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Abstract

In this work, a new prototype-based clustering method named Evidential C-Medoids (ECMdd),

which belongs to the family of medoid-based clustering for proximity data, is proposed as an

extension of Fuzzy C-Medoids (FCMdd) on the theoretical framework of belief functions. In

the application of FCMdd and original ECMdd, a single medoid (prototype), which is sup-

posed to belong to the object set, is utilized to represent one class. For the sake of clarity, this

kind of ECMdd using a single medoid is denoted by sECMdd. In real clustering applications,

using only one pattern to capture or interpret a class may not adequately model different

types of group structure and hence limits the clustering performance. In order to address

this problem, a variation of ECMdd using multiple weighted medoids, denoted by wECMdd,

is presented. Unlike sECMdd, in wECMdd objects in each cluster carry various weights de-

scribing their degree of representativeness for that class. This mechanism enables each class

to be represented by more than one object. Experimental results in synthetic and real data

sets clearly demonstrate the superiority of sECMdd and wECMdd. Moreover, the clustering

results by wECMdd can provide richer information for the inner structure of the detected

classes with the help of prototype weights.

Keywords: Credal partitions, Relational clustering, Multiple prototypes, Imprecise classes

1. Introduction

Clustering, or unsupervised learning, is a useful technique to detect the underlying

cluster structure of the data set. The task of clustering is to partition a set of objects

X = {x1, x2, · · · , xn} into c groups Ω = {ω1, ω2, · · · , ωc} in such a way that objects in the

same class are more similar to each other than to those in other classes. The patterns in X

are represented by either object data or relational data. Object data are described explicitly

by vectors, while relational data arise from pairwise similarities or dissimilarities. Among the

existing approaches to clustering, the objective function-driven or prototype-based clustering

such as C-Means (CM), Fuzzy C-Means (FCM) and Evidential C-Means (ECM) is one of the

most widely applied paradigms in statistical pattern recognition. These methods are based

on a fundamentally very simple, but nevertheless very effective idea, namely to describe the

data under consideration by a set of prototypes. They capture the characteristics of the data
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distribution (like location, size, and shape), and classify the data set based on the similarities

(or dissimilarities) of the objects to their prototypes.

The above mentioned clustering algorithms, CM, FCM and ECM are for object data.

The prototype of each class by these methods is the geometrical center of gravity of all the

included objects. But for relational data sets, it is difficult to determine the coordinates of

the centroid of objects. In this case, one of the objects which seems most similar to the

ideal center could be set as a prototype. This is the idea of clustering using medoids. Some

clustering methods, such as Partitioning Around Medoids (PAM) [1] and Fuzzy C-Medoids

(FCMdd) [2], produce hard and soft clusters respectively where each of them is represented

by a representative medoid. A medoid can be defined as the object of a cluster whose average

dissimilarity to all the other objects in the cluster is minimal, i.e. it is a most centrally located

point in the cluster. However, in real applications, in order to capture various aspects of class

structure, it may not be sufficient enough to use only one object to represent the whole cluster.

Consequently we may need more members rather than one to be referred as the prototypes

of a group.

Clustering using multi-prototype has already been studied by some scholars. There are

some extensions of FCMdd by using weighted medoids [3, 4] or multiple medoids [5]. Liu et al.

[6] proposed a multi-prototype clustering algorithm which can discover the clusters of arbitrary

shape and size. In their work, multiple prototypes with small separations are organized to

model a given number of clusters in the agglomerative method. New prototypes are iteratively

added to improve the poor cluster boundaries resulted by the poor initial settings. Tao [7]

presented a clustering algorithm adopting multiple centers to represent the non-spherical

shape of classes, and the method could handle non-traditional curved clusters. Ghosh et al.

[8] considered a multi-prototype classifier which includes options for rejecting patterns that

are ambiguous and/or do not belong to any class. More work about multi-prototype clustering

could be found in Refs. [9, 10].

Since the boundary between clusters in real-world data sets usually overlaps, soft clus-

tering methods, such as fuzzy clustering, are more suitable than hard clustering for real world

applications in data analysis. But the probabilistic constraint of fuzzy memberships (which

must sum to 1 across classes) often brings about some problems, such as the inability to

distinguish between “equal evidence” (class membership values high enough and equal for a

number of alternatives) and “ignorance” (all class membership values equal but very close to

zero) [11–13]. Possibility theory and the theory of belief functions [14] could been applied to

ameliorate this problem.

Belief functions have already been applied in many fields, such as data classification

[15–21], data clustering [22–24], social network analysis [25–27] and statistical estimation [28–

30]. Evidential C-Means (ECM) [22] is a newly proposed clustering method to get credal

partitions [23] for object data. The credal partition is a general extension of the crisp (hard)

and fuzzy ones and it allows the object to belong to not only single clusters, but also any

subsets of the set of clusters Ω = {ω1, · · · , ωc} by allocating a mass of belief for each object in

X over the power set 2Ω. The additional flexibility brought by the power set provides more

refined partitioning results than those by the other techniques allowing us to gain a deeper

insight into the data [22]. In this paper, we introduce some extensions of FCMdd on the
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framework of belief functions. Two versions of evidential c-medoids clustering, sECMdd and

wECMdd, using a single medoid and multiple weighted medoids respectively to represent a

class are proposed to produce the optimal credal partition. The experimental results show

the effectiveness of the methods and illustrate the advantages of credal partitions and multi-

prototype representation for classes.

The rest of this paper is organized as follows. In Section 2, some basic knowledge and

the rationale of our method are briefly introduced. In Section 3 and Section 4, evidential

c-medoids using a single medoid and multiple weighted medoids are presented respectively.

Some issues about applying the algorithms are discussed in Section 5. In order to show the

effectiveness of the proposed clustering approaches, in Section 6 we test the ECMdd algorithms

on different artificial and real-world data sets and make comparisons with related partitive

methods. Finally, we conclude and present some perspectives in Section 7.

2. Background

In this section some related preliminary knowledge, including the theory of belief functions

and some classical clustering algorithms, will be presented.

2.1. Theory of belief functions

Let Ω = {ω1, ω2, . . . , ωc} be the finite domain of X, called the discernment frame. The

belief functions are defined on the power set 2Ω = {A : A ⊆ Ω}. The function m : 2Ω → [0, 1]

is said to be the Basic Belief Assignment (bba) on 2Ω, if it satisfies:∑
A⊆Ω

m(A) = 1. (1)

Every A ∈ 2Ω such that m(A) > 0 is called a focal element. The credibility and plausibility

functions are defined as in Eqs. (2) and (3) respectively.

Bel(A) =
∑

B⊆A,B 6=∅

m(B), ∀A ⊆ Ω, (2)

Pl(A) =
∑

B∩A6=∅

m(B), ∀A ⊆ Ω. (3)

Each quantity Bel(A) measures the total support given to A, while Pl(A) represents potential

amount of support to A. Functions Bel and Pl are linked by the following relation:

Pl(A) = 1−m(∅)−Bel(A), (4)

where A denotes the complement of A in Ω.

A belief function on the credal level can be transformed into a probability function by

Smets method [31]. In this algorithm, each mass of belief m(A) is equally distributed among

the elements of A. This leads to the concept of pignistic probability, BetP, defined by

BetP(ωi) =
∑

ωi∈A⊆Ω

m(A)

|A|(1−m(∅))
, (5)
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where |A| is the number of elements of Ω in A. Pignistic probabilities, which play the same role

as fuzzy membership, can easily help us make a decision. In fact, belief functions provide us

many decision-making techniques not only in the form of probability measures. For instance,

a pessimistic decision can be made by maximizing the credibility function, while maximizing

the plausibility function could provide an optimistic one [32]. Another criterion (Appriou’s

rule) [32] considers the plausibility functions and consists of attributing the class Aj for object

i if

Aj = arg max
X⊆Ω
{mi(X)Pli(X)}, (6)

where

mi(X) = KiλX

(
1

|X|r

)
. (7)

In Eq. (6) mi(X) is a weight on Pli(X), and r is a parameter in [0, 1] allowing a decision from

a simple class (r = 1) until the total ignorance Ω (r = 0). The value λX allows the integration

of the lack of knowledge on one of the focal sets X ⊆ Ω, and it can be set to be 1 simply.

Coefficient Ki is the normalization factor to constrain the mass to be in the closed world:

Ki =
1

1−mi(∅)
. (8)

2.2. Evidential c-means

Evidential c-means [22] is a direct generalization of FCM in the framework of belief

functions, and it is based on the credal partition first proposed by Denœux and Masson

[23]. The credal partition takes advantage of imprecise (meta) classes to express partial

knowledge of class memberships. The principle is different from another belief clustering

method put forward by Schubert [33], in which conflict between evidence is utilized to cluster

the belief functions related to multiple events. In ECM, the evidential membership of object

xi = {xi1, xi2, · · · , xip} is represented by a bba mi = (mi (Aj) : Aj ⊆ Ω) (i = 1, 2, · · · , n) over

the given frame of discernment Ω = {ω1, ω2, · · · , ωc}. The set F = {Aj | Aj ⊆ Ω,mi(Aj) > 0}
contains all the focal elements. The optimal credal partition is obtained by minimizing the

following objective function:

JECM =
n∑
i=1

∑
Aj⊆Ω,Aj 6=∅

|Aj |αmi(Aj)
βd2

ij +
n∑
i=1

δ2mi(∅)β (9)

constrained on ∑
Aj⊆Ω,Aj 6=∅

mi(Aj) +mi(∅) = 1, (10)

and

mi (Aj) ≥ 0, mi (∅) ≥ 0, (11)

where mi(Aj) , mij is the bba of xi given to the nonempty set Aj , while mi(∅) , mi∅ is the

bba of xi assigned to the empty set. Parameter α is a tuning parameter allowing to control the

degree of penalization for subsets with high cardinality, parameter β is a weighting exponent

and δ is an adjustable threshold for detecting the outliers. Here dij denotes the distance

(generally Euclidean distance) between xi and the barycenter (i.e. prototype, denoted by vj)
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associated with Aj :

d2
ij = ‖xi − vj‖2, (12)

where vj is defined mathematically by

vj =
1

|Aj |

c∑
h=1

shjvh, with shj =

1 if ωh ∈ Aj ,

0 else.
(13)

The notation vh is the geometrical center of points in cluster h. In fact the value of dij reflects

the distance between object xi and class Aj . Note that a “noise” class ∅ is considered in ECM.

If Aj = ∅, it is assumed that the distance between object xi and class Aj is dij = δ. As we

can see for credal partitions, the label of class j is not from 1 to c as usual, but ranges in

1, 2, · · · , f where f is the number of the focal elements i.e. f = |F|. The update process with

Euclidean distance is given by the following two alternating steps.

(1) Assignment update:

mij =
|Aj |−α/(β−1)d

−2/(β−1)
ij∑

Ah 6=∅
|Ah|−α/(β−1)d

−2/(β−1)
ih + δ−2/(β−1)

,∀i, ∀j/Aj( 6= ∅) ⊆ Ω (14)

mi∅ = 1−
∑
Aj 6=∅

mij , ∀i = 1, 2, · · · , n. (15)

(2) Prototype update: The prototypes (centers) of the classes are given by the rows of the

matrix vc×p, which is the solution of the following linear system:

HV = B, (16)

where H is a matrix of size (c× c) given by

Hlt =
∑
i

∑
Ahk{ωt,ωl}

|Ah|α−2mβ
ih, t, l = 1, 2, · · · , c, (17)

and B is a matrix of size (c× p) defined by

Blq =
n∑
i=1

xiq
∑
Ak3ωl

|Ak|α−1mβ
ik, l = 1, 2, · · · , c, q = 1, 2, · · · , p. (18)

2.3. Hard and fuzzy c-medoids clustering

The hard C-Medoids (CMdd) clustering is a variant of the traditional c-means method,

and it produces a crisp partition of the data set. Let X = {xi | i = 1, 2, · · · , n} be the set

of n objects and τ(xi, xj) , τij denote the dissimilarity between objects xi and xj . Each

object may or may not be represented by a feature vector. Let V = {v1, v2, · · · , vc}, vi ∈ X

represent a subset of X. The objective function of CMdd is similar to that in CM:

JCMdd =
c∑
j=1

n∑
i=1

uijτ(xi, vj), (19)
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where c is the number of clusters. As CMdd is based on crisp partitions, uij is either 0 or 1

depending whether xi is in cluster ωj . The notation vj is the prototype of class ωj , and it

is supposed to be one of the objects in the data set. Due to the fact that exhaustive search

of medoids is an NP hard problem, Kaufman and Rousseeuw [1] proposed one approximate

search algorithm called PAM, where the c medoids are found efficiently. After the selection of

the prototypes, object xi is assigned the closest class ωf , the medoid of which is most similar

to this pattern, i.e.

xi ∈ ωf , with f = arg min
l=1,2,··· ,c

τ(xi, vl). (20)

Fuzzy C-Medoids (FCMdd) is a variation of CMdd designed for relational data [2]. The

objective function of FCMdd is given as

JFCMdd =
n∑
i=1

c∑
j=1

uβijτ(xi, vj) (21)

subject to
c∑
j=1

uij = 1, i = 1, 2, · · · , n, (22)

and

uij ≥ 0, i = 1, 2, · · · , n, j = 1, 2, · · · , c. (23)

In fact, the objective function of FCMdd is similar to that of FCM. The main difference lies in

that the prototype of a class in FCMdd is defined as the medoid, i.e. one of the object in the

original data set, instead of the centroid (the average point in a continuous space) for FCM.

The object assignment and prototype selection are preformed by the following alternating

update steps:

(1) Assignment update:

uij =
τ
−1/(β−1)
ij

c∑
k=1

τ
−1/(β−1)
ik

. (24)

(2) Prototype update: the new prototype of cluster ωj is set to be vj = xl∗ with

xl∗ = arg min
{vj :vj=xl(∈X)}

n∑
i=1

uβijτ(xi, vj). (25)

2.4. Fuzzy clustering with multi-medoid

In a recent work of Mei and Chen [4], a generalized medoid-based Fuzzy clustering with

Multiple Medoids (FMMdd) has been proposed. For a data set X given the dissimilarity

matrix R = {rij}n×n, where rij records the dissimilarity between each two objects xi and xj .

The objective of FMMdd is to minimize the following criterion:

JFMMdd =
c∑

k=1

n∑
i=1

n∑
j=1

uβikv
ψ
kjrij (26)
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subject to
c∑

k=1

uik = 1,∀i = 1, 2, · · ·n; uik ≥ 0,∀i and k (27)

and
n∑
j=1

vkj = 1,∀k = 1, 2, · · · , c; vkj ≥ 0, ∀k and j, (28)

where uik denotes the fuzzy membership of xi for cluster ωk, and vkj denotes the prototype

weights of xj for cluster ωk. The constrained minimization problem of finding the optimal

fuzzy partition could be solved by the use of Lagrange multipliers and the update equations

of uik and vkj are derived as below:

uik =

(
n∑
j=1

vψkjrij

)−1/(β−1)

c∑
f=k

(
n∑
j=1

vψfjrij

)−1/(β−1)
(29)

and

vkj =

(
n∑
i=1

uβikrij

)−1/(ψ−1)

n∑
h=1

(
n∑
i=1

uβikrih

)−1/(ψ−1)
. (30)

The FMMdd algorithm starts with a non-negative initialization, then the membership values

and prototype weights are iteratively updated with Eqs. (29) and (30) until convergence.

3. sECMdd with a single medoid

We start with the introduction of evidential c-medoids clustering algorithm using a single

medoid, sECMdd, in order to take advantages of both medoid-based clustering and credal

partitions. This partitioning evidential clustering algorithm is mainly related to the fuzzy c-

medoids. Like all the prototype-based clustering methods, for sECMdd, an objective function

should first be found to provide an immediate measure of the quality of the partitions. Hence

our goal can be characterized as the optimization of the objective function to get the best

credal partition.

3.1. The objective function

As before, let X = {xi | i = 1, 2, · · · , n} be the set of n objects and τ(xi, xj) , τij denote

the dissimilarity between objects xi and xj . The pairwise dissimilarity is the only information

required for the analyzed data set. The objective function of sECMdd is similar to that in

ECM:

JsECMdd(M ,V ) =
n∑
i=1

∑
Aj⊆Ω,Aj 6=∅

|Aj |αmβ
ijdij +

n∑
i=1

δ2mβ
i∅, (31)

constrained on ∑
Aj⊆Ω,Aj 6=∅

mij +mi∅ = 1, (32)
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where mij , mi(Aj) is the bba of xi given to the nonempty set Aj , mi∅ , mi(∅) is the bba of

xi assigned to the empty set, and dij , d(xi, Aj) is the dissimilarity between xi and focal set

Aj . Parameters α, β, δ are adjustable with the same meanings as those in ECM. Note that

JsECMdd depends on the credal partition M and the set V of all prototypes.

Let vΩ
k be the prototype of specific cluster (whose focal element is a singleton) Aj = {ωk}

(k = 1, 2, · · · , c) and assume that it must be one of the objects in X. The dissimilarity

between object xi and cluster (focal set) Aj can be defined as follows. If |Aj | = 1, i.e. Aj is

associated with one of the singleton clusters in Ω (suppose to be ωk with prototype vΩ
k , i.e.

Aj = {ωk}), then the dissimilarity between xi and Aj is defined by

dij = d(xi, Aj) = τ(xi, v
Ω
k ). (33)

When |Aj | > 1, it represents an imprecise (meta) cluster. If object xi is to be partitioned into

a meta cluster, two conditions should be satisfied [27]. One condition is the dissimilarity values

between xi and the included singleton classes’ prototypes are small. The other condition is the

object should be close to the prototypes of all these specific clusters. The former measures the

degree of uncertainty, while the latter is to avoid the pitfall of partitioning two data objects

irrelevant to any included specific clusters into the corresponding imprecise classes. Therefore,

the medoid (prototype) of an imprecise class Aj could be set to be one of the objects locating

with similar dissimilarities to all the prototypes of the specific classes ωk ∈ Aj included in

Aj . The variance of the dissimilarities of object xi to the medoids of all the involved specific

classes could be taken into account to express the degree of uncertainty. The smaller the

variance is, the higher uncertainty we have for object xi. Meanwhile the medoid should be

close to all the prototypes of the specific classes. This is to distinguish the outliers, which

may have similar dissimilarities to the prototypes of some specific classes, but obviously not

a good choice for representing the associated imprecise classes. Let v2Ω

j denote the medoid of

class Aj
1. Based on the above analysis, the medoid of Aj should set to v2Ω

j = xp with

p = arg min
i:xi∈X

{
f
(
{τ(xi, v

Ω
k );ωk ∈ Aj}

)
+ η

1

|Aj |
∑
ωk∈Aj

τ(xi, v
Ω
k )
}
, (34)

where ωk is the element of Aj , v
Ω
k is its corresponding prototype and f denotes the function

describing the variance among the related dissimilarity values. The variance function could

be used directly:

Varij =
1

|Aj |
∑
ωk∈Aj

[
τ(xi, v

Ω
k )− 1

|Aj |
∑
ωk∈Aj

τ(xi, v
Ω
k )

]2

. (35)

In this paper, we use the following function to describe the variance ρij of the dissimilarities

1The notation vΩ
k denotes the prototype of specific class ωk, indicating it is in the framework of Ω. Similarly,

v2Ω

j is defined on the power set 2Ω, representing the prototype of the focal set Aj ∈ 2Ω. In fact V is the set of all

the prototypes, i.e. V = {v2Ω

j : j = 1, 2, · · · , 2c − 1}. It is easy to see {vΩ
k : k = 1, 2, · · · , c} ⊆ V ⊆ X.
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between object xi and the medoids of the involved specific classes in Aj

ρij =
1

choose(|Aj |, 2)

∑
ωx,ωy∈Aj

√(
τ(xi, vΩ

x )− τ(xi, vΩ
y )
)2
, (36)

where choose(a, b) is the number of combinations of the given a elements taken b at a time.

Then the dissimilarity between objects xi and class Aj can be defined as

dij =

τ(xi, v
2Ω

j ) + γ 1
|Aj |

∑
ωk∈Aj

τ(xi, v
Ω
k )

1 + γ
. (37)

As we can see from the above equation, the dissimilarity between object xi and meta class

Aj is the weighted average of dissimilarities of xi to the all involved singleton cluster medoids

and to the prototype of the imprecise class Aj with a tuning factor γ. If Aj is a specific class

with Aj = {ωk} (|Aj | = 1), the dissimilarity between xj and Aj degrades to the dissimilarity

between xi and vΩ
k as defined in Eq. (33), i.e. v2Ω

j = vΩ
k . And if |Aj | > 1, its medoid is

determined by Eq. (34).

Remark 1: sECMdd is similar to Median Evidential C-Means (MECM) [27] algorithm.

MECM is in the framework of median clustering, while sECMdd consists with FCMdd in

principle. Another difference of sECMdd and MECM is the way of calculating the dissimi-

larities between objects and imprecise classes. Although both MECM and sECMdd consider

the dissimilarities of objects to the prototypes for specific clusters, the strategy adopted by

sECMdd is more simple and intuitive, hence makes sECMdd run faster in real time. Moreover,

there is no representative medoid for imprecise classes in MECM.

3.2. The optimization

To minimize JsECMdd, an optimization scheme via an Expectation-Maximization (EM)

algorithm can be designed, and the alternating update steps are as follows:

Step 1. Credal partition (M) update.

The bbas of objects’ class membership for any subset Aj ⊆ Ω and the empty set ∅
representing the outliers are updated identically to ECM [22]:

(1) ∀Aj ⊆ Ω, Aj 6= ∅,

mij =
|Aj |−α/(β−1)d

−1/(β−1)
ij∑

Ak 6=∅
|Ak|−α/(β−1)d

−1/(β−1)
ik + δ−1/(β−1)

(38)

(2) If Aj = ∅,
mi∅ = 1−

∑
Aj 6=∅

mij (39)

Step 2. Prototype (V ) update.

The prototype vΩ
i of a specific (singleton) cluster ωi (i = 1, 2, · · · , c) can be updated first

and then the prototypes of imprecise (meta) classes could be determined by Eq. (34). For

singleton clusters ωk (k = 1, 2, · · · , c), the corresponding new prototype vΩ
k (k = 1, 2, · · · , c)
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could be set to xl ∈X such that

xl = arg min
v
′
k


n∑
i=1

∑
Aj={ωk}

mβ
ijdij(v

′

k) : v
′

k ∈ X

 . (40)

The dissimilarity between object xi and cluster Aj , dij , is a function of v
′

k, which is the

potential prototype of class ωk.

The bbas of the objects’ class assignment are updated identically to ECM [22], but it

is worth noting that dij has a different meaning as that in ECM although in both cases it

measures the dissimilarity between object xi and class Aj . In ECM dij is the distance between

object i and the centroid point of Aj , while in sECMdd, it is the dissimilarity between xi and

the most “possible” medoid. For the prototype updating process the fact that the prototypes

are assumed to be one of the data objects is taken into consideration. Therefore, when the

credal partition matrix M is fixed, the new prototype of each cluster can be obtained in a

simpler manner than in the case of ECM application. The sECMdd algorithm is summarized

as Algorithm 1.

Algorithm 1 : sECMdd algorithm

Input: Dissimilarity matrix [τ(xi, xj)]n×n for the n objects {x1, x2, · · · , xn}.
Parameters:
c: number clusters 1 < c < n
α: weighing exponent for cardinality
β > 1: weighting exponent
δ > 0: dissimilarity between any object to the empty set
η > 0: to distinguish the outliers from the possible medoids
γ ∈ [0, 1]: to balance of the contribution for imprecise classes
Initialization:
Choose randomly c initial prototypes from the object set
repeat

(1). t← t+ 1
(2). Compute Mt using Eq. (38), Eq. (39) and Vt−1

(3). Compute the new prototype set Vt using Eq. (40) and (34)
until the prototypes remain unchanged.
Output: The optimal credal partition.

The update process of mass membership M is the same as that in ECM. For a given n×n
dissimilarity matrix, the complexity of this step is of order n2c. The complexity for updating

the prototypes and calculating the dissimilarity between objects and classes is O(cn2 + n2c).

Therefore, the total time complexity for one iteration in sECMdd is O(cn2 + n2c).

Remark 2: The assignment update process will not increase JsECMdd since the new mass

matrix is determined by differentiating of the respective Lagrangian of the cost function

with respect to M . Also JsECMdd will not increase through the medoid-searching scheme for

prototypes of specific classes. If the prototypes of specific classes are fixed, the medoids of

imprecise classes determined by Eq. (34) are likely to locate near to the “centroid” of all the

prototypes of the included specific classes. If the objects are in Euclidean space, the medoids

of imprecise classes are near to the centroids found in ECM. Thus it will not increase the

value of the objective function also. Moreover, the bba M is a function of the prototypes V
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and for given V the assignment M is unique. Because sECMdd assumes that the prototypes

are in the original object data set X, so there is a finite number of different prototype vectors

V and so is the number of corresponding credal partitions M . Consequently we can conclude

that the sECMdd algorithm converges in a finite number of steps.

4. ECMdd with multiple weighted medoids

This section presents evidential c-medoids algorithm using multiple weighted medoids.

The approach to compute the relative weights of medoids is based on both the computation

of the membership degree of objects belonging to specific classes and the computation of the

dissimilarities between objects.

4.1. The objective function

The objective function of wECMdd, JwECMdd, has the same form as that in sECMdd

(see Eq. (31)). In wECMdd, we use multiple weighted medoids to represent each specific class

instead of a single medoid. Thus the method to calculate dij in the objective function is

different from sECMdd. Let V Ω = {vΩ
ki}c×n be the weight matrix for specific classes, where

vΩ
ki describes the weight of object i for the kth specific class. Then, the dissimilarity between

object xi and cluster Aj = {ωk} could be calculated by

d(xi, Aj) , dij =
n∑
l=1

(
vΩ
kl

)ψ
τ(i, l), (41)

with
n∑
l=1

vΩ
kl = 1,∀k = 1, 2, · · · , c. (42)

Parameter ψ controls the smoothness of the distribution of prototype weights. The weights

of imprecise class Aj (|Aj | > 1) can be derived according to the involved specific classes. If

object xi has similar weights for specific classes ωm and ωn, it is most probable that xi lies in

the overlapping area between two classes. Thus the variance of the weights of object xi for

all the included specific classes of Aj , Varji, could be used to express the weights of xi for Aj

(denoted by v2Ω

ji , and V is used to denote the corresponding weight matrix2). The smaller

Varji is, the higher v2Ω

ji is. However, we should pay attention to the outliers. They may hold

similar small weights for each specific class, but have no contribution to the imprecise classes

at all. The minimum of xi’s weights for all the associated specific classes could be taken into

consideration to distinguish the outliers. If the minimal weight is too small, we should assign

a small weight value for that object. Based on the discussion, the weights of object xi for

class Aj (Aj ⊆ Ω) could be calculated as

v2Ω

ji =
f1

(
Var

(
{vΩ
ki;ωk ∈ Aj}

))
· f2

(
min

(
{vΩ
ki;ωk ∈ Aj}

))∑
l

f1 (Var ({vΩ
kl;ωk ∈ Aj})) · f2 (min ({vΩ

kl;ωk ∈ Aj}))
, (43)

2In sECMdd, V denotes the set of prototypes of all the classes. Here V represents the weights of prototypes.
We use the same notation to show the similar role of V in sECMdd and wECMdd. In fact sECMdd can be regarded
as a special case of wECMdd, where the weight values are restricted to be either 0 or 1.
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where f1 is a monotone decreasing function while f2 is an increasing function. The two

functions should be determined according to the application under concern. Based on our

experiments, we suggest adopting the simple directly and inversely proportion functions, i.e.

v2Ω

ji =
[min

(
{vΩ
ki;ωk ∈ Aj}

)
]ξ/Var

(
{vΩ
ki;ωk ∈ Aj}

)∑
l

[min ({vΩ
kl;ωk ∈ Aj})]ξ/Var ({vΩ

kl;ωk ∈ Aj})
. (44)

Parameter ξ is used to balance the contribution of f1 and f2. It is remarkable that when

Aj = {ωk}, that is to say |Aj | = 1, v2Ω

ji = vΩ
ki. Therefore, the dissimilarity between object xi

and cluster Aj (including both specific and imprecise classes) could be given by

dij =
n∑
l=1

(
v2Ω

jl

)ψ
τ(i, l), Aj ⊆ Ω, Aj 6= ∅. (45)

4.2. Optimization

The problem of finding optimal cluster assignments of objects and representatives of

classes is now formulated as a constrained optimization problem, i.e. to find optimal values

of M and V subject to a set of constrains. As before, the method of Lagrange multipliers

could be utilized to derive the solutions. The Lagrangian function is constructed as

LwECMdd = JwECMdd −
n∑
i=1

λi

 ∑
Aj⊆Ω,Aj 6=∅

mij − 1

− c∑
k=1

βk

(
n∑
i=1

vΩ
ki − 1

)
, (46)

where λi and βk are Lagrange multipliers. By calculating the first order partial derivatives of

LwECMdd with respect to mij , v
Ω
ki, λi and βk and letting them to be 0, the update equations

of mij and vΩ
ki could be derived. It is easy to obtain that the update equations for mij are the

same as Eqs. (38) and (39) in the application of sECMdd, except that in this case dij should

be calculated by Eq. (45). The update strategy for the prototype weights vΩ
ki is difficult to

get since it is a non-linear optimization problem. Some specifical techniques may be adopted

to solve this problem. Here we use a simple approximation scheme to update vΩ
ki.

Suppose the class assignment M is fixed and assume that the prototype weights for

imprecise class Aj (Aj ⊆ Ω, |Aj | > 1), v2Ω

ji , are dependent of the weights for specific classes

(vΩ
ki). Then the first order necessary condition with respect to vΩ

ki is only related to dij with

Aj = {ωk}. The update equations of vΩ
ki could then derived as

vΩ
ki =

(
n∑
l=1

mβ
ljτli

)−1/(ψ−1)

n∑
h=1

(
n∑
l=1

mβ
ljτlh

)−1/(ψ−1)
k = 1, 2, · · · , c, Aj = {ωk}. (47)

After obtaining the weights for specific classes, the weights for imprecise classes can be ob-

tained by Eq. (44) and the dissimilarities between objects and classes could then calculated

by Eq. (45). The update of cluster assignment M and prototype weight matrix V should

be repeated until convergence. The wECMdd algorithm is summarised in Algorithm 2. The

complexity of wECMdd is O(n2c + n2).

Remark 3: Existing work has studied the convergence properties of the partitioning cluster-
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Algorithm 2 : wECMdd algorithm

Input: Dissimilarity matrix [τ(xi, xj)]n×n for the n objects {x1, x2, · · · , xn}.
Parameters:
c: number clusters 1 < c < n
α: weighing exponent for cardinality
β > 1: weighting exponent
δ > 0: dissimilarity between any object to the empty set
ξ > 0: balancing the weights of imprecise classes
ψ: controlling the smoothness of the distribution of prototype weigths
Initialization:
Choose randomly c initial prototypes from the object set
repeat

(1). t← t+ 1
(2). Compute Mt using Eq. (38), Eq. (39) and Vt−1

(3). Compute the prototype weights for specific classes using Eq. (47)
(4). Compute the prototype weights for imprecise classes using Eq. (44) and get the new
Vt.

until the prototypes remain unchanged.
Output: The optimal credal partition.

ing algorithms, such as C-Means, and C-Medoids. As we can see, wECMdd follows a similar

clustering approach. The optimization process consists of three steps: cluster assignment

update, prototype weights of specific classes update and then prototype weights of imprecise

classes update. The first two steps improve the objective function value by the application

of Lagrangian multiplier method. The third step tries to find good representative objects for

imprecise classes. If the method to determine the weights for imprecise classes is of practical

meaning, it will also keep the objective function increasing. In fact the approach of updating

the prototype weights is similar to the idea of one-step Gaussian-Seidel iteration method,

where the computation of the new variable vector uses the new elements that have already

been computed, and the old elements that have not yet to be advanced to the next iteration.

In Section 6, we will demonstrate through experiments that wECMdd could converge in a few

number of iterations.

5. Application issues

In this section, some problems when applying the ECMdd algorithms, such as how to

adjust the parameters and how to select the initial prototypes for each class, will be discussed.

5.1. The parameters of the algorithm

As in ECM, before running ECMdd, the values of the parameters have to be set. Pa-

rameters α, β and δ have the same meanings as those in ECM. The value β can be set to be

β = 2 in all experiments for which it is a usual choice. The parameter α aims to penalize the

subsets with high cardinality and control the amount of points assigned to imprecise clusters

for credal partitions. The higher α is, the less mass belief is assigned to the meta clusters

and the less imprecise will be the resulting partition. However, the decrease of imprecision

may result in high risk of errors. For instance, in the case of hard partitions, the clustering

results are completely precise but there is much more intendancy to partition an object to an
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unrelated group. As suggested in [22], a value can be used as a starting default one but it can

be modified according to what is expected from the user. The choice δ is more difficult and

is strongly data dependent [22]. If we do not aim at detecting outliers, δ can be set relatively

large.

In sECMdd, parameter γ weighs the contribution of uncertainty to the dissimilarity

between objects and imprecise clusters. Parameter η is used to distinguish the outliers from

the possible medoids when determining the prototypes of meta classes. It can be set 1 by

default and it has little effect on the final partition results. Parameters ξ and ψ are for specially

for wECMdd. Similar to β, ψ is used to control the smoothness of the weight distribution.

Parameter ξ is used for not assigning the outliers large weights for imprecise classes. If there

are few outliers in the data set, it could be set to be near 0.

For determining the number of clusters, the validity index of a credal partition defined

by Masson and Denoeux [22] could be used:

N∗(c) ,
1

n log2(c)
×

n∑
i=1

 ∑
A∈2Ω\∅

mi(A) log2 |A|+mi(∅) log2(c)

 , (48)

where 0 ≤ N∗(c) ≤ 1. This index has to be minimized to get the optimal number of clusters.

As we discussed, in real practice, some of the parameters in the model such as β, η and

ξ can be set as constants. Although this could not reduce the complexity of the algorithm, it

can simplify the equations and bring about some convenience for applications.

5.2. The initial prototypes

The c-means type clustering algorithms are sensitive to the initial prototypes [34]. In

this work, we follow the initialization procedure as the one used in [2, 3, 35] to generate a set

of c initial prototypes one by one. The first medoid, σ1, is randomly picked from the data set.

The rest of medoids are selected successively one by one in such a way that each one is most

dissimilar to all the medoids that have already been picked. Suppose σ = {σ1, σ2, · · · , σj} is

the set of the first chosen j (j < c) medoids. Then the j+ 1 medoid, σj+1, is set to the object

xp with

p = arg max
1≤i≤n;xi /∈σ

{
min
σk∈σ

τ(xi, σk)

}
. (49)

This selection process makes the initial prototypes evenly distributed and locate as far away

from each other as possible. It is noted that another scheme is that the first medoid is set to

be the object with the smallest total dissimilarity to all the other objects, i.e. σ1 = xr with

r = arg min
1≤i≤n

{
n∑
j=1

τ(xi, xj)

}
, (50)

and the remaining prototypes are selected the same way as before. Krishnapuram et al.

[2] have pointed out that both initialization schemes work well in practice. But based on

our experiments, for credal partitions, a bit of randomness of the first prototype might be

desirable.
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5.3. Making the important objects more important

In wECMdd, a matrix V = {v2Ω

ji } is used to record prototype weights of n objects with

respect to all the clusters, including the specific classes and imprecise classes. All objects

are engaged in describing clusters information with some weights assigned to each detected

classes. This seems unreasonable since it is easy to understand that when an object does not

belong to a cluster, it should not participate in describing that cluster [36]. Therefore, in each

iteration of wECMdd, after the weights vΩ
ki, k = 1, 2, · · · , c, i = 1, 2, · · · , n of xi for all the

specific classes ωk are obtained by Eq. (47), the normalized weights wΩ
ki could be calculated

by 3

wΩ
ki =

v
′

ki
n∑
i=1

v
′

ki

, i = 1, 2, · · · , n, and k = 1, 2, · · · , c, (51)

where v
′

ki equals to vΩ
ki if xi belongs to ωk, 0 otherwise. Remark that xi is regarded as a

member of class ωk if mi({ωk}) is the maximum of the masses assigned to all the focal sets

at this iteration. In fact, if we want to make the important “core” objects more important in

each cluster, a subset of fixed cardinality 1 ≤ q � n of objects X could be used. The q objects

constitute core of each cluster, and collaborate to describe information of each class. This

kind of wECMdd with q medoids in each class is denoted by wECMdd-q. More generally, q

could be different for each cluster. However, how to determine q or the number of cores in

every class should be considered. This is not the topic of this work and we will study that in

the future work.

6. Experiments

In this section some experiments on generated and real data sets will be performed

to show the effectiveness of sECMdd and wECMdd. The results are compared with other

relational clustering approaches PAM [1], FCMdd [2], FMMdd [4] and MECM [27] to illustrate

the advantages of credal partitions and multi-prototype representativeness of classes. The

popular measures, Precision (P), Recall (R) and Rand Index (RI), which are typically used

to evaluate the performance of hard partitions are also used here. Precision is the fraction of

relevant instances (pairs in identical groups in the clustering benchmark) out of those retrieved

instances (pairs in identical groups of the discovered clusters), while recall is the fraction of

relevant instances that are retrieved. Then precision and recall can be calculated by

P =
a

a+ c
and R =

a

a+ d
(52)

respectively, where a (respectively, b) be the number of pairs of objects simultaneously assigned

to identical classes (respectively, different classes) by the stand reference partition and the

obtained one. Similarly, values c and d are the numbers of dissimilar pairs partitioned into

the same cluster, and the number of similar object pairs clustered into different clusters

3In the following we call this type of prototype weights “normalized weights”, and wECMdd with normalized
weights is denoted by wECMdd-0. The standard wECMdd with multiple weights on all the objects described in
the last section is still denoted by wECMdd.
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respectively. The rand index measures the percentage of correct decisions and it can be

defined as

RI =
2(a+ b)

n(n− 1)
, (53)

where n is the number of data objects.

For fuzzy and evidential clusterings, objects may be partitioned into multiple clusters

with different degrees. In such cases precision would be consequently low [37]. Usually the

fuzzy and evidential clusters are made crisp before calculating the evaluation measures, using

for instance the maximum membership criterion [37] and pignistic probabilities [22]. Thus

in this work we will harden the fuzzy and credal clusters by maximizing the corresponding

membership and pignistic probabilities and calculate precision, recall and RI for each case.

The introduced imprecise clusters can avoid the risk of partitioning a data into a spe-

cific class without strong belief. In other words, a data pair can be clustered into the same

specific group only when we are quite confident and thus the misclassification rate will be

reduced. However, partitioning too many data into imprecise clusters may cause that many

objects are not identified for their precise groups. In order to show the effectiveness of the

proposed method in these aspects, we use the indices for evaluating credal partitions, Evi-

dential Precision (EP), Evidential Recall (ER) and Evidential Rank Index (ERI) [27] defined

as:

EP =
ner
Ne

, ER =
ner
Nr

, ERI =
2(a∗ + b∗)

n(n− 1)
. (54)

In Eq. (54), the notation Ne denotes the number of pairs partitioned into the same specific

group by evidential clustering, and ner is the number of relevant instance pairs out of these

specifically clustered pairs. The value Nr denotes the number of pairs in the same group of

the clustering benchmark, and ER is the fraction of specifically retrieved instances (grouped

into an identical specific cluster) out of these relevant pairs. Value a∗ (respectively, b∗) is the

number of pairs of objects simultaneously clustered to the same specific class (i.e. singleton

class, respectively, different classes) by the stand reference partition and the obtained credal

one. When the partition degrades to a crisp one, EP, ER and ERI equal to the classical

precision, recall and rand index measures respectively. EP and ER reflect the accuracy of the

credal partition from different points of view, but we could not evaluate the clusterings from

one single term. For example, if all the objects are partitioned into imprecise clusters except

two relevant data object grouped into a specific class, EP = 1 in this case. But we could

not say this is a good partition since it does not provide us with any information of great

value. At this time ER ≈ 0. Thus ER could be used to express the efficiency of the method

for providing valuable partitions. ERI is like the combination of EP and ER describing the

accuracy of the clustering results. Note that for evidential clusterings, precision, recall and

RI measures are calculated after the corresponding hard partitions are obtained, while EP,

ER and ERI are based on hard credal partitions [22].

6.1. Overlapped data sets

Due to the introduction of imprecise classes, credal partitions have the advantage to

detect overlapped clusters. In the first example, we will use overlapped data sets to illustrate

the behavior of the proposed algorithms. We start by generating 3×361 points distributed in
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three overlapped circles with a same radius R = 5 but with different centers. The coordinates

of the first circle’s center are (5, 6) while the coordinates of the other two circles’ centers are

(0, 0) and (9, 0). The data set is displayed in Figure 1.a.

Figure 1.b shows the iteration steps for different methods. For ECMdd clustering al-

gorithms, there are three alternative steps to optimize the objective function (assignment

update, and the update for medoids of specific and imprecise classes), while only two steps

(update of membership and specific classes’ prototypes) are required for the existing meth-

ods (PAM, FCMdd and FMMdd). But we can see from the figure, the added third step for

calculating the new prototypes of imprecise classes in ECMdd clustering has no effect on the

convergence.

The fuzzy and credal partitions by different methods are shown in Figure 2, and the

values of the evaluation indices are listed in Table 1. The objects are clustered into the class

with the maximum membership values for fuzzy partitions (by FCMdd, FMMdd), while for

credal partitions (by different ECMdd algorithms), with the maximum mass assignment. As

a result, imprecise classes, such as {ω1, ω2} (denoted by ω12 in the figure), are produced by

ECMdd clustering to accept the objects for which it is difficult to make a precise (hard)

decision. Consequently, the EP values of the credal partitions by ECMdd algorithms are

distinctly high, which indicates that such soft decision mechanism could make the clustering

result more “cautious” and decrease the misclassification rate.

In this experiment, all the ECMdd algorithms are run with: α = 2, β = 2, δ = 100. For

sECMdd, η = 1 and for wECMdd γ = 1.2, ξ = 3. The results by wECMdd and wECMdd-0

are similar, as they both use weights of objects to describe the cluster structure. The ECMdd

algorithms using one (sECMdd, wECMdd-1) or two (wECMdd-2) objects to represent a class

are sensitive to the detected prototypes. More objects that are not located in the overlapped

area are inclined to be partitioned into the imprecise classes by these methods.
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Figure 1: Clustering on overlapped data sets.
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Table 1: The clustering results on the overlapped data set.

P R RI EP ER ERI
PAM 0.8701 0.8701 0.9136 0.8701 0.8701 0.9136

FCMdd 0.8731 0.8734 0.9156 0.8731 0.8734 0.9156
FMMdd 0.8703 0.8702 0.9136 0.8703 0.8702 0.9136
sECMdd 0.8715 0.8730 0.9149 0.9889 0.6799 0.8910

wECMdd 0.8703 0.8705 0.9137 0.9726 0.7181 0.8994
wECMdd-0 0.8737 0.8738 0.9159 0.9405 0.7732 0.9083
wECMdd-1 0.8746 0.8764 0.9171 1.0000 0.6015 0.8674
wECMdd-2 0.8763 0.8780 0.9182 1.0000 0.6213 0.8740

The running time of sECMdd, wECMdd, MECM, PAM, FCMdd, FMMdd is calculated

to show the computational complexity4. Each algorithm is evoked 10 times with different

initial parameters, and the average elapsed time is displayed in Table 2. As we can see

from the table, ECMdd is of higher complexity compared with fuzzy or hard medoid based

clustering. This is easy to understand, as in the partitions there are imprecise classes and the

membership is considered on the extended frame of the power set 2Ω. But credal partitions by

the use of ECMdd will improve the precision of the clustering results. This is also important

in some applications, where cautious decisions are more welcome to avoid the possible high

risk of misclassification.

Table 2: The average running time of different algorithms.

sECMdd wECMdd MECM PAM FCMdd FMMdd
Elapsed Time (s) 19.1100 14.2260 330.4680 1.3000 1.3480 6.9080

In order to show the influence of parameters in ECMdd algorithms, different values of α,

η, ξ, δ and β have been tested for this data set. Figure 3.a displays the three evidential indices

varying with α by sECMdd, while Figure 3.b depicts the results of wECMdd with different

α. As we can see, for both sECMdd and wECMdd, if we want to make more imprecise

decisions to improve ER, parameter α can be decreased, since α tries to adjust the penalty

degree to control the imprecise rates of the results. Keeping more soft decisions will reduce the

misclassification rate and makes the specific decisions more accurate. But the partition results

with few specific decisions have low ER values and they are of limited practical meaning. In

application we should determine α based on the requirement. Parameter η in sECMdd and

ξ in wECMdd are both for distinguish the outliers in imprecise classes. As pointed out in

Figures 3.c and 3.d, if η and ξ are well set, they have little effect on the final clusterings. The

same is true in the case of δ which is applied to detect outliers (see Figure 3.f). The effect of

various values of β is illustrated in Figure 3-e. We can see that it has little influence on the

final results as long as it is larger than 1.7. Similar to FCM and ECM, the value of β could

also be set to be 2 as a usual choice here.

Although there are a lot of parameters to adjust in the proposed methods, but compared

with MECM (the discussion about the parameters of MECM could be seen in Ref. [27]), the

parameters of ECMdd are much easier to adjust and control. In fact from the experiments we

4All the algorithms in this work are implemented with R 3.2.1
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c. sECMdd d. wECMdd (wECMdd-0)
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Figure 2: Clustering on overlapped data sets. All the methods are evoked with the same initial medoids. The
prototypes in the detected classes by each method are marked with ⊕. For wECMdd and wECMdd-0, the object
with maximum weight in each class is marked as medoid. The results of PAM and FMMdd are similar, so we only
display the figure of PAM to save space. And so also are the results for wECMdd and wECMdd-0.

can see that only parameter α has a great influence on the result. The other parameters such

as β, η (for sECMdd), ξ (for wECMdd) can be set as default for simplicity. These parameters

are involved in the model in order to enhance the flexibility. When the analyzed data set has

high overlap, the value of α can be set small to get more imprecise and cautious decisions
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with relatively high EP value. However, the improvement of precision will bring about the

decline of recall, as more data could not be clustered into specific classes. What we should

do is to set parameters based on our own requirement to make a tradeoff between precision

and recall. Values of these parameters can be also learned from historical data if such data

are available.

6.2. Gaussian data set

In the second experiment, we test on a data set consisting of 10000 points generated from

different Gaussian distributions. The points are from 10 Gaussian distributions, the mean

values of which are uniformly located in a circle. The data set is displayed in Figure 4.

Table 3: The clustering results on Gaussian data set.

P R RI EP ER ERI Elapsed Time (s)
PAM 0.8939 0.8940 0.8988 0.8939 0.8940 0.8988 118.2097

FCMdd 0.8960 0.8960 0.8992 0.8960 0.8960 0.8992 152.4320
FMMdd 0.8928 0.8980 0.8996 0.8980 0.8928 0.8996 197.5340
MECM 0.8980 0.8940 0.8921 0.9932 0.3173 0.9321 19430.1560

sECMdd 0.8931 0.8992 0.9043 1.0000 0.4468 0.9452 8987.7390
wECMdd 0.8923 0.8914 0.8908 1.0000 0.5623 0.9566 8534.8740

Table 3 lists the indices for evaluating the different methods. Bold entries in each column

of this table (and also other tables in the following) indicate that the results are significant as

the top performing algorithm(s) in terms of the corresponding evaluation index. We can see

that the precision, recall and RI values for all approaches are similar. As the data objects are

from gaussian distributions, it is intuitive that there is only one geometrical center in each

class. That’s why the one-prototype based clustering sECMdd is a little better than wECMdd.

For evidential clusterings, e.g., MECM, sECMdd and wECMdd, the three classical measures

are based on the associated pignistic probabilities. It indicates that credal partitions can

provide the same information as crisp and fuzzy ones (PAM, FCMdd, and FMMdd). Most

of the misclassifications in this experiment come from the data points lying in the overlapped

area between two classes.

However, from the same table, we can also see that the evidential measures EP and ERI

by sECMdd and wECMdd are higher (for hard partitions, the values of evidential measures

equal to the corresponding classical ones) than the ones obtained by other methods. This

fact confirms the accuracy of the specific decisions i.e. decisions clustering the objects into

specific classes. The advantage can be attributed to the introduction of imprecise clusters,

with which we do not have to partition the uncertain or unknown objects lying in the overlap

into a specific cluster. Consequently, it could reduce the risk of misclassification. For the

computational time, the same conclusion as in the first experiment can be obtained. Evidential

clustering algorithms (sECMdd, wECMdd and MECM) are more time-consuming than hard

or fuzzy ones. But we can see that wECMdd is the fastest one among the three, and it is

significantly better than MECM in terms of complexity.
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Figure 3: Clustering of overlapped data with different parameters.

6.3. X12 data set

In this test, a simple classical data set composed of 12 objects represented in Figure 5.a

is considered. As we can see from the figure, objects 1 - 11 are clearly dived into two groups
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Figure 4: Gaussian data set.

whereas object 12 is an outlier. The results by sECMdd and wECMdd are shown in Figure

5.b. Object 6 is clustered into imprecise class ω12 , {ω1, ω2} while object 12 is regarded as

an outlier (belonging to ∅).
In this data set, object 6 is a “good” member for both classes, whereas object 12 is a

“poor” point. It can be seen from Table 4 that the fuzzy partition by FCMdd also gives large

equal membership values to ω1 and ω2 for object 12, just like in the case of such good members

as point 6. The same is true for PAM and FMMdd. The obtained results show the problem of

distinguishing between ignorance and the “equal evidence” (uncertainty) for fuzzy partitions.

But the table shows that the credal partition by wECMdd assigns largest mass belief to ∅ for

object 12, indicating it is an outlier. Moreover, the values v2Ω

ji in the table are the weights

of object i for class Aj , from which it can be seen that object 3 and object 9 play a center

role in their own classes, while object 6 contributes most to the overlapped parts of the two

classes. Thus the prototype weights indeed could provide us some rich information about the

cluster structure.
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Figure 5: A simple data set of 12 objects.
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Table 4: The clustering results of X12 data set using FCMdd and wECMdd. The objects marked with * are the
medoids found by FCMdd. Values mij , j = 1, 2, 3, 4 are the mass assigned to xi for class ∅, ω1, ω2 and imprecise

class ω12 , {ω1, ω2}. Values v2Ω

ij , j = 1, 2, 3 are the weights of object xi for class ω1, ω2 and ω12.

FCMdd wECMdd

id ui1 ui2 mi1 mi2 mi3 mi4 BetPi1 BetPi2 v2Ω

1i v2Ω

2i v2Ω

3i

1 0.9412 0.0588 0.1054 0.7242 0.1599 0.0105 0.8154 0.1846 0.1123 0.0230 0.0000
2 0.9091 0.0909 0.0749 0.7282 0.1825 0.0144 0.7950 0.2050 0.1396 0.0359 0.0000
3 1.0000 0.0000* 0.0502 0.8005 0.1354 0.0140 0.8501 0.1499 0.1829 0.0382 0.0000
4 0.9091 0.0909 0.0821 0.7083 0.1938 0.0158 0.7803 0.2197 0.1117 0.0337 0.0000
5 0.8000 0.2000 0.0438 0.5969 0.2498 0.1095 0.6815 0.3185 0.1386 0.0709 0.0001
6 0.5000 0.5000 0.0000 0.0000 0.0000 1.0000 0.5000 0.5000 0.0997 0.0999 0.9998
7 0.2000 0.8000 0.0437 0.2463 0.6006 0.1094 0.3147 0.6853 0.0707 0.1388 0.0001
8 0.0909 0.9091 0.0753 0.1813 0.7289 0.0145 0.2039 0.7961 0.0358 0.1395 0.0000
9 0.0000 1.0000* 0.0507 0.1351 0.8001 0.0141 0.1497 0.8503 0.0381 0.1823 0.0000
10 0.0909 0.9091 0.0825 0.1927 0.7089 0.0159 0.2186 0.7814 0.0336 0.1115 0.0000
11 0.0588 0.9412 0.1063 0.1596 0.7235 0.0106 0.1845 0.8155 0.0230 0.1119 0.0000
12 0.5000 0.5000 0.3803 0.3042 0.3060 0.0095 0.4986 0.5014 0.0142 0.0143 0.0001

6.4. X11 data set

In this experiment, we will show the effectiveness of the application of multiple weighted

prototypes using the data set displayed in Figure 6. The X11 data set has two obvious clusters,

one containing objects 1 to 4 and the other including objects 5 to 10. Object 11 locates slightly

biased to the cluster on the right side. It can be seen that in the left class, it is unreasonable

to describe the cluster structure using any one of the four objects in the group, since no one

of the four points could be viewed as a more proper representative than the other three. The

clustering results by FCMdd, sECMdd, wECMdd are listed in Table 5. The result by MECM

is not listed here as it is similar to that by sECMdd.

From the table we can see that the two clustering approaches, FCMdd and sECMdd,

which using a single medoid cluster to represent a cluster, partition object 11 to cluster 1 for

mistake. This is resulted by the fact that both of them set object 4 to be the center of class

ω1. On the contrary, in wECMdd, the four objects in cluster ω1 are thought to have nearly

the same contribution to the class. Consequently, object 11 is clustered into ω2 correctly.

FMMdd could also get the exactly accurate results as it also takes use of multiple weighted

medoids. This experiment shows that the multi-prototype representation of classes could

capture some complex data structure and consequently enhance the clustering performance.

It is remarkable that the hard partition could be recovered from pignistic probability (BetP)

for credal partitions. And the results of these experiments reflects that pignistic probabilities

play a similar role as fuzzy membership.

6.5. Karate Club network

Graph visualization is commonly used to visually model relations in many areas. For

graphs such as social networks, the prototype (center) of one group is likely to be one of the

persons (i.e. nodes in the graph) playing the leader role in the community. Moreover, a graph

(network) of vertices (nodes) and edges usually describes the interactions between different

agents of the complex system. The pair-wise relationships between nodes are often implied

in the graph data sets. Thus medoid-based relational clustering algorithms could be directly
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Figure 6: A simple data set of 11 objects. The ideal centers of the two clusters are located at (-1, 1) and (1, 1).
The coordinates of object 11 are (0.05, 1), which is closer to the center of cluster 2.

Table 5: The clustering results of X11 data set. The objects marked with * are the medoids found by FCMdd and
sECMdd. Values vij , j = 1, 2, 3 are the weights of object xi for class ω1, ω2 and imprecise class ω12 , {ω1, ω2}.

FCMdd sECMdd wECMdd
id ui1 ui2 BetPi1 BetPi2 BetPi1 BetPi2 vi1 vi2 vi3
1 0.9674 0.0326 0.9510 0.0490 0.9620 0.0380 0.1477 0.0414 0.0018
2 0.9802 0.0198 0.9671 0.0329 0.9578 0.0422 0.1476 0.0433 0.0024
3 0.9802 0.0198 0.9667 0.0333 0.9578 0.0422 0.1476 0.0433 0.0024
4 1.0000 0.0000* 1.0000 0.0000* 0.9517 0.0483 0.1475 0.0457 0.0033
5 0.0127 0.9873 0.0958 0.9042 0.0169 0.9831 0.0585 0.1190 0.0320
6 0.0147 0.9853 0.0383 0.9617 0.0145 0.9855 0.0554 0.1187 0.0223
7 0.0000 1.0000* 0.0327 0.9673 0.0073 0.9927 0.0558 0.1447 0.0117
8 0.0010 0.9990 0.0198 0.9802 0.0072 0.9928 0.0553 0.1445 0.0111
9 0.0099 0.9901 0.5000 0.5000 0.0144 0.9856 0.0554 0.1187 0.0223
10 0.0121 0.9879 0.0000 1.0000* 0.0128 0.9872 0.0530 0.1183 0.0167
11 0.5450 0.4550 0.5723 0.4277 0.4990 0.5010 0.0761 0.0625 0.8739

applied. In this section we will evaluate the effectiveness of the proposed methods applied on

community detection problems.

Here the widely used benchmark in detecting community structures, “Karate Club”, stud-

ied by Wayne Zachary is considered. The network consists of 34 nodes and 78 edges represent-

ing the friendship among the members of the club (see Figure 7.a). During the development,

a dispute arose between the club’s administrator and instructor, which eventually resulted in

the club split into two smaller clubs, centered around the administrator and the instructor

respectively.

There are many similarity and dissimilarity indices for networks, using local or global

information of graph structure. In this experiment, different similarity metrics will be com-

pared first. The similarity indices considered here are listed in Table 6 5. It is notable that the

similarities by these measures range from 0 to 1, thus they can be converted into dissimilari-

ties simply by dissimilarity = 1− similarity. The comparison results for different dissimilarity

indices by FCMdd and sECMdd are shown in Tables 7 and 8 respectively. As we can see,

5A more detailed description could be found in the appendix.
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for all the dissimilarity indices, for sECMdd, the value of evidential precision is higher than

that of precision. This can be attributed to the introduced imprecise classes which enable

us not to make hard decisions for the nodes that we are uncertain and consequently guaran-

tee the accuracy of the specific clustering results. From the table we can also see that the

performance using the dissimilarity measure based on signal prorogation is better than those

using local similarities in the application of both FCMdd and sECMdd. This reflects that

global dissimilarity metric is better than the local ones for community detection. Thus in the

following experiments, only the signal dissimilarity index is considered.

Table 6: Different local and global similarity indices.

Index name Global metric Ref.
Jaccard No [38]

Pan No [39]
Zhou No [40]

Signal Yes [41]

Table 7: Comparison of different similarity indices by FCMdd.

Index P R RI EP ER ERI
Jaccard 0.6364 0.7179 0.6631 0.6364 0.7179 0.6631

Pan 0.4866 1.0000 0.4866 0.4866 1.0000 0.4866
Zhou 0.4866 1.0000 0.4866 0.4866 1.0000 0.4866

Signal 0.8125 0.8571 0.8342 0.8125 0.8571 0.8342

Table 8: Comparison of different similarity indices by sECMdd.

Index P R RI EP ER ERI
Jaccard 0.6458 0.6813 0.6631 0.7277 0.5092 0.6684

Pan 0.6868 0.7070 0.7005 0.7214 0.6923 0.7201
Zhou 0.6522 0.6593 0.6631 0.7460 0.3443 0.6239

Signal 1.0000 1.0000 1.0000 1.0000 0.6190 0.8146

The detected community structures by different methods are displayed in Figures 7.b –

7.d. FCMdd could detect the exact community structure of all the nodes except nodes 3, 14,

20. As we can see from the figures, these three nodes have connections with both communities.

They are partitioned into imprecise class ω12 , {ω1, ω2}, which describing the uncertainty on

the exact class labels of the related nodes, by the application of sECMdd. The medoids found

by FCMdd of the two specific communities are node 5 and node 29, while by sECMdd node

5 and node 33. The uncertain nodes found by MECM are node 3 and node 9.

The results by wECMdd algorithms are similar to that by sECMdd. Table 9 lists the

prototype weights obtained by FMMdd and wECMdd. The nodes in each community are

ordered by prototype weights in the table. We just display the first ten important members

in every class. From the weight values by FMMdd and wECMdd in the table we can get the

same conclusion: nodes 1 and 12 play the center role in community ω1, while node 33 and

34 consists the two cores in community ω2. But by wECMdd more information about the

overlapped structure of the network are available. As we can see from the last two columns
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Figure 7: The Karate Club network. The parameters of MECM are α = 1.5, β = 2, δ = 100, η = 0.9, γ = 0.05. In
sECMdd, α = 0.05, β = 2, δ = 100, η = 1, γ = 1, while in FCMdd, β = 2.

of the table, node 9 contributes most to the overlapped community ω12, which is a good

reflection of its “bridge” role for the two classes. Therefore, the prototype weights provide us

some information about the cluster structure from another point of view, which could help us

gain a better understanding of the inner structure of a class.

6.6. Countries data

In this section we will test on a relational data set, referred as the benchmark data

set Countries Data [1, 3]. The task is to group twelve countries into clusters based on the

pairwise relationships as given in Table 10, which is in fact the average dissimilarity scores

on some dimensions of quality of life provided subjectively by students in a political science

class. Generally, these countries are classified into three categories: Western, Developing

and Communist. The parameters are set as β = 2 for FCMdd, and β = 2, α = 0.95, η =

1, γ = 1 for sECMdd. We test the performances of FCMdd and sECMdd with two different

sets of initial representative countries: ∆1 = {C10: USSR; C8: Israel; C7: India} and ∆2 =

{C6: France; C4: Cuba; C1: Belgium}. The three countries in ∆1 are well separated. On
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Table 9: The prototype weights by FMMdd and wECMdd. Community ω12 denotes the imprecise community
{ω1, ω2}. Only the first 10 nodes with largest weight values in each community are listed.

FMMdd wECMdd
Community ω1 Community ω2 Community ω1 Community ω2 Community ω12

Node Weights Node Weights Node Weights Node Weights Node Weights
1 0.0689 33 0.0607 12 0.0707 33 0.0606 9 0.3194
12 0.0663 34 0.0565 1 0.0659 34 0.0562 3 0.1348
22 0.0590 28 0.0556 13 0.0588 24 0.0557 20 0.1254
18 0.0590 24 0.0551 18 0.0584 28 0.0549 25 0.0989
13 0.0583 15 0.0512 22 0.0584 15 0.0519 10 0.0493
2 0.0548 16 0.0512 5 0.0519 16 0.0519 32 0.0453
4 0.0544 19 0.0512 11 0.0519 19 0.0519 26 0.0429
8 0.0537 21 0.0512 4 0.0506 21 0.0519 29 0.0379
14 0.0469 23 0.0512 8 0.0503 23 0.0519 14 0.0351
5 0.0436 31 0.0504 2 0.0500 30 0.0509 31 0.0306

the contrary, for the countries in ∆2, Belgium is similar to France, which makes two initial

medoids of three are very close in terms of the given dissimilarities.

Table 10: Countries data: dissimilarity matrix.

Countries C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
1 C1: Belgium: 0.00 5.58 7.00 7.08 4.83 2.17 6.42 3.42 2.50 6.08 5.25 4.75
2 C2: Brazil 5.58 0.00 6.50 7.00 5.08 5.75 5.00 5.50 4.92 6.67 6.83 3.00
3 C3: China 7.00 6.50 0.00 3.83 8.17 6.67 5.58 6.42 6.25 4.25 4.50 6.08
4 C4: Cuba 7.08 7.00 3.83 0.00 5.83 6.92 6.00 6.42 7.33 2.67 3.75 6.67
5 C5: Egypt 4.83 5.08 8.17 5.83 0.00 4.92 4.67 5.00 4.50 6.00 5.75 5.00
6 C6: France 2.17 5.75 6.67 6.92 4.92 0.00 6.42 3.92 2.25 6.17 5.42 5.58
7 C7: India 6.42 5.00 5.58 6.00 4.67 6.42 0.00 6.17 6.33 6.17 6.08 4.83
8 C8: Israel 3.42 5.50 6.42 6.42 5.00 3.92 6.17 0.00 2.75 6.92 5.83 6.17
9 C9: USA 2.50 4.92 6.25 7.33 4.50 2.25 6.33 2.75 0.00 6.17 6.67 5.67
10 C10: USSR 6.08 6.67 4.25 2.67 6.00 6.17 6.17 6.92 6.17 0.00 3.67 6.50
11 C11: Yugoslavia 5.25 6.83 4.50 3.75 5.75 5.42 6.08 5.83 6.67 3.67 0.00 6.92
12 C12: Zaire 4.75 3.00 6.08 6.67 5.00 5.58 4.83 6.17 5.67 6.50 6.92 0.00

The results of FCMdd and sECMdd are given in Table 11 and Table 12 respectively. It

can be seen that FCMdd is very sensitive to initializations. When the initial prototypes are

well set (the case of ∆1), the obtained partition is reasonable. However, the clustering results

become worse when the initial medoids are not ideal (the case of ∆2). In fact two of the three

medoids are not changed during the update process of FCMdd when using initial prototype

set ∆2. This example illustrates that FCMdd is quite easy to be stuck in a local minimum.

For sECMdd, the credal partitions are the same with different initializations. The pignistic

probabilities are also displayed in Table 12, which could be regarded as membership values in

fuzzy partitions. The country Egypt is clustered into imprecise class {1, 2}, which indicating

that Egypt is not so well belonging to Developing or Western alone, but belongs to both

categories. This result is consistent with the fact shown from the dissimilarity matrix: Egypt

is similar to both USA and India, but has the largest dissimilarity to China. The results by

wECMdd and MECM algorithms are not displayed here, as they product the same clustering

result with sECMdd. From this experiment we could conclude that ECMdd is more robust

to the initializations than FCMdd.
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Table 11: Clustering results of FCMdd for countries data. The prototype (medoid) of each class is marked with *.

FCMdd with ∆1 FCMdd with ∆2

Countries ui1 ui2 ui3 Label Medoids ui1 ui2 ui3 Label Medoids
1 C1: Belgium 0.4773 0.2543 0.2685 1 - 1.0000 0.0000 0.0000 1 *
2 C6: France 0.4453 0.2719 0.2829 1 - 0.0000 1.0000 0.0000 2 *
3 C8: Israel 1.0000 0.0000 0.0000 1 * 0.4158 0.3627 0.2215 1 -
4 C9: USA 0.5319 0.2311 0.2371 1 - 0.4078 0.4531 0.1391 2 -

5 C3: China 0.2731 0.3143 0.4126 3 - 0.2579 0.2707 0.4714 3 -
6 C4: Cuba 0.2235 0.2391 0.5374 3 - 0.0000 0.0000 1.0000 3 *
7 C10: USSR 0.0000 0.0000 1.0000 3 * 0.2346 0.2312 0.5342 3 -
8 C11: Yugoslavia 0.2819 0.2703 0.4478 3 - 0.2969 0.2875 0.4156 3 -

9 C2: Brazil 0.3419 0.3761 0.2820 2 - 0.3613 0.3506 0.2880 1 -
10 C5: Egypt 0.3444 0.3687 0.2870 2 - 0.3558 0.3493 0.2948 1 -
11 C7: India 0.0000 1.0000 0.0000 2 * 0.3257 0.3257 0.3485 3 -
12 C12: Zaire 0.3099 0.3959 0.2942 2 - 0.3901 0.3321 0.2778 1 -

Table 12: Clustering results of sECMdd for countries data. The prototype (medoid) of each class is marked with
*. The Label {1, 2} represents the imprecise class expressing the uncertainty on class 1 and class 2.

sECMdd with ∆1 sECMdd with ∆2

Countries BetPi1 BetPi2 BetPi3 Label Medoids BetPi1 BetPi2 BetPi3 Label Medoids
1 C1: Belgium 1.0000 0.0000 0.0000 1 * 1.0000 0.0000 0.0000 1 *
2 C6: France 0.4932 0.2633 0.2435 1 - 0.5149 0.2555 0.2297 1 -
3 C8: Israel 0.4144 0.3119 0.2738 1 - 0.4231 0.3051 0.2719 1 -
4 C9: USA 0.4503 0.2994 0.2503 1 - 0.4684 0.2920 0.2396 1 -

5 C3: China 0.2323 0.2294 0.5383 3 * 0.0000 0.0000 1.0000 3 *
6 C4: Cuba 0.2778 0.2636 0.4586 3 - 0.2899 0.2794 0.4307 3 -
7 C10: USSR 0.2509 0.2260 0.5231 3 - 0.3167 0.2849 0.3984 3 -
8 C11: Yugoslavia 0.3478 0.2488 0.4034 3 - 0.3579 0.2526 0.3895 3 -

9 C2: Brazil 0.0000 1.0000 0.0000 2 * 0.0000 1.0000 0.0000 2 *
10 C5: Egypt 0.3755 0.3686 0.2558 {1, 2} - 0.3845 0.3777 0.2378 {1, 2} -
11 C7: India 0.3125 0.3650 0.3226 2 - 0.2787 0.3740 0.3473 2 -
12 C12: Zaire 0.3081 0.4336 0.2583 2 - 0.3068 0.4312 0.2619 2 -

6.7. UCI data sets

Finally the clustering performance of different methods will be compared on eight bench-

mark UCI data sets [42] summarized in Table 13. Euclidean distance is used as the dissimi-

larity measure for the object data sets, and the Signal dissimilarity is adopted for the graph

data sets.

Table 13: A summary of eight UCI data sets.

Data set No. of objects No. of cluster Category
Iris 150 3 object data
Cat cortex 65 4 relational data
Protein 213 4 relational data
American football 115 12 graph data
Banknote 1372 2 object data
Segment 2100 19 object data
Digits 1797 10 object data
Yeast 1484 10 object data

Same as ECM, the number of parameters to be optimized in ECMdd is exponential and

depends on the number of clusters [22]. For the number of classes larger than 10, calculations

are not tractable. But we can only consider a subclass with a limited number of focal sets

[22]. Here we constrain the focal sets to be composed of at most two classes (except Ω). The

evaluation results are listed in Tables 14–21.
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It can be seen that generally wECMdd works better than the other approaches on all of

the data sets, except for Iris data set where sECMdd works best. This may be explained by

the fact that, Iris is a small data set and each class can be well represented by one prototype.

wECMdd has better performance for the other complex data sets, since the single prototype

seems not enough to capture a cluster in these cases, whereas the cluster can be properly

characterized by the multiple prototypes as done in wECMdd. From the tables we can see

that the EP values for credal partitions by sECMdd and wECMdd are significantly higher

than those for hard or fuzzy partitions, which indicates the accuracy of specific decisions.

Consequently it will avoid the risk of misclassification by the concept of imprecise decisions.

The value of ER describes the fraction of instances grouped into an identical specific

cluster out of those relevant pairs in the ground-truth. If the objects are located in the

overlap, they are likely to be clustered into imprecise classes by ECMdd. This will increase

the value of EP. However, as few objects are partitioned into specific classes, the value of

ER will decrease. That’s why for Iris data set the partitional result by wECMdd has the

highest EP value following with a low ER value. The value of ERI can be regarded as a

compromise between EP and ER, and it is an integration of EP and ER. As can be seen from

the results, ECMdd performs best in terms of ERI for most of the data sets. In practice, one

can adjust the value of parameter α to get partitions with different definition. The elapsed

time for every clustering algorithm is illustrated in the last column of each table. In terms

of computational time, as excepted, the evidential clustering algorithms take more time than

hard or fuzzy clustering. But sECMdd and wECMdd are much faster than MECM. wECMdd

is less time-consuming than sECMdd.

Remark 4: It should be noted that there is no imprecise class obtained by PAM, FCMdd,

and FMMdd. In this case, the values of EP, ER, and ERI for the clustering results are equal

to P, R, and RI respectively. That’s why the increase of EP does not cause the decrease

ER significantly. However, there are some imprecise classes provided by MECM and ECMdd

clustering algorithms. If EP is high, it indicates that there are quite a number of objects that

we could not make specific decisions and have to be clustered into imprecise classes to avoid

misclassification. Thus there will be few number of objects clustered into specific classes.

Consequently the value of ER will be declined.

Table 14: The clustering results on Iris data set.

P R RI EP ER ERI Elapsed Time (s)
PAM 0.8077 0.8571 0.8859 0.8077 0.8571 0.8859 0.0140

FCMdd 0.7965 0.8520 0.8797 0.7965 0.8520 0.8797 0.0160
FMMdd 0.8329 0.8411 0.8923 0.8329 0.8411 0.8923 0.0560
MECM 0.8347 0.8384 0.8923 0.9454 0.7064 0.8900 73.3300

sECMdd 0.8359 0.8471 0.8950 0.9347 0.7328 0.8953 0.2500
wECMdd 0.8305 0.8335 0.8893 0.9742 0.4827 0.8257 0.2000

Presented results allow us to sum up the characteristics of the proposed ECMdd clustering

approaches (including sECMdd and wECMdd). Firstly, credal partitions provided by all the

ECMdd algorithms could recover the information of crisp and fuzzy partitions. Secondly,

ECMdd is more robust to the outliers and the initialization than FCMdd. Thirdly, the

imprecise classes by credal partitions enable us to make soft decisions for uncertain objects
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Table 15: The clustering results on Proteins data set.

P R RI EP ER ERI Elapsed Time (s)
PAM 0.7023 0.8246 0.8492 0.7023 0.8246 0.8492 0.0230

FCMdd 0.6405 0.8353 0.8181 0.6405 0.8353 0.8181 0.0200
FMMdd 0.6586 0.7735 0.8198 0.6586 0.7735 0.8198 0.1760
MECM 0.6734 0.8250 0.8348 0.8530 0.5946 0.8542 220.7700

sECMdd 0.6534 0.8150 0.7848 0.8630 0.5146 0.8642 0.8100
wECMdd 0.7449 0.8594 0.8751 0.8609 0.7527 0.8940 0.4700

Table 16: The clustering results on Cats data set.

P R RI EP ER ERI Elapsed Time (s)
PAM 0.6883 0.6897 0.8438 0.6883 0.6897 0.8438 0.0040

FCMdd 0.6036 0.5747 0.7986 0.6036 0.5747 0.7986 0.0220
FMMdd 0.4706 0.6130 0.7298 0.4706 0.6130 0.7298 0.0090
MECM 0.7269 0.7088 0.8601 0.9412 0.3065 0.8212 8.8000

sECMdd 0.7569 0.7288 0.8801 0.9512 0.2865 0.8312 0.1700
wECMdd 0.8526 0.8755 0.9308 0.8774 0.8908 0.9413 0.1400

Table 17: The clustering results on American football network.

P R RI EP ER ERI Elapsed Time (s)
PAM 0.8649 0.9178 0.9820 0.8649 0.9178 0.9820 0.0430

FCMdd 0.8649 0.9178 0.9820 0.8649 0.9178 0.9820 0.0200
FMMdd 0.8590 0.9082 0.9808 0.8590 0.9082 0.9808 0.0710
MECM 0.8232 0.9082 0.9771 0.9303 0.8681 0.9843 154.9300

sECMdd 0.4166 0.6826 0.8984 0.7696 0.3384 0.9391 19.4700
wECMdd 0.8924 0.9197 0.9847 0.9735 0.5621 0.9638 18.2100

Table 18: The clustering results on Banknote authentication data set.

P R RI EP ER ERI Elapsed Time (s)
PAM 0.5252 0.5851 0.5226 0.5252 0.5851 0.5226 0.7561

FCMdd 0.5252 0.5851 0.5226 0.5252 0.5851 0.5226 0.8350
FMMdd 0.5225 0.5302 0.5173 0.5225 0.5302 0.5173 5.9381
MECM 0.5201 0.5618 0.5265 0.5553 0.4078 0.5353 50.0890

sECMdd 0.5211 0.6334 0.5202 0.5191 0.5256 0.5138 8.2880
wECMdd 0.5259 0.5645 0.5793 0.5713 0.4808 0.5797 7.1500

Table 19: The clustering results on Segment data set.

P R RI EP ER ERI Elapsed Time (s)
PAM 0.4131 0.4910 0.8281 0.4131 0.4910 0.8281 7.8250

FCMdd 0.4380 0.5683 0.8246 0.4380 0.5683 0.8346 8.9900
FMMdd 0.5186 0.8043 0.5626 0.5186 0.8043 0.5626 107.3040
MECM 0.5164 0.7744 0.6160 0.6764 0.5444 0.7160 765.8800

sECMdd 0.5040 0.7738 0.6065 0.7040 0.4738 0.7255 351.0800
wECMdd 0.5433 0.8350 0.8455 0.7584 0.4856 0.8582 308.3100

Table 20: The clustering results on Digits data set.

P R RI EP ER ERI Elapsed Time (s)
PAM 0.5928 0.6351 0.8203 0.5928 0.6351 0.8203 6.3638

FCMdd 0.5096 0.5753 0.8026 0.5096 0.5753 0.8026 4.1913
FMMdd 0.6542 0.5941 0.7861 0.6542 0.5941 0.7861 25.7530
MECM 0.6148 0.5685 0.7772 0.8137 0.7268 0.6126 524.2380

sECMdd 0.7201 0.5920 0.7566 0.8048 0.7630 0.6005 215.5220
wECMdd 0.7250 0.6645 0.8232 0.8211 0.5911 0.8141 206.5590
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Table 21: The clustering results on Yeast data set.

P R RI EP ER ERI Elapsed Time (s)
PAM 0.5229 0.4848 0.7322 0.5229 0.4848 0.7322 4.6414

FCMdd 0.5939 0.5151 0.7515 0.5939 0.5151 0.7515 4.7177
FMMdd 0.5938 0.5568 0.6345 0.5938 0.5568 0.6345 12.7288
MECM 0.3991 0.4098 0.6829 0.5723 0.5601 0.7149 212.6400

sECMdd 0.4123 0.4698 0.7050 0.6393 0.5369 0.7273 155.5300
wECMdd 0.6329 0.5065 0.7712 0.7041 0.6544 0.7917 134.8950

and could avoid the risk of misclassifications. Moreover, wECMdd performs best generally

due to the efficient class representativeness strategy. Lastly, the prototype weights provided

by wECMdd algorithms are useful for our better understanding of cluster structure in real

applications.

Although the computational time of wECMdd is significantly reduced compared with

that of MECM, the proposed algorithm is still of high complexity compared with hard or

fuzzy clustering algorithms such as PAM, FCMdd, and FMMdd. However, here we discuss

some possible solutions to further reduce the complexity. Firstly, the number of parameters

to be optimized is exponential and depends on the number of clusters [22]. For the number

of classes larger than 10, calculations are not tractable. But we can consider only a subclass

with a limited number of focal sets [22]. For instance, we could constrain the focal sets to

be composed of at most two classes (except Ω). Secondly, for the data sets with millions of

data, some hierarchical clustering algorithms could be evoked as a first step to merge some

objects into small groups. After that we can apply ECMdd to the “coarsened” data set. But

how to define the dissimilarities in the new data set should be studied. Lastly we emphasize

that ECMdd is designed to detect the imprecise class structures. For the large-scale data set,

some classes may be well separated while some others may overlap. In real applications, it

is not necessary to apply ECMdd on the whole data set, but only on the special parts which

may have large overlap.

7. Conclusion

In this contribution, the evidential c-medoids clustering is proposed as a new medoid-

based clustering algorithm. Two versions of ECMdd algorithms are presented. One uses a

single medoid to represent each class, while the other adopts the multiple weighted medoids.

The proposed approaches are some extensions of crisp c-medoids and fuzzy c-medoids on the

framework of belief function theory. The experimental results illustrate the advantages of

credal partitions by sECMdd and wECMdd. Moreover, the way of using prototype weights

to represent a cluster enables wECMdd to capture the various types of cluster structures

more precisely and completely hence improves the quality of the detected classes. Further-

more, more detailed information on the discovered clusters may be obtained with the help of

prototype weights.

As we analyzed in the paper, assigning weights of a class to all the patterns seems not

rational since objects in other clusters make little contribution. Thus it is better to set the

number of possible objects holding positive weights differently for each class. But how to

determine the optimal number of prototypes is a key problem and we will study this in our
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future work. The relational descriptions of a data set may be given by multiple dissimilarity

matrices. Thus another interesting work aiming to obtain a collaborative role of the different

dissimilarity matrices to get a final consensus partition will also be investigated in the future.

Appendix. The similarity indices for graphs.

Here we give a detailed description of the similarity measures for graphs discussed in this

paper. Let G(V,E) be an undirected network, where V is the set of N nodes and E is the

sets of m edges. Let A = (aij)N×N denote the adjacency matrix, where aij = 1 represents

that there is an edge between node i and j.

(1) Jaccard Index. This index was proposed by Jaccard over a hundred years ago, and is

defined as

sJ(x, y) =
|N(x) ∩N(y)|
|N(x) ∪N(y)|

, (55)

where N(x) = {w ∈ V \ x : a(w, x) = 1} denotes the set of vertices that are adjacent to

x.

(2) Zhou’s Index. Zhou et al. [40] also proposed a new similarity metric which is motivated

by the resource allocation process:

sZ(x, y) =
∑

z∈N(x)∩N(y)

1

d(z)
, (56)

where d(z) is the degree of node z.

(3) Pan’s Index. Pan et al. [39] pointed out that the similarity measure proposed by Zhou et

al. [40] may bring about inaccurate results for community detection on the networks as

the metric can not differentiate the tightness relation between a pair of nodes whether

they are connected directly or indirectly. In order to overcome this defect, in his pre-

sented new measure the similarity between unconnected pair is simply set to be 0:

SP (x, y) =


∑

z∈N(x)∩N(y)

1
d(z)

, if x, y are connected,

0 otherwise.

(57)

(4) Signal similarity. A similarity measure considering the global graph structure is put

forward by Hu et al. [41] based on signaling propagation in the network. For a network

with N nodes, every node is viewed as an excitable system which can send, receive, and

record signals. Initially, a node is selected as the source of signal. Then the source node

sends a signal to its neighbors and itself first. Afterwards, the nodes with signals can also

send signals to their neighbors and themselves. After a certain T time steps, the amount

distribution of signals over the nodes could be viewed as the influence of the source node

on the whole network. Naturally, compared with nodes in other communities, the nodes

of the same community have more similar influence on the whole network. Therefore,

similarities between nodes can be obtained by calculating the differences between the

amount of signals they have received.
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