′ corresponds to reduce1, and

C′′ ∈ S1 \ S3 (see line 16 of Procedure

Align-Two-Sym). In this case Cα =

(0i−1, 1, 0, 1j−2, 0, 1, 0i−2, 1, 0, 1j
′−1, 0, Z ′,

1, 0, 1j
′−1) and Cβ = (0i−1, 1j−1, 0, 1, 0i−2,

1, 0, 1j
′−1, 0, Z ′, 1, 0, 1j

′−2, 0, 1). If

C′′ ∈ S1 \ S3, then both Cα and Cβ
contain a sequence of i consecutive occu-

pied nodes and therefore the supermin of

such con�gurations does not start with

(0i−1, 1). It follows that the move from

Cα or Cβ to C′′′ does not correspond to

reduce1. ut

Lemma 15 Let C be a con�guration with super-

min Cmin = (0i, 1, 0, 1, 0x, 1, 0, 1), i > 1 and 0 <

x < i, and let C′ be the con�guration obtained by

applying reduce2 on only one robot on C. Then
C′ is asymmetric and it is not adjacent with re-

spect to reduce1 and reduce2 to any symmetric

con�guration di�erent from C.

Proof The con�guration obtained by applying

reduce2 on only one robot on C is C′min
=

(0i, 1, 0, 0, 1, 0x−1, 1, 0, 1) which is asymmetric as

there exists only one sequence of i consecutive oc-

cupied nodes and the axis of symmetry cannot pass

in the middle of it. Let us assume that C′ can be

obtained by applying reduce1 or reduce2 on a

con�guration di�erent from C. Then, three cases

may arise.

� C′′ = (0i−1, 1, 0, 0, 0, 1, 0x−1, 1, 0, 1).

In this case either C′′min
=

(0i−1, 1, 0, 0, 0, 1, 0x−1, 1, 0, 1) or C′′min
=

(0, 0, 0, 1, 0i−1, 1, 0, 1, 0x−1, 1). In the former

case C′′ is asymmetric if i− 1 ≥ 4, or i− 1 = 3

and x−1 > 1, or i−1 = 3 and x−1 = 0, while

the step from C ′′ to C ′ does not correspond

to reduce1 or to reduce2 if i − 1 = 3 and

x − 1 = 1. The latter case can occur only if

i − 1 < 3, or i − 1 = 3 and x − 1 ∈ {0, 1}. If
i− 1 < 3, then we can have that i− 1 = 1 and

x = 1, or i − 1 = 2 and x = 2, or i − 1 = 2

and x = 1. In any of this cases either C′′ is
asymmetric or the step from C ′′ to C ′ does

not correspond to reduce1 or to reduce2.

� C′′ = (0i−1, 1, 0, 0, 1, 0x−1, 1, 0, 0, 1). In this

case, if i − 1 > 2, then C′′min
=

(0i−1, 1, 0, 0, 1, 0x−1, 1, 0, 0, 1) but the step from

C ′′ to C ′ does not correspond to reduce1

or to reduce2. If i − 1 = 2 then C′′min
=

(0, 0, 1, 0, 0, 1, 0, 0, 1, 0x−1, 1) and step from C ′′

to C ′ does not correspond to reduce1, more-

over reduce2 cannot be performed on C′′
as it is in S3. If i − 1 = 1, then x =

1, C′′ = (0, 1, 0, 0, 1, 1, 0, 0, 1) and C′′min
=

(0, 0, 1, 0, 1, 0, 0, 1, 1) and hence the step from

C ′′ to C ′ does not correspond to reduce1 or

to reduce2.

� C′′ = (0i, 1, 0, 0, 1, 1, 0, 0, 1) with x = 2. In this

case the step from C ′′ to C ′ corresponds to

reduce2 but it is not performed by Align as

from C′′ only reduce1 can be performed. ut

Lemma 16 Let C be a con�guration with su-

permin Cmin = (0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1).

Then C is asymmetric and the only symmetric

con�guration that is adjacent to C with respect

to any procedure permitted by Align is C′ =

(0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1).

Proof It is easy to see that C is asymmet-

ric. Let us assume that C can be obtained

by applying reduce1, reduce2, or reduce−1
on a symmetric con�guration C′′ di�erent from

C′. By analyzing all the possible moves of the

robots in the direction opposite to the reduc-

tion of the supermin, four cases may arise:

(i) C′′ = (0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1), (ii)

C′′ = (0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1), (iii)

C′′ = (0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1), and (iv)
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C′′ = (0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1). In case

(i), C′′ = C′, in cases (ii) and (iii) C′′ is asymmetric,

in case (iv) the move from C′′ to C corresponds to
the move performed by algorithm Align. ut

Lemma 17 Let C be a con�guration in S4b \
{(0i, 1, 0, 1, 0x, 1, 0, 1), (0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
0, 1, 1)} and let C′ be the con�guration obtained

by applying reduce−1 on only one robot on C.
Then C′ is asymmetric and it is not adjacent

with respect to reduce1 and reduce2 to any

procedure permitted by Align to any symmetric

con�guration di�erent from C.

Proof We only show the case when Cmin =

(0i−1, 1, 0, 1, 1, 0, 1, 0i−1, (1, 1, 0, 1, 1, 0i−1)`, 1, 1, 0,

1, 1), for some i ≥ 3 and ` ≥ 0, the other

cases can be proven by using similar argu-

ments. The con�guration obtained by applying

reduce−1 on only one robot on C is C′min
=

(0i−1, 1, 0, 1, 1, 0, 1, 0i−1, (1, 1, 0, 1, 1, 0i−1)`, 1, 1, 1,

0, 1) which is asymmetric as there exists only

one sequence of 3 consecutive empty nodes

and the axis of symmetry cannot pass in the

middle of it. Let us assume that C′ can be

obtained by applying reduce1, reduce2,

or reduce−1 on a con�guration di�erent

from C. Then, four cases may arise: C′′ =

(0i−2, 1, 0, 0, 1, 1, 0, 1, 0i−1, (1, 1, 0, 1, 1, 0i−1)`, 1, 1,

1, 0, 1), C′′ = (0i−2, 1, 0, 1, 1, 0, 1, 0i−1, (1, 1, 0, 1, 1,

0i−1)`, 1, 1, 1, 0, 0, 1), C′′ = (0i−1, 1, 1, 0, 1, 0,

1, 0i−1, (1, 1, 0, 1, 1, 0i−1)`, 1, 1, 1, 0, 1), C′′ =

(0i−1, 1, 0, 1, 1, 1, 0i, (1, 1, 0, 1, 1, 0i−1)`, 1, 1, 1, 0, 1).

In any case the obtained con�guration is asymmet-

ric, except for the last case when ` = 0. However,

in such a case C′′ = (0i−1, 1, 0, 1, 1, 1, 0i, 1, 1, 1, 0, 1)
the move from C′′ to C′ does not correspond to

any procedure permitted by Align. ut

Lemma 18 Let C be a symmetric and allowed

con�guration and let C′ be the con�guration

obtained after applying Algorithm Align, then

C′min
< Cmin.

Let C and C′ be two con�gurations such that C′
is obtained from C by applying Algorithm Asym,

and C′ is adjacent to a symmetric con�guration

with respect to a move permitted by Align. If C′′
is the symmetric con�guration obtained from C′ af-
ter applying Algorithm Align (i.e. by forcing a

pending move on C′), then C′′min
< Cmin.

Proof For the �rst statement, we analyze each

move permitted by Align separately.

� If C = (0, 1j , 0, R) and the move from C to C′ is
reduce0, then C′ = (0, 1j−1, 0, 1, R) < Cmin.

� If Cmin = (0i, 1j , 0, R) and the move from C to

C′ is reduce1, then C′ = (0i, 1j−1, 0, 1, R) <

Cmin.

� If Cmin = (0i, 1j , 0i
′
, 1j
′
, 0, R) and the move

from C to C′ is reduce2, then C′ =

(0i, 1j , 0i
′
, 1j
′−1, 0, 1, R) < Cmin.

� If Cmin = (0i, R, 0, 1j) and the move from C to

C′ is reduce−1, then C′ = (0i, R, 1, 0, 1j−1).

Let ` be such that Cmin = Cmin
` , then C′` <

Cmin.

� If Cmin = (0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1),

then C′ = (0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1)

(see line 20 of Procedure Align-Two-Sym),

and C′3 < Cmin.

To prove the second statement, we have to

go into the behavior of Asym. In particular, the

only possibilities for C and C′ are the following

(see [14]).

1. C = (0, 1j , 0, R) and C′ = (0, 1j−1, 0, 1, R);

2. C = (0i, 1j , 0, R) and C′ = (0i, 1j−1, 0, 1, R);

3. C = (0i, 1j , 0i
′
, 1j
′
, 0, R) and C′ =

(0i, 1j , 0i
′
, 1j
′−1, 0, 1, R);

4. C = (0i, 1, R, 0, 1) and C′ = (0i+1, 1, R, 1).

In the �rst case, the move from C to C′ corresponds
to reduce0 and therefore, by Lemma 2, C′ is not
adjacent to a symmetric con�guration with respect

to any move permitted by Align.

In any other case, note that C′ < C. In what

follows we show that C′′ contains a sequence that

is smaller than or equal to the sequence A that

precedes R in C′ and this implies that C′′min
<

Cmin. By contradiction, let us assume that such a

sequence is not in C′′, it follows that one of the

robots in A moved toward R. Note that no forced

pending move can involve the initial sequence of

consecutive 0. This directly implies a contradiction

for case 4.

In case 2, A = (0i, 1j−1, 0, 1) and then C′′ =
(0i, 1j , 0, R) = C which is asymmetric, a contra-

diction.

In case 3, A = (0i, 1j , 0i
′
, 1j
′−1, 0, 1) and

either C′′ = (0i, 1j , 0i
′
, 1j
′
, 0, R) or C′′ =

(0i, 1j , 0i
′−1, 1, 0, 1j

′−2, 0, 1, R). In the �rst case

C′′ = C which is asymmetric, a contradiction. In

the second case, the only possibility is that the

move from C′ to C′′ is reduce2 and hence there

exists a supermin in R, that is R = (1j
′′
, 0i
′′
, R′),

for some i′′ ≥ i, j′′, and R′. Since sequence R

is in C, then i′′ = i as otherwise we obtain a

contradiction to the superminimality of C. There-
fore C′′ = (0i, 1j , 0i

′−1, 1, 0, 1j
′−2, 0, 1j

′′+1, 0i, R′).

Since (0i, 1j
′′+1, 0, 1j

′−2, 0, 1, 0i
′−1, 1j , 0i) must be

the pre�x of a supermin, then j′′+1 ≤ j. However,
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this implies that C = (0i, 1j , 0i
′
, 1j
′
, 0, 1j

′′
, 0i, R′),

where j′′ ≤ j − 1, which is a contradiction to the

superminimality of C since the sequence (0i, 1j′′ , 0)
is smaller than (0i, 1j , 0). ut

7 Conclusions

We have proposed two algorithms to solve two

problems that, in the last decade, received main

attention in the context of the Look-Compute-

Move model of computation: the gathering and

the exclusive searching. Our algorithms work un-

der very weak assumptions. The results provided

here constitute a characterization of the two prob-

lems that leaves open only few marginal cases. For

the gathering, this paper closes a long standing

open problem. In fact, almost all the cases left

open by the literature are now closed. Moreover,

we have also addressed the lack of a uni�ed algo-

rithm that works for any gatherable con�guration.

For the exclusive searching, our algorithm handles

the missing cases of our previous work on the same

subject, leaving open some periodic con�gurations

and some speci�c cases.

One of our main contributions consists of Algo-

rithm Align that is in common to the two strate-

gies adopted to solve the gathering and the exclu-

sive searching. The same algorithm might be used

as a preliminary step also to solve other problems

in the same settings like e.g. exploration with stop

or perpetual exploration. In fact, AlgorithmAlign

permits to restrict the attention to a very limited

subset of con�gurations, hence simplifying the de-

sign of new algorithms.
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