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Stéphane Pérennes4,5

1
CNRS, Univ Paris Sud, LRI, Orsay, France

2
ENS Cachan, France

3
Universidade Federal do Ceará, Fortaleza, Brazil
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Abstract. We define and study the following two-player game on a
graph G. Let k ∈ N∗. A set of k guards is occupying some vertices of
G while one spy is standing at some node. At each turn, first the spy
may move along at most s edges, where s ∈ N∗ is his speed. Then, each
guard may move along one edge. The spy and the guards may occupy
same vertices. The spy has to escape the surveillance of the guards, i.e.,
must reach a vertex at distance more than d ∈ N (a predefined distance)
from every guard. Can the spy win against k guards? Similarly, what
is the minimum distance d such that k guards may ensure that at least
one of them remains at distance at most d from the spy? This game
generalizes two well-studied games: Cops and robber games (when s = 1)
and Eternal Dominating Set (when s is unbounded).
We consider the computational complexity of the problem, showing that
it is NP-hard and that it is PSPACE-hard in DAGs. Then, we establish
tight tradeoffs between the number of guards and the required distance
d when G is a path or a cycle. Our main result is that there exists ε > 0
such that Ω(n1+ε) guards are required to win in any n× n grid.

1 Introduction

We consider the following two-player game on a graph G, called Spy-game. Let
k, d, s ∈ N be three integers such that k > 0 and s > 0. One player uses a set of
k guards occupying some vertices of G while the other player plays with one spy
initially standing at some node. This is a full information game so any player has
the full information about the positions and previous moves of the other player.
Note that several guards and even the spy could occupy a same vertex.

Initially, the spy is placed at some vertex of G. Then, the k guards are placed
at some vertices of G. Then, the game proceeds turn-by-turn. At each turn, first
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the spy may move along at most s edges (s is the speed of the spy). Then, each
guard may move along one edge. The spy wins if, after a finite number of turns
(after the guards’ move), it reaches a vertex at distance greater than d from every
guard. The guards win otherwise, in which case we say that the guards control
the spy at distance d, i.e. that there is always at least one guard at distance at
most d from the spy.

Given a graph G and two integers d, s ∈ N, s > 0, let the guard-number,
denoted by gns,d(G), be the minimum number of guards required to control a
spy with speed s at distance d, against any strategy from the spy. We also define
the following dual notion. Given a graph G and two integers k, s ∈ N, s > 0,
k > 0, let ds,k(G), be the minimum distance d such that k guards can control a
spy with speed s at distance d, whatever be the strategy of the spy.

1.1 Preliminary remarks

We could define the game by placing the guards first. In that case, since the
spy could choose its initial vertex at distance greater than d from any guard, we
need to slightly modify the rules of the game. If the guards are placed first, they
win if, after a finite number of turns, they ensure that the spy always remains
at distance at most d from at least one guard. Equivalently, the spy wins if it
can reach infinitely often a vertex at distance greater than d from every guard.
We show that both versions of the game are closely related. In what follows,
we consider the spy-game against a spy with speed s that must be controlled at
distance d for any fixed integers s > 0 and d.

Claim. If the spy wins in the game when it starts first, then it wins in the game
when it is placed after the guards.

Proof of the claim. Assume that the spy has a winning strategy S when it is
placed first. In particular, there is a vertex v0 ∈ V (G) such that, starting from
v0 and whatever be the strategy of the guards, the spy can reach a vertex at
distance > d from every guard. If the spy is placed after the guards, its strategy
consists first at reaching v0 and then at applying the strategy S until it is at
distance > d from every guard. The spy repeats this process infinitively often. �

The converse is not necessary true, however we can prove a slightly weaker
result which is actually tight. For this purpose, let us recall the definition of the
well known Cops and robber game [15, 4]. In this game, first k cops occupy some
vertices of the graph. Then, one robber occupies a vertex. Turn-by-turn, each
player may move its token (the cops first and then the robber) along an edge.
The cops win if one of them reach the same vertex as the robber after a finite
number of turns. The robber wins otherwise. The cop-number cn(G) of a graph
G is the minimum number of cops required to win in G [1]. The proof of the
following claim can be found in https://hal.inria.fr/hal-01279339/file/

RR-8869.pdf.



Claim. If k guards win in the game when the spy is placed first in a graph G,
then k + cn(G)− 1 guards win the game when they are placed first.

The bound of the previous claim is tight. Indeed, for any graph G, gn1,0(G) =
1 since one guard can be placed at the initial position of the spy and then follows
it. On the other hand, if the guards are placed first, the game (for s = 1 and
d = 0) is equivalent to the classical Cops and robber game and, therefore, cn(G)
guards are required.

1.2 Related work

Further relationship with Cops and robber games. The Cops and robber game
has been generalized in many ways [3, 8, 2, 5, 9]. In [3], Bonato et al. proposed a
variant with radius of capture. That is , the cops win if one of them reaches a
vertex at distance at most d (a fixed integer) from the robber. The version of
our game when the guards are placed first and for s = 1 is equivalent to Cops
and robber with radius of capture. Indeed, when the spy is not faster than the
guards, capturing the spy (at any distance d) is equivalent to controling it at
such distance: once a guard is at distance at most d from the spy, it can always
maintain this distance (by following a shortest path toward the spy).

This equivalence is not true anymore as soon as s > 1. Indeed, one cop is
always sufficient to capture one robber in any tree, whatever be the speed of the
robber or the radius of capture. On the other hand, we prove below that Θ(n)
cops are necessary to control a spy with speed at least 2 at some distance d in
any n-node path. This is mainly due to the fact that, in the spy-game, the spy
may cross (or even occupy) a vertex occupied by a guard. Therefore, in what
follows, we only consider the case s ≥ 2.

Note that the Cops and robber games when the robber is faster than the cops
is far from being well understood. For instance, the exact number of cops with
speed one required to capture a robber with speed two is unknown in grids [7].
One of our hopes when introducing the Spy-game is that it will lead us to a new
approach to tackle this problem.

Generalization of Eternal Domination. A d-dominating set of a graph G is a set
D ⊆ V (G) of vertices such that any vertex v ∈ V (G) is at distance at most d
from a vertex in D. Let γd(G) be the minimum size of a d-dominating set in G.
Clearly, gns,d(G) ≤ γd(G) for any s, d ∈ N. However these two parameters may
differ arbitrary as shown by the following example. Let G be the graph obtained
from a cycle C on n-vertices by adding a node x and, for any v ∈ C, adding a
path of length d + 1 between v and x. It is easy to check that γd(G) = Ω(n/d)
while gns,d(G) = 2 (the two guards moving on x and its neighbors).

In the eternal domination game [10, 11, 13, 14], a set of k defenders occupy
some vertices of a graph G. At each turn, an attacker chooses a vertex v ∈ V
and the defenders may move to adjacent vertices in such a way that at least
one defender is at distance at most d (a fixed predefined value) from v. Several
variants of this game exist depending on whether exactly one or more defenders



may move at each turn [11, 13, 14]. It is easy to see that the spy-game, when
the spy has unbounded speed (equivalently, speed at least the diameter of the
graph) is equivalent to the Eternal Domination game when all defenders may
move at each turn.

1.3 Our contributions

In this paper, we initiate the study of the spy-game for s ≥ 2. In Section 2,
we study the computational complexity of the problem of deciding the guard-
number of a graph. We prove that computing gn3,1(G) is NP-hard in the class
of graph G with diameter at most 5. Then, we show the problem is PSPACE-
complete in the case of DAGs (where guards and spy have to follow the ori-
entation of arcs, but distances are in the underlying graph). Then, we consider
particular graph classes. In Section 3, we precisely characterize the cases of paths
and cycles. Precisely, for any k ≥ 1, s ≥ 2, we prove that⌊

n(s− 1)

2ks

⌋
≤ ds,k(Pn) ≤

⌈
(n+ 1)(s− 1)

2ks

⌉
for any path Pn on n vertices, and⌊

(n− 1)(s− 1)

k(2s+ 2)− 4

⌋
≤ ds,k(Cn) ≤

⌊
(n+ 1)(s− 1)

k(2s+ 2)− 4

⌋
for any cycle Cn on n vertices. Our most interesting result concerns the case of
grids. In Section 4, we prove that there exists β > 0 such that gns,d(Gn×n) =
Ω(n1+β) in any n × n grid Gn×n. For this purpose, we actually prove a lower
bound on the number of guards required in a fractional relaxation of the game
(the formal definition is given in the corresponding section).

Notations. As usual, we consider connected simple graphs. Given a graph G =
(V,E) and v ∈ V , let N(v) = {w | vw ∈ E} denote the set of neighbors of v and
let N [v] = N(v) ∪ {v}.

2 Complexity

Theorem 1. Given a graph G with diameter at most 5 and an integer k as
inputs, deciding whether gn3,1(G) ≤ k is NP-hard.

Proof. The result is obtained by reducing the classical Set Cover Problem. In
the Set Cover Problem the input is a set of elements U , a family S of subsets of
U such that ∪S∈SS = U and an integer k. The question is whether there exists
a set C ⊆ S such that |C| ≤ k and ∪S∈CS = U , the set C is called a cover of U .

Let (U = {u1, . . . , un},S = {S1, . . . , Sm}, k) be an instance of the Set Cover
Problem. Note that, for any i ≤ n, there exists j ≤ m such that ui ∈ Sj (since
∪S∈SS = U). We create a graph G such that there is a cover C ⊆ S of U with
size at most k if and only if g3

1(G) ≤ k.



The graph G is constructed in the following way. Abusing the notation, let
us identify the elements in U ∪S with some vertices of G. Let V (G) = S ∪U ∪V
with V = {v1, · · · , vn}. Start with a complete graph with set of vertices S =
{S1, · · · , Sm} and, for any 1 ≤ i ≤ n, add an edge {ui, vi}. Finally, for any i ≤ n
and j ≤ m such that ui ∈ Sj , let us add an edge {ui, Sj}.

First, let us prove that, if U admits a cover C of size at most k, then g3
1(G) ≤

k. For this purpose, we give a strategy for the guards that ensure that the spy is
always at distance at most 1 from at least one guard. When the spy occupies a
vertex in C ∪U , the guards occupy all the vertices of C. When the spy occupies
a vertex vi for some i ≤ n, let j(i) be such that ui ∈ Sj(i) ∈ C, then one guard
occupies ui and the other guards occupy the vertices of C \ {Sj(i)}. Because the
speed of the spy is 3, from a vertex vi, the spy can only reach a vertex in C ∪U .
Therefore, whatever be the initial position of the spy and its moves, the guards
can always ensure the previously defined positions.

Suppose now that there is no cover C of U with size k, we show that g3
1(G) >

k. Let us assume at most k guards are occupying vertices in G, let us consider
the following strategy for the spy. The spy starts at S1. If there exists i ≤ n such
that no guards dominate ui, i.e., no guards occupy a vertex of N [ui], the spy
goes at vi (note that any vertex in {v1, · · · , vn} is at distance at most 3 from
S1). Then, no guard can reach a vertex at distance at most 1 from vi (since ui
is the only neighbor of vi) and the spy wins.

Let us show that such a vertex ui exists by reverse induction on the number `
of guards occupying vertices in {S1, · · · , Sm}. That is, let O be the set of vertices
occupied by the guards (note that |O| = k) and let ` = |O ∩ S|. We show that
there exists i ≤ n such that O ∩N [ui] = ∅. If ` = k, i.e., O ⊆ S, then the result
holds since there is no cover of U of size at most k. If ` < k, there exists j ≤ n
such that a guard is occupying uj or vj , i.e., there exists x ∈ {uj , vj} such that
x ∈ O. Let z ≤ m such that uj ∈ Sz and let O′ = O ∪ {Sz} \ {x}. By induction
and because |O′ ∩ S| = `+ 1, there exists i ≤ n such that O′ ∩N [ui] = ∅. Since
O ∩N [up] ⊆ O′ ∩N [up] for any p ≤ n, the result follows. ut

Note that the previous proof could be easily adapted for a speed s > 2 and
distance d = s− 2 simply adjusting the size of the paths to s− 1. The question
to generalize this result to any s and d is open. Moreover, since the set cover
problem is not approximable within a factor of (1− o(1)) lnn [6], our proof also
implies the same result to the spy game.

Then, we consider a variant of our game played on digraphs. In this variant,
both the guards and the spy can move only by following the orientation of the
arcs. However, the distances are the ones of the underlying undirected graph.

Theorem 2. The problem of computing gns,2 is PSPACE-hard in the class of
DAGs, when the guards are placed first.

The result is obtained by reducing the PSPACE-complete Quantified Boolean
Formula in Conjunctive Normal Form (QBF) problem. Due to lack of space, the
result can be found in https://hal.inria.fr/hal-01279339/file/RR-8869.

pdf.



The question of the complexity of the spy game in undirected graphs is left
open. Is it PSPACE-hard, or more probably EXPTIME-complete as Cops and
Robber games [12]? The question of parameterized complexity is also open.

3 Case of paths and rings

In this section, we characterize optimal strategies in the case of two simple
topologies: the path and the ring. For ease of readability, some proofs are given
in the case s = 2. The general proofs (for any s ≥ 2) are similar.

The following theorem directly follows from next two lemmas.

Theorem 3. For any path P with n+ 1 nodes and for any k ≥ 1 and s ≥ 2,⌊
n(s− 1)

2ks

⌋
≤ ds,k(Pn) ≤

⌈
(n+ 1)(s− 1)

2ks

⌉
Lemma 1. For any path P with n + 1 nodes and for any k ≥ 1 and s ≥ 2,

ds,k(P ) ≥ bn(s−1)
2ks c.

Proof. For ease of readability, we prove the lemma in the case 2d−1
s−1 ∈ N.

Let P = (v0, v1, · · · , vn). Let d = bn(s−1)
2ks c. We show that a spy with speed s

playing against at most k guards can reach a vertex at distance at least d from
any guard. Intuitively, the strategy of the spy simply consists in starting from
one end of P and running at full speed toward the other end. We show that
there must be a turn when the spy is at distance at least d from every guard
and therefore ds,k(P ) ≥ d.

More formally, let the strategy for the spy be the following. Initially, the spy
is occupying an end of the path, say vertex v0. Then, at each turn i ≥ 1, the spy
moves from vi(s−1) to vis.

We prove by induction on 1 ≤ i ≤ k, after turn i 2d−1
s−1 (when the spy occupies

vsi 2d−1
s−1

), either at least i guards are occupying vertices in {v0, · · · , vsi 2d−1
s−1 −d

},
or there is turn 0 ≤ j < i 2d−1

s−1 such that, after Turn j, the distance between the
spy and all guards was at least d.

Initially, there must be at least one guard, call it g1, occupying some vertex
in {v0, · · · , vd−1} because otherwise all guards are at distance at least d from
the spy at Turn 0. Therefore, after Turn 2d−1

s−1 , Guard g1 is occupying a vertex
in {v0, · · · , v 2d−1

s−1 +d−1} = {v0, · · · , vs 2d−1
s−1 −d

} and the spy is occupying vs 2d−1
s−1

.

Hence, the induction hypothesis holds for i = 1. Note that the spy is at distance
at least d from g1.

Let 1 ≤ i ≤ k and let us assume by induction that, after Turn i 2d−1
s−1 , there

are at least i guards occupying vertices in {v0, · · · , vsi 2d−1
s−1 −d

}. Moreover, by

definition of the spy’s strategy, the spy is occupying vsi 2d−1
s−1

. Note that, all these

i guards are at distance at least d from the spy.
Then, after Turn i 2d−1

s−1 , there must be at least one guard, call it gi+1, oc-
cupying some vertex in {vsi 2d−1

s−1 −d+1, · · · , vsi 2d−1
s−1 +d−1} because otherwise all



guards are at distance at least d from the spy at Turn i. Therefore, after Turn
(i+ 1) 2d−1

s−1 , Guard gi+1 is occupying a vertex in {v0, · · · , v(si+1) 2d−1
s−1 +d−1}, that

is in {v0, · · · , vs(i+1) 2d−1
s−1 −d

}, and the spy is occupying v(i+1)s 2d−1
s−1

. Similarly, all

the i guards that were occupying some vertices in {v0, · · · , vsi 2d−1
s−1
} after Turn

i 2d−1
s−1 must occupy vertices in {v0, · · · , vs(i+1) 2d−1

s−1 −d
} after Turn (i + 1) 2d−1

s−1 .

Hence, the induction hypothesis holds for i+ 1.
Therefore, after Turn k 2d−1

s−1 , either there has been a previous turn when the
spy was at distance at least d from all guards, or all the k guards are occupying
vertices in {v0, · · · , vsk 2d−1

s−1 −d
} while the spy occupies vks 2d−1

s−1
(note that this

vertex exists since ks 2d−1
s−1 ≤ n by definition of d). In the latter case, the spy is

at distance at least d from all guards at this turn. ut

Lemma 2. For any path P with n+ 1 nodes and any k ≥ 1, s ≥ 2,

ds,k(P ) ≤
⌈

(n+ 1)(s− 1)

2ks

⌉
.

Proof. For ease of readability, we prove the lemma for s = 2.
It is clearly sufficient to prove the result in the case d = n+1

4k ∈ N. Let
P = (v0, · · · , vn) and, for any 1 ≤ i ≤ k, let Pi = (v4(i−1)d, · · · , v4di).

We design a strategy ensuring that k guards may maintain the spy at distance
at most d from at least one guard. The ith guard is assigned to the subpath Pi
(it moves only in Pi). Moreover, a guard i will move at some turn only if the
move of the spy at this turn is along an edge of Pi (note that the subpaths Pi
are edge-disjoint).

Let i ≤ k be such that the spy occupies the node x = v(4i−2)d+` with −2d ≤
` ≤ 2d. That is, x ∈ Pi. Let us assume that

– for any 1 ≤ j < i, the jth guard occupies v(4j−1)d;

– for any i < j ≤ k, the jth guard occupies v(4j−3)d;

– the ith guard occupies v(4i−2)d+b`/2c if ` ≥ 0 and v(4i−2)d+d`/2e if ` ≤ 0.

Clearly, if these conditions are satisfied, the spy is at distance at most d|`|/2e ≤ d
from the ith guard. Moreover, such positions can be chosen by the guards once
the spy has chosen its initial position.

We next show that, whatever be the move of the spy, we can maintain these
conditions. Let y be the next vertex to be occupied by the spy. Note that y =
v(4i−2)d+`+a with a ∈ {−2,−1, 0,+1,+2}.

We start with the case when x and y are not in the same subpath Pi. It may
happen in only two cases: either x = v4id−1 and y = v4id+1 (` = 2d − 1 and
a = +2) or x = v4(i−1)d+1 and y = v4(i−1)d−1 (` = −2d+ 1 and a = −2). In the

first case, the ith guard goes from v(4i−1)d−1 to v(4i−1)d and the (i+ 1)th guard

goes from v(4(i+1)−3)d = v(4i+1)d to v(4i+1)d+1. In the latter case, the ith guard

goes from v(4i−3)d+1 to v(4i−3)d and the (i− 1)th guard goes from v(4(i−1)−1)d to
v(4(i−1)−1)d−1. In both cases, the conditions remain valid.



From now on, let us assume that x and y belong to Pi. In that case, only
the ith guard may move. There are several cases depending on the value of
a ∈ {−2,−1, 0,+1,+2} and `,

– if ` ≥ 0 and `+ a ≥ 0, then
v(4i−2)d+b(`+a)/2c ∈ {v(4i−2)d+b`/2c−1, v(4i−2)d+b`/2c; v(4i−2)d+b`/2c+1}.
Hence, whatever be the move of the spy, the ith guard can go from v(4i−2)d+b`/2c
to v(4i−2)d+b(`+a)/2c either moving to one of its neighbor or staying idle.

– if ` ≤ 0 and `+ a ≤ 0 then
v(4i−2)d+d(`+a)/2e ∈ {v(4i−2)d+d`/2e−1, v(4i−2)d+d`/2e; v(4i−2)d+d`/2e+1}.
Hence, whatever be the move of the spy, the ith guard can go from v(4i−2)d+d`/2e
to v(4i−2)d+d(`+a)/2e either moving to one of its neighbor or staying idle.

– finally, if `∗ (`+a) < 0, then (`, a) = (−1, 2) or (`, a) = (1,−2). In that case,
the ith guard remains on v(4i−2)d.

In all cases, all properties are satisfied after the move of the guards. ut

We then consider the case of cycles. Due to lack of space, the proof is omitted
and can be found in https://hal.inria.fr/hal-01279339/file/RR-8869.

pdf.

Theorem 4. For any cycle C with n+ 1 nodes and any k ≥ 1,⌊
(n− 1)(s− 1)

k(2s+ 2)− 4

⌋
≤ ds,k(Cn) ≤

⌊
(n+ 1)(s− 1)

k(2s+ 2)− 4

⌋
.

4 Case of Grids

It is clear that, for any n × n grid G, gns,d(G) = O(n2). However, the exact
order of magnitude of gns,d(G) is not known. In this section, we prove that
there exists β > 0, such that Ω(n1+β) guards are necessary to win against one
spy in an n×n-grid. Our lower bound actually holds for a relaxation of the game
that we now define.

Fractional relaxation. In the fractional relaxation of the game, each guard can
be split at any time, i.e., the guards are not required to be integral entities at
any time but can be “fractions” of guards. More formally, let us assume that
some amount α ∈ R+ of guards occupies some vertex v at some step t, and
let N(v) = {v1, · · · , vdeg(v)}. Then, at the its turn, the guards can choose any
deg(v) + 1 nononegative reals α0, · · · , αdeg(v) ∈ R+ such that

∑
i αi = α, and

move an amount αi of guards toward vi, for any 0 ≤ i ≤ deg(v) (where v = v0).
Then, the guards must ensure that, at any step, the sum of the amount of guards
occupying the nodes at distance at most d from the spy is at least one. That is,
let ct(v) ∈ R+ be the amount of guards occupying vertex v at step t. The guards
wins if, for any step t,

∑
v∈B(Rt,d) ct(v) ≥ 1, where B(Rt, d) denotes the ball of

radius d centered into the position Rt of the spy at step t.



Let gfracs,d (G) be the infimum total amount of guards (i.e.,
∑
v∈V c0(v)) re-

quired to win the fractional game at distance d and against a spy with speed
s. Since any integral strategy (i.e. when guards cannot be split) is a fractional
strategy, we get:

Proposition 1. For any graph G and any integers d, s, gfracs,d (G) ≤ gns,d(G).

Conversely, a fractional strategy can be to some extent represented by a
variation of an integral strategy. Let G be a graph and d, s be two integers. Let
also t, k be any two integers. In what follows, t and k will be arbitrary large
and can be some function of n, the number of vertices of G. Let gk,ts,d(G) be the
minimum number of (integral) guards necessary to maintain at least k guards
at distance ≤ d from a spy with speed s in G, during t turns. The next lemma
will be used below to give a lower bound on gfracs,d .

Lemma 3. Let G be a graph with n vertices and d, s, t, k ∈ N (t and k may be
given by any function of n). Then,

gk,ts,d(G) ≤ kgfracs,d (G) + tn2

Asymptotically, this yields a useful bound on gfracs,d : lim supk→∞
gk,t
s,d(G)

k ≤ gfracs,d (G).

Proof. From a fractional strategy using an amount c of guards, we produce
an integer strategy keeping ≥ k guards around the spy. Initially, each vertex
which has an amount x of guards receives bxkc+ tn guards, for total number of
≤ ck + tn2 guards.

We then ensure that, at step i ∈ {1, ..., t}, a vertex having an amount of
x guards in the fractional strategy has ≥ xk + (t − i)n guards in the integer
strategy. To this aim, whenever an amount xuv of guards is to be transferred
from u to v in the fractional strategy, we move bxuvkc+1 in the integer strategy.

As our invariant is preserved throughout the t steps, the spy which had an
amount of ≥ 1 guards within distance d in the fractional strategy now has ≥ k
guards around it, which proves the result. ut

In what follows, we prove that gfracs,d (G) = Ω(n1+β) for some β > 0 in any
n× n-grid G. The next lemma is a key argument for this purpose.

Lemma 4. Let G = (V,E) be a graph and d, s ∈ N (s ≥ 2), with gfracs,d (G) > c ∈
Q∗ and the spy wins in at most t steps against c guards starting from v ∈ V (G).
For any strategy using a total amount k > 0 of guards, there exists a strategy for
the spy (with speed ≤ s) starting from v ∈ V (G) such that after at most t steps,
the amount of guards at distance at most d from the spy is less than k/c.

Proof. For purpose of contradiction, assume that there is a strategy S using
k > 0 guards that contradicts the lemma. Then consider the strategy S ′ obtained
from S by multiplying the number of guards by c/k. That is, if v ∈ V is initially
occupied by q > 0 guards in S, then S ′ places qc/k guards at v initially (note
that S ′ uses a total amount of kc/k=c guards). Then, when S moves an amount q



of guards along an edge e ∈ E, S ′ moves qc/k guards along e. Since S contradicts
the lemma, at any step ≤ t, at least an amount k/c of guards is at distance at
most d from the spy, whatever be the strategy of the spy. Therefore, S ′ ensures
that an amount of at least 1 cop is at distance at most d from the spy during at
least t steps. This contradicts that gfracs,d (G) > c and that the spy wins after at
most t steps. ut

While it holds for any graph and its proof is very simple, we have not been able
to prove a similar lemma in the classical (i.e., non-fractional) case.

The main technical lemma is the following. To prove it, we actually prove
Lemma 6 which gives a lower bound on gk,ts,d(G) in any grid G (this technical
lemma is postponed at the end of the section). Then, it is sufficient to apply
Lemmas 3 and 6 to obtain the following result.

Lemma 5. Let G be a n × n-grid and a ∈ N∗ such that d = 2n/a ∈ N. There

exists γ > 0 such that gfracs,d (G) ≥ γaH(a), where H is the harmonic function.
Moreover, the spy wins after at most 2n steps starting from a corner of G.

From Lemmas 4 and 5, we get

Corollary 1. Let G be a n× n-grid and a ∈ N∗. For any strategy using a total
amount of k > 0 guards, there exists a strategy for the spy (with speed ≤ s)
starting from a corner of G such that after at most 2n steps, the amount of
guards at distance at most 2n/a from the spy is less than k ∗ (aH(a))−1.

Theorem 5. ∃β, γ > 0 such that, for any n×n-grid Gn×n and s, d ∈ N (s ≥ 2),
the spy (with speed ≤ s) can win (for distance d) in at most 2n steps against
< γn1+β guards.

Proof. We actually prove that ∃β > 0 such that Ω(n1+β) = gfracs,d (Gn×n) in any
n× n-grid Gn×n and the result follows from Proposition 1.

Let a0 ∈ N be such that H(a0)−1 ≤ 1/2. Since gfracs,d (Gn×n) is non-decreasing

as a function of n, it is sufficient to prove the lemma for n = (a0)i for any i ∈ N∗.
We prove the result by induction on i. It is clearly true for i = 1 since a0 is

a constant. Assume by induction that there exists γ, β > 0, such that, for i ≥ 1
with n = (a0)i, the spy (with speed ≤ s) can win (for distance d) in at most 2n

steps against γa
i(1+β)
0 guards in any n× n grid.

Let G be a n × n-grid with n = (a0)i+1. Let k ≤ γn1+β . By Corollary 1,
there exists a strategy for the spy (with speed ≤ s) starting from a corner of G
such that after t ≤ 2n steps, the amount of guards at distance at most 2n/a0

from the spy is less than k ∗ (a0H(a0))−1 ≤ k/(2a0) ≤ γn1+β/(2a0).
Let v be the vertex reached by the spy at the step t of strategy S. Let G′ be

any subgrid of G with side n/a0 and corner G. By previous paragraph at most
γn1+β/(2a0) can occupy the nodes at distance at most d from any node of G′

during the next 2n/a0 steps of the strategy. So, by the induction hypothesis, the
spy playing an optimal strategy in G′ against at most γn1+β/(2a0) guards will
win. ut



Corollary 2. ∃β > 0 such that, for any n× n-grid Gn×n and s, d ∈ N (s ≥ 2),

gs,d(Gn×n) = Ω(n1+β).

To conclude, it remains to prove Lemma 5. As announced above, we actually
prove a lower bound on gk,ts,d(G). Since gk,ts,d(G) is an nondecreasing function of s,
it is sufficient to prove it for s = 2.

Lemma 6. Let G be a n×n grid. ∃β > 0 such that for any d, k > 0, gk,2n2,d (G) ≥
βk ndH(nd ).

Proof. Let G be a n × n grid and let us identify its vertices by their natural
coordinates. That is, for any (i1, j1), (i2, j2) ∈ [n]2, vertex (i1, j1) is adjacent to
vertex (i2, j2) if |i1 − i2|+ |j1 − j2| = 1.

In order to prove the result, we will consider a family of strategies for the
spy. For every r ∈ [n], the spy starts at position (0, 0) and runs at full speed
toward (r, 0). Once there, it continues at full speed toward (r, n− 1). We name
Pr the path it follows during this strategy, which is completed in d 1

2 (r+ n− 1)e
tops.

Let us assume that there exists a strategy using an amount q of guards that
maintains at least k guards at distance at most d from the spy during at least
2n turns. Moreover, the spy only plays the strategies described above.

Assuming that the guards are labelled with integers in [q], we can name at
any time of strategy Pr the labels of k guards that are at distance ≤ d of the
spy. In this way, we write c(2r, 2j) this set of k guards that are at distance ≤ d
from the spy, when the spy is at position (2r, 2j).

Claim. If |j2 − j1| > 2d, then c(2r, 2j1) and c(2r, 2j2) are disjoint.

Proof of the claim. Assuming j1 < j2, it takes j2− j1 tops for the spy in strategy
Pr to go from (2r, 2j1) to c(2r, 2j2). A cop cannot be at distance ≤ d from
(2r, 2j1) and, j2 − j1 tops later, at distance ≤ d from (2r, 2j2). Indeed, to do so
its speed must be ≥ 2(j2 − j1 − d)/(j2 − j1) > 1, a contradiction. �

Claim. If |r2−r1| > 2d+2 min(j1, j2), then c(2r1, 2j1) and c(2r2, 2j2) are disjoint.

Proof of the claim. Assuming r1 < r2, note that strategies P2r1 and P2r2 are
identical for the first r1 tops. By that time, the spy is at position (2r1, 0). If
c(2r1, 2j1) intersects c(2r2, 2j2), it means that at this instant some cop is simul-
taneously at distance ≤ d + j1 from (2r1, 2j1) (strategy P2r1) and at distance
≤ d + |r2 − r1| + j2 from (2r2, 2j2) (strategy P2r2). As those two points are at
distance 2|r2 − r1|+ 2|j2 − j1| from each other, we have:

2|r2 − r1|+ 2|j2 − j1| ≤ (d+ j1) + (d+ |r2 − r1|+ j2)

|r2 − r1|+ 2|j2 − j1| ≤ 2d+ j1 + j2

|r2 − r1| ≤ 2d+ 2 min(j1, j2) �



We can now proceed to prove that the number of guards is sufficiently large.
To do so, we define a graph H on a subset of V (G) and relate the distribution
of the guards (as captured by c) with the independent sets of H. It is defined
over V (H) = {(2r, 4dj) : 2r ∈ [n], 4dj ∈ [n]}, where:

– (2r, 4dj1) is adjacent with (2r, 4dj2) for j1 6= j2 (see Claim 4).
– (2r1, 4dj1) is adjacent with (2r2, 4dj2) if |r2 − r1| > 4d(1 + min(j1, j2)) (see

Claim 4).

By definition, c gives k colors to each vertex of H, and any set of vertices
of H receiving a common color is an independent set of H. If we denote by
#c−1(x) the number of vertices which received color x, and by α(2r1,4dj1)(H) the
maximum size of an independent set of H containing (2r1, 4dj1), we have:

q =
∑

(2r1,4dj1)∈V (H)

∑
x∈c(2r1,4dj1)

1

#c−1(x)

≥
∑

(2r1,4dj1)∈V (H)

k

α((2r1,4dj1))(H)

It is easy, however, to approximate this lower bound.

Claim. α((2r1,4dj1))(H) ≤ 4d(j1 + 1) + 1

Proof of the claim. An independent set S ⊆ V (H) containing (2r1, 4dj1) cannot
contain two vertices with the same first coordinate. Furthermore, (2r1, 4dj1) is
adjacent with any vertex (2r2, 4dj2) if |r2 − r1| > 4d(1 + j1). �

We can now finish the proof:

q ≥
∑

(2r1,4dj1)∈V (H)

k

α((2r1,4dj1))(H)

≥
∑

(2r1,4dj1)∈V (H)

k

4d(j1 + 1) + 1

≥ n

2

∑
j1∈{0,...,n/4d}

k

4d(j1 + 1) + 1

≥ kn

16d

∑
j1∈{1,...,n/4d+1}

1

j1
≥ kn

16d
H(n/4d)

ut
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