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A unied approach for Gathering and Exclusive Searching on rings under weak assumptions

Consider a set of mobile robots placed on distinct nodes of a discrete, anonymous, and bidirectional ring. Asynchronously, each robot takes a snapshot of the ring, determining the size of the ring and which nodes are either occupied by robots or empty. Based on the observed conguration, it decides whether to move to one of its adjacent nodes or not. In the rst case, it performs the computed move, eventually. This model of computation is known as Look-Compute-Move. The computation depends on the required task. In this paper, we solve both the well-known Gathering and Exclusive Searching tasks. In the former problem, all robots must simultaneously occupy the same node, eventually. In the latter problem, the aim is to clear all edges of the graph. An edge is cleared if it is traversed by a robot or if both its endpoints are occupied. We consider the exclusive searching

where it must be ensured that two robots never occupy the same node. Moreover, since the robots are oblivious, the clearing is perpetual, i.e., the ring is cleared innitely often.

In the literature, most contributions are restricted to a subset of initial congurations. Here, we design two dierent algorithms and provide a characterization of the initial congurations that permit the resolution of the problems under very weak assumptions. More precisely, we provide a full characterization (except for few pathological cases) of the initial congurations for which gathering can be solved. The algorithm relies on the necessary assumption of the local-weak multiplicity detection. This means that during the Look phase a robot detects also whether the node it occupies is occupied by other robots, without acquiring the exact number.

For the exclusive searching, we characterize all (except for few pathological cases) aperiodic congurations from which the problem is feasible. We also provide some impossibility results for the case of periodic congurations. 1 Introduction In the eld of robot-based computing systems, the study of the minimal settings required to accomplish specic tasks represents a challenging issue.

We consider k robots initially placed on distinct nodes of a discrete, anonymous, and bidirectional ring of n nodes, and we investigate two fundamental problems requiring complex coordination: Gathering (see, e.g., [START_REF] Agmon | Fault-tolerant gathering algorithms for autonomous mobile robots[END_REF][START_REF] Chalopin | Rendezvous of mobile agents without agreement on local orientation[END_REF][START_REF] Czyzowicz | Gathering few fat mobile robots in the plane[END_REF][START_REF] D'angelo | Gathering asynchronous and oblivious robots on basic graph topologies under the look-compute-move model[END_REF][START_REF] Dieudonne | Gathering despite mischief[END_REF][START_REF] Kranakis | The Mobile Agent Rendezvous Problem in the Ring[END_REF]) and Exclusive Searching (see, e.g., [START_REF] Blin | Exclusive graph searching[END_REF][START_REF] Fomin | An annotated bibliography on guaranteed graph searching[END_REF][START_REF] Ilcinkas | The cost of monotonicity in distributed graph searching[END_REF]).

We assume minimal abilities for the robots.

They are oblivious (without memory of the past), uniform (running the same deterministic algorithm), autonomous (without centralized control), anonymous (without identities), unoriented (without a common coordinate system, or common compass), asynchronous (without a global clock that synchronize their actions), and silent (without the capability to communicate). Neither nodes nor edges are labeled and no local memory is available on nodes. Robots are equipped with visibility sensors and motion actuators, and operate in Look-Compute-Move cycles in order to achieve a common task (see [START_REF] Flocchini | Distributed Computing by oblivious mobile robots[END_REF]). The Look-Compute-Move model considers that in each cycle a robot takes a snapshot of the current global conguration (Look), then, based on the perceived conguration, makes a decision to stay idle or to move to one of its adjacent nodes (Compute), and in the latter case it moves to this node (Move). In other words, each robot executes an algorithm that takes as input a snapshot or conguration, i.e., the graph topology and the set of nodes occupied by the robots, and computes the move of the robot. Cycles are performed asynchronously, i.e., the time between Look, Compute, and Move operations is nite but unbounded, and it is decided by an adversary for each robot. Hence, robots that cannot communicate may move based on outdated perceptions. The adversary (scheduler) that determines the timing of the Look-Compute-Move cycles is assumed to be fair: each robot performs its cycle within nite time and innitely often.

The asynchronous Look-Compute-Move model, also called CORDA, was rst dened in continuous environments [START_REF] Cieliebak | Distributed computing by mobile robots: Gathering[END_REF][START_REF] Flocchini | Hard tasks for weak robots: The role of common knowledge in pattern formation by autonomous mobile robots[END_REF][START_REF] Izumi | The gathering problem for two oblivious robots with unreliable compasses[END_REF][START_REF] Prencipe | Instantaneous actions vs. full asynchronicity: Controlling and coordinating a set of autonomous mobile robots[END_REF]. The inaccuracy of the sensors used by robots to scan the surrounding environment motivates its discretization. Robots can also model software agents moving on a computer network. Many robots coordination problems were considered in discrete environments. Exploration with stop was studied in paths [START_REF] Flocchini | How many oblivious robots can explore a line[END_REF], trees [START_REF] Flocchini | Remembering without memory: Tree exploration by asynchronous oblivious robots[END_REF], rings [START_REF] Flocchini | Computing without communicating: Ring exploration by asynchronous oblivious robots[END_REF], and general graphs [START_REF] Chalopin | Network exploration by silent and oblivious robots[END_REF]. More recently, the gathering problem (a.k.a. Rendez-vous) was considered in rings [1214,[START_REF] Klasing | Gathering asynchronous oblivious mobile robots in a ring[END_REF], grids [START_REF] Bampas | Almost optimal asynchronous rendezvous in innite multidimensional grids[END_REF][START_REF] D'angelo | Gathering of robots on anonymous grids and trees without multiplicity detection[END_REF][START_REF] Di Stafano | Gathering of oblivious robots on innite grids with minimum traveled distance[END_REF] and trees [START_REF] D'angelo | Gathering of robots on anonymous grids and trees without multiplicity detection[END_REF].

Exclusive perpetual exploration was studied in rings [START_REF] Blin | Exclusive perpetual ring exploration without chirality[END_REF] and grids [START_REF] Bonnet | Asynchronous exclusive perpetual grid exploration without sense of direction[END_REF]. The exclusivity property states that any node must be occupied by at most one robot. Very recently, exclusive searching was dened and studied in trees [START_REF] Blin | Exclusive graph searching[END_REF] and rings [START_REF] D'angelo | Computing on rings by oblivious robots: A unied approach for dierent tasks[END_REF]. In all previous works as well as in this paper, initial congurations are assumed to be exclusive, that is, any node is occupied by at most one robot.

In this paper, we focus on the ring topology.

The relevance of the ring topology is motivated by its completely symmetric structure. It means that algorithms for rings are more dicult to devise as they cannot exploit any topological structure, assuming that all nodes look the same. In fact, our algorithms are only based on robots' positioning and not on the graph topology. On rings, dierent types of exclusive congurations may require different approaches. In particular, periodicity and symmetry arguments must be carefully handled.

An exclusive conguration is called periodic if it is invariable under non-complete rotations. It is called symmetric if the ring has an axis of symmetry that reects single robots into single robots, and empty nodes into empty nodes. It is called rigid if it is aperiodic and asymmetric. We consider the following two problems.

Gathering. The gathering problem consists in moving all the robots toward the same node and remain there. On rings, under the Look-Compute-Move model, gathering is infeasible if the robots are not empowered by the so-called multiplicity detection capability [START_REF] Klasing | Gathering asynchronous oblivious mobile robots in a ring[END_REF]. This capability permits to robots to perceive during the Look phase whether a node is occupied by robots or not. In the globalstrong version, a robot is able to perceive the exact number of robots that occupy a same node. In the global-weak version, a robot perceives only whether a node is occupied by one robot or if a multiplicity occurs, i.e., the node is occupied by an undened number of robots greater than one. In the localstrong version, a robot can perceive only whether a node is occupied or not, but it is able to perceive the exact number of robots occupying the node where it resides. Finally, in the local-weak version, a robot can perceive the multiplicity only on the node where it resides but not the exact number of robots composing it. In this paper, we assume that robots are empowered with the local-weak multiplicity detection capability.

For the ring topology under the global-weak multiplicity detection capability, some impossibility results were proven [START_REF] Klasing | Gathering asynchronous oblivious mobile robots in a ring[END_REF]. Such results clearly hold also when assuming the local-weak multiplicity detection. Several algorithms were proposed for dierent kinds of exclusive initial congurations [START_REF] D'angelo | Gathering six oblivious robots on anonymous symmetric rings[END_REF][START_REF] Klasing | Taking advantage of symmetries: Gathering of many asynchronous oblivious robots on a ring[END_REF][START_REF] Klasing | Gathering asynchronous oblivious mobile robots in a ring[END_REF]. These papers left open some cases which were closed in [START_REF] D'angelo | Gathering on rings under the look-compute-move model[END_REF] where a unied strategy for all the gatherable congurations was provided. was designed in [START_REF] Izumi | Mobile robots gathering algorithm with local weak multiplicity in rings[END_REF].

In [START_REF] Kamei | Asynchronous mobile robot gathering from symmetric congurations[END_REF], the case where k is odd and strictly smaller than n -3 was solved. In [START_REF] Kamei | Gathering an even number of robots in an odd ring without global multiplicity detection[END_REF], the authors provide an algorithm for the case where n is odd, k is even, and 10 ≤ k ≤ n-5. Recently, the case of rigid congurations was solved in [START_REF] D'angelo | Computing on rings by oblivious robots: A unied approach for dierent tasks[END_REF]. The remaining cases are left open and a unied algorithm for all the cases is still unknown.

Exclusive Searching. Graph searching was widely studied in centralized and distributed settings (see e.g., [START_REF] Fomin | An annotated bibliography on guaranteed graph searching[END_REF][START_REF] Ilcinkas | The cost of monotonicity in distributed graph searching[END_REF]). The aim is to make the robots clear all the edges of a contaminated graph. An edge is cleared if it is traversed by a robot or if both its endpoints are occupied. However, a cleared edge is re-contaminated if there is a path without robots from a contaminated edge to it. A graph is searched if there exists a time when all its edges are simultaneously clear. For instance, in a centralized setting, two robots are sucient to clear a ring, starting from a node and moving in opposite directions. In a distributed setting, the task is much harder due to symmetries and asynchrony. Following [START_REF] Blin | Exclusive graph searching[END_REF][START_REF] D'angelo | Computing on rings by oblivious robots: A unied approach for dierent tasks[END_REF], we also consider an additional constraint: the so called exclusivity property, that is, no two robots can be concurrently on the same node or cross the same edge. We consider the exclusivity constraint since in the Look-Compute-Move model two robots occupying the same node may act like a single one as they execute the same deterministic algorithm. It follows that there are no strategies that can take advantage from allowing more robots on a single node. If a strategy is based on the occupancy of a same node by means of more than one robot, the adversary can easily break this synchrony. One of the advantages of studying exclusive searching in this model is that it provided the rst fault-tolerant algorithms for this task. Indeed, whatever be the starting conguration (among the ones we prove to be feasible), the robots are able to perpetually (innitely often) clear the ring. See Table 2 for results on the ring topology. Moreover, as the robots are oblivious, they cannot recognize which edges are already cleared, therefore they must repeatedly perform the task. The searching is called perpetual if it is accomplished innitely many times.

The study of exclusive searching in the discrete model was introduced in [START_REF] Blin | Exclusive graph searching[END_REF] for tree topologies.

Concerning rings, in [START_REF] D'angelo | Computing on rings by oblivious robots: A unied approach for dierent tasks[END_REF] the case of initial rigid congurations was tackled.

Contribution. We consider the gathering with local-weak multiplicity detection and the perpetual exclusive searching problems for k robots in an n-node ring.

For any k < n -4, k = 4, we characterize the exclusive congurations from which the gathering problem is feasible, see Table 1. In particular, we design an algorithm that solves the problem starting from any exclusive conguration with k < n -4, k = 4, robots empowered by the localweak multiplicity detection, except for the infeasible congurations that will be specied later. Similarly to the case of k = 4 in [START_REF] D'angelo | Gathering on rings under the look-compute-move model[END_REF] and (n, k) = [START_REF] Chalopin | Network exploration by silent and oblivious robots[END_REF][START_REF] Chalopin | Rendezvous of mobile agents without agreement on local orientation[END_REF] in [START_REF] D'angelo | Gathering six oblivious robots on anonymous symmetric rings[END_REF], the cases left out from our characterization (k = 4 and k ≥ n -4), if gatherable, would require specic algorithms dicult to generalize.

We then provide a characterization of any aperiodic exclusive conguration with k = 4, and

(n, k) ∈ { [START_REF] D'angelo | Gathering of robots on anonymous grids and trees without multiplicity detection[END_REF][START_REF] Bonnet | Asynchronous exclusive perpetual grid exploration without sense of direction[END_REF], [START_REF] D'angelo | Gathering of robots on anonymous grids and trees without multiplicity detection[END_REF][START_REF] Chalopin | Rendezvous of mobile agents without agreement on local orientation[END_REF]} from which exclusive searching is feasible, see Table 2. That is, we design an algorithm that solves the problem starting from any such aperiodic exclusive congurations except for the infeasible ones. For periodic congurations, we provide some impossibility results. Designing a unied algorithm for all (periodic or not) congurations seems challenging.

The algorithms for gathering and exclusive searching (given in Sections 4 and 5, respectively) exploit a common technique (provided in Section 6) that allows to achieve some special congurations suitable for the subsequent phases. This result mainly relies on a non-trivial characterization of aperiodic congurations in a ring that could be used for further problems.

Outline. In the next section we provide useful definitions and the notation used in the paper. In Section 3, we present an high-level description of the algorithm that achieves some special congurations subsequently exploited by the specic algorithms for solving both the gathering and the exclusive searching tasks. The gathering problem is considered in Section 4. Exclusive searching is studied in Section 5. Section 6 is devoted to the formal details and proofs of the algorithm described in Section 3. This represents the core of our technical results. We then conclude by Section 7 with some possible future research directions.

Notation and preliminary

In this paper, we consider a bidirectional ring with 

n ≥ 3 nodes {v 0 , • • • , v n-1 }, where v i is connected to v i+1 mod n for any 0 ≤ i < n.
i ≤ n, let S i = (r i 0 , • • • , r i n-1
) ∈ {0, 1} n be the sequence such that r i j = 0 if v i+j mod n is occupied in C and r i j = 1 otherwise, 0 ≤ j < n. Intuitively, S i represents the positions of robots, starting at node v i .

For any 

X = (x 0 , • • • , x r-1 ), let us denote X = (x r-1 , • • • , x 0 ) and X i = (x i mod r , . . . , x r-1+i mod r
S = (s 0 , • • • , s n-1 ) ∈ S C , i<n s i = n -k.
The view from a node/robot v i is the minimum between S i and S i , this also represents what we call the snapshot of a conguration acquired by a robot during the Look phase.

A supermin of C is any representation of C that is minimum in the lexicographical order. We denote the supermin of C as C min . In any supermin

(s 0 , • • • , s n-1 ), if k < n then s n-1 = 1.
From their view, all robots can compute the supermin of a conguration.

For x ∈ {0, 1}, we denote by x h a sequence of h ≥ 0 consecutive x. Similarly, given a sequence X, denote by X h a sequence of h ≥ 0 consecutive replications of X. We say that a sequence X is a palindrome if X = X, it is symmetric if X i is a palindrome or X i = (X i+1 ) for some i, and it is periodic if X = X i , for some 0 < i < |X| -1. A conguration is symmetric (periodic, respectively) if at least one of its representations is symmetric (periodic, respectively). A conguration is rigid if it is neither symmetric nor periodic. It is known that an aperiodic conguration admits at most one axis of symmetry [START_REF] D'angelo | Gathering on rings under the look-compute-move model[END_REF]. Moreover, an aperiodic conguration has either a unique supermin representation or two symmetrical supermin representations [START_REF] D'angelo | Gathering on rings under the look-compute-move model[END_REF].

A conguration is said feasible with respect to a specic task if there exists an algorithm solving the task starting from such a conguration.

Execution model. Given a task that robots have to solve, one has to design a distributed algorithm that each robot applies. Robots operate in Look-Compute-Move cycles. In one cycle a robot takes a snapshot of the current conguration (Look). We recall that a snapshot is the view taken from a robot where it cannot distinguish nor the nodes of the ring neither the identities of the other robots but it can distinguish whether each node is occupied by none, one or more robots and its relative position in the ring. In particular, from a snapshot, a robot can infer the size of the ring and the number of occupied nodes. Based on the perceived conguration, the robot applies the designed algorithm hence deciding whether to stay idle or to move to a neighboring node (Compute). If a move is computed, the robot performs it, eventually (Move). Cycles are performed asynchronously, i.e., the time between Look, Compute, and Move operations is nite but unbounded, and it is decided by an adversary for each robot. Whereas, moves are considered instantaneous, that is, during the Look phase robots are always perceived on the nodes of the ring and not on its edges. Allowed congurations. We now summarize the known feasible and infeasible exclusive congurations for both gathering and exclusive searching.

In [START_REF] Klasing | Gathering asynchronous oblivious mobile robots in a ring[END_REF], it is shown that gathering is infeasible for k = 2, for any periodic initial conguration, and for any initial conguration with an axis of symmetry passing through two edges. In [START_REF] D'angelo | Computing on rings by oblivious robots: A unied approach for dierent tasks[END_REF], it is shown that, for any exclusive conguration, it is not possible to search a ring using k robots if n ≤ 9 or k ≤ 3, or k ≥ n -2. Here, we prove that exclusive searching is not feasible for any even k starting from any conguration with an axis of symmetry passing through an empty node.

The main goal of this paper is to extend the known feasibility results to a larger class of congurations. This class is called the class of allowed congurations, and our contribution is to show that they are feasible.

In what follows, an exclusive conguration is allowed for problem P if it is not periodic, if it does not admit an axis of symmetry (as described above) for which P is infeasible, and if the number of robots does not fall in the above dened impossibility ranges. In particular, all rigid congurations where the number of robots falls outside of the impossibility ranges are allowed. For gathering, the symmetric allowed congurations are all the aperiodic ones with the axis of symmetry not passing through two edges and with 3 ≤ k < n -4, k = 4. For exclusive searching, the symmetric allowed congurations are all the aperiodic ones with odd k and those with even k where the axis does not pass through an empty node, provided that 4 < k < n -2 and n > 9.

Global and local view. For the ease of presentation, we prefer to describe the algorithms from a global perspective rather than a local one. This also helps the explanation of the correctness proofs. It is easy to see that each robot has all the information to compute whether it has to move or not according to the acquired conguration during its Look phase (i.e. its snapshot). For instance, suppose that from a given conguration C, with supermin C min = (r 0 , r 1 , . . . , r n-1 ), an algorithm (from a global perspective) makes the robot at r i move toward r i+1 . Let C = (r 0 , r 1 , . . . , r n-1 ) be the local view of a generic robot r. Then, r must check

whether C = C min i or C = (C min i ).
If one of such cases occurs, then it deduces it is candidate to move toward r 1 or r n-1 , respectively.

Dealing with symmetry. The core of the technique in [START_REF] D'angelo | Computing on rings by oblivious robots: A unied approach for dierent tasks[END_REF] for solving the problems from asymmetric exclusive congurations is Algorithm Asym. This allows to achieve a particular conguration called

C a = (0 k-1 , 1, 0, 1 n-k-1 ) made of k -1 consecu-
tive robots, one empty node and one robot (see Figure 1a). Lemma 1 ([14]) Let 3 ≤ k < n -2 robots standing in an n-node ring and forming a rigid exclusive conguration, Algorithm Asym eventually terminates achieving conguration C a and all intermediate congurations obtained are exclusive and rigid.

Basically, Algorithm Asym ensures that, from any rigid exclusive conguration, one robot can be uniquely detected and is moved to an unoccupied neighbor by achieving another rigid conguration while strictly decreasing the supermin. Here, our main contribution is Algorithm Align that generalizes Asym by handling all allowed congurations (not only rigid). Diculties are multiple.

First, in allowed symmetric congurations, we cannot ensure that a unique robot will move. In such a case, the algorithm may allow a robot r to move, while r is reected by the axis of symmetry to another robot r . Since r and r are indistinguishable and execute the same algorithm, then r should perform the same (symmetric) move. However, due to asynchrony, r may move while the corresponding move of r is postponed (i.e. r has performed the Look phase but not yet the Move phase). The conguration reached after the move of r has a potential so-called pending move (the one of r that will be executed eventually). To deal with this problem, our algorithm ensures that all the reached congurations that might have a pending move can be always detected as asymmetric congurations with a unique pending move. Therefore, in such a case, our algorithm forces to perform the pending move. That is, contrary to [START_REF] D'angelo | Computing on rings by oblivious robots: A unied approach for dierent tasks[END_REF] where Algorithm Asym ensures to only go through rigid congurations, the subtlety here consists in possibly going from an asymmetric conguration to a symmetric one. To detect such congurations, we dene the notion of adjacent congurations. Let us consider an algorithm A and a procedure M allowed by A, that is algorithm A performs M for some conguration. Possibly, procedure M moves two (symmetric) robots. An asymmetric conguration C is adjacent to a symmetric conguration C with respect to procedure M if C can be obtained from C by applying M to only one of the robots permitted to move by M and the algorithm performs M on C. In other words, if C is adjacent to C with respect to M, there might exist a pending move permitted by M in C. Another diculty is to ensure that all met congurations are allowed for the considered problem P .

3 High-level description of Algorithm

Align

Our contribution mainly relies on Algorithm Align. Such an algorithm starts from any conguration that is allowed either for the gathering or the exclusive searching problems and aims at reaching one of the congurations C a , C b , or C c having supermin (0

k-1 , 1, 0, 1 n-k-1 ), (0 k , 1 n-k ), or, (0 k 2 , 1 j , 0 k 2 , 1 n-k-j ) for k even and j < n-k 2 ,
respectively (see Figure 1). From such congurations, we will show how to solve the gathering (Section 4) and the exclusive searching (Section 5) problems.

In this section, we describe the main principles of Algorithm Align. Let If the conguration is symmetric, then Align preserves the symmetry by performing a procedure that moves two symmetric robots in a way that, if only one of such robots actually moves, then the obtained conguration is guaranteed to be asymmetric and not adjacent to another symmetric conguration with respect to any other procedure that can be possibly performed by Align. When k is odd, the symmetry is preserved until it can be safely broken by moving the unique robot lying on the axis of symmetry in an arbitrary direction.

If the conguration is asymmetric, then always only one robot is permitted to move by Align.

First, the algorithm checks whether the asymmetric conguration is adjacent to some allowed symmetric conguration with respect to some procedure possibly performed by Align.

In this case, Align forces the only possible pending move. We recall that the procedures performed on a symmetric conguration are designed in a way that the conguration obtained is not adjacent to any other symmetric conguration dierent from the correct one. Therefore, from an asymmetric conguration adjacent to an allowed symmetric one with respect to the procedures of Align, the robot that has to move can be univocally determined and the original symmetry preserved. Note that, such behavior is performed even if the initial conguration is asymmetric. In this case, the conguration obtained after the move is symmetric and allowed, and the algorithm proceeds like in the case that the initial conguration was symmetric. In fact, as the robots are oblivious, they cannot distinguish the two cases.

If an asymmetric conguration is not adjacent to any symmetric conguration with respect to any procedure of Align, then algorithm Asym in [START_REF] D'angelo | Computing on rings by oblivious robots: A unied approach for dierent tasks[END_REF] is performed. Such algorithm, ensures that only one move is performed and the obtained conguration is always rigid, thus it is allowed.

We prove that the procedures performed by Align always reduce the supermin (in lexicographical ordering) and that only allowed congurations are reached.

Our main result is stated in the next theorem whose proof is postponed in Section 6 for the sake of readability. They are the congurations with only 4 robots different from those proven to be ungatherable in [START_REF] D'angelo | Gathering on rings under the look-compute-move model[END_REF][START_REF] Di Stefano | About ungatherability of oblivious and asynchronous robots on anonymous rings[END_REF], and congurations with n -4 ≤ k ≤ n -1 for which a gathering algorithm (if exists) would be very dicult to generalize to other congurations.

Finally, congurations with k = n are periodic and hence ungatherable [START_REF] Klasing | Gathering asynchronous oblivious mobile robots in a ring[END_REF] as well as congurations with k = 2 [START_REF] Klasing | Gathering asynchronous oblivious mobile robots in a ring[END_REF], while congurations with k = 1

do not require any algorithm.

We make use of procedure

Align to reach one of its output congurations:

C a = (0 k-1 , 1, 0, 1 n-k-1 ) with k even, C b = (0 k , 1 n-k ), with k or n odd, C c = (0 k 2 , 1 j , 0 k 2 , 1 n-k-j
), with k even and j or n odd. Actually, procedure Align is invoked until either the obtained conguration is one of the three above, or if it is one of the congurations generated by Algorithm Gathering that we are going to describe. To this respect, we dene two further types of congurations: C d = (0 k-1 , 1, 1, 0, 1 n-k-2 ), and C e = (0 p 2 -1 , 1, 0, 1, 0 p 2 -1 , 1 n-p-1 ) with p even (and hence k = p -1 odd).

Since to solve gathering we need to create a multiplicity, we need to handle congurations containing multiplicities. As we assume local-weak multiplicity detection, we remind that robots perceive a multiplicity only if they are part of it. So, they cannot deduce the actual total number of robots. Hence in this section k represents the number of occupied nodes and not the number of robots.

Moreover, we need to dene three moves that Algorithm Gathering applies:

compact 0 (C): Applied when C is of the form (0 k 2 -i , 1, 0 i , 1 j , 0 i , 1, 0 k 2 -i , 1 n-k-j-2 ), 0 ≤ i < k 2 .
If n is even and j > n-k-4 2 or n is odd and j is even then

• if i = 0 then a robot at node v 0 moves to node v n-1 ; • otherwise a robot at node v k 2 -i+1 moves to node v k 2 -i ; otherwise a robot at node v k 2 -i-1 moves to node v k 2 -i . compact 1 (C): Applied when C is of the form (0 k-i 2 , 1, 0 i , 1, 0 k-i 2 , 1 n-k-2 ), 1 ≤ i < k, both k and i odd. A robot at node v k-i 2 -1 moves to node v k-i 2 ;
compact 2 (C): Applied when in C there are only two nodes occupied (and exactly one is occupied by a multiplicity). The robot not belonging to the multiplicity moves to the other node occupied.

Theorem 2 Let 3 ≤ k < n -4, k = 4 robots, forming an allowed conguration in an n-node ring, Algorithm Gathering achieves the gathering.

Proof Algorithm Gathering is structured in a way that procedure Align is invoked only at the end (line 23), that is once it is sure that the current conguration does not belong to those directly managed for gathering.

If the initial conguration has both k and n even, then Align either reaches conguration C a , or C c with j odd. In the former case, Gathering leads to C d = (0 k-1 , 1, 1, 0, 1 n-k-2 ) (lines 3-4). As k < n -4, then C d is asymmetric and it is not adjacent to any possible symmetric conguration with respect to any procedure of Gathering.

From C d , Gathering makes v 0 move toward v 1 (lines 5-6), hence creating a multiplicity, and still obtaining a conguration of type C d . This process is repeated until only two nodes remain occupied. At this point, only one of the two occupied nodes contains a multiplicity, while the other contains one single robot. The single robot will be the only one permitted to move toward the other occupied node by means of Procedure compact 2 (lines 1-2) until the gathering is accomplished.

In the latter case, that is, from C c with j odd, Gathering leads to conguration C c with j = 1. This is achieved by alternately iterating procedure compact 0 (lines 7-8) with the call to procedure Align. As C is symmetric, compact 0 permits two robots to move. If both robots move synchronously, the resulting conguration is of the form C = (0

k 2 -i-1 , 1, 0 i+1 , 1 j , 0 i+1 , 1, 0 k 2 -i-1 , 1 n-k-j-2
). If only one robot moves, the obtained conguration

(0 k 2 -i-1 , 1, 0 i+1 , 1 j , 0 i , 1, 0 k 2 -i , 1 n-k-j-2
) is asymmetric and not adjacent to any other symmetric conguration with a smaller supermin, and hence C can be easily obtained (lines 9-10).

Once C c with j = 1 is reached, again compact 0 is applied (lines 7-8). In fact, from the denition of compact 0 by considering i = 0 and j = n -k -3, the two robots neighboring the empty node located in between the two sequences of aligned robots are allowed to move toward such an empty node to form a multiplicity. If both the permitted robots move, a symmetric conguration of type C e , with v k 2 being a multiplicity, is reached. This will be discussed later in the case of symmetric congurations with odd k. If only one robot moves, conguration (0

k 2 -1 , 1, 0 k 2 +1 , 1 n-k-1
) is reached. As k is even and 4 < k < n -4, it follows that such a conguration is asymmetric and can only be transformed into one of type C e (by decreasing k) again by lines 9-10.

If k is even and n is odd, we can consider that Align has reached either a conguration of type C b or C c with either j or n -k -j odd. In fact, if a conguration of type C a with k even and n odd is given as input to algorithm Gathering, it is treated (at lines [START_REF] D'angelo | Gathering six oblivious robots on anonymous symmetric rings[END_REF][START_REF] D'angelo | Computing on rings by oblivious robots: A unied approach for dierent tasks[END_REF] as though it has been obtained from one of type C b (lines [START_REF] D'angelo | Gathering asynchronous and oblivious robots on basic graph topologies under the look-compute-move model[END_REF][START_REF] D'angelo | Gathering on rings under the look-compute-move model[END_REF], where only one of the two robots allowed to move by means of compact 0 has performed its movement. In fact, from the denition of compact 0 by considering i = 0 and j = n -k -2 (that is j is odd), the two robots neighboring empty nodes in a conguration of type C b are allowed to move toward the empty nodes. For managing congurations of type Algorithm: Gathering Input: Allowed conguration C with C min = (v 0 , v 1 , . . . , v n-1 )

1 if k = 2 then 2 compact 2 (C) and exit;
3 if k is even and n is even and C is of type C a then 4

The robot at v k moves to v k+1 and exit;

5 if C is of type C d then 6
The robot at v 0 moves to v 1 , and exit; 7 if k is even and n is even and C is of type C c with j odd then 8 compact 0 (C) and exit; 9 if k is even and n is even and C could have been obtained from a conguration of type C c with j odd by applying compact 0 then 10

Move the unique robot that can re-establish the assumed symmetry while decreasing either the current supermin or k and exit; C b or C c , Gathering behaves as above but creating the multiplicity at the central node of the only odd sequence of consecutive empty nodes among j and n-k-j (lines [START_REF] D'angelo | Gathering asynchronous and oblivious robots on basic graph topologies under the look-compute-move model[END_REF][START_REF] D'angelo | Gathering on rings under the look-compute-move model[END_REF][START_REF] D'angelo | Gathering six oblivious robots on anonymous symmetric rings[END_REF][START_REF] D'angelo | Computing on rings by oblivious robots: A unied approach for dierent tasks[END_REF]. Eventually, Gathering achieves a conguration of type C e . Again, this will be discussed later in the case of symmetric congurations with odd k. Note that, this case is similar to the technique presented in [START_REF] Kamei | Gathering an even number of robots in an odd ring without global multiplicity detection[END_REF] where the solved congurations are only those with k even and n odd.

If k is odd, either the conguration is of type C b or it will be of type C b within two applications of Align. To see why, note that in the case of odd k, Align will lead to C b or C a with odd k. If C a with odd k is the input to algorithm Gathering, then it is managed by Align and leads to a conguration of type C b since Align always reduces the supermin. For managing congurations of type C b , the used technique is similar to that presented in [START_REF] Kamei | Asynchronous mobile robot gathering from symmetric congurations[END_REF] where the solved congurations are only those with k odd. From C b , Gathering permits robots at v k-1 2 -1 and v k-1 2 +1 to move to- ward v k-1

2

(lines [START_REF] D'angelo | Gathering and exclusive searching on rings under minimal assumptions[END_REF][START_REF] Di Stafano | Gathering of oblivious robots on innite grids with minimum traveled distance[END_REF]. If only one robot actually moves, conguration (0

k 2 -1 , 1, 0 k 2 +1 , 1 n-k -1
) is achieved with k = k -1. By the parity of k , a conguration of type C e is achieved subsequently (lines [START_REF] Di Stefano | About ungatherability of oblivious and asynchronous robots on anonymous rings[END_REF][START_REF] Dieudonne | Gathering despite mischief[END_REF]. If both robots move synchronously, again a conguration of type C e is reached. From here, Gathering performs Procedure compact 1 (lines [START_REF] Flocchini | Remembering without memory: Tree exploration by asynchronous oblivious robots[END_REF][START_REF] Flocchini | How many oblivious robots can explore a line[END_REF]. As congurations of type C e are symmetric, compact 1 permits two robots to move. If both move synchronously, the resulting conguration is similar to one of type C e but with a larger middle interval of 0's. If only one robot moves, as before, the obtained conguration is asymmetric and not adjacent to any other symmetric conguration, and the possible pending move can be easily forced (lines [START_REF] Flocchini | Computing without communicating: Ring exploration by asynchronous oblivious robots[END_REF][START_REF] Flocchini | Distributed Computing by oblivious mobile robots[END_REF]. From there, procedure Align is invoked until a new conguration of type C b will be reached, but with a smaller k with respect to the previous one.

Eventually, this process terminates with only one occupied node without pending moves, that is, gathering is achieved.

Exclusive searching in a ring

In this section, we present an algorithm that allows a team of robots to exclusively search a ring starting from any allowed conguration, see Table 2.

We also give some partial impossibility results in the case of periodic starting conguration.

As dened in Section 2, the allowed congurations tackled by our searching algorithm are all rigid exclusive congurations where 4 < k ≤ n -3 where n > 9 and (n, k) = [START_REF] D'angelo | Gathering of robots on anonymous grids and trees without multiplicity detection[END_REF][START_REF] Bonnet | Asynchronous exclusive perpetual grid exploration without sense of direction[END_REF]. to such a node. In [START_REF] D'angelo | Computing on rings by oblivious robots: A unied approach for dierent tasks[END_REF], it is shown that, for any starting conguration, it is not possible to search an n-node ring using

k robots if n ≤ 9, k ≤ 3, or k ≥ n -2.
On the other hand, there exists an algorithm that allows 5 ≤ k ≤ n -3 robots to search exclusively a ring with n ≥ 10 nodes (except for (k, n) = (5, 10)), for rigid initial congurations [START_REF] D'angelo | Computing on rings by oblivious robots: A unied approach for dierent tasks[END_REF]. Here, we improve over this algorithm by addressing also allowed aperiodic symmetric congurations.

The main result of this section is the design of Algorithm Search-Ring.

Theorem 3 Algorithm Search-Ring exclusively (and perpetually) searches the ring starting from any allowed conguration.

We rst describe the general behavior of Algorithm Search-Ring whose pseudo-code is described in Figure 6. Before actually searching the ring, Algorithm Search-Ring needs the robots to achieve particular conguration. For this purpose, Algorithm Search-Ring rst applies one of the sub-procedures Compact-Align and Break-Symmetry, that are described in Figures 3 and4 respectively. Each of these sub-procedures uses Algorithm Align presented in Section 6. Procedure

Compact-Align is used only if k and n are even, and Procedure Break-Symmetry may be used if k is odd.

Algorithm Compact-Align

We now dene an algorithm that complements Algorithm Align given in Section 6. In detail, Algorithm Compact-Align is applied when k and n are even, until one of the congurations C a (all robots but one occupy consecutive nodes) or C b (all robots occupy consecutive nodes) is achieved.

Set R of congurations. Let us rst dene some sets of particular congurations. Roughly, in these congurations, robots are divided into two pairs of segments of consecutive nodes and, for each pair, the two segments of the pair are separated by one unique empty node. More formally, let n and k be even. For any 0 ≤ a < b with a and b

= n - k -a -2 even (in particular b > 1), let us dene R = R 1 ∪ R 2 as the set of all congurations C = (u 0 , • • • , u n-1
) with the following form:

R 1 (a, b, c) = (0 k/2-c , 1, 0 c , 1 a , 0 c , 1, 0 k/2-c , 1 b ), where 0 ≤ c < k/2. Note that R 1 (a, b, 0) ∈ C c . Moreover, any conguration R 1 (a, b, c) is sym- metric with one unique axis (because a < b)
and this axis does not pass through an empty node (because a and b are even). Moreover,

u k/2-c-1 and u n-1-b can be identied because a < b and b > 1. Let R 1 be the set of all such congurations R 1 (a, b, c) with 0 ≤ a < b, a and b = n -k -a -2 even, and 0 ≤ c < k/2. R 2 (a, b, c) = (0 k/2-c-1 , 1, 0 c+1 , 1 a , 0 c , 1, 0 k/2-c , 1 b ), where 0 ≤ c < k/2. Such a congu- ration is asymmetric and u n-b-(k/2-c) can be identied. Note also that R 2 (0, b, k/2-1) ∈ C a . Let R 2 be the set of all such congurations R 2 (a, b, c) with 0 ≤ a < b, a and b = n-k-a-2 even, and 0 ≤ c < k/2.
Recall that any allowed conguration in C c has the following form: (0

k 2 , 1 j , 0 k 2 , 1 n-k-j ) = R 1 (j-2, n- k -j, 0), with 0 < j < n-k
2 and j even. Since a and b are even, then b ≥ a + 2, and therefore we can check that any conguration C in R is not adjacent to any other allowed symmetric conguration. Indeed, if C is adjacent to an allowed and symmetric conguration, then the axis must pass through the unique long segment of at least b -1 consecutive 1's, and it is easy to check that such a conguration would not be allowed because b is even. Therefore, there is no conict between the procedures described above if C ∈ R and the ones permitted by Align when C / ∈ R.

Algorithm Break-Symmetry

In the following, we give an algorithm that allows an odd number k of robots to eventually reach an asymmetric conguration. More precisely, the algorithm rst applies Algorithm Align. Then, when all k robots are occupying consecutive nodes, they move to reach a symmetric conguration where one robot is on the axis and has its two neighbors that are empty. The robot on the axis moves to one of its neighbors, breaking the symmetry.

Let B = B 1 ∪ B 2 be the set of all congurations C = (u 0 , • • • , u n-1 ) with the following form.

Roughly, robots are divided into three segments of consecutive nodes such that the central segment is separated from each other segment by one empty node. Moreover, the lengths of the two non-central segments dier by at most one. More formally:

B 1 ( ) = (0 , 1, 0 k-2 , 1, 0 , 1 n-k-2 ), where 0 ≤ ≤ k/2 . Moreover, any conguration B 1 ( )
is symmetric with one unique axis and nodes u +1 and u k-+1 can be univocally identied.

Let B 1 = 0≤ ≤ k/2 {B 1 ( )}. B 2 ( ) = (0 -1 , 1, 0 k-2 +1 , 1, 0 , 1 n-k-2 ), where 0 < ≤ k/2 . Such a conguration is asym- metric and u can be univocally identied. Let B 2 = 0< ≤ k/2 {B 2 ( )}.
When a conguration C is in B 1 ( ) for some , then Break-Symmetry moves the robot at u +1 to u . When C is in B 1 ( ) for some , then Break-Symmetry moves robot at u to u -1 . Eventually, conguration C = (0 k/2 , 1, 0, 1, 0 k/2 , 1 n-k-2 ) is reached. At this point the robot at u k/2 +1 moves to u k/2 (or arbitrarily to u k/2 +2 ). At this point the obtained conguration is asymmetric and applying Algorithm Align leads to conguration C a = (0 k-1 , 1, 0, 1 n-k-1 ). Finally, the robot at u k moves to u k+1 . The obtained conguration is suitable to be used in the algorithm of [START_REF] D'angelo | Computing on rings by oblivious robots: A unied approach for dierent tasks[END_REF] for graph searching. As any asymmetric conguration in B 2 is not adjacent to any symmetric conguration not in B 1 , there are no conicts between the procedures of Align, those of the algorithm in [START_REF] D'angelo | Computing on rings by oblivious robots: A unied approach for dierent tasks[END_REF] and those of Break-Symmetry.

General description of Algorithm

Search-Ring

Finally, we are ready to describe the general behavior of Algorithm Search-Ring in more details.

The algorithm rst checks whether k = n -3 or if n is odd and k is even. In the armative case, any allowed conguration must be asymmetric, and therefore the algorithm of [START_REF] D'angelo | Computing on rings by oblivious robots: A unied approach for dierent tasks[END_REF] can be applied and the ring is searched.

In the other cases, the algorithm proceeds in two phases. Phase 1 consists in achieving a conguration from which the search will be performed. Set A of congurations. We now dene the set A of congurations required to dene the algorithm for Phase 2. These congurations are depicted in Figure 5. We consider the following hypothesis: n-

k is even, n -k ≥ 4, k ≥ 6, n ≥ 10 and, if k = 6 then n ≥ 11. The set A is dened as the set Procedure: Compact-Align Input: Allowed conguration C = (u 0 , • • • , u n-1 )
, with an even number of robots. 

if C ∈ R then if C = (0 k/2-c , 1, 0 c , 1 a , 0 c , 1, 0 k/2-c , 1 b ) then // C ∈ R 1 Robot at u k/2-c-1 moves to u k/2-c ; // Two symmetrical moves if C = (0 k/2-c-1 , 1, 0 c+1 , 1 a , 0 c , 1, 0 k/2-c , 1 b ) then // C ∈ R 2 Robot at u n-b-(k/2-c) moves to u n-b-(k/2-c
Input: Exclusive conguration C = (u 0 , • • • , u n-1 )
, with i u i = k robots, such that k is odd and C has at most one axis of symmetry and, if any, this axis does not pass through an empty node.

if C ∈ B then if C = (0 k/2 , 1, 0, 1, 0 k/2 , 1 n-k-2 ) then // C = B 1 ( k/2 ) Robot at u k/2 +1 moves to u k/2 (or symmetrically to u k/2 +2 ); // symmetry is broken if C = (0 , 1, 0 k-2 , 1, 0 , 1 n-k-2 ) where 0 ≤ < k/2 then // C ∈ B 1 Robot at u +1 moves to u ; // Two symmetrical moves if C = (0 -1 , 1, 0 k-2 +1 , 1, 0 , 1 n-k-2 ) where 0 < ≤ k/2 then // C ∈ B 2
Robot at u moves to u -1 ; // unique move performed else Apply Align; 

A-a( ) = (0 k-2 , 1 , 0, 1 n-2 -k , 0, 1 ), 0 ≤ ≤ (n - k)/2. Note that A-a(0) = C b .
In this case, C is symmetric with a unique axis because k -2 > 1. This axis does not pass through an empty node because n -k is even.

Clearly, nodes u k-2+ and u n-1-can be identied as occupied and adjacent to one (case = 0) or two (case 0 < < (n -k)/2) empty nodes, or (case

= (n -k)/2) they form the unique (because k ≥ 5) segment of exactly two consecutive occupied nodes. A-b( ) = (0 k-2 , 1 , 0, 1 n-2 -k-1 , 0, 1 +1 ), 0 ≤ < (n -k)/2. In this case, C is asymmetric for any 0 ≤ ≤ (n -k)/2. In particular, if = 0, it is asym- metric because n -k ≥ 4. Then, u k-2+ can be identied. A-c = (0 k-3 , 1, 0, 1 (n-k)/2-1 , 0, 0, 1 (n-k)/2 ). In this case, C is asymmetric, because k ≥ 6 and n -k ≥ 4. Then, u 0 can be identied. A-d( ) = (0 k-4 , 1, 0, 1 (n-k)/2-1-, 0, 1 2 , 0, 1 (n-k)/2--1 , 0, 1), 0 ≤ ≤ (n -k)/2 -1.
In this case, C is symmetric with one unique axis not passing through an empty node. In-deed, it is easy to check if k = 6. If k = 6 and = 0, it is true because n > 10.

If > 0, u (n+k)/2-3-and u (n+k)/2-2+ can be identied since (u 0 , • • • , u k-5
) is the single segment with at least two occupied nodes.

If

= 0, u (n+k)/2-3 and u (n+k)/2-2 can be identied as the single segment of two occupied nodes (if k > 6) and as the single segment of two occupied nodes adjacent to segments of more than one empty node (if k = 6 and n > 10).

A-e( ) = (0 k-4 , 1, 0, 1

(n-k)/2-1-, 0, 1 2 +1 , 0, 1 (n-k)/2--2 , 0, 1), 0 ≤ ≤ (n -k)/2 -2. In this case, C is asymmetric (this is true in particular, when = 0, because if k = 6 then n > 10) Then, u (n+k)/2-3-can be identied. A-f = (0 k-3 , 1, 0, 0, 1 n-k-2 , 0, 1)
In this case, C is asymmetric because k ≥ 5 and n -k ≥ 4. Then, u k-2 can be identied.

Phase 2 of Algorithm Search-Ring: searching the ring. If k = n -3 or n or k is odd, the searching is done using the Algorithm of [START_REF] D'angelo | Computing on rings by oblivious robots: A unied approach for dierent tasks[END_REF] and the correctness follows.

Hence, we only need to consider the case when k and n are even. In such case, Phase 2 of Algorithm Search-Ring proceeds as follows. All 

u 0 u 0 (a) A-a( ) for = 3. u 0 (b) A-b( ) for = 3. u 0 (c) A-c. u 0 u 0 (d) A-d( ) for = 2.
for = 0 • • • (n -k)/2 -2, and stopping at A- d((n -k)/2 -1)).
Finally, when X is adjacent to X and Y is adjacent to Y , X and Y move to their empty neighbor (passing through the conguration A-f) such that they re-integrate the segment. Then, Conguration A-a(1) is achieved and the process is repeated perpetually.

It is easy to check that such a sequence of performed moves actually searches the ring. Indeed, after having reached the conguration Ad((n -k)/2 -1), congurations A-f and then Aa(1) are reached, ensuring that all edges between the two isolated robots (on the side of the long segment of robots) are clear. Then, the two isolated robots goes along the ring until they occupy adjacent nodes. At this step, all edges are clear.

Moreover, by denition of the congurations met during the process (congurations in A), there is no ambiguity. In Figure 6, O denotes the set of congurations used during the searching phase of the Algorithm of [START_REF] D'angelo | Computing on rings by oblivious robots: A unied approach for dierent tasks[END_REF].

The distinct congurations that can be achieved in Phase 2 are the ones in A and can be characterized succinctly such that they are pairwise distinguishable without ambiguity. Moreover, each of those congurations is either asymmetric and only one (identiable) robot can move, or it is symmetric with one unique axis of symmetry and two (identiable) symmetric robots move. In the latter case, when only one of these symmetric robots moves, then we reach an asymmetric conguration where the only robot permitted to move is the other one (i.e., the possible pending move and the permitted move coincide). Therefore there is never ambiguity in the choice of the robot(s) that must move.

The validity of algorithms for Phase 2 and the fact that they actually search the ring are easy to obtain. Therefore, to prove the correctness of Algorithm Search-Ring, it will be sucient to prove Procedure: Search-Ring Input: Exclusive conguration C = (u 0 , • • • , u n-1 ), with i u i = k robots, k ≥ 6 and n ≥ 10 and (k, n) = (6, 10) and n -k ≥ 3, and such that C has at most one axis of symmetry and, if any and if k is even, this axis does not pass through an empty node. 

C ∈ A then 11 if C = (0 k-2 , 1 , 0, 1 n-2 -k , 0, 1 ) with 0 ≤ ≤ (n -k)/2 12 OR C = (0 k-2 , 1 , 0, 1 n-2 -k-1 , 0, 1 +1 ) with 0 ≤ < (n -k)/2 then // C ∈ A-a OR C ∈ A-b 13 The robot at u k-2+ moves to u k-2+ +1 ; // two symmetrical moves if C ∈ A-a 14 if C = (0 k-2 , 1 (n-k)/2 , 0, 0, 1 (n-k)/2 ) 15 OR C = (0 k-3 , 1, 0, 1 (n-k)/2-1 , 0, 0, 1 (n-k)/2 ) then // C = A-a((n -k)/2) OR C = A-c 16 
The robot at u 0 move to u n-1 ; // two symmetrical moves if C ∈ A-a

17 if C = (0 k-4 , 1, 0, 1 (n-k)/2-1-, 0, 1 2 , 0, 1 (n-k)/2--1 , 0, 1) with 0 ≤ ≤ (n -k)/2 -1 18 OR C = (0 k-4 , 1, 0, 1 (n-k)/2-1-, 0, 1 2 +1 , 0, 1 (n-k)/2--2 , 0, 1) with 0 ≤ ≤ (n -k)/2 -2 then // C ∈ A-d OR C ∈ A-e 19 
The robot at u (n+k)/2-3-moves to u (n+k)/2-4-; // two symmetrical moves if

C ∈ A-d 20 if C = (0 k-4 , 1, 0, 0, 1 n-k-2 , 0, 0, 1) 21 OR C = (0 k-3 , 1, 0, 1 n-k-2 , 0, 0, 1) then // C = A-d((n -k)/2 -1) OR C = A-f 22
The robot at u n-2 move to u n-1 ; // two symmetrical moves if C ∈ A-d that Phase 1 and Phase 2 are not in conict (i.e., that robots can decide which phase to proceed). It is enough to note that any conguration in A is not adjacent to any symmetric conguration not in A.

Impossibility for periodic congurations

To conclude this section, we give partial results on periodic congurations. More precisely, we describe some periodic congurations for which we prove the graph searching problem to be infeasible. Since these congurations have not the forbidden symmetry (one empty node on an axis of symmetry and k even), it shows that periodicity actually introduces new impossibility results.

A period S of a periodic conguration C is a sequence, with minimum length, such that C = S q for some q > 1. We say that such a conguration C is q-periodic. Note that, any period of a periodic conguration has the same number of empty nodes. For any i > 0, let P i be the set of all periodic congurations with exactly i empty nodes in any period. Theorem 4 For any conguration C ∈ P 1 ∪ P 2 , there is no algorithm that solves the graph searching problem starting from C. Proof Let q > 1 and C be q-periodic. Let p ≥ 1 be the number of robots in each period of C. The ring has size n = q(p + i), where i ≥ 1 is the number of empty nodes in a period, and there are k = pq robots.

First, let us assume that C = (0 p , 1) q ∈ P 1 . If q or p is even, then k is even and there is an axis of symmetry passing through an empty node.

Hence, by previous results, no algorithm can solve the graph searching problem starting from C. Let us assume that p and q are odd. Because k is odd and q > 1, we are not in the previous impossible cases. However, any two robots adjacent to the same empty node have exactly the same view.

Therefore, any move in this conguration will lead to a multiplicity. Thus, it is impossible to solve the exclusive searching problem starting from C. Now, let us assume that C ∈ P 2 ., i.e., C ∈ {Q j = (1, 0 p-j , 1, 0 j ) q | 0 ≤ j ≤ p/2 }. Note that each period consists of two segments of consecutive robots (but for j = 0 where there is only one segment). The intuition is that any algorithm has only one possible action for any xed j ≤ p/2 . Either the two robots occupying the ends of the left segment (the one between the second node and the p-j +1 th node of the period) have to move, or the two robots at the end of the right segment have to move. Indeed, if none of these moves is ever performed, the ring cannot be searched. On the other hand, if the algorithm allows the four robots to move, it results in multiplicities. Hence, for any j ≤ p/2 , the algorithm must be of the left type or of the right type. Roughly, in what follows, we show that if the allowed moves are all of the same type, then the algorithm achieves a conguration in P 1 and fails by previous paragraph. Otherwise, there is some j such that the algorithm performs the left move for j and the right move for j + 1. In this case, the adversary can schedule the moves in order to force a multiplicity.

Let us prove the result more formally.

Let 0 ≤ j ≤ p/2 . We note (u 0 , • • • , u n-1 )
the nodes of the ring such that the representation from u 0 is C = (1, 0 p-j , 1, 0 j ) q . Let us consider any algorithm A for solving the exclusive searching problem. We say that A is j-left if, in conguration (1, 0 p-j , 1, 0 j ) q , the robots that must move are those at u , where = 1 mod q and = p -j mod q. A is j-right if, in conguration (1, 0 p-j , 1, 0 j ) q , the robots that must move are those at u , where = p + 1 mod q and = p + 2 -j mod q. Because of the periodicity, A must be either j-left or j-right. Moreover, it cannot be both since otherwise a multiplicity would occur. Clearly, A is 0-left.

Let us assume the starting conguration is Q j = (1, 0 p-j , 1, 0 j ) q for some 0 ≤ j ≤ p/2 . Assume rst that A is j-right. In conguration Q j = (1, 0 p-j , 1, 0 j ) q , the adversary wakes up and makes the p -j + 1 th robot of each period (1, 0 p-j , 1, 0 j ) move. Therefore, following A, the conguration Q j-1 = (1, 0 p-j+1 , 1, 0 j-1 ) q is eventually reached. Since, A is 0-left, the algorithm eventually reaches a conguration Q j * such that A is j * -left. Hence, let us now assume that A is j-left.

Let h be the smallest integer such that j < h ≤ p/2 and A is h-right. If no such h exists, we set h = p/2 +1. For any j ≤ s < h, A is s-left and, in conguration Q s = (1, 0 p-s , 1, 0 s ) q , the adversary wakes up and makes the rst robot of each period (1, 0 p-s , 1, 0 s ) move. Therefore, following A, the conguration Q h-1 = (1, 0 p-h+1 , 1, 0 h-1 ) q is eventually reached. If p is even and h = p/2 , the adversary proceeds similarly to reach Q h ∈ P 1 and the algorithm fails by previous result. Otherwise, the adversary wakes up and makes all robots to compute. However, only the rst robot of each period moves. Therefore, the conguration

Q h = (1, 0 p-h , 1, 0 h ) q is reached
where the p -h th robot of each period is going to move (there are q pending moves). Since A is h-right (the case h = p/2 + 1 works similarly by symmetry), the adversary wakes up and makes the p-h+1 th robot of each period move. Finally, all pending moves are done, resulting in multiplicities.

Note that the impossibility does not rely on the task to be executed but on the exclusivity property that must be satised.

Details on Algorithm Align

In this section, we provide the details to formally describe algorithm Align that, starting from any allowed conguration, reaches one of the exclusive congurations C a , C b , and C c previously dened.

In Section 6.1 we present the algorithm and describe its general behavior, and in Section 6. [START_REF] Blin | Exclusive graph searching[END_REF] we analyze some particular special cases which are omitted in the general discussion for the sake of simplicity. In Section 6.2, we give two examples of the execution. In Section 6.4, we provide the pseudo-code of the algorithm. For the ease of reading, Section 6.5 is devoted to the proofs of some lemmata stated in Section 6.1 along with the correctness proof of the algorithm.

Algorithm Align

Algorithm Align is based on four procedures described below. Let C be any allowed conguration and let C min = (v 0 , v 1 , . . . , v n-1 ) be its supermin. Abusing notation, we denote by v i both the (i + 1)-th node and the (i + 1)-th value of sequence C min . Let 1 be the smallest integer such that 1 > 0, v 1 = 0 and v 1-1 = 1 (i.e. v 1 is the rst node of the second sequence of consecutive occupied nodes); let 2 be the smallest integer such that 2 > 1 , v 2 = 0 and v 2-1 = 1 (i.e. v 2 is the rst node of the third sequence of consecutive occupied nodes); let -1 be the largest integer such that -1 < n and v -1 = 0 (i.e. v -1 is the last occupied node). The four procedures permitted by Align are the following (see Figure 7): reduce 0 (C): The robot at node v 0 moves to Note that in some congurations 1 and 2 might be not dened. However, we will show that in these cases our algorithm does not perform procedures reduce 1 and reduce 2 , respectively.

node v 1 ; v 0 (a) reduce 0 . v 1 v 0 v 2 v -1 (b) reduce 1 . v 2 v 0 v 1 v -1 (c) reduce 2 . v -1 v 1 v 0 v 2 (d) reduce -1 .
The pseudo-code of Algorithm Align is given in Figure 10 and works in two phases. The rst phase (Algorithm Align-One in Figure 11) copes with congurations without any consecutive occupied nodes (i.e. v 1 = 1) and aims at reaching congurations with at least two consecutive occupied nodes (i.e. v 1 = 0), once one such conguration is reached, the second phase starts and its general aim is to increase the number of consecutive occupied nodes until C a , C b , or C c are reached. The second phase is given in Algorithm Align-Two-Sym in Figure 12, if the conguration is symmetric, and Align-Two-Asym in Figure 13, otherwise. Lemma 2 ( [START_REF] D'angelo | Gathering on rings under the look-compute-move model[END_REF]) Let C be an allowed conguration and let C be the one obtained from C after a reduce 0 performed by a single robot. Then, C is asymmetric and at least two robots have to move to obtain C from an aperiodic symmetric conguration dierent from C.

It follows that robots can recognize whether C has been obtained by performing reduce 0 from C by performing such a procedure on C backwards. In fact, if the conguration is asymmetric, then Align-One rst checks whether it has been obtained from a symmetric conguration (By Lemma 2, such a conguration is unique), and in the armative case, it performs the possible pending move. In detail, let C = (0, 1, X, 1) be the supermin view of an asymmetric conguration (line 7). Performing reduce 0 backwards from C means computing the conguration C = (1, 1, X, 0) (line 8) since the move from C to C corresponds to reduce 0 . If C is symmetric and allowed (line 9), then a reduce 0 move is possibly pending and hence it is forced to be performed (line 11). However, it is not always possible to perform reduce 0 on a symmetric conguration C. Indeed, in case that C min = (0, 1, 0, R), for some R = R, then performing reduce 0 would imply that two robots occupy the same node (a multiplicity occurs but we want to avoid it in this phase). In fact, note that in this case the node symmetric to v 0 is v 2 and performing reduce 0 consists in moving both robots from v 0 and v 2 to v 1 . In this case, we perform reduce -1 (line 3). In the next lemma (for j = 1) we show that such a procedure performed by only one robot from a conguration C such that C min = (0, 1, 0, R), with R = R, does not create a conguration with two consecutive occupied nodes, does not create a symmetric conguration and the conguration obtained is not adjacent to a conguration dierent from C with respect to any possible procedures performed by Align. 1 Lemma 3 Let C be a symmetric and allowed conguration with supermin C min = (0, 1 j , 0, R), for R = R and j ≥ 1, and let C be the conguration obtained by applying reduce -1 on only one robot on C. Then C has no consecutive occupied nodes and either C min = (0, 1 j , 0, 1 j+1 , 0, 1 j+1 ) or C is asymmetric and it is not adjacent with respect to reduce 0 and reduce -1 to any symmetric conguration dierent from C.

It follows that we can again preserve the symmetry by forcing to perform the symmetric move.

Note that also in this case, performing reduce -1 results in reducing the supermin.

In order to recognize whether a reduce -1 move is possibly pending, we use a technique similar to that used to recognize a possible pending reduce 0 move. In detail, Let C = (0, 1, 0, R) be the supermin view of a symmetric conguration with R = R. We can assume that R = (1 j , 0, R , 0, 1 j ) with R = R and j > 1. After performing a reduce -1 on only one robot, the obtained conguration is C = (0, 1, 0, 1 j , 0, R , 1, 0, 1 j-1 ). Two cases may occur: C min = (0, 1, 0, 1 j-1 , 0, 1, R , 0, 1 j ); or, if j = 2, 1 Conguration C = (0, 1, 0, 1, 1, 0, 1, 1) is the only exception, see Section 6.3.

C min = (0, 1, 0, 1, 0, 1, 1, 0, R , 1). In the rst case, we can compute C from C by moving the robot in position j + 2 to position j + 3 (lines 1721), in the second case by moving the robot in position 0 to position n -1 (lines 1315).

If the conguration is asymmetric and it cannot be obtained by performing reduce 0 or reduce -1 from any possible allowed symmetric conguration, then we execute Algorithm Asym in [START_REF] D'angelo | Computing on rings by oblivious robots: A unied approach for dierent tasks[END_REF] (line 22). Lemma 1 ensures that such algorithm always leads to rigid congurations.

Algorithm Asym ensures that each procedure permits only one robot to change its position, and then no pending moves are possible. If by applying Asym, we produce an asymmetric conguration which is adjacent to a symmetric conguration with respect to some of the procedures permitted by Align, then we force to perform the possible pending move. Moreover, it has been shown that algorithm Asym reduces the supermin after each move [START_REF] D'angelo | Computing on rings by oblivious robots: A unied approach for dierent tasks[END_REF].

Note that, in some symmetric congurations there exists a robot r that occupies a node lying on the axis of symmetry. In these cases, reduce 0 or reduce -1 may consist in moving r (in any arbitrary direction). We cannot move the robot symmetric to r as it does not exist, but we can safely perform Asym as there are no pending moves. To avoid to force the pending move in this case, we test whether the robot that moved from C to C is not the one on the axis of symmetry of C (see test at lines 10, 14, and 20).

Eventually, Align-One leads to a conguration with two consecutive occupied nodes. In detail, we can obtain one of the following four congurations: (i) an asymmetric conguration with two consecutive occupied nodes which is not adjacent to any symmetric conguration with respect to a procedure permitted by Align-One; (ii) an asymmetric conguration with two consecutive occupied nodes which is adjacent to a symmetric conguration with respect to some procedure permitted by Align-One; (iii) a symmetric conguration with two or three consecutive occupied nodes with the axis of symmetry passing in their middle; (iv) a symmetric conguration with two symmetric pairs of consecutive occupied nodes.

Algorithm Align-Two-Sym. Once a conguration with two consecutive occupied nodes is achieved, the second phase of Algorithm Align starts. Now it is not possible to perform reduce 0 as it would cause a multiplicity. Hence, one proce-dure among reduce 1 , reduce 2 or reduce -1 is performed.

In symmetric congurations there are cases when we cannot perform reduce 1 or reduce 2 .

For instance, reduce 1 cannot be applied if C min = (0 i , 1 j , 0 i , R), with R = R. In fact, in this case, C min = (C min 2i+j ) and performing reduce 1 corresponds to moving the robot at v i+j which is symmetric to that at v i-1 . Therefore, such a move would increase the supermin. Similar instances where it is not possible to perform reduce 2 can occur. For example if C min = (0 i , 1 j , 0 x , 1 j , 0 i , R), then performing reduce 2 corresponds to moving the robot at v i+2j+x which is symmetric to that at v i-1 . Moreover, since we are coping with symmetric congurations, it can happen that the asynchronous execution of the two symmetric robots that should perform one of the three procedures generates a symmetric conguration with a different axis of symmetry or a conguration that is adjacent to a dierent symmetric conguration with respect to some other procedure permitted by Align. Algorithm Align-Two-Sym appropriately performs reduce 1 , reduce 2 or reduce -1 in a way that the conditions described above cannot occur.

To give more detail on the behavior of the algorithm in the case of symmetric congurations, we dene the following three sets. Let S 1 be the set of symmetric congurations with supermin (0 i , 1, R), where i ≥ 2 and R contains a sequence 0 i . Let S 2 be the set of congurations C ∈ S 1 such that C min = (0 i , 1 j , 0 i , Z) for some Z = Z and j > 0. Let S 3 be the set of congurations C ∈ S 1 such that C min = (0 i , 1 j , 0 x , 1 j , 0 x , 1 j , 0 i , Z) for some Z = Z, j, j > 0 and 1 ≤ x ≤ i, or congurations C ∈ S 1 such that C min = (0 i , 1 j , 0 x , 1 j , 0 i , Z) for some Z = Z, j > 0 and 1 ≤ x ≤ i, or congurations C ∈ S 1 such that C min = (0 i , 1 j , 0 i-1 , 1, 0, R, 1), R = R, j > 0. Finally, set S 4 is a set of symmetric congurations such that S 4 ⊆ S 1 \ S 3 that is used to handle some special cases and will be dened in Section 6.3.

The sets S 2 and S 3 contain the congurations where it is not possible to perform reduce 1 or reduce 2 , respectively, as it will increase the supermin.

In Lemmata 47, given in Section 6.5, we identify the procedures that can be safely performed on the congurations in such sets. We report the statements of such lemmata in what follows. Lemma 4 Let C be a symmetric and allowed conguration with i > 1 consecutive occupied nodes and let C be the conguration obtained by applying reduce 1 on only one robot on C. If C is symmetric, then C ∈ S 1 \ S 3 or C min = (0 i , 1, 0 i , 1, (0 i , 1, 0 i , 1, 0 i-1 , 1) ), for some ≥ 1, or C min = (0 i , 1, 0 x , 1, (0 i , 1, 0 x-1 , 1) ), for some ≥ 1 and 1 ≤ x ≤ i.

Lemma 5 Let C be a symmetric and allowed conguration with i > 1 consecutive occupied nodes and let C be the conguration obtained by applying reduce 1 on only one robot on C. If C is adjacent with respect to reduce 1 to a symmetric conguration

C dierent from C, then C ∈ S 1 \ S 3 , or C ∈ S 1 \ S 3 or C, C ∈ S 4 .
Lemma 6 Let C be a conguration in S 1 \ S 3 and let C be the conguration obtained by applying reduce 2 on only one robot on C. Then C is asymmetric and it is not adjacent with respect to reduce 1 or reduce 2 to any symmetric conguration dierent from C.

Lemma 7 Let C be a conguration in S 2 , or such that

C min = (0 i , 1, 0 i , 1, (0 i , 1, 0 i , 1, 0 i-1 , 1) ), for some ≥ 1, or such that C min = (0 i , 1, 0 x , 1, (0 i , 1, 0 x-1 , 1) ), for some ≥ 2 and 1 ≤ x ≤ i, or such that C min = (0 i , 1, 0 x , 1, 0 i , 1, 0 y , 1)
, for some 1 < y < x ≤ i, and let C be the conguration obtained by applying reduce -1 on only one robot on C. Then C is asymmetric and it is not adjacent with respect to reduce 1 , reduce 2 , or reduce -1 to any symmetric conguration dierent from C.

Based on these results, Algorithm Align-Two-Sym works as follows. If C is in S 2 , then reduce 1 cannot be performed. However, by Lemma 7, we can safely perform reduce -1 (lines 1 and 6 of Procedure Align-Two-Sym).

If C ∈ S 2 , then Align-Two-Sym rst computes the conguration C that would be obtained from C by applying reduce 1 on only one robot (line 8). If C is symmetric, then we know by Lemma 4 that C ∈ S 1 \ S 3 or C min = (0 i , 1, 0 i , 1, (0 i , 1, 0 i , 1, 0 i-1 , 1) ), for some ≥ 1, or C min = (0 i , 1, 0 x , 1, (0 i , 1, 0 x-1 , 1) ), for some ≥ 1 and 1 ≤ x ≤ i. In the rst case, we can safely perform reduce 2 (line 10) as the obtained conguration is neither symmetric nor adjacent to any other symmetric conguration (see Lemma 6, and the rst example in Section 6.2). In the last two cases, we cannot perform reduce 2 but, by Lemma 7, we can safely perform reduce -1 (lines 2, 3, and 6). 2 2 Except for the case of C min = (0 i , 1, 0 x , 1, (0 i , 1, 0 x-1 , 1) ) for = 1 and x = 1

If C is asymmetric, then Align-Two-Sym checks whether it can be obtained by applying reduce 1 from a symmetric conguration C different from C. To this aim, it computes all the congurations that can possibly generate C . As reduce 1 reduces the supermin, then by performing it, the starting node of the supermin in the obtained conguration is either the same of the previous one or it is one of the endpoints of a sequence of consecutive occupied nodes which is generated by the procedure itself. It follows that C can be computed by increasing the supermin of C by moving one of the robots in the endpoints of the sequence of consecutive occupied nodes at the beginning of the supermin sequence or the possible robot in position v 1 . In other words, if C = (0 i , 1 j , 0, R, 1) for i ≥ 2 and j ≥ 1 (line 12), then C can be only one of the following congurations: C α := (0 i-1 , 1, 0, 1 j-1 , R, 1), C β := (0 i-1 , 1 j , R, 0, 1), and, if R = (1, R ), C γ := (0 i , 1 j+1 , 0, R , 1) (lines 13 15). If at least two among C α , C β , and C γ are symmetric and the procedure from both of them to C corresponds to reduce 1 (i.e. two symmetric congurations are adjacent to C with respect to reduce 1 ), then by Lemma 5 follows that at least one of them belongs to S 1 \ S 3 or both belong to S 4 . In the former case we can safely perform reduce 2 on the conguration belonging to S 1 \ S 3 (line 17) and reduce 1 (line 22) on the other one (see Lemma 6 and second example in Section 6.2).

The latter case will be explained in detail in Section 6.3. In any other symmetric conguration, Align-Two-Sym applies reduce 1 (line 22).

Algorithm Align-Two-Asym. This algorithm works similarly to Align-One when the conguration is asymmetric. First, it checks whether the given conguration C has been obtained from a symmetric and allowed conguration C by performing only one of the two symmetric moves.

In the armative case, it performs the possible pending move, otherwise it performs Algorithm Asym. Given the procedures performed by Align-One and Align-Two-Sym, a conguration C with C min = (0 i , 1 j , 0 x , 1 j , R, 1), j ≥ 1, x ≥ 1, and j ≥ 0 can be adjacent to a symmetric conguration C with respect to one such procedure only if C is one of the following congurations: C α := (0 i-1 , 1, 0, 1 j-1 , 0 x , 1 j , 0, R, 1), C β := (0 i-1 , 1 j , 0 x , 1 j , 0, R, 0, 1), if j > 0, C γ := (i.e. C min = (0 i , 1, 0, 1, 0 i , 1, 1)) where reduce 1 is performed. This case will be discussed in Section 6.3, along with the case C min = (0 i , 1, 0 x , 1, 0 i , 1, 0 y , 1), y < x. Moreover each allowed conguration (but C b , C c , and, in some cases, C a ) has an outgoing arc that is traversed by the execution path of the algorithm.

(0 i , 1 j , 0 x-1 , 1, 0, 1 j -1 , R, 1), or, if R = (0, 1, R ), C δ := (0 i , 1 j , 0 x , 1 j +1 , 0,
Since nodes in AS1 have only one outgoing arc, without loss of generality we can consider a condensed graph build in the following way: replace each arc (u, v), such that v ∈ AS1 and the unique out-neighbor z of v belongs to S with arc (u, z). Any execution path in the original graph has a unique correspondent in the condensed graph, while an execution path in the condensed graph only omits the arcs corresponding to forced pending moves. By Lemma 18 and since Asym always reduces the supermin, it follows that each arc in the condensed graph corresponds to a reduction of the supermin. This implies that the condensed graph is acyclic, as we can dene a topological ordering of the nodes as a linear extension of the partial ordering given by the supermin of the corresponding congurations. The statement is then proven by observing that congurations in C a , C b , or C c are those with the minimum possible supermin and hence are the only possible sinks of the graph.

Examples of execution

First example. The example in Figure 8 shows a case where applying reduce 1 on a symmetric conguration results in a symmetric conguration with a dierent axis of symmetry. Let us consider the conguration C in Figure 8a such that C min = (0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1). As v 1 = 0 and C is symmetric, then Algorithm Align-Two-Sym is performed. It rst computes conguration C in Figure 8b which is the one that would be obtained from C by applying reduce 1 on only one robot. As such a conguration is symmetric, reduce 2 is applied. If only one robot moves, then the conguration C in Figure 8c C α given in Figure 8d; C β which is equivalent to C; C γ given in Figure 8e; C δ given in Figure 8f. Among such congurations, only one is symmetric which is C β = C. Therefore, Align-Two-Asym is able to identify the robot that has to move in order to perform the possible pending move. In this specic case, the robot that moved from C to C , is the one on the axis of symmetry. It follows that there are no pending moves and Align-Two-Asym proceeds by applying Asym. Second example. The example in Figure 9 shows a case where applying reduce 1 on a symmetric conguration results in an asymmetric conguration which is adjacent to another symmetric conguration, dierent from the original one, with respect to reduce 1 . Let us consider the conguration of Figure 9a. As v 1 = 0 and C is symmetric, then Algorithm Align-Two-Sym is performed. It rst computes conguration C in Figure 9b which is the one that would be obtained from C by applying reduce 1 on only one robot. As such conguration is asymmetric, the procedure checks whether it can be obtained by applying reduce 1 from a symmetric conguration dierent from C. To this aim it computes:

C α which is equivalent to C; C β given in Figure 9d; C γ given in Figure 9e.

Both congurations C α and C γ are symmetric, and conguration C can be obtained from both of them by applying reduce 1 . By Lemma 5, it follows that one of them belongs to S 1 \ S 3 or both of them belong to S 4 . In fact, C α ∈ S 1 \ S 3 . Therefore, Algorithm Align-Two-Sym exploits Lemma 6 and applies reduce 2 on C. The obtained conguration C is given in Figure 9c. It can be checked that this conguration is asymmetric and it is not adjacent to any symmetric conguration dierent from C with respect to any procedure permitted by Align (as proved in Lemma 6 for the general case).

Further details on particular cases

In this section we give more details on particular congurations handled by Align. First, we focus on the case of Align-One, and then on Align-Two-Sym.

Algorithm Align-One. Let us consider conguration C = (0, 1, 0, 1, 1, 0, 1, 1). In this case, Align performs procedure reduce -1 which moves the robot in v 5 (lying on the axis of symmetry) toward an arbitrary directions. Such a procedure leads to the symmetric conguration C = (0, 1, 0, 1, 0, 1, 1, 1). From C , procedure reduce 0 is performed which leads to conguration C b , eventually. In fact, if both the two symmetric robots that should perform reduce 0 move synchronously, the conguration obtained is (0, 0, 0, 1, 1, 1, 1, 1). Otherwise, if only one of them actually moves, the conguration obtained is C = (0, 0, 1, 0, 1, 1, 1, 1). As C is asymmetric, Algorithm Align-Two-Asym is performed. Such algorithm computes C α = (0, 1, 0, 0, 1, 1, 1, 1), C β = (0, 1, 0, 1, 1, 1, 0, 1), and C γ = (0, 0, 1, 1, 0, 1, 1, 1) and identies C β as the only symmetric conguration among them. Indeed, C β corresponds to C . Therefore, the algorithm performs the pending move and obtains (0, 0, 0, 1, 1, 1, 1, 1).

Algorithm Align-Two-Sym. Congurations that generate adjacent congurations with respect to reduce 1 . We rst dene the following two sets: S 4a are all the congurations C such that one of the following holds:

1. C min = (0 i , 1, 1, 0 x , 1, 1), for some i ≥ 3 and x < i; 2. C min = (0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1); 3. C min = (0 i , 1, 1, 1, 0, 1, 0 i-1 , (1, 1, 0, 1, 1, 0 i-1 ) , 1, 0, 1, 1, 1), for some i ≥ 3 and ≥ 0; C min = (0, 0, 0, 1, 1, 0, (0, 1) , 0, 0, 1, 1), for some ≥ 1; 5. C min = (0 i , 1, 1, 0 i-1 , (1, 0, 1, 0 i-2 ) , 1, 0, 1, 0 i-1 , 1, 1), for some i ≥ 3 and ≥ 0;

6. C min = (0 i , 1, 0 i , 1, 0 i , 1, 0 i , 1, 0 i-1 , 1, 0 i , (1, 0 i-1 , 1, 0 i , 1, 0 i , 1, 0 i-1 , 1, 0 i ) , 1, 0 i-1 , 1),
for some i ≥ 2 and ≥ 1.

S 4b are all the congurations C such that one of the following holds:

1. C min = (0 i-1 , 1, 0, 1, 0 x-1 , 1, 0, 1), for some i ≥ 3 and x < i; 2. C min = (0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1);

3. C min = (0 i-1 , 1, 0, 1, 1, 0, 1, 0 i-1 , (1, 1, 0, 1, 1, 0 i-1
) , 1, 1, 0, 1, 1), for some i ≥ 3 and ≥ 0; 4. C min = (0, 0, 1, 0, 1, 0, (0, 1) , 0, 1), for some ≥ 2; 5. C min = (0 i-1 , 1, 0, 1, 0 i-1 , (1, 0, 1, 0 i-2 ) +1 , 1, 0, 1), for some i ≥ 3 and ≥ 0;

6. C min = (0 i , 1, 0 i , 1, 0 i , (1, 0 i-1 , 1, 0 i , 1, 0 i , 1, 0 i-1 , 1, 0 i ) , 1, 0 i-1 , 1, 0 i , 1, 0 i , 1, 0 i-1 , 1),
for some i ≥ 2 and ≥ 1.

Set S 4 is given by the union of S 4a and S 4b . Observe that

S 4 ⊆ S 1 \ S 3 , that is, if C ∈ S 4 either C ∈ S 3 or C ∈ S 1 .
In particular, congurations 15 of S 4a and conguration 1 of S 4b do not belong to S 1 , while conguration 6 of S 4a and congurations 26 of S 4b belong to S 3 .

In Lemma 5 we show that the set S 4 contains the only congurations not in S 1 \ S 3 such that by applying reduce 1 on only one of the two symmetric robots that are allowed to move, we obtain a conguration that is adjacent with respect to reduce 1 to another symmetric conguration. The set of the congurations obtained by applying reduce 1 on S 4 is called S 4 . In particular, for any conguration C in S 4a , there exists a unique conguration C in S 4b such that the conguration obtained by applying reduce 1 on C and that obtained by applying reduce 1 on C are identical. For example, if we consider congurations C min = (0 i , 1, 1, 0 x , 1, 1), and C min = (0 i-1 , 1, 0, 1, 0 x-1 , 1, 0, 1), for some i ≥ 3 and x < i, then by applying reduce 1 we obtain C min = (0 i , 1, 0, 1, 0 x-1 , 1, 1) from both C and C .

We observe that in symmetric congurations in S 3 we cannot perform reduce 2 , while in those not in S 1 procedures reduce 1 and reduce -1 coincide. Therefore the general strategy is to apply reduce 1 on conguration in S 4a , reduce 2 on congurations in S 4b \ S 1 , and reduce -1 on congurations in S 4b ∩S 3 . In detail, we distinguish the following three cases.

Let us consider the symmetric congurations C s1 = (0 i , 1, 1, 0 x , 1, 1) and C s2 = (0 i-1 , 1, 0, 1, 0 x-1 , 1, 0, 1) with i ≥ 3 and x < i.

Note that in both these cases reduce Let us consider congurations C s3 = (0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1)

and C s4 = (0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1).

By applying reduce 1 on them we obtain C = (0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1). Note that in this case the only move that can be performed on C s3 is reduce 1 as any other procedure might create a multiplicity. Similarly, performing reduce 2 on C s4 might create a multiplicity, while performing reduce -1 might create a periodic conguration. Therefore in this case we perform reduce 1 on C s3 and we move the robot in v 2 to v 3 in C s4 . In Lemma 16 given in Section 6.5, we show that this latter procedure creates a conguration C which is asymmetric and such that the only symmetric conguration which is adjacent to C with respect to any procedure permitted by Align is C = (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1) which is the one that is obtained from C s4 if both the symmetric robots (at nodes v 2 and v 10 ) move synchronously. Moreover, we observe that the obtained conguration C = (0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1) has a supermin that is smaller than that of C s4 since C min = (0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1).

In any other conguration in S 4 we perform reduce 1 on congurations in S 4a and reduce -1 on conguration in S 4b . Note that all such congurations in S 4b are also contained in S 3 . In Lemma 17, we show that applying reduce -1 on such congurations cannot create a symmetric conguration nor a conguration adjacent to any symmetric conguration dierent from the original conguration with respect to any procedure permitted by Align.

Algorithm Align-Two-Sym. Congurations that generate symmetric congurations by performing reduce 1 . Finally, let us consider the case of C min = (0 i , 1, 0 x , 1, (0 i , 1, 0 x-1 , 1) ), for some 1 ≤ x ≤ i and = 1, that is C min = (0 i , 1, 0 x , 1, 0 i , 1, 0 x-1 , 1). We distinguish two cases: x = 1 and x ≥ 1. In the rst case, C min = (0 i , 1, 0, 1, 0 i , 1, 1) and the only possible procedure that reduces the supermin is reduce 1 . However, as shown in Lemma 4, such a move produces a symmetric conguration, namely C min = (0 i+1 , 1, 1, 0 i , 1, 1). Note that, the robot moved from C to C is the one on the axis of symmetry and hence there is no pending move.

Moreover, C is equivalent to conguration C s1 therefore, from this point on, the Align proceeds as in the previous case. If x ≥ 1, then by performing reduce -1 , we obtain conguration C min = (0 i+1 , 1, 0 x , 1, 0 i , 1, 0 x-2 , 1) which is asymmetric. However, C min can be obtained by performing reduce 1 from conguration C min = (0 i , 1, 0 x+1 , 1, 0 i , 1, 0 x-2 , 1). Therefore, algorithm

Align performs move reduce -1 to any conguration C such that C min = (0 i , 1, 0 x , 1, 0 i , 1, 0 y , 1), for some 1 < y < x ≤ i. This latter procedure cannot create a symmetric conguration nor a conguration adjacent to any symmetric conguration dierent from C with respect to any procedure permitted by Align (see Lemma 7).

Pseudo-code

In Figures 1013 we report the pseudo-code of algorithm Align.

Correctness

In this section we prove the lemmata exploited in Theorem 1 .We rst give two technical lemmas.

Lemma 8 If (0, R) = (R, 0) and (0, R) = (R, 0), then R ∈ (0 k ), k ∈ N.
Proof R may be ∅. Clearly, R = (0

) if |R| = 1.
Assume |R| > 1.

By induction on 0 ≤ j ≤ n 2 , we show that R = (0 j , X, 0 j ). Assume that R = (0 j , a, X, b, 0 j ), then, by symmetries, (0, 0 j , a, X, b, 0 j ) = (0 j , b, X, a, 0 j , 0) and (0, 0 j , b, X, a, 0 j ) = (0 j , a, X, b, 0 j , 0), hence a = b = 0 and thus, R = (0 j+1 , X, 0 j+1 ). Then, X = ∅, or |X| = 1, in which case the only possibility is X = (0), or X = (0 j+1 , a , X , b , 0 j+1 ) and the result holds by induction. Lemma 9 Let X and Y be two sequences such that (Y, X) = (X, Y ) and X = X. Then, Y = (U, V ) and X = (Y i , U ), for some U = U , V = V , and i ≥ 0.

Proof Clearly, any pair of sequences X, Y satisfying the properties of the lemma is a valid solution.

We prove that any solution has the desired form by induction on the length of X.

Assume rst that there is a solution to (Y,

X) = (X, Y ) with |X| ≤ |Y |. Then, X is a prex of Y because (Y, X) = (X, Y ). Therefore, Y = (X, V ).
Plugging it into the equation, we get (X, V, X) = (X, V , X). Therefore, V = V . Hence, X and Y have the desired form.

Now, consider a solution such that |X| > |Y |. Then, Y is a prex of X because (Y, X) = (X, Y ).
Therefore, X = (Y, X ). Plugging it into the equation, we get (Y, Y, X ) = (Y, X , Y ). Moreover, because X = X, we get that (Y, X , Y ) = (Y, X , Y ). All together, we get that X = (Y, X ) with (Y, X ) = (X , Y ) and X = X . Therefore, by induction, we get that, there is i ≥ 0 such that X = (Y i , U ) with Y = (U, V ) and U = U and V = V . Hence, X = (Y i+1 , U ) and the lemma holds.

Lemma 10 (Lemma 3) Let C be a symmetric and allowed conguration with supermin C min = (0, 1 j , 0, R), for R = R and j ≥ 1, and let C be the conguration obtained by applying reduce -1 on only one robot on C. Then C has no consecutive occupied nodes and either C min = (0, 1 j , 0, 1 j+1 , 0, 1 j+1 ) or C is asymmetric and it is not adjacent with respect to reduce 0 and reduce -1 to any symmetric conguration dierent from C.

Proof We rst prove that C has no consecutive occupied nodes. By contradiction, let us assume that C min = (0, 0, X) for some X. Since C has no consecutive occupied nodes, then such a sequence in C has been created by the reduce -1 move. This implies that C min = (0, 1 j , 0, 1, 0, R , 0, 1), i.e.

Algorithm: Align

Input: Allowed conguration C with C min = (v 0 , v 1 , . . . , v n-1 ) 

if v 1 = 1 then Align-One(C);
C min = (v 0 , v 1 , . . . , v n-1 ) if C is symmetric then if C min = (0, 1, 0, R), with R = R then reduce -1 (C); else reduce 0 (C); else Let C min = (0, 1, X, 1); Let C = (1, 1, X, 0);
if C is symmetric and allowed and C min = (0, 1, 1, X) then if The robot that moved from C to C is not the one on the axis of symmetry of C then Perform reduce 0 on the robot symmetrical to the one that moved from C to C and exit; else if C is symmetric and allowed, C min = (0, 1, 0, 1, 1, 0, R , 0, 1, 1), and R = R then if The robot that moved from C to C is not the one on the axis of symmetry of C then Perform reduce -1 on the robot symmetrical to the one that moved from C to C and exit; else if C min = (0, 1, 0, 1 j-1 , 0, 1, R , 0, 1 j ) for some j > 1 then Let C = (0, 1, 0, 1 j , 0, R , 0, 1 j ); if C is symmetric and allowed, C min = (0, 1, 0, 1 j , 0, R , 0, 1 j ), and R = R then if The robot that moved from C to C is not the one on the axis of symmetry of C then Perform reduce -1 on the robot symmetrical to the one that moved from C to C and exit; Asym(C); R = (1, 0, R , 0, 1), for some R . This is a contradiction as C min n-2 < C min .

We now prove the second part of the statement. Since R is a palindrome, there cannot exist a supermin starting in R, as otherwise C is periodic. Therefore, R = (1 j , 0, 1 j ) or R = (1 j , 0, R , 0, 1 j ), for some j > j and R = R . In the rst case C = (0, 1 j , 0, 1 j +1 , 0, 1 j -1 ) is symmetric or adjacent with respect to reduce 0 and reduce -1 to any symmetric conguration dierent from C only if j = j + 1, that is C min = (0, 1 j , 0, 1 j+1 , 0, 1 j+1 ). In the latter case, the conguration obtained by applying reduce -1 on only one robot on C is C = (0, 1 j , 0, 1 j , 0, R , 1, 0, 1 j -1 ). We distinguish the following two cases.

j -1 > j. In this case, C min = (0, 1 j , 0, 1 j -1 , 0, 1, R , 0, 1 j ).

If

C

is symmetric, then it contains a sequence (0, 1 j , 0, 1 j -1 , 0) dierent from that at nodes v 0 v j+j +1 and not overlapping with it since j -1 > j. Such a sequence must exist also in C but this is a contradiction to the superminimality of C min as such a sequence is smaller than (0, 1 j , 0, 1 j , 0). Input: Allowed conguration C with

C = (0, 1 j+1 , 0, 1 j -1 , 0, 1, R , 0, 1 j -1 ), or (ii) C = C, or (iii) C = (0, 1 j+1 , 0, 1 j -2 , 0, 1, R , 0, 1 j ).
C min = (v 0 , v 1 , . . . , v n-1 ) if C ∈ S 2 or C min = (0 i , 1, 0 i , 1, (0 i , 1, 0 i , 1, 0 i-1 , 1) ), for some ≥ 1, OR C min = (0 i , 1, 0 x , 1, (0 i , 1, 0 x-1 , 1 
) ), for some ≥ 2 and 1 ≤ x ≤ i, OR C min = (0 i , 1, 0 x , 1, 0 i , 1, 0 y , 1), for some 1 ≤ y < x ≤ i, OR C ∈ S 4b ∩ S 3 \ {(0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1)} then reduce -1 (C); else Let C be the conguration obtained by applying reduce 1 (C) to one robot of C; if C is symmetric then reduce 2 (C); else Let C = (0 i , 1 j , 0, R, 1), for i ≥ 2 and j ≥ 1;

C α := (0 i-1 , 1, 0, 1 j-1 , 0, R, 1); C β := (0 i-1 , 1 j , 0, R, 0, 1); if R = (1, R ) then C γ := (0 i , 1 j+1 , 0, R , 1); if At least two among C α , C β ,
and C γ are symmetric, the procedure from both of them corresponds to reduce 1 , and (C ∈ S 1 \ S 3 or C = (0 i , 1, 0, 1, 0 x , 1, 0, 1), x > 0) then reduce 2 (C); else if C min = (0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1) then Move the robot in v 2 to v 3 ; else reduce 1 (C); Algorithm: Align-Two-Asym Input: Allowed conguration C with C min = (v 0 , v 1 , . . . , v n-1 ) Let C = (0 i , 1 j , 0 x , 1 j , R, 1) with j ≥ 1, x ≥ 1, and j ≥ 0; C α := (0 i-1 , 1, 0, 1 j-1 , 0 x , 1 j , R, 1); C β := (0 i-1 , 1 j , 0 x , 1 j , R, 0, 1); if j > 0 then C γ := (0 i , 1 j , 0 x-1 , 1, 0, 1 j -1 , R, 1); if R = (0, 1, R ) then C δ := (0 i , 1 j , 0 x , 1 j +1 , 0, R , 1); for y ∈ {α, β, γ, δ} do if C y is symmetric and allowed then if C y has no consecutive occupied nodes then Let C be the conguration obtained by executing Align-One on C y ; else Let C be the conguration obtained by executing Align-Two-Sym on C y ; if C = C then if The robot that moved from C y to C is not the one on the axis of symmetry of C y then Perform the move symmetrical to the one that is performed from C to C and exit; Asym(C); C min = (0, 1 j+1 , 0, 1 j -1 , 0, 1, R , 0, 1 j -1 ), or by performing reduce -1 on C where C min = (0, 1 j -1 , 0, 1, R , 0, 1 j -1 , 0, 1 j+1 ); 

C

where C min = (0, 1 j , 0, R , 1, 0, 1 j -2 , 0, 1 j+1 ).

In the rst case of (i), as the supermin of C is (0, 1 j+1 , 0, 1 j -1 , 0, 1, R , 0, 1 j -1 ), we have that (0, 1 j+1 , 0, 1 j -1 , 0, 1, R , 0, 1 j -1 ) ≤ (0, 1 j+1 , 0, 1 j -1 , 0, R , 1, 0, 1 j -1 ) which implies that (1, R ) ≤ (R , 1). These last inequalities can be satised only if R = (1 j ) for some j > j, which implies that k = 4, a contradiction. In the second case of (i), since a reduce -1 move has been performed, then we must have that the axis passes through the middle of the rst sequence of j -1 consecutive empty nodes and that (1, R , 0, 1 j -1 , 0, 1 j+1 ) is a palindrome, that is (R , 0, 1 j -1 , 0, 1 j ) = (1 j , 0, 1 j -1 , 0, R ). By Lemma 9, it follows that R = ((1 j , 0, 1 j -1 , 0) , 1 j ) for some ≥ 0. However, in this case we have that C min = (0, 1 j , 0, 1 j , 0, (1 j , 0, 1 j -1 , 0) , 1 j , 0, 1 j ) which is a contradiction as: for > 0, C min j+j +2 < C min , and, for = 0, C is periodic.

The case (ii) corresponds to the procedure that has been actually performed.

In case (iii), we have that the axis passes through the middle of the rst sequence of j consecutive empty nodes and that the sequence (R , 1, 0, 1 j -2 , 0, 1 j+1 ) is a palindrome, that is (R , 1, 0, 1 j -2 , 0, 1 j+1 ) = (1 j+1 , 0, 1 j -2 , 0, 1, R ). By Lemma 9, this can occur only if j = 0 as otherwise the sequence (1 j+1 , 0, 1 j -2 , 0, 1) cannot be split into two palindromic sub-sequences. We obtained a contradiction as j ≥ 1.

j -1 = j. We rst prove that C is asymmetric.

In this case C = (0, 1 j , 0, 1 j+1 , 0, R , 1, 0, 1 j ) and either C min = (0, 1 j , 0, 1 j , 0, 1 j+1 , 0, R ,

or C min = (0, 1 j , 0, 1 j , 0, 1, R , 0, 1 j+1 ). In any case R cannot contain a sequence (0, 1 j , 0, 1 j ) as otherwise the superminimality of C min is contradicted. Therefore, if C min = (0, 1 j , 0, 1 j , 0, 1 j+1 , 0, R , 1), the axis of symmetry can only pass through the rst sequence of j consecutive empty nodes or in the robot separating the two sequences of j consecutive empty nodes. In the rst case, R must start with a (1 j-1 , 0) but this is a contradiction to the superminimality of C min . In the second case, we must have that (1 j+1 , 0, R , 1) = (1, R , 0, 1 j+1 ) that is (1 j , 0, R ) = (R , 0, 1 j ). By Lemma 9, this implies that R = ((1 j , 0) , 1 j ) for some ≥ 0. It follows that C min = (0, 1 j , 0, 1 j+1 , 0, (1 j , 0) , 1 j , 0, 1 j+1 ).

However, this implies that: if = 0, then C is periodic, and if > 0, then C min 2j+3 < C min . In any case, we obtain a contradiction.

If C min = (0, 1 j , 0, 1 j , 0, 1, R , 0, 1 j+1 ), the axis of symmetry can only pass through the robot separating the two sequences of j consecutive empty nodes. Note that, in this case, C min = (0, 1 j , 0, 1 j , 0, 1, R , 0, 1 j+1 ) = (0, 1 j , 0, 1 j , 0, 1 j+1 , 0, R , 1) and hence the same arguments as before can be applied. (0, 1 j+1 , 0, 1 j , 0, 1, R , 0, 1 j ) or C min = (0, 1 j , 0, 1, R , 0, 1 j , 0, 1 j+1 ), respectively. The rst case is impossible as C min is not minimum. In the second case, we must have that (1, R , 0, 1 j , 0, 1 j+1 ) = (1 j+1 , 0, 1 j , 0, R , 1) and hence (R , 0, 1 j , 0, 1 j ) = (1 j , 0, 1 j , 0, R ).

Conguration

By Lemma 9, this implies that R = ((1 j , 0, 1 j , 0) , 1 j ) or R = ((1 j , 0, 1 j , 0) , 1 j , 0, 1 j ). In any case, we obtain that k = 4, or C is periodic, or C min is not minimum.

Lemma 11 (Lemma 4) Let C be a symmetric and allowed conguration with supermin C min = (0 i , 1, R), i > 1, and let C be the conguration obtained by applying reduce 1 on only one robot on C.

If C is symmetric, then C ∈ S 1 \S 3 or C min = (0 i , 1, 0 i , 1, (0 i , 1, 0 i , 1, 0 i-1 , 1) ), for some ≥ 1, or C min = (0 i , 1, 0 x , 1, (0 i , 1, 0 x-1 , 1) ), for some ≥ 1 and 1 ≤ x ≤ i.
Proof We rst show that C ∈ S 1 and then that the only conguration in S 3 that leads to a symmetric C is such that C min = (0 i , 1, 0 i , 1, (0 i , 1, 0 i , 1, 0 i-1 , 1) ), for some ≥ 1, or C min = (0 i , 1, 0 x , 1, (0 i , 1, 0 x-1 , 1) ), for some ≥ 1 and 1 ≤ x ≤ i.

Let C min = (0 i , 1 j , 0, R ) for j ≥ 1, then S = (0 i ,

1 j-1 , 0, 1, R ) is a representation of C . We show that if j > 1, then C min = (0 i , 1 j-1 , 0, 1, R )
is the unique supermin of C , i.e. the conguration is asymmetric. Note that S < C min and that S h > C min h ≥ C min for each h = 1 . Moreover, S 1 > S. Therefore, S h cannot be a supermin of C for each h. To obtain a contradiction, let j be an integer such that S j < S. Then C min j < C min , a contradiction.

It follows that if C is symmetric, then C min = (0 i , 1, 0, R ) and the supermin of C is (0 i+1 , 1, R ), or (0 i+1 , R , 1) or both. In this case, C has an axis of symmetry passing through the middle of the unique sequence of i + 1 consecutive occupied nodes. This implies that (0 i+1 , 1, R ) = (0 i+1 , R , 1). Let us assume that the axis of symmetry of C passes through the middle of the initial sequence of i consecutive occupied nodes. Then, the sequence (1, 0, R ) is a palindrome and then R = (R , 0, 1) with R = R . Since, by the symmetry of C , (1, R ) = (R , 1), then (1, R , 0, 1) = (1, 0, R , 1) and therefore (R , 0) = (0, R ). By Lemma 8, R = (0 j ) for some j and then C min = (0 i , 1, 0 j +2 , 1) which is a contradiction as it implies that k = n -2. Therefore, the axis of symmetry of C does not pass through the middle of the initial sequence of i consecutive occupied nodes and therefore there is another such sequence. Therefore, C ∈ S 1 .

We now consider the possibility that C ∈ S 3 .

Since C is asymmetric if C min = (0 i , 1 j , 0, R ) for any R and j > 1, we now show that it is asymmetric if

C min = (0 i , 1, 0 i-1 , 1, 0, R, 1), for some R = R. Let us assume that C min = (0 i , 1, 0 i-1 , 1, 0, R, 1) with R = R, then C = (0 i+1 , 1, 0 i-2 , 1, 0, R, 1).
Since there is only one sequence of i+1 consecutive occupied nodes, then C can only have an axis of symmetry passing through the initial sequence of consecutive occupied nodes, and hence C min = (0 i+1 , 1, 0 i-2 , 1, 0, R, 1) and the

sequence (1, 0 i-2 , 1, 0, R, 1) is a palindrome. By Lemma 9, C is symmetric if and only if R = ((0 i-2 , 1, 0) , 0 i-3 ), with i ≥ 3, that is C min = (0 i , 1, 0 i-1 , 1, 0, (0 i-2 , 1, 0) , 0 i-3 , 1
) and then C is asymmetric.

Let us now assume that C min = (0 i , 1 j , 0 x , 1 j , 0 x , 1 j , 0 i , Z) with Z = Z, j, j > 0, and 1 ≤ x ≤ i. We can assume that j = 1 as otherwise C is asymmetric. After applying reduce 1 , we have

C min = (0 i+1 , 1, 0 x-1 , 1 j , 0 x , 1, 0 i , Z) with (1, 0 x-1 , 1 j , 0 x , 1, 0 i , Z) palindromic, that is (1, 0 x-1 , 1 j , 0 x , 1, 0 i , Z) = (Z, 0 i , 1, 0 x , 1 j , 0 x-1 , 1)
.

By Lemma 9 it follows that Z = ((1, 0 i , 1 j , 0 i+1 , 1, 0 i ) , 1), for some ≥ 0 and x -1 = i; or Z = ((1, 0 i-1 , 1, 0 i , 1, 0 i ) , 1, 0 i-1 , 1), for some ≥ 0, x = i, and j = 1; or Z = ((1 j+1 , 0, 1, 0 i ) , 1 j+1 ), for some ≥ 0, x = 1, and i = 1. In the rst case we obtain a contradiction with the hypothesis that x ≤ i; in the second case, we have that C min = (0 i , 1, 0 i , 1, 0 i , 1, 0 i , (1, 0 i-1 , 1, 0 i , 1, 0 i ) , 1, 0 i-1 , 1) = (0 i , 1, 0 i , 1, (0 i , 1, 0 i , 1, 0 i-1 , 1) +1 ), for ≥ 0; in the third case we obtain a contradiction with the hypothesis that i > 1.

Finally, let us now assume that C min = (0 i , 1 j , 0 x , 1 j , 0 i , Z) for some Z = Z, j > 0 and 1 ≤ x ≤ i. Also in this case, we can assume that j = 1 as otherwise C is asymmetric. After applying reduce 1 , we have C min = (0 i+1 , 1, 0 x-1 , 1, 0 i , Z) with (1, 0 x-1 , 1, 0 i , Z) palindromic. By Lemma 9 it follows that Z = ((1, 0 x-1 , 1, 0 i ) , 1), for some ≥ 0 and x -1 = i; or Z = ((1, 0 x-1 , 1, 0 i ) , 1, 0 x-1 , 1), for some ≥ 0. In the rst case we obtain a contradiction with the hypothesis that x ≤ i; in the second case, we have that C min = (0 i , 1, 0 x , 1, 0 i , (1, 0 x-1 , 1, 0 i ) , 1, 0 x-1 , 1) = (0 i , 1, 0 x , 1, (0 i , 1, 0 x-1 , 1) +1 ), for ≥ 0. A. If a symmetric conguration C with i ≥ 2 consecutive occupied nodes does not belong to S 1 , then C min = (0 i , 1 j , 0, R, 0, 1 j ) for some j > 0 and R = R (that is the axis of symmetry passes through the middle of the sequence of i occupied nodes and the middle of R) or C min = (0 i , 1 j , 0, 1 j ) for some j > 1.

We rst analyze the case when both the congurations C and C belong to the rst type. In this case C min = (0 i , 1 j , 0, R, 0, 1 j ) and C min = (0 i , 1 j , 0, R , 0, 1 j ), for some j, j > 0, R = R, and R = R . The congurations obtained after applying reduce 1 on only one robot from C and C are C = (0 i , 1 j-1 , 0, 1, R, 0, 1 j ) and C = (0 i , 1 j -1 , 0, 1, R , 0, 1 j ), respectively.

Four cases arise: j > 1 and j > 1. In this case C min = (0 i , 1 j-1 , 0, 1, R, 0, 1 j ) and C min = (0 i , 1 j -1 , 0, 1, R , 0, 1 j ). Therefore, if C = C , then i = i , j = j , and R = R , which implies that C = C , a contradiction. j = 1 and j > 1. In this case C = (0 i+1 , 1, R, 0, 1) and C min = (0 i+1 , 1, 0, R, 1), while C min = (0 i , 1 j -1 , 0, 1, R , 0, 1 j ). Therefore, if C = C , then i = i + 1, j -1 = 1, and R = (1, R , 0, 1). Since R = R, then (R , 0) = (0, R ) which, by Lemma 8, implies that R = (0 y ), for some y ≥ 0. Summarizing, C min = (0 i , 1, 0, 1, 0 y+1 , 1, 0, 1), C min = (0 i+1 , 1, 1, 0 y+2 , 1, 1), and C = C = (0 i+1 , 1, 0, 1, 0 y+1 , 1, 1), for some 0 ≤ y ≤ i -2, that is, C ∈ S 4b , C ∈ S 4a , and C ∈ S 4 . j > 1 and j = 1. This case is equivalent to the previous one. j = 1 and j = 1. In this case C min = (0 i+1 , 1, 0, R, 1) and C min = (0 i +1 , 1, 0, R , 1). Therefore, if C = C , then i = i and R = R , which implies that C = C , a contradiction. If C min = (0 i , 1 j , 0, 1 j ) and C min = (0 i , 1 j , 0, 1 j ) for some j, j > 1, then C min = (0 i , 1 j-1 , 0, 1 j+1 ) and C min = (0 i , 1 j -1 , 0, 1 j +1 ). Therefore, if C = C , then i = i and j = j , which implies that C = C , a contradiction.

If C min = (0 i , 1 j , 0, 1 j ) and C min = (0 i , 1 j , 0, R , 0, 1 j ), for some j > 1, j > 0, and R = R , then two cases arise.

j >

1. In this case, C min = (0 i , 1 j-1 , 0, 1 j+1 ) and C min = (0 i , 1 j -1 , 0, 1, R , 0, 1 j ). Therefore, if C = C , then i = i , j = j and (1, R , 0, 1 j ) = (1 j+1 ), a contradiction. j = 1. In this case, C min = (0 i , 1 j-1 , 0, 1 j+1 ), C = (0 i +1 , 1, R , 0, 1), and C min = (0 i +1 , 1, 0, R , 1). Therefore, if C = C , then i = i + 1 and (1 j-1 , 0, 1 j+1 ) = (1, 0, R , 1). This implies that j -1 = 1 and R = (1 j ).

In conclusion, C min = (0 i , 1, 1, 0, 1, 1), C min = (0 i-1 , 1, 0, 1, 1, 0, 1), and C = C = (0 i , 1, 0, 1, 1, 1), that is, C ∈ S 4a , C ∈ S 4b , and C ∈ S 4 . B. In this case C min = (0 i , 1 j , 0, R, 0, 1 j ), for some j > 0 and R = R (we exclude the case C min = (0 i , 1 j , 0, 1 j ) since it always generates a contradiction). For C we have four cases (a) C min = (0 i , 1 j , 0 x , 1 j , 0 x , 1 j , 0 i , Z) for some Z = Z, j, j > 0 and 1 ≤ x ≤ i; (b) C min = (0 i , 1 j , 0 x , 1 j , 0 i , Z) for some Z = Z, j > 0 and 1 ≤ x ≤ i;

(c) C min = (0 i , 1 j , 0 i-1 , 1, 0, R, 1), R = R, j > 0.
We give full details on the rst case, the other cases can be shown by similar arguments and therefore, we only state the conditions that do not lead to a contradiction.

(a) In this case C = (0 i , 1 j -1 , 0, 1, R, 0, 1 j ) and C = (0 i , 1 j -1 , 0, 1, 0 x-1 , 1 j , 0 x , 1 j , 0 i , Z) and four cases may arise: j = 1 and j > 1. In this case, C min = (0 i +1 , 1, 0, R, 1) and C min = (0 i , 1 j -1 , 0, 1, 0 x-1 , 1 j , 0 x , 1 j , 0 i , Z). If C = C , then i = i + 1, j = 2, and R = (1, 0 x-1 , 1 j , 0 x , 1, 1, 0 i , 1, Z ), where Z is such that Z = (1, Z , 1) and Z = Z . By plugging R into C we obtain a contradiction because C cannot contain a sequence of i = i + 1 consecutive occupied nodes. j = 1 and j = 1. In this case,

C min = (0 i +1 , 1, 0, R, 1) and C = (0 i+1 , 1, 0 x-1 , 1 j , 0 x , 1, 0 i , Z). The supermin of C is C min = (0 i+1 , 1, 0 x-1 , 1 j , 0 x , 1, 0 i , Z) or C min = (0 i+1 , Z, 0 i , 1, 0 x , 1 j , 0 x-1 , 1).
In both cases , if C = C , then i = i . In the former case, we have that (R, 1) = (0 x-2 , 1 j , 0 x , 1, 0 i , Z) which is a contradiction since C ∈ S 1 and therefore it cannot contain a sequence of i = i consecutive occupied nodes. In the latter case, we have that (1, 0, R) = (Z, 0 i , 1, 0 x , 1 j , 0 x-1 ) and either R contains a sequence of i = i consecutive occupied nodes or Z = (1) and R = (0 i-1 , 1, 0 x , 1 j , 0 x-1 ). However, R is a palindrome only if x = i, and again it contains a a sequence of i = i consecutive occupied nodes. j > 1 and j > 1. In this case, C = (0 i , 1 j -1 , 0, 1, R, 0, 1 j ) and C = (0 i , 1 j -1 , 0, 1, 0 x-1 , 1 j , 0 x , 1 j , 0 i , Z). If C = C , then i = i , j = j , and (R, 0, 1 j ) = (0 x-1 , 1 j , 0 x , 1 j , 0 i , Z). In any case we obtain that R contains a sequence of i = i consecutive occupied nodes, a contradiction. j > 1 and j = 1. In this case,

C min = (0 i , 1 j -1 , 0, 1, R, 0, 1 j ) and C = (0 i+1 , 1, 0 x-1 , 1 j , 0 x , 1, 0 i , Z). The supermin of C is C min = (0 i+1 , 1, 0 x-1 , 1 j , 0 x , 1, 0 i , Z) or C min = (0 i+1 , Z, 0 i , 1, 0 x , 1 j , 0 x-1 , 1), in both cases, i = i + 1. If C min = (0 i+1 , 1, 0 x-1 , 1 j , 0 x , 1, 0 i , Z), then we must have (1 j -1 , 0, 1, R, 0, 1 j ) =
(1, 0 x-1 , 1 j , 0 x , 1, 0 i , Z).

The following cases arise.

(1)

x -1 = 0, j -1 = j + 1 and (R, 0, 1 j ) = (0 i , Z), which implies that C min = (0 i+1 , 1 j , 0 i+1 , Z)

which is a contradiction as it contains a sequence of i+1 = i consecutive occupied nodes and therefore it belongs to S 1 . (2) j -1 = 1,

x -1 = 1, which implies that (R, 0, 1, 1) = (1 j-1 , 0, 0, 1, 0 i , Z).

We obtain the following sub-cases.

(2a) Z = (1, 1), which implies that R = (1 j-1 , 0, 0, 1, 0 i-1 ) and, since R = R, that j = 1 and i = 3. Therefore, C min = (0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1), C min = (0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1), and C = C = (0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1), that is, C ∈ S 4a , C ∈ S 4b , and

C ∈ S 4 . (2b) Z = (1, 1, 0, 1, 1), which implies that R = (1 j-1 , 0, 0, 1, 0 i , 1, 1)
and, since R = R, that j = 3 and i = 2. Therefore, C min = (0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1) which is a contradiction as C min 8 < C min . (2c) Z = (1, 1, 0, Z , 0, 1, 1) with Z = Z , which implies that R = (1 j-1 , 0, 0, 1, 0 i , 1, 1, 0, Z ).

We exploit Lemma 9 to compute a closed sequence for R and Z .

The only way to divide the sequence (1 j-1 , 0, 0, 1, 0 i , 1, 1, 0) into two palindromic subsequences U and V is U = (0, 0, 1, 0, 0) and V = (0, 1, 1, 0), where i = 3 and j = 1. We obtain that Z = ((0, 0, 1, 0, 0, 0, 1, 1, 0) , 0, 0, 1, 0, 0) for some ≥ 0 and C min = (0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, (0, 0, 1, 0, 0, 0, 1, 1, 0) , 0, 0, 1, 0, 0, 0, 1, 1) which is a contradiction as C min 15 < C min .

If

C min = (0 i+1 , Z, 0 i , 1, 0 x , 1 j , 0 x-1 , 1), then we must have that

(1 j -1 , 0, 1, R, 0, 1 j ) = (Z, 0 i , 1, 0 x , 1 j , 0 x-1 , 1). Since j > 1, then x -1 = 0 and j + 1 = j . Hence, (1 j , 0, 1, R) = (Z, 0 i , 1), two cases may arise. (1) R = (1, 0 i , 1) and Z = (1 j , 0, 1, 1). Since Z = Z, then j = 2. Therefore, C min = (0 i+1 , 1, 1, 1, 0, 1, 0 i , 1, 0, 1, 1, 1), C min = (0 i , 1, 0, 1, 1, 0, 1, 0 i , 1, 1, 0, 1, 1), and

C = C = (0 i+1 , 1, 1, 0, 1, 1, 0 i , 1, 0, 1, 1, 1), that is, C ∈ S 4a , C ∈ S 4b , and C ∈ S 4 . (2) R = (1, 0 i , R , 0 i , 1)
for some R = R and Z = (1 j , 0, 1, 1, 0 i , R ). Again we exploit Lemma 9 to compute a closed sequence for R and Z. The only way to divide the sequence (1 j , 0, 1, 1, 0 i ) into two palindromic subsequences U and V is U = (1, 1, 0, 1, 1) and V = (0 i ), where j = 2. We obtain that R = ((1, 1, 0, 1, 1,

0 i ) , 1, 1, 0, 1, 1), R = (1, 0 i , (1, 1, 0, 1, 1, 0 i ) , 1, 1, 0, 1, 1, 0 i , 1) = (1, 0 i , (1, 1, 0, 1, 1, 0 i ) +1 , 1), and Z = ((1, 1, 0, 1, 1, 0 i ) +1 , 1 , 1, 0, 1, 1) 
, for some ≥ 0. Therefore, C min = (0 i+1 , 1, 1, 1, 0, 1, 0 i , (1, 1, 0, 1, 1, 0 i ) +1 , 1, 0, 1, 1, 1), C min = (0 i , 1, 0, 1, 1, 0, 1, 0 i , (1, 1, 0, 1, 1, 0 i ) +1 , 1, 1, 0, 1, 1), and C = C = (0 i+1 , 1, 1, 0, 1, 1, 0 i , (1, 1, 0, 1, 1, 0 i ) +1 , 1, 0, 1, 1, 1), that is, C ∈ S 4a , C ∈ S 4b , and C ∈ S 4 . (b) In this case C = (0 i , 1 j -1 , 0, 1, R, 0, 1 j ) and C = (0 i , 1 j -1 , 0, 1, 0 x-1 , 1 j , 0 i , Z).

By using arguments similar to those used in the previous case, we obtain that if C = C , then one of the following cases is possible.

i = 3, j = 2, R = (0, (1, 0, 1, 0) , 1, 0), i = 2, j = 1, x = 1, and Z = ((1, 0, 1, 0) +1 , 1), for some ≥ 0. Therefore, C min = (0, 0, 0, 1, 1, 0, 0, (1, 0, 1, 0) , 1, 0, 0, 1, 1) = (0, 0, 0, 1, 1, 0, (0, 1) 2 +1 , 0, 0, 1, 1), C min = (0, 0, 1, 0, 1, 0, 0, (1, 0, 1, 0) +1 , 1) = (0, 0, 1, 0, 1, 0, (0, 1) 2 +2 , 0, 1), and C = C = (0, 0, 0, 1, 0, 1, 0, (1, 0, 1, 0) , 1, 0, 0, 1, 1) = (0, 0, 0, 1, 0, 1, (0, 1) 2 +1 , 0, 0, 1, 1), that is, C ∈ S 4a , C ∈ S 4b , and C ∈ S 4 . i = i + 1, j = 2, R = (0 i-1 , (1, 0, 1, 0 i-1 ) , 1, 0, 1, 0 i-1 ), j = 1, x = 1, and Z = ((1, 0, 1, 0 i-1 ) +1 , 1, 0, 1), for some ≥ 0. Therefore, C min = (0 i+1 , 1, 1, 0 i , (1, 0, 1, 0 i-1 ) , 1, 0, 1, 0 i , 1, 1), C min = (0 i , 1, 0, 1, 0 i , (1, 0, 1, 0 i-1 ) +1 , 1, 0, 1), and C = C = (0 i+1 , 1, 0, 1, 0 i-1 , (1, 0, 1, 0 i-1 ) , 1, 0, 1, 0 i , 1, 1), that is, C ∈ S 4a , C ∈ S 4b , and C ∈ S 4 . (c) In this case C = (0 i , 1 j -1 , 0, 1, R, 0, 1 j ) and C = (0 i , 1 j-1 , 0, 1, 0 i-2 , 1, 0, R , 1).

By using arguments similar to those used in the previous case, we obtain that if C = C , then i = 2, i = 3, j = 1, j = 2, R = ((0, 1) , 0), R = ((0, 1) +1 , 0), for some ≥ 0. Therefore, C min = (0, 0, 0, 1, 1, 0, (0, 1) , 0, 0, 1, 1), C min = (0, 0, 1, 0, 1, 0, (0, 1) +1 , 0, 1), and C = C = (0, 0, 0, 1, 0, 1, (0, 1) , 0, 0, 1, 1), that is, C ∈ S 4a , C ∈ S 4b , and C ∈ S 4 .

C. This case is symmetrical to the previous one. D. Let us dene the following three congura- Since the arguments used to analyze these cases are similar to those already used, we only give the conditions that do not lead to a contradiction. In particular, the only case that do not lead to a contradiction is case

tions C r = (0 i , 1 j , 0 x , 1 j , 0 x , 1 j , 0 i , Z) for some Z = Z, j, j > 0 and 1 ≤ x ≤ i; C s = (0 i , 1 j , 0 x , 1 j , 0 i , Z) for some Z = Z, j > 0 and 1 ≤ x ≤ i; and C t = (0 i , 1 j , 0 i-1 , 1, 0, R, 1), R = R, j > 0.
(b) when C = (0 i , 1, 0 i , 1, 0 i , 1, 0 i , 1, 0 i-1 , 1, 0 i , (1, 0 i-1 , 1, 0 i , 1, 0 i , 1, 0 i-1 , 1, 0 i ) , 1, 0 i-1 , 1), C = (0 i , 1, 0 i , 1, 0 i , (1, 0 i-1 , 1, 0 i , 1, 0 i , 1, 0 i-1 , 1, 0 i ) , 1, 0 i-1 , 1, 0 i , 1, 0 i , 1, 0 i-1 , 1), for some > 0, that is, C ∈ S 4a , C ∈ S 4b , and C ∈ S 4 .
Lemma 13 (Lemma 6) Let C be a conguration in S 1 \ S 3 with supermin C min = (0 i , 1, R), i > 1, and let C be the conguration obtained by applying reduce 2 on only one robot on C. Then C is asymmetric and it is not adjacent with respect to reduce 1 or reduce 2 to any symmetric conguration dierent from C.

Proof We rst show that C is asymmetric and that cannot it be obtained by applying reduce 1 on a conguration dierent from C Note that if C min = (0 i , 1 j , 0, X, 1), for some j ≥ 1, then it can be obtained by performing reduce 1 on a conguration C such that (i) C = (0 i-1 , 1, 0, 1 j-1 , 0, X, 1), or (ii) C = (0 i-1 , 1 j , 0, X, 0, 1), or (iii) C = (0 i , 1 j+1 , 0, X , 1), where this last case can occur only if X = (1, X ) for some X .

We obtain the following cases.

C min = (0 i , 1, 0 i , 1, 0, R ). In this case, C has a representation C = (0 i , 1, 0 i+1 , 1, R ) and, since there is only one sequence of i + 1 consecutive occupied nodes, the axis of symmetry of C passes through such a sequence and

C min = (0 i+1 , 1, R , 0 i , 1) = (0 i+1 , 1, 0 i , R , 1) 
.

However, this implies that R starts with 0 i which is a contradiction to the superminimality of C min as in this case C min contains a sequence of i + 1 consecutive occupied nodes. This also implies that C min = (0 i+1 , 1, 0 i , R , 1).

If C can been obtained by applying reduce 1 on a conguration C dierent from C, then (i) C = (0 i , 1, 0 i+1 , R , 1), or (ii) C = (0 i , 1, 0 i , R , 0, 1). The case (iii) cannot occur as in this case X starts with 0. In both cases the step from C to C does not correspond to reduce 1 , a contradiction. C min = (0 i , 1, 0 i , 1 j , 0, R ), j > 1. In this case,

C

min = (0 i , 1, 0 i , 1 j-1 , 0, 1, R ). Moreover, such sequence is the only supermin sequence as otherwise we obtain a contradiction to the superminimality of C min . Therefore, C is asymmetric. If C has been obtained by applying reduce 1 on a conguration C dierent from C, then (i) C = (0 i-1 , 1, 0 i+1 , 1 j-1 , 0, 1, R ), or (ii) C = (0 i-1 , 1, 0 i , 1 j-1 , 0, 1, R , 0, 1) with R = (R , 1). The case (iii) cannot occur as in this case X starts with 0. In both cases (i) and (ii) the step from C to C does not correspond to reduce 1 , a contradiction.

C min = (0 i , 1 j , 0 x , 1 j , 0, R ), x ≤ i, j > 0, and j > 0. We exclude the case x = i and j = 1

because it has been already analyzed. In this case, C = (0 i , 1 j , 0 

x , 1 j -1 , 0, 1, R ). If x < i -1 or j > 1, then C min = (0 i , 1 j , 0 x , 1 j -1 , 0, 1, R ).
C dierent from C, then (i) C = (0 i-1 , 1, 0, 1 j-1 , 0 x , 1 j -1 , 0, 1, R ), (ii) C = (0 i-1 , 1 j , 0 x , 1 j -1 , 0, 1, R , 0, 1) with R = (R , 1), or (iii) C = (0 i , 1 j+1 , 0, 1 j -2 , 0, 1, R )
where x = 1 and j > 1 as otherwise such case cannot occur. Since C ∈ S 1 , in cases (i) and (ii) R contains a sequence of i consecutive occupied nodes and hence the step from C to C does not correspond to reduce 1 , a contradiction. In case (iii) C min = (0 i , 1 j+1 , 0, 1 j -2 , 0, 1, R ) as the superminimality of C implies that either R contains a sequence (0, 1 j , 0 i ) or it nishes by (0, 1 j ). Therefore also in this case, the step from C to C does not correspond to reduce 1 .

If x = i -1 and j = 1, then C min = (0 i , 1 j , 0 i-1 , 1, 0, R ) then C ∈ S 3 since R must nish by 1. If x = i, j = 1, and j > 1, then C min = (0 i , 1 j , 0 i , 1, 0, R ) is a contradiction as (C min ) i+j < C min .
We conclude the proof by showing that C cannot be obtained by applying reduce 2 on a conguration dierent from C.

Let us assume that

C min = (0 i , 1 j , 0 x , 1 j , 0 y , 1, X). After perform- ing reduce 2 on C we have C = (0 i , 1 j , 0 x , 1 j -1 , 0, 1, 0 y-1 , 1, X).
Let us assume that C can be obtained by performing reduce 2 on symmetric conguration C dierent from C. The following cases may arise. X = (X , 0 i , 1 j ) and the supermin of C starts from the sequence of i consecutive occupied nodes in X. In this case we have that either C = (0 i-1 , 1, 0, 1 j-1 , 0 x , 1 j -1 , 0, 1, 0 y-1 , 1, X ,

0 i , 1 j ) or x = 1 and C = (0 i , 1 j+1 , 0, 1 j -2 , 0, 1, 0 y-1 , 1, X , 0 i , 1 j ). The supermin of C is either C min = (0 i , 1 j , 0 i-1 , 1, 0, 1 j-1 , 0 x , 1 j -1 , 0, 1, 0 y-1 , 1, X ) or C min = (0 i , 1 j , 0 i , 1 j+1 , 0, 1 j -2 , 0, 1, 0 y-1 ,
1, X ), respectively. In any case, we must have that j > j otherwise we obtain a contradiction to the superminimality of C min . It follows that the axis of symmetry of C

does not pass through the middle of the initial sequence of i consecutive occupied nodes. Therefore, by symmetry X contains a sequence (0 i , 1 j , 0) which is a contradiction to the superminimality of C min .

The supermin of C starts from the same node as C . In this case C min = (0 i , 1 j , 0 x-1 , 1, 0, 1 j -2 , 0, 1, 0 y-1 , 1, X) but, since C is symmetric, there must exist in C a sequence which starts by (0 i , 1 j , 0 x ) dierent from that at nodes v 0 v i+j+x-1 . As C ∈ S 3 , such a sequence must belong to X (or X) and therefore it is still in C and induces a view which is smaller than C min , a contradiction.

The supermin of C starts from the sequence of consecutive occupied nodes corresponding to position i + j of C. Three cases may arise.

x = i, y = 2 and j -1 < j. In this case C = (0 i , 1 j , 0 i , 1 j -1 , 0, 1, 1, 0, X) and C min = (0 i , 1 j -1 , 0, 1, 1, 0, X, 0 i , 1 j ).

As j ≥ j by the superminimality of C min , then j = j and hence C min = (0 i , 1 j-1 , 0, 1, 1, 0, X, 0 i , 1 j ). It follows that either X contains a sequence (0 i , 1 j-1 , 0) or that X starts by 0 i-1 and j = 3. In the rst case we obtain a contradiction with the superminimality of C min , in the second case the step from C to C does not correspond to reduce 2 , a contradiction.

x = i -1, j = 1, and j > 1. In this case, C = (0 i , 1 j , 0 i , 1, 0 y-1 , 1, X) with C min = (0 i , 1, 0 y-1 , 1, X, 0 i , 1 j ). We assume that X = (1 j -1 , 0, X ), for some j ≥ 1, which implies that C min = (0 i , 1, 0 y-1 , 1 j -1 , 0, 1, X , 0 i , 1 j ). If j > 1, in order to be symmetric, C min must contain another sequence starting by (0 i , 1, 0)

but this implies a contradiction to the superminimality of C min . If j = 1, then C min = (0 i , 1, 0 y , 1, X , 0 i , 1 j ). Note that in this case y < i as otherwise the superminimality of C min is contradicted. Therefore also in this case, C min must contain another sequence starting by (0 i , 1, 0) and the same arguments as for j > 0 hold.

x = i, j = 1, and j > 1. In this case, C = (0 i , 1 j , 0 i+1 , 1, 0 y-1 , 1, X) and C min = (0 i+1 , 1, 0 y-1 , 1, X, 0 i , 1 j ). Again, we assume that X = (1 j -1 , 0, X ) and this implies that C min = (0 i+1 , 1, 0 y-1 , 1 j -1 , 0, 1, X , 0 i , 1 j ) which cannot be symmetric as there is only one sequence of i + 1 consecutive occupied nodes and j > 1.

Lemma 14 (Lemma 7) Let C be a conguration in S 2 , or such that C min = (0 i , 1, 0 i , 1, (0 i , 1, 0 i , 1, 0 i-1 , 1) ), for some ≥ 1, or such that C min = (0 i , 1, 0 x , 1, (0 i , 1, 0 x-1 , 1) ), for some ≥ 2 and 1 ≤ x ≤ i, or such that C min = (0 i , 1, 0 x , 1, 0 i , 1, 0 y , 1), for some 1 < y < x ≤ i, and let C be the conguration obtained by applying reduce -1 on only one robot on C. Then C is asymmetric and it is not adjacent with respect to reduce 1 , reduce 2 , or reduce -1 to any symmetric conguration dierent from C. 

Proof If C min = (0 i , 1, 0 i , 1, (0 i , 1, 0 i , 1, 0 i-1 , 1) ) for some ≥ 1, then C min = (0 i+1 , 1, 0 i , 1, (0 i , 1, 0 i , 1, 0 i-1 , 1) -1 , 0 i , 1, 0 i , 1, 0 i-2 , 1).
C dierent from C only if C = (0 i , 1, 0 i+1 , 1, (0 i , 1, 0 i , 1, 0 i-1 , 1) -1 , 0 i , 1, 0 i , 1, 0 i-2 , 1), or C = (0 i+1 , 1, 0 i-1 , 1, 0 i+1 , 1, 0 i , 1, 0 i-1 , 1, (0 i , 1, 0 i , 1, 0 i-1 , 1) -2 , 0 i , 1, 0 i , 1, 0 i-2 , 1) (if ≥ 2), or C = (0 i+1 , 1, 0 i-1 , 1, 0 i+1 , 1, 0 i , 1, 0 i-2 , 1) (if = 1). In any case C is asymmetric. If C min = (0 i , 1, 0 x , 1, (0 i , 1, 0 x-1 , 1 
) ) for some ≥ 2 and 1 ≤ x ≤ i, then we distinguish the following cases: 

x = 1. In this case C min = (0 i , 1, 0, 1, (0 i , 1, 1) ) and C min = (0 i , 1, 0, 1, (0 i , 1, 1) -1 , 0 i-1 , 1, 0, 1)
C only if C = (0 i-1 , 1, 0, 0, 1, (0 i , 1, 1) -1 , 0 i-1 , 1, 0, 1), or C = (0 i , 1, 1, 0, (0 i , 1, 1) -1 , 0 i-1 , 1, 0, 1)
, or C = (0 i , 1, 0, 1, 0 i-1 , 1, 0, 1, (0 i , 1, 1) -2 , 0 i-1 , 1, 0, 1). In the rst two cases C is asymmetric. In the third case, if > 2, then C is asymmetric, otherwise the step from C to C does not correspond to the any of reduce 1 , reduce 2 , and reduce -1 .

x ≥ 2. In this case C min = (0 i+1 , 1, 0 x , 1, (0 i , 1, 0 x-1 , 1) -1 , 0 i , 1, 0 x-2 , 1) which is asymmetric and can be obtained 

C only if C min = (0 i , 1, 0 x+1 , 1, (0 i , 1, 0 x-1 , 1) -1 , 0 i , 1, 0 x-2 , 1) or C min = (0 i+1 , 1, 0 x-1 , 1, 0 i+1 , 1, 0 x-1 , 1, (0 i , 1, 0 x-1 , 1) -2 , 0 i , 1, 0 x-2 , 1). In any case C is asymmetric. If C min = (0 i , 1, 0 x , 1, 0 i , 1, 0 y , 1), for some 1 < y < x ≤ i, then C min = (0 i+1 , 1, 0 x , 1, 0 i , 1, 0 y-1 , 1)
C min = (0 i , 1, 0 x+1 , 1, 0 i , 1, 0 y-1 , 1) or C min = (0 i+1 , 1, 0 x-1 , 1, 0 i+1 , 1, 0 y-1 , 1 
). In any case the move performed by Align-Two-Sym from C is reduce -1 while the step from C to C does not correspond to reduce -1 .

If C min ∈ S 2 , then C min = (0 i , 1 j , 0 i , Z) with i > 1, Z = Z and j ≥ 1. Let us assume without loss of generality that Z = (1 j , 0, Z , 0, 1 j ) with Z = Z and j ≥ j. Then, C min = (0 i , 1 j , 0 i , 1 j , 0, Z , 0, 1 j ). We distinguish the following cases j = 1. In this case j = 1 and hence C min = (0 i , 1, 0 i , 1, 0, Z , 0, 1) and C min = (0 i+1 , 1, 0 i , 1, 0, Z , 1). Since in such conguration there is only one sequence of i + 1 consecutive occupied nodes, then C can be symmetric only if (0 i , 1, 0, Z ) = (Z , 0, 1, 0 i ). As Z = Z we can apply Lemma 9 (with Y = (0 i , 1, 0) and X = Z ) and the only possibility is that Z = (0, 1, 0) and i = 1, a contradiction as i > 1. 

If

C dierent from C, then C = (0 i , 1, 0 i+1 , 1, 0, Z , 1), or C = (0 i+1 , 1, 0 i-1 , 1, 0, 0, Z , 1), or C = (0 i+1 , 1, 0 i , 1, 1, Z , 1 , 1) 
where Z = (1, Z , 1). In the rst case, the step from C to C does not correspond to any of reduce 1 , or reduce 2 , or reduce -1 .

In the second case C is symmetric only if Z = ((0, 0, 1, 0, 0) ) and i = 3, in which case C min = (0, 0, 0, 1, 0, 0, 0, 1, 0, (0, 0, 1, 0, 0) , 0, 1) which is periodic. In the third case C is asymmetric.

j >

1. In this case C = (0 i , 1 j , 0 i , 1 j , 0, Z , 1, 0, 1 j -1 ).

If j = j, then C min = (0 i , 1 j-1 , 0, 1, Z , 0, 1 j , 0 i , 1 j ). It follows that C

is asymmetric and that it can be obtained by applying reduce 1 , or reduce 2 , or reduce -1 on a conguration C dierent from C only if: C = (0 i-1 , 1, 0, 1 j-2 , 0, 1, Z , 0, 1 j , 0 i , 1 j ) or C = (0 i-1 , 1 j-1 , 0, 1, Z , 0, 1 j , 0 i , 1 j-1 , 0, 1). In the rst case C is asymmetric, in the second case the step from C to C does not correspond to any of reduce 1 , or reduce 2 , or reduce -1 . If j > j, then C min = (0 i , 1 j , 0 i , 1 j -1 , 0, 1, Z , 0, 1 j ) and C is asymmetric as another supermin would imply a contradiction to the superminimality of C. C can be obtained by applying reduce 1 , or reduce 2 , or reduce -1 on a conguration C dierent from C only if: C = (0 i-1 , 1, 0, 1 j-1 , 0 i , 1 j -1 , 0, 1, Z , 0, 1 j ), or C = (0 i-1 , 1 j , 0 i , 1 j -1 , 0, 1, Z , 0, 1 j -1 , 0, 1), or C min = (0 i , 1 j , 0 i-1 , 1, 0, 1 j -2 , 0, 1, Z , 0, 1 j ). In any case the step from C to C

does not correspond to any of reduce 1 , or reduce 2 , or reduce -1 .

Here we show that the move from C to C does not correspond to reduce 2 in the case when C = (0 i-1 , 1 j , 0 i , 1 j -1 , 0, 1, Z , 0, 1 j -1 , 0, 1)

and C min = (0 i , 1 j , 0 i-1 , 1, 0, 1 j -1 , 0, Z , 1, 0, 1 j -1 ).

According to the algorithm, in order to apply reduce 2 to C it must hold that C is symmetric and one of the following hold:

Applying reduce 1 to C we obtain a symmetric conguration. The conguration obtained by applying reduce 1 to C is C = (0 i , 1 j-1 , 0, 1, 0 i-2 , 1, 0, 1 j -1 , 0, Z , 1, 0, 1 j -1 ) and it is asymmetric since (0 i , 1 j-1 ) < (0 i , 1 j ) and such sequence must be contained in Z , a contradiction to the superminimality of C min . At least two among C α , C β , and C γ of lines 1315 of Procedure Align-Two-Sym are symmetric, the procedure from both of them to the conguration C = (0 i , 1 j-1 , 0, 1, 0 i-2 , 1, 0, 1 j -1 , 0, Z , 1, 0, 1 j -1 ) obtained by applying reduce 1 to C corresponds to reduce 1 , and C ∈ S 1 \ S 3 (see line 16 of Procedure Align-Two-Sym). In this case C α = (0 i-1 , 1, 0, 1 j-2 , 0, 1, 0 i-2 , 1, 0, 1 j -1 , 0, Z , 1, 0, 1 j -1 ) and C β = (0 i-1 , 1 j-1 , 0, 1, 0 i-2 , 1, 0, 1 j -1 , 0, Z , 1, 0, 1 j -2 , 0, 1).

If

C ∈ S 1 \ S 3 , then both C α and C β contain a sequence of i consecutive occupied nodes and therefore the supermin of such congurations does not start with (0 i-1 , 1). It follows that the move from C α or C β to C does not correspond to reduce 1 .

Lemma 15 Let C be a conguration with supermin C min = (0 i , 1, 0, 1, 0 x , 1, 0, 1), i > 1 and 0 < x < i, and let C be the conguration obtained by applying reduce 2 on only one robot on C. Then C is asymmetric and it is not adjacent with respect to reduce 1 and reduce 2 to any symmetric conguration dierent from C.

Proof The conguration obtained by applying reduce 2 on only one robot on C is C min = (0 i , 1, 0, 0, 1, 0 x-1 , 1, 0, 1) which is asymmetric as there exists only one sequence of i consecutive occupied nodes and the axis of symmetry cannot pass in the middle of it. Let us assume that C can be obtained by applying reduce 1 or reduce 2 on a conguration dierent from C. Then, three cases may arise.

C

= (0 i-1 , 1, 0, 0, 0, 1, 0 x-1 , 1, 0, 1).

In this case either C min = (0 i-1 , 1, 0, 0, 0, 1, 0 x-1 , 1, 0, 1) or C min = (0, 0, 0, 1, 0 i-1 , 1, 0, 1, 0 x-1 , 1). In the former case C is asymmetric if i -1 ≥ 4, or i -1 = 3 and x -1 > 1, or i -1 = 3 and x -1 = 0, while the step from C to C does not correspond to reduce 1 or to reduce 2 if i -1 = 3 and x -1 = 1. The latter case can occur only if i -1 < 3, or i -1 = 3 and x -1 ∈ {0, 1}. If i -1 < 3, then we can have that i -1 = 1 and x = 1, or i -1 = 2 and x = 2, or i -1 = 2 and x = 1. In any of this cases either C is asymmetric or the step from C to C does not correspond to reduce 1 or to reduce 2 . C = (0 i-1 , 1, 0, 0, 1, 0 x-1 , 1, 0, 0, 1). In this case, if i -1 > 2, then C min = (0 i-1 , 1, 0, 0, 1, 0 x-1 , 1, 0, 0, 1) but the step from C to C does not correspond to reduce 1 or to reduce 2 . If i -1 = 2 then C min = (0, 0, 1, 0, 0, 1, 0, 0, 1, 0 x-1 , 1) and step from C to C does not correspond to reduce 1 , moreover reduce 2 cannot be performed on C as it is in S 3 . If i -1 = 1, then x = 1, C = (0, 1, 0, 0, 1, 1, 0, 0, 1) and C min = (0, 0, 1, 0, 1, 0, 0, 1, 1) and hence the step from C to C does not correspond to reduce 1 or to reduce 2 .

C = (0 i , 1, 0, 0, 1, 1, 0, 0, 1) with x = 2. In this case the step from C to C corresponds to reduce 2 but it is not performed by Align as from C only reduce 1 can be performed. Lemma 16 Let C be a conguration with supermin C min = (0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1).

Then C is asymmetric and the only symmetric conguration that is adjacent to C with respect to any procedure permitted by Align is C = (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1).

Proof It is easy to see that C is asymmetric. Let us assume that C can be obtained by applying reduce 1 , reduce 2 , or reduce -1 on a symmetric conguration C dierent from C . By analyzing all the possible moves of the robots in the direction opposite to the reduction of the supermin, four cases may arise:

(i) C = (0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1), (ii) C = (0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1), (iii) C = (0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1), and (iv) C = (0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1). In case (i), C = C , in cases (ii) and (iii) C is asymmetric, in case (iv) the move from C to C corresponds to the move performed by algorithm Align. Lemma 17 Let C be a conguration in S 4b \ {(0 i , 1, 0, 1, 0 x , 1, 0, 1), (0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1)} and let C be the conguration obtained by applying reduce -1 on only one robot on C. Then C is asymmetric and it is not adjacent with respect to reduce 1 and reduce 2 to any procedure permitted by Align to any symmetric conguration dierent from C.

Proof We only show the case when C min = (0 i-1 , 1, 0, 1, 1, 0, 1, 0 i-1 , (1, 1, 0, 1, 1, 0 i-1 ) , 1, 1, 0, 1, 1), for some i ≥ 3 and ≥ 0, the other cases can be proven by using similar arguments. The conguration obtained by applying reduce -1 on only one robot on C is C min = (0 i-1 , 1, 0, 1, 1, 0, 1, 0 i-1 , (1, 1, 0, 1, 1, 0 i-1 ) , 1, 1, 1, 0, 1) which is asymmetric as there exists only one sequence of 3 consecutive empty nodes and the axis of symmetry cannot pass in the middle of it. Let us assume that C can be obtained by applying reduce 1 , reduce 2 , or reduce -1 on a conguration dierent from C. Then, four cases may arise: C = (0 i-2 , 1, 0, 0, 1, 1, 0, 1, 0 i-1 , (1, 1, 0, 1, 1, 0 i-1 ) , 1, 1, 1, 0, 1), C = (0 i-2 , 1, 0, 1, 1, 0, 1, 0 i-1 , (1, 1, 0, 1, 1, 0 i-1 ) , 1, 1, 1, 0, 0, 1), C = (0 i-1 , 1, 1, 0, 1, 0, 1, 0 i-1 , (1, 1, 0, 1, 1, 0 i-1 ) , 1, 1, 1, 0, 1), C = (0 i-1 , 1, 0, 1, 1, 1, 0 i , (1, 1, 0, 1, 1, 0 i-1 ) , 1, 1, 1, 0, 1).

In any case the obtained conguration is asymmetric, except for the last case when = 0. However, in such a case C = (0 i-1 , 1, 0, 1, 1, 1, 0 i , 1, 1, 1, 0, 1) the move from C to C does not correspond to any procedure permitted by Align. Lemma 18 Let C be a symmetric and allowed conguration and let C be the conguration obtained after applying Algorithm Align, then

C min < C min .
Let C and C be two congurations such that C is obtained from C by applying Algorithm Asym, and C is adjacent to a symmetric conguration with respect to a move permitted by Align. If C is the symmetric conguration obtained from C after applying Algorithm Align (i.e. by forcing a pending move on C ), then C min < C min . Proof For the rst statement, we analyze each move permitted by Align separately.

If C = (0, 1 j , 0, R) and the move from C to C is reduce 0 , then C = (0, 1 j-1 , 0, 1, R) < C min .

If C min = (0 i , 1 j , 0, R) and the move from C to C is reduce 1 , then C = (0 i , 1 j-1 , 0, 1, R) < C min .

If C min = (0 i , 1 j , 0 i , 1 j , 0, R) and the move from C to C is reduce 2 , then C = (0 i , 1 j , 0 i , 1 j -1 , 0, 1, R) < C min .

If C min = (0 i , R, 0, 1 j ) and the move from C to C is reduce -1 , then C = (0 i , R, 1, 0, 1 j-1 ).

Let be such that C min = C min , then C < C min .

If C min = (0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1), then C = (0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1) (see line 20 of Procedure Align-Two-Sym), and C 3 < C min .

To prove the second statement, we have to go into the behavior of Asym. In particular, the only possibilities for C and C are the following (see [START_REF] D'angelo | Computing on rings by oblivious robots: A unied approach for dierent tasks[END_REF]).

1. C = (0, 1 j , 0, R) and C = (0, 1 j-1 , 0, 1, R); 2. C = (0 i , 1 j , 0, R) and C = (0 i , 1 j-1 , 0, 1, R); 3. C = (0 i , 1 j , 0 i , 1 j , 0, R) and C = (0 i , 1 j , 0 i , 1 j -1 , 0, 1, R); 4. C = (0 i , 1, R, 0, 1) and C = (0 i+1 , 1, R, 1). In the rst case, the move from C to C corresponds to reduce 0 and therefore, by Lemma 2, C is not adjacent to a symmetric conguration with respect to any move permitted by Align.

In any other case, note that C < C. In what follows we show that C contains a sequence that is smaller than or equal to the sequence A that precedes R in C and this implies that C min < C min . By contradiction, let us assume that such a sequence is not in C , it follows that one of the robots in A moved toward R. Note that no forced pending move can involve the initial sequence of consecutive 0. This directly implies a contradiction for case 4.

In case 2, A = (0 i , 1 j-1 , 0, 1) and then C = (0 i , 1 j , 0, R) = C which is asymmetric, a contradiction.

In case 3, A = (0 i , 1 j , 0 i , 1 j -1 , 0, 1) and either C = (0 i , 1 j , 0 i , 1 j , 0, R) or C = (0 i , 1 j , 0 i -1 , 1, 0, 1 j -2 , 0, 1, R). In the rst case C = C which is asymmetric, a contradiction. In the second case, the only possibility is that the move from C to C is reduce 2 and hence there exists a supermin in R, that is R = (1 j , 0 i , R ), for some i ≥ i, j , and R . Since sequence R is in C, then i = i as otherwise we obtain a contradiction to the superminimality of C. Therefore C = (0 i , 1 j , 0 i -1 , 1, 0, 1 j -2 , 0, 1 j +1 , 0 i , R ). Since (0 i , 1 j +1 , 0, 1 j -2 , 0, 1, 0 i -1 , 1 j , 0 i ) must be the prex of a supermin, then j +1 ≤ j. However, this implies that C = (0 i , 1 j , 0 i , 1 j , 0, 1 j , 0 i , R ), where j ≤ j -1, which is a contradiction to the superminimality of C since the sequence (0 i , 1 j , 0) is smaller than (0 i , 1 j , 0).

Conclusions

We have proposed two algorithms to solve two problems that, in the last decade, received main One of our main contributions consists of Algorithm Align that is in common to the two strategies adopted to solve the gathering and the exclusive searching. The same algorithm might be used as a preliminary step also to solve other problems in the same settings like e.g. exploration with stop or perpetual exploration. In fact, Algorithm Align permits to restrict the attention to a very limited subset of congurations, hence simplifying the design of new algorithms.
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 1 Fig. 1: Congurations achieved at the end of Algorithm Align.

Fig. 2 :

 2 Fig. 2: Algorithm Gathering.

  Moreover, the symmetric allowed congurations are the exclusive conguration with a single axis of symmetry, 4 < k < n -2 and n > 9 and (n; k) / ∈ {(10, 5), (10, 6)}, and, if the axis does pass through an empty node, then k must be odd. First, we recall some known results concerning the exclusive searching of a ring in the Look-Compute-Move model. Let us start with some impossibility results. If k is even and there exists an axis of symmetry passing through an empty node, exclusive searching is clearly infeasible because a synchronous execution of any algorithm either cause a multiplicity in the node lying on the axis or does not allow to search the edges incident

  rst applies Align. Then, either a conguration C a or C b is achieved, in which case we are done, or a conguration in the set R is achieved. Since every allowed conguration in C c (the robots are divided into two segments of consecutive nodes) belongs to R, the specications of Align (it achieves either C a or C b or C c and it may reach C c only if k and n are even) ensure that such a conguration is eventually reached. Finally, from any conguration in R, Algorithm Compact-Align allows the robots to achieve either C a or C b . If C ∈ R 1 (a, b, c) for some a, b, and c, then Compact-Align moves the robot at u k/2-c-1 to u k/2-c . Otherwise, if C ∈ R 2 (a, b, c) for some a, b, and c, then it moves the robot at u n-b-(k/2-c) to u n-b-(k/2-c-1) , otherwise it applies Align.

Phase 2

 2 consists in actually searching the ring. If k is odd, Phase 1 consists in using Algorithm Break-Symmetry to break the potential symmetry (Line 8 of Algorithm Search-Ring) and then, Phase 2 executes the algorithm of[START_REF] D'angelo | Computing on rings by oblivious robots: A unied approach for dierent tasks[END_REF] (Line 6 of Algorithm Search-Ring). Each of these congurations used during the searching phase of the algorithm of[START_REF] D'angelo | Computing on rings by oblivious robots: A unied approach for dierent tasks[END_REF] are asymmetric and are not adjacent to any symmetric conguration reached by Algorithm Break-Symmetry. Therefore, there is no ambiguity (no pending move) when a robot recognizes such a conguration.If n and k are even, we may be in allowed symmetric congurations and therefore the Search-Ring proceeds in two phases. Phase 1 (Line 23 of Algorithm Search-Ring) consists in applying Algorithm Compact-Align until one of the congurations in A (see the denition below) is achieved. This is guaranteed by the fact that both C a and C b belong to A. Then, the algorithm proceeds to Phase 2 (Lines 10-20 of Algorithm Search-Ring) which actually performs the searching.

Fig. 4 :

 4 Fig. 4: Algorithm Break-Symmetry.

  u 0 (e) A-e( ) for = 2.

Fig. 5 :

 5 Fig. 5: Congurations reached by Phase 2 of Algorithm Search-Ring when k and n are even. In this example, n = 22 and k = 8. Robots are depicted in black and the arrows represent the pending moves.In the symmetric cases, two nodes can be identied as u 0 .

Fig. 6 :

 6 Fig. 6: Algorithm Search-Ring.

Fig. 7 :

 7 Fig. 7: Procedures permitted by Align.

  Algorithm Align-One. If v 1 = 1 (i.e. there are no two adjacent robots) and the conguration C is symmetric, the general strategy is to reduce the supermin by performing reduce 0 (see line 5 of Procedure Align-One). If the two symmetric robots that should move perform their Look-Compute-Move cycles synchronously, then the obtained conguration C is symmetric, the axis of symmetry of C is preserved, and the supermin is reduced. Hence, C is allowed.If only one of the two symmetric robots that should move actually performs the move (due to the asynchronous execution of their respective Look-Compute-Move cycles), then the following lemma ensures that the conguration C obtained is asymmetric and not adjacent to any symmetric conguration other than C with respect to any possible procedure that allows at most two robots to move.

  is obtained.Such conguration is asymmetric and it could have a possible pending move.From conguration C , Algorithm Align-Two-Asym is applied. Such a procedure computes the unique symmetric conguration which C is adjacent to. To this aim, it computes the four possible congurations that can generate C by applying Align. Such congurations are:
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 282 Fig. 8: First example
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 9 Fig. 9: Second example
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 10 Fig. 10: Algorithm Align.

Fig. 11 :

 11 Fig. 11: First phase of Algorithm Align.

Fig. 12 :

 12 Fig. 12: Second phase of Algorithm Align for symmetric congurations.

Fig. 13 :

 13 Fig. 13: Second phase of Algorithm Align for asymmetric congurations.

  in case (ii) C is obtained by performing reduce -1 on C where C min

  1 j+1 , 0, 1 j , 0, 1, R , 0, 1 j ).

Lemma 12 (

 12 Lemma 5) Let C be a symmetric and allowed conguration with i > 1 consecutive occupied nodes and let C be the conguration obtained by applying reduce 1 on only one robot on C. If C is adjacent with respect to reduce 1 to a symmetric congurationC dierent from C, then C ∈ S 1 \ S 3 , or C ∈ S 1 \ S 3 or C, C ∈ S 4 .Proof Let C and C be two dierent symmetric congurations and let C and C be the conguration obtained by applying reduce 1 on only one robot from C and C , respectively. We show that if C = C , then C ∈ S 1 \ S 3 , or C ∈ S 1 \ S 3 or C ∈ S 4 . We show the following equivalent statement: if C = C and neither C nor C belong to S 1 \S 3 , then C ∈ S 4 . The premise is satised when one of the following cases holds: A. C ∈ S 1 and C ∈ S 1 ; B. C ∈ S 1 and C ∈ S 3 ; C. C ∈ S 3 and C ∈ S 1 ; D. C ∈ S 3 and C ∈ S 3 .We observe that case B is equivalent to case C and analyze the three cases separately.

  The following cases arise: (a) C = C r and C = C r ; (b) C = C r and C = C s ; (c) C = C r and C = C t ; (d) C = C s and C = C s ; (e) C = C s and C = C t ; (f ) C = C t and C = C t .

which is always asymmetric for ≥ 2 ,

 2 and can be obtained by applying reduce 1 , or reduce 2 , or reduce -1 on a conguration C dierent from

  attention in the context of the Look-Compute-Move model of computation: the gathering and the exclusive searching. Our algorithms work under very weak assumptions. The results provided here constitute a characterization of the two problems that leaves open only few marginal cases. For the gathering, this paper closes a long standing open problem. In fact, almost all the cases left open by the literature are now closed. Moreover, we have also addressed the lack of a unied algorithm that works for any gatherable conguration. For the exclusive searching, our algorithm handles the missing cases of our previous work on the same subject, leaving open some periodic congurations and some specic cases.

Table 1 :

 1 Resume of the known results about gathering in a ring under the Look-Compute-Move model with the local-weak multiplicity detection. All the mentioned congurations are exclusive.

	Conguration type	number of nodes n	number of robots k	Gathering feasibility
	periodic	-	-	NO [31]
	symmetric with edge-edge axis	-	-	NO [31]
	-		-	k = 2	NO [31]
	symmetric	odd	k = 4	NO [12,17, 30]
	rigid aperiodic	--	k < n 2 odd, k < n -3	YES [26] YES [28]
	aperiodic	odd	even, 10 ≤ k ≤ n -5	YES [29]
	rigid		-	-	YES [14]
	aperiodic, without edge-edge axis	-	3 ≤ k ≤ n -4, k = 4	YES (this paper)
	With local-weak multiplicity detection capabil-	
	ity, see Table 1, an algorithm starting from rigid	
	congurations where the number of robots k is	
	strictly smaller than	n 2		

Table 2 :

 2 Resume of the known results about exclusive searching in a ring under the Look-Compute-Move model. All the mentioned congurations are exclusive.

  Moreover, let k ≥ 1 robots occupy k distinct nodes of the ring.

	cupied by robots. In what follows, any congura-
	tion is seen as a binary sequences where 0 rep-
	resents an occupied node while 1 stands for an
	empty node. More formally, given a conguration
	C, and for any

A conguration C is dened by the k nodes oc-

  Theorem 1 Let 3 ≤ k < n -2, k = 4, robots standing in an n-node ring forming an exclusive allowed conguration, Algorithm Align eventually terminates achieving one exclusive allowed conguration among C a , C b , or C c .

	Before providing all the details concerning Al-
	gorithm Align, the next two sections are devoted
	to the resolution of the gathering and the exclusive
	searching problems, respectively. The provided al-
	gorithms exploit the above theorem.
	4 Gathering in a ring
	In this section, we provide the full strategy for
	achieving the gathering under to Look-Compute-
	Move model and assuming the local-weak multi-
	plicity detection. The idea is to allow to move al-
	ways one single robot from each conguration so
	as to be sure which conguration will be reached
	next. The only exception to this ideal behavior
	comes from symmetric congurations where it is
	not possible to determine a priori whether one or
	two symmetric robots move concurrently. As de-
	scribed before, our algorithm ensures that all the
	reached congurations that might have a pending
	move can be always detected as asymmetric con-
	gurations with a unique pending move.
	As dened in Section 2, the allowed cong-
	urations tackled by our gathering algorithm are
	all rigid congurations with a number of robots
	k > 2, and all symmetric congurations with
	3 ≤ k < n -4, k = 4, not periodic and not ad-
	mitting an axis of symmetry passing through two
	edges. Note that, as recalled in Table 1, our algo-
	rithm leaves open very few types of congurations.

  11 if k is even and n is odd and C is of type C b or C c with either j or n -j -k odd then 12 compact 0 (C) and exit; 13 if k is even and n is odd and C could have been obtained from a conguration of type C b or C c , by applying is even and C could have been obtained from a conguration of type C e by applying compact 1 then 22 Move the symmetrical robot to obtain a conguration of type C e while decreasing k and exit; 23 Apply Align;

	compact 0 then			
	14	Move the unique robot that can re-establish the assumed symmetry while decreasing either the current
		supermin or k and exit;		
	15 if k is odd and C is of type C b then	
	16	The robots at v k-1 2	-1 and v k-1 2	2 +1 move toward v k-1	, and exit;
	17 if k is odd and C could have been obtained from a conguration of type C b then
	18	Move the symmetrical robot to reach a conguration of type C e , and exit;
	19 if C is of type C e then			
	20	compact 1 (C) and exit;		
	21 if k				

  1 if k = n -3 or (n is odd and k even) then

	2	Apply Algorithm of [14]	
	3 else	
	4	if k is odd then	
	5	if C ∈ O then	// C is asymmetric
	6	Apply Algorithm of [14]	
	7	else	
	8	Apply Break-Symmetry(C)	
	9	else	
	10	if	

  R , 1) (see lines 25 of Align-Two-Asym). Note that, at most one of the above congurations can be symmetric. Let C y , y ∈ {α, β, γ, δ}, be such a conguration, if by applying Align-Two-Sym (or Align-One if C y has no consecutive occupied nodes) on a single robot of C y we obtain C, then C has been possibly obtained from C y and then Align-Two-Asym performs the possible pending move (see lines 714 and the rst example in Section 6.2). If none of C y , y ∈ {α, β, γ, δ}, is symmetric, then C has not been obtained from any symmetric congurations and then Align-Two-Asym performs Asym (line 15).As in the case of Align-One, if the robot leading from C y to C is that on the axis of symmetry of C y , then Algorithm Asym is performed. b and C c that have no outgoing arcs, see last item). If it has exactly two outgoing arcs, then one of them is directed to the node v representing the conguration C Note that, v belongs to S, while v belongs to AS1. Moreover, if C is allowed, then also C is such. If the node has exactly one outgoing arc then the robot r moved by Align

		corresponding to C a belongs to AS2 it has no
		outgoing arcs, see next item.
		Node corresponding to congurations C b and
		C c belong to S but they have no outgoing arcs
	obtained if both the symmetric robots permit-	as the algorithm stops when one such congu-
	ted to move by Align perform their moves	ration is achieved. Conguration C a can belong
	synchronously. The other arc is directed to the	to AS1 or to AS2, depending on whether C b is
	node v representing the conguration C ob-	allowed or not. In the former case, there is an
	tained if only one of the two symmetric robots	arc between the node corresponding to C a to
	permitted to move by Align actually moves.	that corresponding to C b , in the latter case the
	In other words, the former arc models the case	node corresponding to C a has no outgoing edge
	where both the two symmetric robots permit-	and the algorithm stops such conguration is
	ted to move perform the entire cycle Look-	achieved.
	Compute-Move, while the latter arc models the	
	case where only one of them performs entirely	It follows that any execution path performed
	such cycle. has been obtained from a conguration, corre-	We are now ready to provide the proof of Theo-rem 1 which represents the correctness proof for al-gorithm Align. Such a proof relies on Lemmata 3 7 and Lemmata 1518, proven in Section 6.5. For the sake of readability, we also recall the statement of the theorem. An execution of Align is represented by a path in this graph. In what follows, we show that such paths are acyclic, are made of nodes representing allowed congurations, and they always lead to a node representing one of the congurations C a , C b , or C c . by the algorithm is made of nodes representing allowed congurations. In fact, the arcs outgoing nodes in S represent moves that preserve the axis of symmetry and the number of robots. There-
	sponding to a node in S, such that the robot	We can partition the nodes into three sets
	moved by Align lies on the axis of symmetry.	representing: the symmetric congurations; the
	In this case, Align performs Asym from C	asymmetric congurations which are adjacent to
	obtaining a conguration in AS2.	some symmetric congurations with respect to one
	A node in AS2 has exactly one outgoing arc,	of the procedures permitted by Align; and the
	directed either to another node in AS2 or to	remaining asymmetric congurations. We denote
	a node in AS1 but it cannot be directed to a	such sets as S, AS1 and AS2, respectively. Lem-
	node in S (by Lemma 1). It can have some arcs	mata 1, 2, 37, and 1517 imply the following
	coming from nodes in AS1 or AS2. If the node	properties.

Theorem 5 (Theorem 1) Let 3 ≤ k < n -2, k = 4, robots standing in an n-node ring forming an exclusive allowed conguration, Algorithm Align eventually terminates achieving one exclusive allowed conguration among C a , C b , or C c . Proof We model all the possible executions of Align as a directed graph where each conguration is represented as a node and there exists an arc (u, v) if there exist a procedure and a time schedule of the algorithm that starting from the conguration represented by u lead to that represented by v, even with possible pending moves.

A node in S representing a conguration C has either one or two outgoing arcs (but for nodes corresponding to C lies on the axis of symmetry. In this case, any procedure performed by Align moves r in an arbitrary direction. Then, the arc is directed to a node in AS1.

A node in AS1 representing a conguration C has exactly one incoming arc from a node in S, it can have some incoming arcs from nodes in AS2, and it has exactly one outgoing arc, directed to a node in S or in AS2. If the outgoing arc is directed to a node in S, then one of the incoming arcs comes from a node u in S and models the case when only one of the two symmetric robots permitted to move by Align from the conguration C represented by u actually moves. From Lemmata 315, there exists only one such node. The outgoing arc leads to the node in S representing conguration C which can be obtained by moving synchronously both the symmetric robots permitted to move by Align from C. Note that both C and C are allowed congurations (see line 7 of Procedure Align-Two-Asym). If the outgoing arc is directed to a node in AS2, then C fore, if an allowed symmetric conguration C corresponds to a node v and there is an arc (v, v ), then the symmetric conguration C corresponding to node v is allowed. Furthermore, congurations in AS1 and AS2 are always allowed and there is an arch from a node in AS1 to a node in S only if this latter corresponds to an allowed conguration (see line 7 of Procedure Align-Two-Asym).

  1 and reduce -1 coincide. Moreover, in C s1 the only procedure that reduces the supermin and does not create a multiplicity is reduce 1 . However, performing reduce 1 from C s2 and C s1 leads to the same conguration C . For these reasons Align-Two-Sym performs reduce 1 from C s1 and, if x > 1, reduce 2 from C s2 (lines 1617 of procedure Align-Two-Sym). then reduce 2 cannot be performed on C s2 . However, even if C is adjacent to C s1 , it is equal to C a and therefore in this case algorithm Align performs reduce 1 also from C s2 . Then, from C = C a algorithm Align either stops or achieves C b , if it is allowed.

	This latter procedure cannot create a symmet-
	ric conguration nor a conguration adjacent
	to any symmetric conguration dierent from
	C s2 with respect to any procedure permitted
	by Align (see Lemma 15 in Section 6.5). If
	x = 1,

  It follows that C

	is asymmetric.			
	Conguration	C		can	be	obtained	by
	applying	reduce 0	or	reduce -1	on
	a	conguration	C	only	if	(i)

  Therefore, C

				min	is asymmetric and
	can	be	obtained	by	applying	reduce 1 ,
	or	reduce 2 , or reduce -1 on a congu-
	ration