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Nonlinear time-dependent behavior of composite steel-concrete

beams

Quang-Huy Nguyen 1 Not a Member, ASCE and Mohammed Hjiaj 2 Member, ASCE

ABSTRACT

This paper presents a mixed finite element model for the nonlinear time-dependant anal-

ysis of composite beams with partial shear connection. The key idea is to consider, as a first

approach, a viscoelastic/plastic model for the concrete slab in order to simulate the inter-

action between the time effects of concrete, such as creep and shrinkage, and the concrete

cracking. Creep is taken into account via linear ageing viscoelasticity, while cracking is mod-

eled using an elasto-plastic model with softening. A nonlinear isotropic/kinematic hardening

model is adopted for steel behavior and an appropriate nonlinear constitutive relationship is

utilized for the shear stud. A consistent time-integration is performed by adopting the Euler

backward scheme. Finally, comparisons between the numerical results and experimental data

available in the literature are undertaken to validate the accuracy of the model. It is shown

that the interaction between cracking and time effects (creep and shrinkage) significantly

increases the deflection.

Keywords: Composite beam, time effects, nonlinear creep, cracking, mixed formulation.

INTRODUCTION

Steel-concrete composite structures are common practice today in bridges and industrial

buildings. The advantages of both materials lead to a very economic alternative especially

in terms of high bearing capacity. The serviceability of such structures is fundamentally

affected by creep and cracking and their interaction, which make the structure behavior
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becomes prominent nonlinear. Recent publications have highlighted the effect of creep and

shrinkage on the overall behavior of composite beams. The authors have adopted in most

cases linear ageing viscoelasticity which can be described using either a hereditary integral

formulation or a differential formulation with internal variables. The former formulation is

not easy to handle and the most straightforward manner to deal with such constitutive law is

to approximate the hereditary integral by a discrete sum according to the trapezoidal or the

midpoint rule. Therefore, the storage of the entire stress history is required. This method,

called the step-by-step or general method, has been proposed by Bažant and Wu (1972). For

practical applications, the so-called algebraic methods, which ignore stress history, have been

proposed (McMilan 1916; Hansen 1964; Bažant 1972). Obviously, the algebraic methods give

different levels of accuracy depending on the degree of refinement of the quadrature formu-

las adopted (Dezi and Tarantino 1996). The problem of the storage of stress history can

be elegantly overcome by adopting a differential formulation (Bažant and Wu 1973; Bažant

and Wu 1974). By expanding the kernel of the hereditary integral into a Dirichlet serie,

the integral-type stress-strain relation can be transformed into a rate-type stress-strain rela-

tion based on Kelvin chain or Maxwell chain spring-dashpot model of ageing viscoelasticity.

In this strategy, the stress or strain history is memorized via a limited number of internal

variables. However, the main drawback of differential formulation is the determination of

Dirichlet series coefficients which appears to be quite complicated.

It has been shown that linear viscoelasticity with age-dependent constitutive parameter

is not able to correctly predict the long term behavior of concrete under high load levels

(Ngab et al. 1981). Indeed, several experimental studies indicate that under high sustained

loads, cracks grow and interact with the creep response of the bulk concrete. This interac-

tion may lead to a reduction of the ultimate bearing capacity of structures (Bažant and Xi

1994). This is often denoted as nonlinear creep which is a quite complex phenomenon. Sev-

eral attempts have been made to model the interaction between creep and concrete damage.
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The first models for time-dependent behavior of concrete (creep and relaxation) together

with instantaneous non-linear behavior consisted of some kind of superposition in terms of

strains between a non-linear explicit stress-strain curve σ = f(ε) (total strain model) and

a linear time-dependent model. This approach was adopted by Carol and Murcia (1989)

and Fragiacomo et al. (2004) in which the creep of concrete was taken into account using

Maxwell’s generalized rheological model through a step-by-step time increment procedure.

Usually, these types of explicit or total strain approaches are relatively simple and inexpen-

sive compared with other more complex incremental formulations, and allow the engineer to

perform the time-dependent static analysis of frames. However, these models seems to be

incapable of representing some quite significant experimental features of concrete behavior

and more advanced approaches have been devised. One route is to consider the concept

of energy activation and rate dependent plasticity (softening) as proposed by Bažant and

Jirásek (1993). In a second approach, a standard rheological model for creep is incorporated

into the fictitious crack model in order to simulate time dependency of crack opening (Zhou

and Hillerborg 1992; Barpi and Valente 2003). In the last class of models, rheological mod-

els are built up by combining either smeared crack representation (softening plasticity) or

damage model with ageing linear viscoelasticity. The main advantage of the last class of

the model is the ease in the implementation as well as the effectiveness in reproducing key

feature of the nonlinear cracking process. Barpi and Valente (2003) have enhanced the latter

approach using a fractional order rate law. Benboudjema et al. (2005) proposed a sophis-

ticated hydro-mechanical model accounting for the full coupling between drying, shrinkage,

creep and cracking. In their model, a new creep constitutive law, based on microscopic

considerations of the role of water, is elaborated and coupled with an improved version of

the drying creep model proposed by Bažant and Chern (1985) in order to account for the

interaction between the solid skeleton and the water.

In composite steel-concrete beams with flexible connectors, a slip at the steel-concrete
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interface occurs, which cannot be neglected in the analysis and the design of composite

beams. A state of the art on the time-dependent behavior of steel-concrete structures can

be founded in Ranzi et al. (2013). At the very beginning, time-dependent analysis of com-

posite beams was carried out by assuming full interaction between the concrete slab and

the steel beam that is no slip occurs at the steel/concrete interface. This leads to analyti-

cal procedures for time-dependent analysis of composite steel-concrete cross-sections in full

interaction that have been proposed by Gilbert (1989). Early papers on time-analysis of

composite beams taking into account partial shear interaction were published by Bradford

and Gilbert (1992); Tarantino and Dezi (1992, 1993). Bradford and Gilbert (1992) proposed

a method using an equivalent transformed section approach for the time-dependent response

of simply supported steel-concrete composite beams. Tarantino and Dezi (1992) adopted

the step-by-step approach to discretize the constitutive concrete model which was combined

with the finite-difference method for the space discretization. Virtuoso and Vieira (2004)

developed a force-based finite element formulation using the rate-type method to model the

time-dependent behavior of the concrete. Recently, closed-form solutions have been pro-

posed in Nguyen et al. (2010a, 2010b) for the general method, in Faella et al. (2002); Ranzi

and Bradford (2005) for algebraic methods and in Jurkiewiez et al. (2005) for rate-type

method. It is worth mentioning that all above-mentioned research papers are based on lin-

ear viscoelasticity ignoring the interaction between time effects and instantanuous concrete

crack/plasticity. Fragiacomo et al. (2004) have proposed a FE model for collapse and long-

term analysis of composite beams. This model takes into account the partial interaction,

concrete creep and shrinkage and the nonlinear behavior of component materials. Concrete

creep is taken into account using Maxwell’s generalized rheological model. The nonlinear

behavior of component materials is considered through a new nonlinear iterative procedure

called the modified secant stiffness method, particularly effective for this type of problem.

The purpose of the article is to develop a FE model for the long-term analysis of composite
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beams with partial shear connection taking into account the interaction between the time

effects and the nonlinear behavior of concrete (cracking). This model is based on the two

fields mixed force-displacement formulation with nonlinear constitutive relationships for each

components (Zienkiewicz and Taylor 1989; Ayoub and Filippou 2000; Nguyen et al. 2009).

The mixed formulation is adopted in our work because it combines the advantages of the

displacement and force formulations while overcoming most of their limitations, especially

for nonlinear analysis of composite beams in partial interaction (Spacon and El-Tawil 2004).

Regarding the nonlinear time-dependent behavior of concrete, a viscoelastic/plastic model is

proposed in order to take into account the interaction between creep, shrinkage and plasticity

(smeared-crack model). The key idea, which is borrowed from van Zijl et al. (2001), is

to combine, as a first approach, a viscoelastic creep model with a continuum plasticity

model. Creep is formulated via Kelvin chain spring-dashpot model of aging viscoelasticity

(differential formulation) proposed by Jirásek and Bažant (2002). The concrete cracking

is modeled using an 1D elasto-plastic model with softening proposed by the first author

(Nguyen et al. 2009). A consistent time-integration is performed by adopting the Euler

backward scheme. A nonlinear isotropic/kinematic hardening model is adopted for steel

behavior (Mahnken 1999) and an appropriate nonlinear constitutive relationship is utilized

for the shear stud (Ollgaard et al. 1971; Aribert and Labib 1982). The proposed FE model is

employed to investigate the nonlinear long-term behavior of a two-span continuous composite

beam tested by Gilbert and Bradford (1995). The accuracy of the model is assessed by

comparing the predicted deflections against measured deflections. Finally, the contribution

of nonlinear creep is evaluated by comparing the deflections predicted by the proposed model

against those provided by ageing linear viscoelasticity.

VISCOELASTIC-PLASTIC MODEL FOR CONCRETE

In the proposed viscoelastic-plastic model, it is assumed that total strain rate ε̇ is defined
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as the sum of different contributions

ε̇ = ε̇ve + ε̇p + ε̇sh (1)

where ε̇ve is viscoelastic strain rate due to concrete creep; ε̇p is strain rate due to plastic-

ity/cracking; and ε̇sh is shrinkage strain rate. The rheological viscoelastic/plastic model is

illustrated in Fig.1. The creep strain rate is evaluated here via an ageing rheological Kelvin

chain (with Kelvin elements placed in serial), while the cracking strain is formulated using

continuum plasticity theory (smeared cracking model). Further, the shrinkage strain rate can

be evaluated by utilizing shrinkage models proposed in design codes (ACI209 1997; Bažant

and Baweja 1995; CEB-FIB 1990).

In this work, concrete creep is modeled using the rate-type formulation with internal

variables of the linear viscoelasticity, initially proposed by Bažant and Wu (1974). This

formulation is based on expanding the creep function J(t, τ) into a Dirichlet series:

J(t, τ) ≈
1

E0

+
m∑

i=1

1

Di(τ)

[
1− exp (−t− τ

τi

)

]
(2)

where τi=1..m are fixed parameters called the retardation times; E0 is the asymptotic modulus

and Di=1..m are age-dependent moduli which are determined by numerical identification to

analytical creep function of CEB-FIB 1990. The details of this identification can be found in

Nguyen (2009). The approximation of the creep function leads to a Kelvin chain of m units

with ageing moduli Em(t) and dashpot viscosities ηm(t) as shown in Fig.1. For this chain,

the viscoelastic strain can be expressed as

εve(t) =
σ(t)

E0

+
m∑

i=1

εi(t) (3)
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where εi(t) is the strain of each Kelvin unit and must satisfy the following rate-type equation:

Ei(t)ε̇i(t) + η̇i(t)ε̇i(t) + ηi(t)ε̈i(t) = σ̇(t) (4)

The above differential equation can be solved using the exponential algorithm developed by

Bažant (1971) for ageing concrete creep, which results in the following relationship between

the stress increment ∆σ from the time tn to the time tn+1 and the corresponding viscoelastic

strain increment ∆εve:

∆σ = Eve∆εve + σ̃n (5)

where Eve is an effective stiffness modulus, which depends only on the current time tn+1;

and σ̃n is a viscous stress which accounts for the whole stress history. Full details of this

exponential algorithm can be found in Jirásek and Bažant (2002).

In the present study, the cracking phenomena is described with a continuum plasticity

model in which the plastic strain rate is determined by the plastic flow rule:

ε̇p = λ̇
∂Φ

∂σ
; λ̇ ≥ 0 and Φ ≤ 0 (6)

where λ̇ is the plastic multiplier and Φ is the yield/craking function. Assuming isotropic

hardening/softening, the yield function takes the following form in 1-D:

Φ =

 σ −Rt (p) in tension

−σ −Rc (p) in compression
(7)

in which Rt, c (p) is the hardening/softening functions and p the equivalent plastic strain that

describes the hardening/softening behavior. In tension, the following hyperbolic softening
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law is adopted (Nguyen 2009):

Rt (p) =
ft(

1 +
ftleq
Gt

p

)2 (8)

where ft is the tension strength; Gt the fracture energy; and leq the equivalent length of the

respective FE integration point which is introduced according to the concept of constant

fracture energy to avoid the loss of objectivity due to the strain localization (Bažant and Oh

1983; Coleman and Spacone 2001).

In compression, the expressions of the hardening/softening functions will be determined

such as to reproduce the uniaxial stress-strain explicit function given by Krätzig and Pölling

(2004) which fits well with experiments. This function is illustrated by three parts in Fig.2.

Elastic part: below the initial yield/damage stress fcy = fc/3 linear-elastic behavior is as-

sumed. Hardening part: the stress grows until failure strength fc, consequently the tangential

stiffness decreases from initial stiffness to zero (horizontal tangent). Softening part: After

exceeding the compression strain εc, localization of damage occurs in this softening region.

The softening branch depends on the fracture energy and on the characteristic length leq

to avoid possible ill-posedness problem (Bažant and Oh 1983). The explicit uniaxial stress-

strain expression has the form:

σ (ε) =



Ec ε for ε ≥ −εcy

Eciε

fc

+

(
ε

εc

)2

1−
(

Eciεc

fc

− 2

)
ε

εc

fc for −εcy > ε ≥ −εc

−1

2 + γcfcεc

2fc

+ γcε +
γc

2εc

ε2

for ε < −εc

(9)
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where

Eci =
f 2

c

2Ecε2
c

− fc

εc

+
3Ec

2
; εcy =

fc

3Ec

and γc =
π2fcεc

2
(

Gcl

leq
− f2

c

2Ec

)2 (10)

with fc being the failure stress and εc the corresponding strain. Ec is the initial modulus of

elasticity and Gcl the localized crushing energy.

The identification of the hardening and softening functions is performed as follows. Ac-

cording to the Hooke’s law, the stress is expressed as

ε =
σ

Ec

+ εp (11)

Otherwise, the associated plastic evolution equations reads

ε̇p = −ṗ = −λ̇ (12)

Integrating the above relation, one obtains

εp = −p (13)

From the yield condition, one has

Rc = −σ (14)

Inserting Eqs. (13) and (14) into (11), one obtains

ε = −Rc

Ec

− p (15)
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By introducing the relations (14) and (15) into (9), one obtains

Rc =



Eci

fc

(
Rc

Ec

+ p

)
− 1

ε2
c

(
Rc

Ec

+ p

)2

1 +

(
Eci

fc

− 2

εc

)(
Rc

Ec

+ p

) fc for p ≥ p̂

1

2 + γcfcεc

2fc

− γc

(
Rc

Ec

+ p

)
+

γc

2εc

(
Rc

Ec

+ p

)2 for p < p̂

(16)

where

p̂ = εc −
fc

Ec

(17)

By solving the equation (16) for the hardening/softening function Rc, one obtains:

Rc =



√
ξ1p2 + ξ2p + ξ2

3 − ξ4p− ξ3 with p ≥ p̂

1

3

3

√√√√√
√√√√( 3∑

i=0

αipi

)2

+

(
2∑

i=0

βipi

)3

±
3∑

i=0

αipi +
2

3
Ec(εc − p) with p < p̂

(18)

in which ξ1..4, β0, 1, α0..2 and µ0..3 are the parameters which are determined through the

material parameters such as fc, εc, Ec and Gcl, as given in Appendix.

Integration of the viscoelastic/plastic model

Numerical implementation of the model requires integrating the rate form of the con-

stitutive relations for a finite time step ∆t = tn+1 − tn. The objective is to compute, for

a given set of state variables at the time tn, a shrinkage strain increment ∆εsh and a total

strain increment ∆ε, the respective updated state variables at the end of the time step tn+1.

An Euler-Backward algorithm is utilized for this purpose since it has the property of being

stable (Ortiz and Popov 1985; Simo and Hughes 1997).
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The numerical integration of the model is carried out by the following procedure:

1. Compute the effective modulus Eve and the viscous stress σ̃n according to the expo-

nential algorithm (Jirásek and Bažant 2002).

2. Predictor: compute viscoelastic trial stress and test for plastic loading

σtrial
n+1 = σn + Eve

(
∆ε−∆εsh

)
(19)

Φtrial = Φ
(
σtrial

n+1, pn

)
(20)

If Φtrial ≤ 0

then viscoelastic step: set (•)n+1 = (•)trial
n+1 and exit

else viscoelastic/plastic step: proceed to step (3).

3. Corrector: Determine ∆λ by solving

Φ
(
σtrial

n+1 − Eve sign(σtrial
n+1)∆λ, pn + ∆λ

)
= 0 (21)

with Newton-Raphson method and update the others variables

pn+1 = pn + ∆λ (22)

εp
n+1 = εp

n + sign(σtrial
n+1)∆λ (23)

σn+1 = σtrial
n+1 − Eve sign(σtrial

n+1)∆λ (24)

4. Compute the consistent tangent modulus by

Etg
n+1 = Eve

(
1− Eve

Eve + dR
dp

)
(25)
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Qualitative validation of the algorithm

The proposed model is used to simulate a relaxation test. We consider the concrete

specimen C30 suggested in the CEB-FIB 1990. The length of the specimen is 200 mm and

its cross-section is 100x100 mm2. This specimen is subjected to an imposed compressive

displacement at its end. Creep and shrinkage functions recommended by the CEB-FIB 1990

are utilized considering that the cement is normal hardening and the humidity (RH) is about

80%.The following material parameters are adopted: fc = 38 MPa; ft = 2.9 MPa; Ec = 33500

MPa; εc = 0.22%; Gc = 30 kN/m; Gt = 0.06 kN/m; and leq = 21 mm. The comparison of

the time evolution of the stress predicted by the proposed model against simulation with the

linear viscoelastic model are presented in Fig. 3. It can be observed that, under creep and

shrinkage effects, the stress relaxes from a negative value (compression) until it reaches the

tensile strength at 300 days. At this stage, the plastic flow (cracking) begin which results in

a decrease of the stress. This drop is necessary as the stress need to remain inside the yield

surface. Fig. 4 depicts the time evolution of the strains. As can be seen the total strain is

constant over the time because of the imposed displacement (relaxation test). The shrinkage

strain is stress-independent and increase in magnitude with time in a monotonic way whereas

the creep strain is stress-dependent and varies accordingly. In the present relaxation test,

shrinkage will generate tension stresses while creep stresses are compressive. As both the

creep and shrinkage strains increase in magnitude but with opposite sign, the yield stress will

be reached at a certain time instant. At this stage, plastic deformation will start to develop

in order to maintain the stress on the yield surface. However, with the presence of shrinkage

strain which is negative, the viscoelastic strain has to vary initially in the contrary way of

the shrinkage strain in order to keep the total strain constant. Then the plastic flow is active

(at 300 days), the plastic strain starts to increase with time. This leads to a decrease of the

viscoelastic strain observed in Fig. 4. The numerical results show that the proposed model

seems to be able to represent the cracking phenomena due to shrinkage (Fig. 3).

NONLINEAR ISOTROPIC/KINEMATIC HARDENING ELASTO-PLASTIC MODEL
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FOR STEEL

In our work, the von Mises plasticity model with combined isotropic and kinematic hard-

ening is adopted for steel. An extensive description for formulation constitutive rate equa-

tions of this model can be found in Doghri (1993) and Mahnken (1999), and we only present

here a summary of the resulting set of equations for the 1-D problem:

• Yield surface Φ = |σ −X| − (fy + R) = 0 (26)

• Isotropic hardening stress R = R(p) = c
(
1− eb p

)
(27)

• Flow rule ε̇p = λ̇ sign(σ −X) (28)

• Equivalent plastic strain evolution ṗ = λ̇ (29)

•Kinematic hardening evolution Ẋ = k1ε̇
p − k2X ṗ (30)

where b, c, k1 and k2 are material parameters. The numerical integration algorithm proposed

by Mahnken (1999) is used and implemented in our FE code (Nguyen 2009).

CONSTITUTIVE RELATIONSHIP FOR SHEAR CONNECTORS

The constitutive relationship proposed by Ollgaard et al. (1971) is considered for the stud

shear connector. The analytical relationship between the shear force Qsc and the slip g of a

generic stud is given by

Qsc = Qmax

(
1− e−c1|g|

)c2
(31)

where Qmax is the ultimate strength of the stud shear connector; c1 and c2 are coefficients to

be determined from experimental results (Aribert and Labib 1982).

It is worth to mention that the non-hysteretic behavior is adopted for the sake of simplic-

ity. A hysteretic constitutive law of shear connection such as the one in Zona et al. (2005)

can be easily implemented in the proposed FE model.
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COMPOSITE BEAM ELEMENT FORMULATION

The mixed finite element method is used to formulate the composite beam element

(Zienkiewicz and Taylor 1989). The derivation follows the two-field formulation which uses

the integral form of equilibrium and compatibility relations to derive the matrix relation

between element generalized forces and corresponding displacements. Most of the follow-

ing formulation is based on the presentation by Ayoub 2001. First of all, we recall in the

following the field equations for composite beams with partial shear interaction in a small

displacement setting. According to the notations defined in Fig. 5, these equations are

summarized as

• Equations of equilibrium

∂Di − ∂scD
i
sc −Pz = 0 (32)

• Equations of compatibility

∂di − ei = 0 (33)

∂T
scd

i − gi = 0 (34)

• Equations of constitutive law

ei = ei−1 + f i−1∆Di (35)

Di
sc = Di−1

sc + ki−1
sc ∆gi (36)

where D = [Nc Ns Mc + Ms]
T is section generalized force vector; Dsc the bond force per

unit length; Pz = [0 0 pz]
T with pz the external uniformly distributed load; d = [uc us v]T

the displacement vector; e = [εc εs κ]T section generalized deformation vector; g the

relative slip between the concrete slab and the steel beam; superscript i indicates the current
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iteration of the Newton-Raphson (N-R) iteration loop; f the flexibility matrix of the cross-

section derived from uniaxial constitutive models for both steel and concrete. ∆ denotes the

increments of the corresponding quantities; the operator ∂ and ∂sc are given by

∂ =


d

dx
0 0

0
d

dx
0

0 0 − d2

dx2

 ; ∂sc =


1

−1

H
d

dx

 (37)

In the two-field mixed formulation, independent shape functions are used for approximating

the displacement and force fields along the element. The two fields are written

d(x) = a(x)q (38)

D(x) = b(x)Q + D0(x) (39)

where a(x) and b(x) are the displacement and force interpolation matrices, respectively;

D0(x) is a particular solution accounting for the effects of internal loading on the internal

cross-section forces. The mixed beam formulation considered in this study is based on the

Hellinger-Reissner variational principle and it is expressed by combining the weak forms of

the compatibility equation (33) and equilibrium equation (32). These weak forms may be

expressed as

∫
L

δDT
(
∂di − ei

)
dx +

∫
L

δdT
(
∂Di − ∂scD

i
sc −Pz

)
dx = 0 ∀ δD , δd (40)

where δD and δd are weighting functions fulfilling the equilibrium and compatibility con-

ditions, respectively. Applying integration by parts for above equation and inserting (35),

(36), (38) and (39) into the outcome, one obtains

δQT
(
G∆qi − Fi−1∆Qi + qi−1

r

)
+ δqT

(
Ki−1

sc ∆qi + GT∆Qi + Qi−1
r −Pext

)
= 0 (41)
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where

G =

∫
L

bT(∂a) dx (42)

Fi−1 =

∫
L

bT f i−1b dx (43)

qi−1
r = Gqi−1 −

∫
L

bTei−1 dx (44)

Ki−1
sc =

∫
L

(∂T
sca)Tk i−1

sc (∂T
sca)dx (45)

Qi−1
r = GTQi−1 +

∫
L

(∂T
sca)TDi−1

sc dx (46)

Pext = Qext +

∫
L

aTPzdx−
∫

L

(∂a)TD0dx (47)

in which Qext is the vector of nodal applied loads. Since Eq. (41) must be hold for any δQT

and δqT, it follows that

−Fi−1 G

GT Ki−1
sc


∆Qi

∆qi

 =

 −qi−1
r

Pext −Qi−1
r

 (48)

Eq. (48) represents in matrix form the two-field mixed formulation for the composite beam

with partial interaction. If the first equation in (48) is solved for ∆Qi and the result is

substituted into the second equation, the following expression results

Ki−1∆qi = Pext −Qi−1
int (49)

where

Ki−1 = GT
[
Fi−1

]−1
G (50)

Qi−1
int = Qi−1

r + GT
[
Fi−1

]−1
qi−1

r (51)

It should be noted that Ki−1 designates the element consistent tangent stiffness at the
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previous Newton-Raphson iteration and Qi−1
int represents the corresponding element resisting

force vector. Further, the formulation has been developed by considering the composite

beam element depicted in Fig.6 where the rigid body modes are not included. Since small

displacement hypothesis is adopted in this study, rigid body modes can be incorporated with

a simple geometric transformation. The element has 7 displacement degrees of freedom and

6 force degrees of freedom as shown in Fig.6.

State determination algorithm

The implementation of the model in a general purpose finite element analysis program

requires the determination of the resisting forces and stiffness matrix that correspond to

the displacements of the structural nodes. In a nonlinear structural analysis program each

load step corresponds to the application of an external load increment to the structure. The

corresponding structural displacement increments are determined and the end displacements

are extracted for each element. The process of finding the resisting forces that correspond to

the given displacements is known as state determination. The state determination process

is made up of two nested stages: (a) the element state determination, in which the element

resisting forces for given element displacements are determined; and (b) the structure state

determination, in which the element resisting forces are assembled to yield the structure

resisting forces. These are then compared with the total applied loads and the difference, if

any, yields the unbalanced force vector. In the Newton-Raphson algorithm, the unbalanced

forces are then applied to the structure until external loads and internal resisting forces agree

within a specified tolerance (Spacone et al. 1996). Note that in the mixed formulation, there

are several algorithms depending how the governing equations are linearized. A detailed

study of state determination algorithms for nonlinear mixed beam finite elements can be

found in Nukala and White (2004). In this study, a direct element state determination

following the proposal of Neuenhofer and Filippou (1997) is used. In this algorithm, the

residuals at the section and element levels are pushed to structure level and then they are

eliminated during global N-R iterations. One the increment displacement at the element

17 Nguyen, April 13, 2015



level ∆qi are obtained from the ith N-R iteration at the structure level, the element resisting

forces are determined by the flowing steps:

• Calculate element force increments and update

∆Qi =
[
Fi−1

]−1 (
G∆qi + qi−1

r

)
(52)

Qi = Qi−1 + ∆Qi (53)

• Determine the section force increments (at integration points) and update the section

generalized deformations

∆Di = b∆Qi (54)

ei = ei−1 + f i−1∆Di (55)

• Update the slip and determine the interface resisting shear force as well as the con-

sistent tangent shear stiffness through shear connector constitutive law (cf. Section

4)

di
sc = di−1

dc + (∂T
sca)∆qi (56)

Di
sc = Dsc

(
di

sc

)
(57)

ki
sc =

dDsc

ddsc

∣∣∣∣
di

sc

(58)

• Determine the section stiffness from the section constitutive law through fiber inte-

gration and deduce the section flexibility matrix f i (cf. see Nguyen et al. (2009)).

• Calculate Fi, qi
r, Ki

sc and Qi
r by Eqs. (43)-(46) and then the new element stiffness

matrix Ki and element resisting force vector Qi
int are calculated as in (50) and (51)

respectively.
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NUMERICAL EXAMPLE

The purpose of this application is to assess the capability of the proposed model to

predict satisfactorily the long-term structural behavior of composite beams with partial in-

teraction. We investigate the long-term deflection of two identical continuous beams (B1 and

B2) with two equal spans. The beam B1 was subjected only to its self-weight, i.e. p0 = 1.92

N/mm, while the beam B2 carried an additional superposed sustained load of 4.75 N/mm,

i.e. p0 = 6.67 N/mm. These continuous beams were tested by Gilbert and Bradford (1995)

over a period of 340 days. The dimensions of the tested beams, the loading and the geo-

metric characteristics of the cross-section are shown in Fig. 7. The connector spacing is not

given in Gilbert and Bradford (1995) and we assume that the headed studs were uniformly

spaced along the beam and the distance between two studs is taken equal to 55 mm. It is

worth mentioning that in our model, the connection at the interface slab/joist is modeled by

a continuous bond model despite the discrete nature of shear studs. The equivalent continu-

ous connection stiffness is computed by dividing the stiffness of a single shear stud by their

spacing along the beam. The concrete compressive strength obtained from the experiments

is equal to 27 MPa. Accordingly, we can consider for the computer analysis that the concrete

is of grade C30. Shrinkage is assumed to start at 7 days. The well-known B3 model (Bažant

and Baweja 1995) is selected to predict the creep function and shrinkage strain of concrete.

Table 1 presents the constitutive model parameters which are used for the computer analysis.

Note that, in this table, all symbols are defined as in the corresponding cited reference.

The mid-span deflections obtained by the proposed model are compared against the ex-

perimental results and the numerical results obtained by viscoelastic model with cracked

analysis (Nguyen et al. 2010b) in Fig.8 for both beams. It can be seen that the numeri-

cal results are in reasonable agreement with the experimental data. Further, the deflection

predicted by the proposed model is smaller than the one of cracked analysis. It can be ex-

plained on one hand by the fact that the proposed model takes into account the stiffness of
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the concrete in hogging zone while in cracked analysis the concrete contribution along 15%

of the span length on each side of the internal support is neglected (Nguyen et al. 2010b).

On the other hand, it is well known that the deflection of composite beams is strongly influ-

enced by the shear connection stiffness which is not the same in their two computer analysis.

For example, the shear connection secant stiffness given by the exponential equation (31) is

1317 MPa for 1 mm of slip. This value is indeed much larger than the one taken in cracked

analysis, ie 400 MPa (see Nguyen et al. 2010b).

In order to investigate the time effect of concrete in the plastic range, we consider that

the beam is instantly subjected at 7 days to a distributed load p0. The loading is supposed

to be constant during an analysis of 70 years. Figs.9a and 9b show the evolutions of the

mid-span deflection in function of loading for t = 7 days and in function of time for p0 = 20,

30 and 40 kN/m, respectively. Again, we observe that the deflection increases more or less

significant over time. Further, the results indicated that the time effect is more important

when the beam is in the nonlinear range (plasticized and cracked). For instant, with p0 =

20 kN/m the beam is still in linear range (see Fig. 9a) and the creep and shrinkage make

increase the deflection about 8 mm while when the beam is plasticized and cracked (with p0

= 40 kN/m) the time deflection is about 26 mm. Fig.10 presents the time evolution of the

bending moment at intermediate support. As can be seen, the bending moment distribution

is less important when the beam is more loaded. It can be explained by the fact that under

p0 = 20 kN/m the beam is not almost plasticized as under p0 = 40 kN/m. Therefore the

shrinkage makes it totally plasticized/cracked. As a result, there is an important bending

moment redistribution compared to the case of 40 kN/m as we can see in Fig.10.

The time evolution of the most tensile fiber stress is shown in Fig.11. As can be seen, the

instantaneous stress under service load p0 = 6.67 kN/m (real load level of the test (Gilbert and

Bradford 1995)) is remain smaller than the tensile stress resistance ft. The time effect makes
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the tensile stress go up to ft at t = 10 days. This fiber is then ”plasticized/cracked” therefore

the softening curve of stress over time is obtained (see black line in Fig.11). However,

for the three other load levels one can observe that the tensile stress decreases over time.

That means that the slab cross-section at intermediate support is instantly cracked. The

most compressed fiber stress at mid-span versus time curves are plotted in Fig.12. Because

of statically indeterminate beam, one can observe the stress relaxations for all load levels.

Further, it can be noted that the slab cross-section at mid-span partially compressed at t = 7

days can become totally tensed under time effect. It can be seen from Fig.12 for the case p0

= 6.67 kN/m.

CONCLUSIONS

In this article, a FE model for the nonlinear time-dependant behavior of composite beams

with partial shear connection has been proposed. Two fields mixed force-displacement for-

mulation has been used. A viscoelastic/plastic has been developed for the time-dependent

behavior of concrete. This model takes into account the interaction between creep, shrinkage

and cracking of concrete. Creep and shrinkage are formulated via Kelvin chain spring-

dashpot model of aging viscoelasticity. The concrete cracking is modeled using an 1D

elasto-plastic model with softening proposed by the authors. The proposed FE model has

been applied to two-span continuous composite beam to investigate the long term behavior.

Fairly good agreement between the predicted deflections and the measured deflections has

been found. The predicted deflections were also compared against the ones obtained by

the cracked analysis in (Nguyen et al. 2010b). Good agreement has been observed. The

numerical results have been indicated that the deflection can be significantly larger when

the nonlinear behavior of concrete is combined with creep and shrinkage. Further, the time

effect can produce an important bending moment redistribution in the statically indeter-

minate beam under serviceability loads. This redistribution becomes less significant if the

beam is plasticized/cracked before the acting of time effect. However, further experimental

research needs to be conducted to confirm this.

21 Nguyen, April 13, 2015



APPENDIX

ξ1 =
E2

c E
2
ciε

2
c − 4E2

c Eciεcfc + 4E2
c f

2
c

4 (Eciεc − 2fc + f 2
c /(Ecεc))

2 (59)

ξ2 =
EcEciεcfc (Ecεc + Eciεc − 2fc)− 2Ecf

2
c (Ecεc + fc)

2 (Eciεc − 2fc + f 2
c /(Ecεc))

2 (60)

ξ3 =
Ecε

2
cfc (Ec − Eci)

2 (EcEciε2
c − 2Ecεcfc + f 2

c )
(61)

ξ4 =
Ec (EcEciε

2
c − 2Ecεcfc + 2f 2

c )

2 (EcEciε2
c − 2Ecεcfc + f 2

c )
(62)

α0 =
27E2

c εc

γc

− 18E3
c ε

2
c

fcγc

− E3
c ε

3
c (63)

α1 =
18E3

c εc

fcγc

+ 3E3
c ε

2
c (64)

α2 = −3E3
c εc (65)

α3 = E3
c (66)

β0 =
6E2

c εc

fcγc

− E2
c ε

2
c (67)

β1 = 2E2
c εc (68)

β2 = −E2
c (69)
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nexion partiell.” Construction Metallique, 4.

Ayoub, A. (2001). “A two-field mixed variational principle for partially connected composite

beams.” Finite Elements in Analysis and Design, 37(11), 929–959.

Ayoub, A. and Filippou, F. (2000). “Mixed formulation of nonlinear steel-concrete composite

beam element.” Journal of Structural Engineering-ASCE, 126(3), 371–81.

Barpi, F. and Valente, S. (2003). “Creep and fracture in concrete: A fractional order rate

approach.” Engineering Fracture Mechanics, 70(5), 611–623.
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TABLE 1. Input values of the constitutive models 

 

Creep and shrinkage B3 model 

cf ′  h  w  c  /a c  m  n  /v s  (28)E  Ciment Curing 
(MPa) (%) (kg/m3) (kg/m3)    (mm) (MPa) type  

38 50 192 500 2.96 0.5 0.1 70 29182 2 moist 
Viscoelastic-plastic concrete model 

cf (MPa) cE (MPa) εc (%) cG (kN/m) ,eq cl (mm) tf (MPa) tG (N/m) ,eq tl (mm) 

38 24545 2 30 100 3 60 35 
Steel model 

yf  (MPa) E  (MPa) b . c (MPa) 1k  (MPa) 2k  (MPa) 

300 200000 0.26 2000 17000 21 
Connection model 

maxQ  (kN) 1c  2c (mm-1). 

110 0.8 0.7 
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FIG. 11. Time evolution of the most tensile fiber stress at intermediate support.
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FIG. 12. Time evolution of the most compressed fiber stress at mid-span.
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